

for

REDSTAR GOLD CORPORATION

Prepared By Michael G. Allen B.Sc. Geol. I.T. **Redstar Gold Corporation**

July 28, 2002

2.23971

52M01SE2024 2.23971

Table of Contents:

1.0	SUMMARY	. 3
2.0	TERMS OF REFERENCE	. 3
3.0	PROPERTY LOCATION AND PHYSIOGRAPHY	. 4
4.0	PROPERTY DESCRIPTION	. 4
5.0	PREVIOUS WORK	. 5
6.0	REGIONAL GEOLOGY	. 7
	 6.1 Stratigraphy 6.2 Regional Structure 6.3 Metamorphism 6.4 Hydrothermal Alteration 6.5 Red Lake Gold Deposits 	. 8 . 8 . 8 . 8
7.0	PROPERTY GEOLOGY	. 9
8.0	SUMMARY OF WORK	. 9
8.0	SUMMARY OF RESULTS	14
10.	0 CONCLUSIONS AND RECOMMEDATIONS	15
11.	0 REFERENCES	16
12.	0 CERTIFICATE OF QUALIFICATIONS	18

List of Figures:

Figure 1. Location Map	19
Figure 3. Geology of the Red Lake greenstone belt, showing critical age determinations	
of volcanic and plutonic rocks (M. Sanborn-Barrie and T. Skulski, GSC, western	
Superior NATMAP program1997-2002)	21
Figure 4. Property Geology	22
Figure 5 Wolf Bay geology, sample locations and structural symbols (in pocket)	23

1.0 SUMMARY

Redstar Gold Corporation of # 611 675 West Hastings Street Vancouver, BC. V6B 1N2 has an option to earn an interest in 18 unpatented claims, consisting of 103 units, known as the Wolf Bay Property. This property is part of a larger land package optioned from Rubicon Minerals Corporation. The work was carried out by Pamicon Developments on behalf of Redstar Gold Corporation and consisted of geological mapping, prospecting, and sampling.

The property is located approximately 20km west of the town of Red Lake Ontario, on the north shore of Red Lake in Wolf Bay and Golden Arm. The property is accessed by boat directly from the town of Red Lake and by logging roads on the north side of Red Lake.

The property is underlain by mafic and ultramafic volcanic rocks of the Ball and Balmer assemblages and volcanic and metasedimentary rocks of the Confederation Assemblage to the south. Intrusive rocks of the Killala-Baird Batholith intrude the Balmer assemblage to the south. The property is located within the western extent of the Pipestone Bay – St. Paul Bay deformation zone as described by Andrews et. al 1986.

Mapping and sampling on the north eastern portion of the claim revealed mafic and ultramafic volcanic rocks containing strongly mineralized quartz veins. Mineralization consists of strong pyrite, chalcopyrite, pyrrhotite and arsenopyrite.

A total of 52 samples were collected for Au and ICP analysis. All results are pending.

2.0 TERMS OF REFERENCE

Pamicon Developments Ltd. of Vancouver BC, was contracted by Redstar Gold Corporation to complete work on Redstar's land holding in the Red Lake Camp during the summer of 2002. Initial work consisted of data compilation and review followed by a field program.

A base of operations was established in Red Lake ON where field mapping and sampling were carried out by three field geologist and two prospectors.

Rock samples were analyzed for Gold by fire assay, ICP analysis by Multi Acid Digestion and whole rock analysis by XRF at Chemex Labs facilites in Thunderbay ON and Vancouver BC.

3.0 PROPERTY LOCATION AND PHYSIOGRAPHY

The property is located approximately 20km west of the town of Red Lake Ontario, on the north shore of Red Lake in Wolf Bay and Golden Arm. The property is accessed by boat directly from the town of Red Lake and by logging roads on the north side of Red Lake. (Figure 1)

Physiography and topography are typical of glaciated Precambrian areas. Dominant landforms are rounded rocky ridges and hills, interspersed with low ground. The hills and ridges are generally elongated parallel to the strike direction of the underlying bedrock.

4.0 PROPERTY DESCRIPTION

The Wolf Bay property comprises 18 unpatented mining claims (mining rights only) consisting of 103 claim units. The claim on which work was performed pertaining to this report is summarized in Table 4.1. A property map is shown in Figure 2

Township	Claim Number	Units	Due Date
Todd	1185128	8	26-Jun-02
Todd	1234517	1	01-Aug-02
Killala	1234525	12	01-Aug-02
Todd	1239848	1	12-Nov-02
Todd	1239855	1	12-Nov-02
Todd	1239853	3	12-Nov-02
Todd	1239852	6	12-Nov-02
Todd	1239851	5	12-Nov-02
Todd	1239850	10	12-Nov-02
Todd	1239849	10	12-Nov-02
Todd	1239854	10	12-Nov-02
Todd	1107689	4	12-Mar-03
Todd	1107691	13	12-Mar-03
Todd	1234225	2	15-Jun-03
Todd	1243227	3	15-Jun-03
Todd	1234226	8	15-Jun-03
Todd	1234224	4	15-Jun-03
Todd	1185127	2	26-Jun-03

Table 4.1

5.0 PREVIOUS WORK

The Wolf Bay claim group was likely first prospected during the Red Lake gold rush in the late 1920s and early 1930s, but the earliest record in the MNDM files is from 1958. The area has received intermittent exploration since 1958, with the majority of the work consisting of ground magnetic and EM surveys, and drill holes targeting conductor anomalies. An annotated summary of previous work on the claim group is provided in Table 4.

Work by Placer Dome, Noranda, and Cochenour Explorations focused on an area underlain by a large ultramafic body exposed in Golden Arm in the west half of the claim group. Ultramafic rocks are recognized as an important control on gold mineralization in the camp (Dube, 2002), and their presence may, in part, have attracted exploration work in the area. Drilling was limited, with most drill holes targeting EM anomalies that were typically explained by sulphidic sediments. It is possible that some of the exploration may have been for base metal mineralization.

Previous exploration in the east half of the Wolf Bay claim group is patchy, and consists of ground and airborne magnetic and EM surveys, with minor drill hole testing of geophysical anomalies. No significant gold values are reported for this work.

The most recent work on the property includes prospecting and a detailed helimag survey by Rubicon Minerals Corporation in 2001 (continuous sampling along 50 m spaced lines, using a towed-bird vertical magnetic gradiometer system). The high-resolution magnetic data is highly effective at mapping rock types and structure, and defined several targets that require follow-up.

Year	Company	Work Done	Area of Property
2000-	Rubicon Minerals	airborne magnetic survey	entire Wolf Bay
2001	Corporation	(continuous sampling along 50 m spaced lines); prospecting and mapping	claim group
1994	Placer Dome	ground magnetic survey (25 m	KRL1239848
	Canada Ltd.	stations along 100 m spaced	KRL1239849
		lines);	KRL1239850
		geological mapping and	KRL1239851
		lithogeochemical sampling	KRL1239852
			KRL1239853
			KRL1239854
1990	BHP-Utah Mines	diamond drilling, 3 holes (356	KRL1107691
	Ltd.	m)	KRL1107689
1983 -	Noranda	ground magnetic and EM survey	KRL1239850
1986	Exploration	(25 m stations along 100 m	KRL1239849

Table 4. Previous work on Wolf Bay claim group, West Red Lake Property

	Company Ltd.	spaced lines); diamond drilling, 1 hole (90.5 m)	
1982	Canadian Nickel	airborne magnetic, EM and	all claims except
	Company Ltd.	radiometric surveys	KRL1239848
		(200 m line spacing)	KRL1234525
			KRL1185128
			KRL1185127
1980	Dome Exploration Ltd.	diamond drilling, 1 hole (155 m)	KRL1239849
1979	Beth-Canada	ground magnetic survey (25 m	KRL1234525
	Mining Company	stations along 100 m spaced lines)	
1977 –	R.H. Solterman	diamond drilling 5 holes (290 m)	KRL1107689
1978			
1971	Coin Lake Gold	ground EM survey	KRL1234224
	Mines		KRL1234225
			KRL1234226
			KRL1234227
		5 	KRL1107691
1970	Cochenour	diamond drilling, 5 holes (1075	KRL1234525
	Explorations Ltd.	m)	KRL1234226
			KRL1107691
1967	Cochenour	diamond drilling, 2 holes (175	KRL1239851
	Explorations Ltd.	m)	KRL1239850
1965	Dickenson Mines Ltd.	ground magnetic survey	KRL1185127
1958	Unknown	diamond drilling, 9 holes (188	KRL1239855
		m)	KRL1239854

6.0 REGIONAL GEOLOGY

6.1 Stratigraphy

The Red Lake gold camp is situated in the Red Lake greenstone belt, an accumulation of Archean-age metavolcanic, metasedimentary and intrusive rocks comprising a portion of the Uchi Province of the Canadian Precambrian Shield. (Figure 3)

The Red Lake district is underlain by Mesoarchean rocks that have been subdivided into three assemblages (Sandborn-Barrie *et al.*, 1999): Balmer, Ball and Bruce Channel. Neoarchean strata of the 2.75-2.73 Ga. Confederation assemblage overlie these older assemblages. The contact between Balmer and Confederation, exposed in a number of localities, thus represents a 200 Ma time span. Both Meso- and Neoarchean sequences are intruded by diorite to granodiorite stocks such as the Dome stock which has been dated at 2718 + 1 Ma.

Balmer assemblage rocks host all of the major gold mines in the camp but it is important to note that 1.6 M. ounces of gold has been extracted from intrusive hosted deposits. The Balmer assemblage consists of mafic to ultramafic flows (including komatiites) and intrusives, minor felsic and interflow sedimentary rock types. Age dates from Balmer assemblage felsic rocks range from 2992 to 2964 Ma. (Corfu and Andrews, 1987).

Ball assemblage rocks underlie much of the western part of the district and consist of ultramafic to mafic flows, intermediate volcaniclastics and massive to spherulitic rhyolites. Chemical sedimentary rocks (iron formations) also characterize Ball assemblage rocks and include stromatolites (Hofmann *et al.*, 1985). The latter are bracketed by felsic rocks that are dated between 2940 Ma and 2925 Ma.

Bruce Channel assemblage rocks, as currently defined, are confined to the eastern part of the belt and comprise intermediate volcaniclastics and clastic rocks (2894 \pm 1.5 Ma). A distinctive magnetite bearing iron formation occurs at the top of the assemblage and forms a key marker horizon.

Confederation rocks comprise intermediate to felsic flows, volcaniclastic and metasedimentary rocks. Age dates for this assemblage range from 2748 + 15 Ma to 2733 + 1Ma.

Granitoid rocks were intruded in three main episodes:

- 1) The 2734 +/- 2Ma Douglas Lake pluton, the 2731 +/- 3Ma (Little Vermilion Lake batholith) and 2729 +/- 1.5 Ma Red Crest stock.
- 2) The 2717 +/-2 Ma Hammell Lake pluton, The McKenzie Island stock (2720 +/-2Ma), the Dome Stock 2718 +/-1Ma, the 2720 +7/-5 Ma Abino granodiorite and late QFP dykes at the Campbell Mine, dated at 2714 +/-4 Ma.
- 3) Intrusion of the Killala Kspar megacrystic Killala-Baird granodiorite at 2704 +/- 1.5 Ma, the 2699 Walsh Lake pluton and a 2699 +-4Ma dyke at the Madsen Mine.

6.2 Regional Structure

At least two major deformation events have affected the rocks of the belt resulting in the generation of type 2 interference fold structures on all scales. Overall strain in the belt is low, however, local high strain zones do occur, typically in areas of strong alteration with locally associated gold mineralization. Previous workers identified five major shear or deformation zones within which major gold deposits of the camp occur. Recent work (Sandborn-Barrie *et al., op. cit)* has questioned the validity and usefulness of the deformation zone concept in the camp.

6.3 Metamorphism

Supracrustal rocks in the area have been regionally metamorphosed to greenschist facies with higher-grade contact metamorphic aureoles around the major felsic intrusions. No genetic or spatial relationship between regional metamorphic facies and gold deposition has been established.

6.4 Hydrothermal Alteration

A pervasive and often intense carbonate hydrothermal alteration event is superimposed on the deformation zones and appears to have had its greatest affect on mafic and ultramafic rocks. Primary minerals of the altered rocks have been converted to quartz, carbonate, epidote, plagioclase, chlorite and sericite (fuchsite and talc in the ultramafics).

6.5 Red Lake Gold Deposits

Gold occurs in the free state or with pyrite, pyrrhotite and arsenopyrite and lesser amounts of magnetite, chalcopyrite, sphalerite, galena and sulph-arsenides in quartzankerite and/or 'cherty' quartz veins, stockworks, lenses, stringers and silicified zones. In rare instances, scheelite is reported (Ferguson, 1966).

Silicification and carbonatization, together with very anomalous K-enrichment and Na + Ca (minor Mg)-depletion, occur in the alteration aureoles surrounding ore zones

(Andrews and Wallace, op. cit.). One important aspect, particularly with respect to exploration, is the presence of geochemically elevated Au and As in the alteration aureoles (Durocher, 1983).

Andrews and Wallace (1983) point out that most of the productive areas of the Red Lake camp are underlain by tholeiitic to komatiitic mafic and ultramafic volcanics, and that past and present production zones occur within highly altered metavolcanics at or near the stratigraphic top of the Balmer sequence.

7.0 PROPERTY GEOLOGY

The Wolf Bay claim group is underlain by Balmer assemblage mafic to ultramafic volcanic rocks in the central and eastern portion of the claim group, and Ball assemblage felsic and mafic volcanic rocks and sediments along the far western edge of the claim group (Figure 4). A large ultramafic intrusion of unknown age, which locally displays cumulate layering, occupies the contact between Balmer and Ball along Golden Arm. Huston and Confederation age conglomerate, fine-grained siliciclastic rocks, and quartz crystal tuff unconformably overly Balmer assemblage rocks along Wolf Bay near the center of the claim group. All of the assemblages are intruded by the Killala-Baird batholith (2704 Ma) to the south.

Stratigraphy strikes roughly northeast throughout the Wolf Bay claim group, with rare antiforms and synforms indicated on the regional 1:50,000 scale geological map (Ontario Department of Mines Map 2406, Geology of Todd Twp; Riley, 1978). Several northwest trending faults are interpreted from detailed magnetic data.

Mapping and sampling on the property have revealed Mafic to Ultramafic volcanic rocks with associated mineralized Quartz-Carbonate veins. Foliation in the area strikes between 140 and 160 degrees dipping 45-85 degrees to the NE. An outcrop map was not created during this phase of exploration due to time constraints and the size of the map area. (Figure 4 and 5).

8.0 SUMMARY OF WORK

Between June 25 and July 24, 2002 a total of 39 man days (two geologists and one helper for 13 days) were spent conducting geological mapping, prospecting, and sampling. A total of 35 samples were collected for Gold ICP, 2 samples 385613 and 385664 were submitted for whole rock analysis and 17 stations were described. Sample and station descriptions are summarized in table 8.1 and located on Figure 5. Due to time constraints and the size of the area an outcrop map was not created during this phase of exploration.

Several outcrops were hand stripped for exposure but were not noted in field books. Rock descriptions and structural measurements were collected at each sample/stations. Structural measurements consist of foliations, quartz veins, faults and fold axis where present. (Figure 5.) Three new showings were discovered as a result of this phase of exploration, these are shown in Figure 5.

Little D showing: The little D showing was exposed by hand trenching along a road cut. A quartz vein with 2-3% chalcopyrite was exposed in mafic volcanic rocks. The vein is 3-5 cm wide. A strike and dip measurement was not taken due to lack of exposure.

D65 showing: The D65 showing was exposed by hand trenching along a road cut after systematic traverses away from the Little D showing. The D65 showing consists of a 5-10cm wide quartz vein trending 060 degrees and dipping 60 degrees to the west. The vein consists of 3-5% chalcopyrite, 2-3% bornite and native copper mineralization. The wall rock in this showing is also mineralized with 1-2% chalcopyrite and 1-2% pyrrhotite and is described as mafic volcanic.

Jet showing: The Jet showing consists of a arsenopyrite mineralized quartz vein in an old trench. The vein is approximately 3-5cm wide and trends approximately east-west. Mineralization consists of 30-40% arsenopyrite.

sample	northing	easting	rocktype	Descript	
385662	5655884	424846	m	Same o/c as 385502. Qtz-carb flooded mafic,« cpy 1.00-2.00%» with tr intergrown Po	
385663	5655885	424846	qvein	Same o/c as 385502. Barren sugary qvein	
385664	5655925	424774	m	Green mafic Fg,« cpy 2.00%» locally cherty, some silica veins, vugs, « qvein 60.00-150.00°» « fracture 70.00-34.00° « tr po »	
385665	5655925	424774	m	Open space filled dark« qvein » Some evidence of fractures with frags in veins, no carb	
385666	5655771	424831	m	 « cpy 1.00-3.00%» mal bo and native Cu, New Road cut « qvein 90.00-74.00°» New Road cut. Vein approx 15 cm thick, country rock Po rich mafic with « trace cpy » « fol 88.00-30.00°» 	
385667	5655771	424831	m	Stockwork« qvein 45.00-290.00°» in mafics that x-cut folitation.« po 1.00-3.00%»« cpy 1.00%»« tr sph » stockwork x-cuts main D65 vein. Run for Pt Pd.	
385668	5655771	424831	m	D65 vein high graded « bo 10.00%» sample	
385669	5655721	424873	m	Sugary « qvein » with « tr cpy » « qvein 50.00-36.00° »	
385682	5654473	427115	m	Silicified mafic-ultramafic. Possible fragmental. Taken from old trench. « dissem sx 1.00%»« py »« cpy » ga« sph? »	
385683	5654221	426897	qvein	« sugary qvein 86.00-172.00°» with unknown black mineral. Possible pale« bio » or« musc »	
385684	5654221	426892	m	Approx 5 meters west of 385683. Silicifid fg mafic with« tr cpy » some« wk qtz » stockwork. « fol 85.00- 227.00°»	

The following table summarizes sample and station descriptions.

sample	northing	easting	rocktype	Descript	
MA-022	5654033			Small island with granitic dyking along 130 -structural control? Hosted within fine grained mafic rare« sx » veinlet	
385703	5654505	427066	m	Unit consists of very silicious mafic-ultramafic volcanics with thin veinlets and stainings. « ga »« tr cpy »« py »« sph » Some sulphides occur in rusty knots .	
385705	5655670	424875	qvein in siliceous mafic volc	« qvein 88.00-310.00°» in siliceous mafic volcanics;« tr cpy » « tr Mal », vein appears to be folded over	
KM-009	5655787	424702	variolitic basalt	Variolitic basaltic pillows; fine grained, light to med green with pale green varioles up to 3 mm. Varioles noted to locally be clustered, pillows contain white« qtz 2.00cm» pillows top northwards, unit hosts« tr cpy »	
KM-010	5655777	424659	pillowed basalt	on same outcrop as above unit. Pillowed basalt, no varioles noted. Pale to medium green, fine grained, siliceous with dissem« py 1.00%» hosts rusty knots on broken surface	
KM-011	5655850	424633	variolitic pillowed basalt	variolitic pillowed basalt, small ridge at edge of clear cut (N. Side) unit the same as KM-009	
KM-012	5655792	424570	variolitic pillowed basalt	pillowed basalts with weak variolitic texture,« tr py »« tr cpy » on west end of this small rise	
385521	5655339	424696	???	Prospector Sample, no geological description.	
385706	5655799	424607	pillowed basalt	pillowed basalt with« py 5.00%»« tr cpy » tops to N, variolitic textures	
385707	5655729	424515	quartz vein	« qvein 57.00-250.00° 4.00cm» white to smokey« qtz » with occasional vug no visible sulphides, occurs in light green mafic/ultramafic foliation parallel veining. N side of small ridge in clear cut. Thin discontinous veinlets occur on the smae o/c to the west a few metres.	
KM-013	5655719	424477		N side of small ridge, fine grained medium green mafic mafic volcanic. Moss pulled back by blowdown; unit hosts« trace py »	
KM-014	5655653	424380	QFP dyke	small outcrop at edge of clearcut. Thin QFP dyke 80/170, parallel to thin« qtz »stockwork, hosts carbonate no visible sulphides.	
KM-015	5655526	424469	basalt	in clear cut. basalt: med green fine grained massive,« tr cpy »	
MA-024	5655282	424447	Coarse grained Gabbro?	Coarse grained (Gabbro? Diorite) mafic/ultramafi. Massive some wk carbonate veining. Outcrop has old powerline across it. « wk chl »	
MA-025	5655223	424354	Coarse grained Gabbro?	Coarse grained mafic (gabbro) moderately jointed with increased carbonate alt'n« minor chl »« tr cpy » « jn 88.00-225.00°»« jn 88.00-20.00°»	
385688	5655258	424581	Highly silicified crystal tuff	Highly silicified felsic tuf. Almost all primary features obliderated except rare eyes -(xtalls) and some banding /layereing. Sharp« contact 84.00-20.00°» with mafics. Towards« contact » a high concentration of pink/orange eyes noted (alt'd mafic frags?) with finer	

sample	northing	easting	rocktype	Descript	
				layering. « py 1.00%» on« fracture » surfaces. up appears to be to NE.	
MA-026	5655269	424682	fine grained mafic volc	fine grained mafic volcanic. « chl » altered. Several Small« qvein 0.50cm» with 5 cm alteration halos« qvein 82.00-172.00°» minor iron staining. « wk fol 88.00- 22.00°»	
MA-027	5655203	424743	variolitic pillowed basalt	small pillows in variolitic basalt. Rinds approx 3 cm thick, light green. Varioles approx 3 mm. small « fault 80.00-127.00°» left lateral displacement approx 20 cm, cuts pillow selvage. Non sense of up on pillows	
MA-029	5655209		fine grained mafic volcanic	fine grained mafic volcanic with« wk fol 62.00- 327.00°»« tr py » carbonate alt'n with« minor chl »	
385689	5655283	424957	qvein in fine grain carb and chl altered mafic vol	« qvein 84.00-245.00° 5.00-15.00cm» approx 1.5 m strike length. White to smokey/rusty« qtz » with clots« chl »« tr cpy » associated with« chl » and margins of	
MA-030	5655332	424929	chl altered mafic volc	« chl » altered mafic volc. 2 sets structure. « jn 74.00- 17.00°»« wk fol 88.00-223.00°» with sub parallel« qtz » sweats	
385698	5655447	425295	qtz vein float	« qtz » vein float, with unknown black mineral - Needlike, submetallic black lustre, within sugary white« qtz » vein. New Jet Showing formerly arseno zone.	

Sample	Northing	Easting	Rocktype	Descript	
385502	5655884	424846	Q-Sul Vein	Coarse grained, 3-5% Cpy coarse grained euh-sub xtals. tr Aspy, poss Tourm , and Po . soft black mineral after sulphides. Q is clear milky becoming darker in color with increasing sulphides. Vein trends at 125 deg is 5cm wide and can be trace for 1.5 m in outcrop . Western margin is sulphidic.	
385503	5655883	424846	Mafic-Um volcanic	vfg, margin to Qvein (wallrock to sample 385502). Poss UM with str Q veining.	
385504	5655847	424846	Sil'd cherty Vol (UM?)	Poss UM with str Q-cb veining. somewhat stockwork texture to veining. Very cherty appearance. « tr py ». ?	
385505	5655846	424847	Maf Volcanic	« tr py »,« aspy »? with cherty / siliceous bands. Possibly same rock as 385504. medium to dark grey color. 50% mafic minerals Q-cb veining.	
385506	5655775	424857	green Mafic Vol	medium grained, green color equigranular. « cpy 1.00- 2.00%» disseminated throughout the unit. « po 1.00%». . very little rust on OC. 1-2mm quartz veins - 1% overall.	
RS-002	5655554	424913	Pillow mafic	2-3' well defined pillow margins. Margins tend to be more foliated and contain occasional quartz veins. « tr cpy » . Outcrops of pillows on both sides of road.	
385612	5655275	425070	Q Vein	Q Carb, Cpy 15-20cm wide.	
385613	5655451	425297	Bt Mafic - UM rock		

Sample	Northing	Easting	Rocktype	Descript
385614	5655453	425297	Aspy Q vein	SM-Massive Aspy, occasional fg and needles Quartz gangue.
385615	5655452	425297	Mafic Volcanic with sulphides	
385554	5655467	424975	Q ((cp)) Vein	Sugary Q vein with« cpy 0.50%» as blebs in vein and along ct margin. « qvein 85.00-78.00°», near vertical. Vein is up to 6cm wide by 1.5m long. « tr py » Q is white to black in color. mod« Fe-carb » in veins.
385555	5655466	424975	Q Vein / Maf Vol	Contact zone with quartz vein in 385554,« tr cpy 0.50%».« tr py » mod« Fe-carb » vein is xcutting foliation in places foliation tends to "wrap" around vein. blue shiney glassy metallic mineral platy in nature? poss galena?
385556	5655468	424974	Maf Vol	mg, wk Sil« wk sil », med green color. patchy (str) Sil. med green color . « po 1.00%»,« tr cpy 0.50%».« tr py »« str Fe-carb » alteration. stockwork textures to« carb » veining, Q-carb veinins is well. patches of black earthy mineral.
385557	5655442	424988	Cherty Sil Maf?	Q veinig in pinch and swell zone of silicification. with mm scale stockwork dark blue grey Q veining. « tr cpy » zone« trends qvein 90.00-354.00°».
RS-015	5655424	424995	Maf Vol	med green color, mg, same rock as 556?. OC has 20cm wide zone of Q-cb veining as thin to 5cm "dirty" parallel veins confined to a zone« trending qvein 70.00- 328.00°». Vein zones are offset by small faults« fault 70.00-48.00°» with 15cm left lateral displacement Aspy vein trends at 064.
385558	5655450	424995	Q Vein	. « aspy »« py » in contact with wall rock. tr sul in vein . « qvein 85.00-334.00°».
385559	5655451	425298	Gossan material	Adjacent to q vein in 385558. str sul mineralization. vfg gossaneous heavy sulphides. « aspy »,« cpy »« po »« py ».
385560	5655449	425298	vfg Sil Rock	Poss maf or Um, med grey color. very hard Sil« sil » o« po 2.00%»,« tr cpy »« aspy 1.00-2.00%», on N side of Q vein. Q-carb veins as well. HW side of vein.

Table 8.1 sample and station descriptions.

8.0 SUMMARY OF RESULTS

Several anomalous (>50ppb gold) samples were collected during this phase of exploration. 4 samples were re-submitted for metallic screen analysis to test for coarse gold. Table 8.2 below summarizes all sample results. The best results were obtained from the three new showings summarized below.

Little D showing: A grab sample of a chalcopyrite mineralized quartz vein assayed 1.01 g/t Au by metallic screen analysis.

D65 showing: One grab sample of a chalcopyrite – bornite mineralized quartz vein assayed 2.16 g/t Au by metallic screen. A second sample of the wall rock assayed 0.46 g/t Au by metallic screen.

Jet Showing: A grab sample of arsenopyrite mineralized quartz vein assayed 4.68 g/t Au by metallic screen.

sample	northing	easting	Au ppb (g/t) in brackets
385502	5655884	424846	(1.01)
385503	5655883	424846	20
385504	5655847	424846	<5
385505	5655846	424847	10
385506	5655775	424857	10
385521	5655339	424696	<5
385554	5655467	424975	15
385555	5655466	424975	20
385556	5655468	424974	5
385557	5655442	424988	20
385558	5655450	424995	90
385559	5655451	425298	155
385560	5655449	425298	45
385612	5655275	425070	95
385613	5655451	425297	30
385614	5655453	425297	(4.68)
385615	5655452	425297	40
385662	5655845	424846	<5
385663	5655846	424846	<5
385664	5655925	424774	55
385665	5655925	424774	<5
385666	5655771	424831	85
385667	5655771	424831	<5
385668	5655771	424831	(2.16)

sample	northing	easting	Au ppb (g/t) in brackets
385669	5655721	424873	(0.47)
385682	5654473	427115	145
385683	5654221	426897	<5
385684	5654221	426892	<5
385688	5655258	424581	20
385689	5655283	424957	<5
385698	5655447	425295	40
385703	5654505	427066	40
385705	5655670	424875	5
385706	5655799	424607	5
385707	5655729	424515	5
Table 8	.2 sample	e results	n gha ghàinn an ann ann ann ann ann ann an Siri ann ghainn an Siriannach N

10.0 CONCLUSIONS AND RECOMMEDATIONS

Based on these values and the character of mineralization in these showing, a second phase of work including mechanical stripping, power washing and channel sampling is underway. Geological sampling is also on-going in this area.

The proximity of this mineralization to the Pipestone Bay – St. Paul Bay deformation zone as described by Andrews et. al 1986 indicates the potential for high grade gold mineralization.

Respectfully submitted

Michael G. Allen For Redstar Gold Corporation July 28, 2002

11.0 REFERENCES

Andrews, A. J. and Wallace, H, 1983 - Alteration, Metamorphism and Structural Patterns Associated With Gold Deposits - Preliminary Observations in the Red Lake Area; In The Geology of Gold in Ontario, Ont. Geol. Surv., Misc. paper 110, 278 p.

Corfu, F. and Andrews, A.J. 1987 : Geochronological constraints on the timing of magmatism, deformation and gold mineralization in the Red Lake greenstone belt, northwestern Ontario; Canadian Journal of Earth Sciences, v. 24, p1302-1320.

Durocher, M.E., 1983: The nature of Hydrothermal Alteration Associated with the Madsen and Starratt-Olsen Gold Deposits, Red Lake, Ontario; <u>In</u> The Geology of Gold in Ontario, Ont. Geol. Surv. Misc. Paper 110, A.C. Colvine ed.

Ferguson, S.A. 1966 - Geology of Dome Township, . Ont. Dept. of Mines Geological Report 45

Hofmann, H.J., Thurston, P.C., and Wallace, H. 1985 : Archean stromatolites from the Uchi greenstone belt, north-western Ontario; *in* Evolution of Archean Supracrustal Sequences; Geological Association of Canada, Special Paper 28, p. 125-132.

Lavigne, M.L. 1983: Geological, Geochemical and Sulfur Isotope Investigations of the Gold Mineralization and Sulfide Facies Banded Iron Formation At The Dickenson And Campbell Red Lake Mines, Red Lake Ontario; unpub. MSc Thesis, McMaster University; 324p.

Ontario Geological Survey, 1991 - Geology and Gold Mineralization, Red Lake Greenstone Belt, OGS Map P310

Roth G. 1989: Evaluation of Results of Previous Geophysical Surveys, Fisher islands Property, private report for Strathcona Mineral Services

Pirie, James, 1977b: Geology of McDonough Tp. District of Kenora, Ontarion: Ontario Geol. Surv., Prelim. Map 1240

, 1981: Regional Geological Setting Of Gold Deposits In The Red Lake Area, Northwestern Ontarion. In Genesis Of Archean Gold Deposits Volcanic-Hosted Gold Deposits: Ontario Geol. Surv. Misc. paper 97, PP 71-73

Rigg, D.M. and Helmstaedt, H., 1981: Relations Between Structure And Gold Mineralization In Campbell Red Lake And Dickenson Mines, Red Lake Area, Ontario; in Genesis Of Archean Volcanic-Hosted Gold Deposits, O.G.S. Misc. Paper 97, 111-127.

Riley, R A, 1970 Ball Township; *in summary* of field work, 1970 Ontario Dept of Mines and Northern Affairs, Miscellaneous Paper 43, p. 12-15.

, 1978b. Precambrian Geology, Farilie Township; Ontario Deptarment of Mines, map 2407 scale 1:12000.

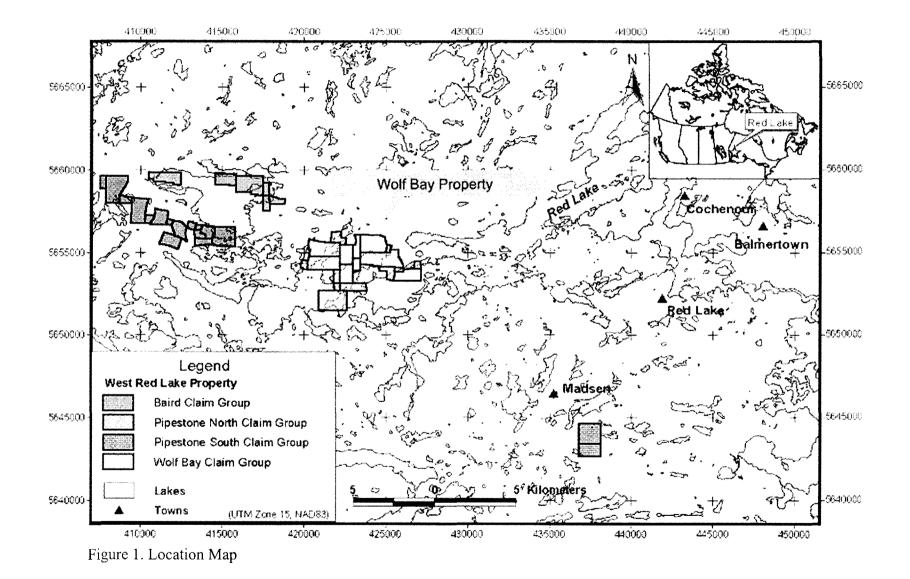
Sanborn-Barrie, M, Skulski, T, Parker, J and Dube, B.: Integrated regional analysis of the Red Lake Greenstone Belt and its mineral deposits, western Superior province, Ontario. GSC Current Research 2000-C18, 16pp.

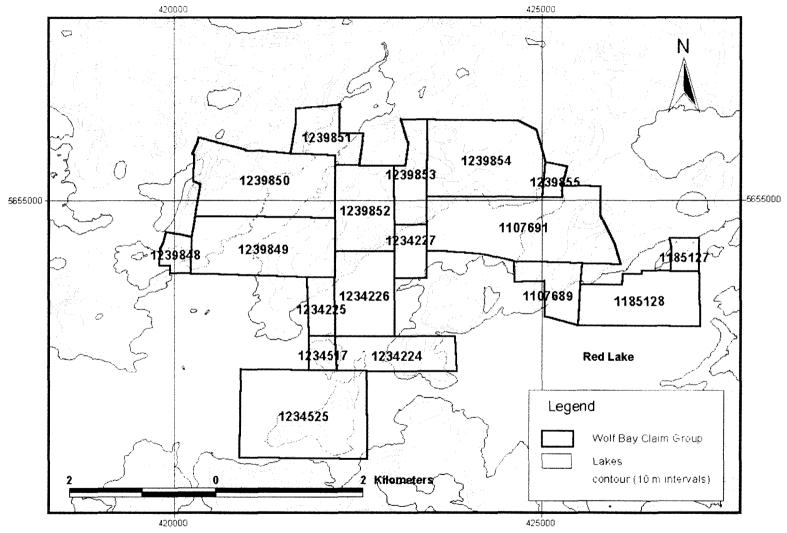
Seyler, R., 1996 - personal communication

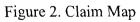
Strathcona Mineral Services Ltd., 1990: Report On Field Work Dorion Island Area, March - April, 1990: private company report for Outokumpu Mines Ltd. with Drill Logs For Holes FT90-1 to FT90-7

Strathcona Mineral Services Ltd., 1989: Report On Field Work February - April, 1989: private company report for Outukumpu Mines Ltd - with Drill logs for Holes FT89-1 To FT89-12

_____, 1988: Report on Field Work, Fisher Islands Property, Fall, 1988: private company report for Outokumpu Mines Ltd. by R. Guttenberg


12.0 CERTIFICATE OF QUALIFICATIONS


I, Michael G. Allen, a geological consultant residing at 705-989 Richards Street, Vancouver, BC certify that


- 1. I am a graduate of the University of Alberta, Edmonton, with a Bachelor of Science degree with Specialization in Geology, (1998)
- 2. I have been employed in the geoscience industry intermittently for over 4 years, and have explored for gold, base metals and diamonds in North America, for both senior and junior mining companies.
- 2. I have worked in the Red Lake gold camp for the past month as a consulting geologist for Redstar Gold Corp Corporation, and have spent July 10, 2002 examining the geology of the Pipestone East property.
- 3. I am a member in good standing of the Association for Professional Engineers, Geologists, and Geophysicists of Alberta.

Michael G. Allen 705-989 Richards Street Vancouver, BC

(Effective Date: July 284, 2002)

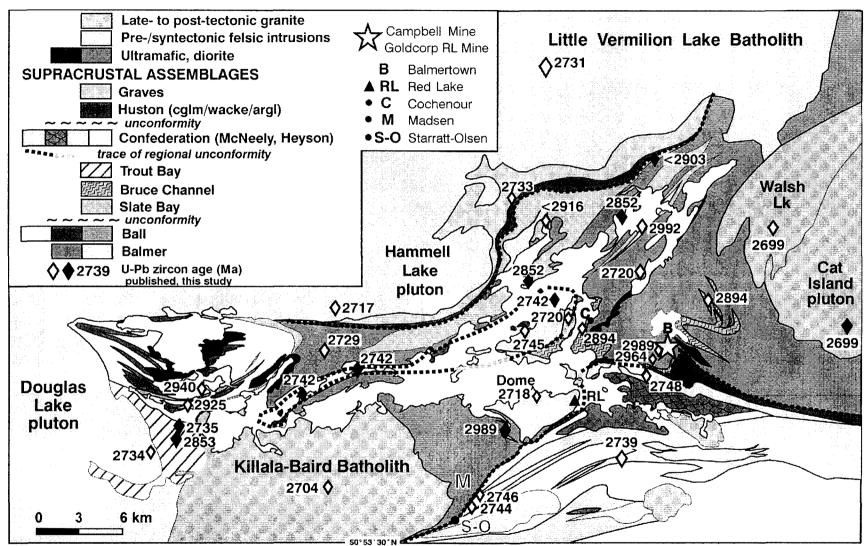


Figure 3. Geology of the Red Lake greenstone belt, showing critical age determinations of volcanic and plutonic rocks (M. Sanborn-Barrie and T. Skulski, GSC, western Superior NATMAP program1997-2002).

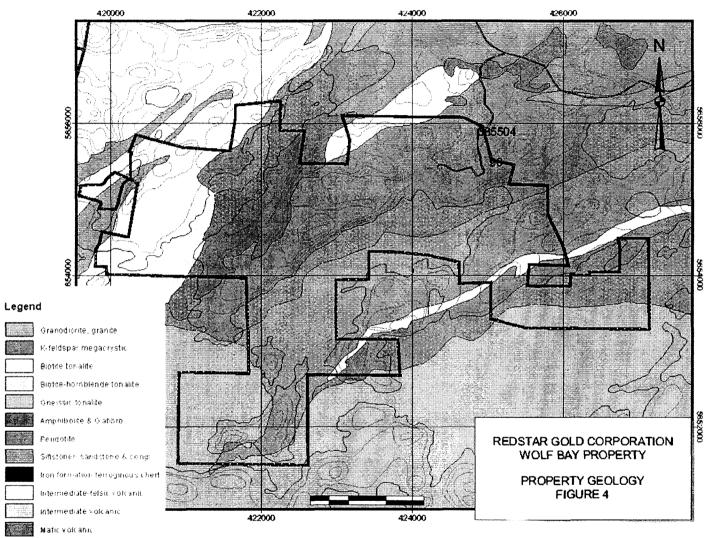


Figure 4. Property Geology

Figure 5 Wolf Bay geology, sample locations and structural symbols (in pocket)

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX. 604-984-0218

To: PAMICON DEVELOPMENTS LIMITED

##

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Page Number :1-A Total Pages :1 Certificate Date: 11-JUL-2002 Invoice No. : 10219461 P.O. Number : WRL-S001 Account : BM

Project : WRL Comments: ATTN: DOUG FULCHER EMAIL: BOB SINGH

						CERTIFICATE OF ANALYSIS A0219461									
SAMPLE	PREP CODE	Ац ррb FA+AA	Ag ppm (ICP)	Al % (ICP)	As ppm (ICP)	Ba ppm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)
385591		10		7.32	10-	70	× 0.5		7.4	. 0.3		266	188	0.27	0.33
385502	205 226		40	1.21	20	10	< 0.5	4	0.27	4.0	50	279	>10000	4.10	0.06
385503	205 226		< 0.5	9.82	45	50	< 0.5	< 2	2.0	1.0	57	276	321	9.77	0.45
385504	205 226		< 0.5	0.11	10	< 10	< 0.5	2	0.15	< 0.5	5	223	87	5.00	0.01
385505	205 226	10	< 0.5	3.40	25	30	< 0.5	14	4.0	< 0.5	5	102	70	5.10	0.12
385506	205 226	10	< 0.5	7.26	5	60	< 0.5	< 2	6.6	0.5	45	155	335	7.64	0.59
385507	205 226		+	8.23	5	390	0.5	< 2	1.25	 	5-			1.30	2.53
305500	- 205 226			6.13		30	< 0.5	14	4.7	+ 0.5	+		48	6.34	0.10
205509	205 226		11.0	5.28	15	40	< 0.5	16	1.10	< 0.5	16	507	1255	11.46	0.45
345510	205 226	< 5	< 0.5	7.65	5	360	0.5	< 2	-70-	< 0.5	10	54	12	2.79	1.12
385511	205 226		+ 0.5	1.97	< 5	130	< 0.5	< 2	0.13	< 0.5-	1	114	12	0.59	0.59
385512	205 226		< 0.5	0.50	< 5	< 10	< 0.5	< 2	0.43	< 0.5	4	144	6 - 55	0.94	0.03

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Number :1-B Total Pages :1 Certificate Date: 11-JUL-2002 Invoice No. : I0219461 P.O. Number :WRL-S001 Account :BM

Project : WRL

Comments: ATTN: DOUG FULCHER EMAIL: BOB SINGH

									CERTI	FICATE	OF AN	ALYSIS	<u> </u>	A021946	51	
SAMPLE	1	REP ODE	Mg % (ICP)	Mn ppm (ICP)	Moppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm (ICP)	S % (ICP)	Sb ppm (ICP)	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)
385501		226	4.33	1230	5	3.02	84	199		+ 0.01		220	-0.30		- < 10	
385502	205	226	0.50	190	3	0.35	53	60	196	2.15	< 5	17	0.07	45	< 10	156
385503		226	4.36	1425	< 1	2.58	181	270	2	0.05	< 5	111	0.53	305	< 10	96
385504		226	0.04	100	1	0.02	22	70	< 2	0.01	< 5	3	0.01	40	< 10	8
385505	205	226	0.77	820	< 1	0.34	20	690	4	0.16	< 5	83	0.07	20	< 10	48
385506		226	3.93	1345	1	1.21	140	240	12	0.27	< 5	102	0.43	258	< 10	82
\$5507		226		-225		2.05	- 24-		12	0.00		70	0.13	24	- 10	
3 85500 3 85509 *	205	226	5.39	1170	< 1	2.15	122	140 180	< 2	0.01	< 5	65 22	0.26	202	< 10	64 48
3 85510 -		226	1.19	195	1	3.45	17	270	108	< 0.01	5	74	0.13	24	< 10 < 10	30
385511	205	226-	0.10	55	< 1	0.69	7	110	8	< 0.01	< 5	25	0.03	8	< 10	8
385512		226	0.68	165	< 1	0.11	20	60	8	< 0.01	< 5	9	0.01	18	< 10	-14
385513		226						510	6	0.05		267		31-	+ 10	
		1	1	1	1		1				1	1			1	1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

Page Number :1-A Total Pages :1 Certificate Date: 24-JUL-2002 Invoice No. :10220127 P.O. Number :WRL-S002 Account :BM

___*+

Project : WRL Comments: ATTN: DOUG FULCHER

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

CERTIFICATE OF ANALYSIS A02

A0220127

	PREP							lg ppm				Ba ppm						Co ppm			Fe %	K %	-	Mn ppm	Mo ppm
SAMPLE	CODE	F.	A+XA]	ppb	g/	t	(ICP)	(ICP)) (1	ICP)	(ICP)	(ICP)	()	ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)
385554	205 29							< 0.5	0.50		< 5	10	< 0.5		< 2	0.54	< 0.5	4	205	505	0.62	0.02	0.09	150	1
385555	205 22		20					< 0.5	1.51		< 5	10	< 0.5		< 2	2.5	< 0.5	11	211	551	1.70	0.02	0.61	375	2
385556	205 22		-					< 0.5	8.26		15	30	< 0.5		< 2	10.0	8.0	55	211	219	6.76	0.08	4.92	1560	< 1
385557	205 22							< 0.5	0.09		< 5	< 10	< 0.5		< 2	1.90	< 0.5	1	224	9		< 0.01	0.09	110	2
385558	205 22	°	90					< 0.5	2.57		80	40	< 0.5	, 	6	5.8	0.5	19	193	271	6.36	0.46	1.36	2550	2
385559	205 22							< 0.5	4.26		105	90	< 0.5		< 2	1.80	1.0	25	212	242	9.58	0.93	1.95	2330	9
385560	205 22							< 0.5	8.95		30		< 0.5		6	6.4	2.0	57	207	430	8.58	2.51	4.08	2610	5
309616	203 22		10					< 0.5	7.4		< 3		0.5		< 2	-1.00	- C 0.3	6	- 50	158	2.01	2.67	0.87	- 180	
385617	205 22		< 5 < 5					< 0.5	2.2		< 5	40	< 0.5		< 2	0.31	< 0.5	4	161	16	0.99	0.48	0.39		2
385618	205 22	<u> </u>	< 5					< 0.5	0.52	<u> </u>	< 5	10	< 0.5) 	< 2	0.17	< 0.5	8	215	7	1.10	0.06	0.02	80	1
385819	205 22		-		-			< 0.5	3.22		< 5 5	50	< 0.5		< 2	1.45	< 0.5	94 5	2200	- 21-		< 0.01	13.60	1315	< 1
385620 385621	205 22 205 22		55 5				-	< 0.5	9.40		5	170	< 0.5		< 2 < 2	0.37 5.7	< 0.5	د م	775	18	1.77 9.62	0.96 0.81	0.97 7.49	125 940	1 < 1
383670	205 22		< 5					< 0.5	8.0	-	< 5	550	1.0		< 2	1.10	و. و		44	16	1.28	2.62	0.41	150	< 1
385671	205 22		< 5					< 0.5	1.8		25	190	< 0.5		< 2		< 0.5	ī	194	12	0.66	0.87	0.27	105	< 1
285672	205 22	6	10					< 0.5	9.6	6	5	760		\leq	× 2	0.96	< 0.5	6	48	194	2.00	2.74	0.56	75	1
385675	205 22		< 5					< 0.5	9.2		يقري	140	0.5		<2	-3-0	< 0.5	24	73	129	4.95	0.54	2.16	655	< 1
385674	205 22	6	< 5		< 5			< 0.5	2-2-		< 5	20	< 0.5	5	4	21	~ ~ 5	1	26	4	0.40	0.07	12.75	185	< 1
385675	205 22		1105						5.70		10	50	< 0.5		< 2	5.9	2.5	-62	2170	2360	10.79	0.16	7.13	1280	6
385676	205 22	6	230		315			0.5	7.1	1	15	90	0.5	5	< 2	2.7	< 0.5	4	58	25	1.92	3.05	1.44	760	1
3 05677	205 22		25					< 0.5	1.8	5	< 5	40	< 0.5	5	< 2	0.63	< 0.5	1	131	3	0.59	0.56	0.26	200	3
285678	205 22		150		 .		•	< 0.5	3.1		5	30	< 0.5		< 2	3.7	< 0.5	8	136	23	2.60	0.55	-2.05	945	1
205670	205 22		25				•	< 0.5	1.3		< 5	90	< 0.5		< 2	2.2	< 0.5	11	383	4	2.06	0.11	1.13	- 205	27
385620 385681	205 22		50				•	0.5	0.2		25	< 10			2	8.4	5.0	35	51	493	15.16	0.01	7.45	7640	
202001	205 22	°	<u> </u>					< 0.5	0.0		<u> </u>	· 10	~ 0. :	,	•	9.2	- < 0.5		164		2.40	-0.01	4.50	3250	<u> </u>
385682	205 22		145				• >	>100		8 >1(150			< 2	6.3	10.0	45	314	287	8.06	2.19	2.27	3030	1
385683	205 22		< 5				•	< 0.5	0.0		15	< 10	< 0.!		< 2	0.22	< 0.5	1	202	10		< 0.01	0.03	80	< 1
385684	205 22		< 5				•	< 0.5	7.6		10		< 0.		2	7.0	2.5	49	204	336	9.03	0.16	4.51	1335	< 1
385701	205 22		-348- 0000		360 888	27.9	-		- 7.4				~~0.	_		-0.43					- 4.14	- 2.95	0.64		
		—																							
385703	205 29	4	40		50		-	50	7.8	6	845	110	< 0.9	5	4	8.4	22.0	46	237	132	5.53	2.25	2.37	2870	< 1

T

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

Page Number :1-B Total Pages :1 Certificate Date: 24-JUL-2002 Invoice No. : I0220127 P.O. Number :WRL-S002 Account :BM

*+

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Project WBI

Project : WRL Comments: ATTN: DOUG FULCHER

CERTIFICATE OF ANALYSIS A0

A	0220	0127
---	------	------

SAMPLE	PREP CODE	Na % (ICP)	Ni ppm ((ICP)	P ppm (ICP)	Pb ppm (ICP)	S% (ICP)	Sb ppm (ICP)	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	
385554 385555 385556 385557 385558	205 294 205 226 205 226 205 226 205 226 205 226	0.19 0.35 1.22 < 0.01 0.13	16 33 131 7 41	10 40 300 140 100	< 2 < 2 10 2 6	0.05 0.05 0.03 0.05 2.64	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	12 26 129 < 1 42	0.01 0.08 0.35 < 0.01 0.14	8 45 310 8 111	< 10 < 10 < 10 < 10 < 10 10	8 20 88 < 2 42	
385559 385560 345616 365617 385618	205 226 205 226 205 226 205 226 205 226 205 226	0.25 0.42 2.61 0.91 0.01	44 153 10 10 62	190 300 300 150 < 10	10 20 5 2 < 2	2.51 0.70 0.11 < 0.01 0.01	< 5 < 5 < 5 < 5 < 5	42 139 120 24 5	0.32 0.48 0.15 0.04 < 0.01	249 317 33 15 7	30 40 10 < 10 10	32 62 6 6 14	
3 85619 3 85620 3 85621 3 85621 3 8567 1	205 926 205 226 205 226 205 226 205 226 205 226		977 11 185 7 4	130 610 150 280 110	4 8 6 8 < 2	0.02 0.18 0.05 0.03 0.01	<pre>< 5 < 5 5 < 5 < 5 </pre>	48 189 68 114 32	0.13 0.12 0.21 0.11 0.04	122 25 215 19 6	< 10 < 10 < 10 < 10 < 10 < 10	62 22 44 26 2	
3 85873 3 85673 3 8567 4 3 85675 3 85676	205 226 205 226 205 226 205 226 205 226 205 226	0.60	3 17 222 12	420 1160 320 230 360	8 12 < 2 8 10	0.22 0.40 < 0.01 0.32 0.50	<pre>< 5 5 5 5 5 5 5</pre>	268 380 51 169 69	0.17 0.35 < 0.01 0.22 0.05	26 134 6 209 25	< 10 < 10 < 10 < 10 < 10 < 10	16 58 16 126 12	
363077 3 8567 8 365679 365665 365665	208 226 205 226 205 226 205 226 205 226 205 226	0.30	6 18 43 144	70 180 430 70	< 2 4 2 12	0.01 0.02 0.14 0.85	< 5 < 5 < 5 < 5 < 5		0.01 0.02 0.01 < 0.01 < 0.01	13 11 35 < 1 7	550 10 10 30 120	8 30 30 40	
385682 385683 385684 3 85701 385702	205 226 205 226 205 226 205 226 205 226 205 226	< 0.01 1.46 0.26	149 6 117 	220 140 300 340	3526 6 8 19	1.70 0.01 0.19 0.39	140 < 5 < 5 < 5	55 < 1 81 	0.47 < 0.01 0.45 	317 3 291 19 11	< 10 < 10 < 10 < 10 < 10	1250 < 2 84 12 60-	
385703	205 294	0.41	121	220	1880	0.41	50	46	0.40	260	< 10	2280	
													·

Analytical Chemists * Geochemists * Registered Assayers

.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2 Page Number :1-A Total Pages :1 Certificate Date: 22-JUL-2002 Invoice No. :10219700 P.O. Number :WRL-S002 Account :BM

Project : WRL Comments: ATTN: DOUG FULCHER

CERTIFICATE OF ANALYSIS A0219700

SAMPLE	PREP		u FA A			As ppm						Co ppm			Fe %	K %	•	Mn ppm		Na %
SAMPLE	CODF	га+аа	g/t	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)	(ICP)
385614	205 294				7.65								103-		4.83	1.68	1.40			
385515	205 226	580		0.5	2.42	< 5	250	< 0.5	< 2	0.07	< 0.5	1	235	251	1.77	1.16	0.13	80		0.19
385510	205 294			< 0.5	6.02	5	180	< 0.5	< 2	5.7	1.5	47	490	60	6.56	0.52	4.35	-1135	< 1	1.32
385517	205 226			< 0.5	1.42	5	70	< 0.5	< 2	1.15	0.5	122	1800	19	6.40		>15.00	1215	< 1	0.01
385518	205 226	< 5		~ 0.5	4.91	< 5	60	< 0.5	< 2	5.1	2.0	68	1060		0.78	0.47	10.08	1330	< 1	0.59
385519	205 226	< 5		< 0.5	9.05	5	- 300	1.0	< 2	1.80	< 0.5		62	21	2.13	1.39	1.01	235	< 1	3.70
385520	205 226	< 5																		
295551	205 226	285		12.5	1.17	5	10	< 0.5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	40	4.0	25	589	2640	3.62	0.05	2.34	1250	< 1	0.19
385552	205 226	965		80	1.33	110		-0.5	178	1.75	7.0	225		>10000	12.26	0.08	1.49	920	< 1	0.27
385553 -	205 226	,110		2.0	2.58	10	10	< 0.5	< 2	2.9	1.0	95	1885	505	6.75	< 0.01	13.38	1100	< 1	0.01
385607	205 226	15		< 0.5	5.30	5	30	< 0.5	< 2	6.2	3.0	59	667	180	7.20	0.05	6.93	1500	< 1	1.96
385688	205 226			< 0.5	6.48	< 5	40	< 0.5	< 2	5.9	1.5	45	431	56	5.80	0.19	3.10	1245	< 1	2.41
395600	205 226	< 5		< 0.5	2.84	< 5	290	< 0.5	< 2	0.99	< 0.5	28	552	56	3.03	1.07	3.21	385	$-\frac{1}{2}$	0.21
385619	205 226	>10000 1	L0.15	28	2.95	5	50	< 0.5	10	0.44	1.5	71	318	3840	10.21	0.28	2.13	360	< 1	0.20
385011	205 226	1.5			- 2.75				~ ~ ~	2.0-	1.5		-1705		8.77-	0.08	11.04	1235		- 0.10-
385612	205 226	95		2.0	1.00	< 5	10	< 0.5	< 2	0.13	0.5	11	343	1415	2.32	0.07	0.68	235	2	0.06
385613	205 226	30		< 0.5	9.01	50	210	< 0.5	< 2	8.4	2.5	62	219	329	8.91	2.32	4.10	3150	1	0.38
385614	205 226			0.5		>10000	50	< 0.5	< 2	0.74	11.0	46	191	467	16.07	0.36	1.69	1645	< 1	0.13
385615	205 226			< 0.5	0.45	635	< 10	< 0.5	< 2	1.20	< 0.5	5	213	66	1.76	0.05	0.26	635	7	0.01
G- Corre	205 220	430 ==		42	3.13	55		- ~ 0.5	× 2	-1.83	9.0	73	- 710		8.10	0.14	2.15	795		
365652	205 226	5		< 0.5	7.04	10	50	< 0.5	2	6.0	2.0	56	520	141	8.55	-0.10	5.58	1425	< 1	2.46
385653	205 294	145		-4.0	3.75	15	260	0.5	< 2	0.25	0.5	7	114		1.18	0.74	0.27	125	< 1	1.92
285654	205 226			< 0.5	7.88	10	590	0.5	10	0.68	< 0.5		42	32	1.24	1.96	0.35	165	< 1	3.60
385655	205 226			< 0.5	6.06	20	40		< 2	سيشيق	2.0	62	453	285	8.33	0.23	5.43	1310	< 1	1.83
385656	205 226	< 5		< 0.5	6.33	20	270		~ 2		1.5	51	1025	23	6.84	0.92	7.07	1325	< 1	1.61
385657	205 226	< 5		ستسف	7.97	15	140	< 0.5	< 2	2.7	2.0	52	95	64	9.32	0.73	3.70	1735	< 1	2.08
385658	205 226			< 0.5	7.00	10	20	< 0.5	< 2	0.49	2.0	58	114	15	10.20	0.09	6.22	695	1	0.19
385650	203 226			< 0.5	7.60	15	30	< 0.5	< 2	3.9	2.5	49	256	102	7.38	0.13	4.73	1185		2.81
385660	205 226	· •		< 0.5	3.56 	15	10	< 0.5	12	4.1	2.0	93 	1850	10	7.25	< 0.01 0.23	13.18	1615	< 1	0.10
	205 220			< 0.5	-9.10					1.25			***		2.45	0.23	2.07			7.20
385662	205 226	< 5		< 0.5	0.61	45	< 10	< 0.5	< 2	4.6	< 0.5	4	104	95	1.61	0.02	0.14	325	< 1	0.10
385663	205 226			< 0.5	0.40	5	< 10	< 0.5	2	0.07	< 0.5	. 3	169	12	0.94	0.01	0.29	105	< 1	0.03
385664	205 226			5.0	7.16	5	30	< 0.5	< 2	6.4	3.5	50	320	5320	8.68	0.16	3.28	1230	3	0.96
385665	205 226			< 0.5	3.71	15	20	< 0.5	< 2	0.28	< 0.5	23	281	59	3.83	0.07	1.77	855	1	1.30
385666	205 294	85		7.0	1.17	15	10	< 0.5	60	0.73	2.0	14	230	1685	2.08	0.11	0.62	290	1	0.11
385667	205 226			< 0.5	4.75	15	20	< 0.5	< 2	6.4	1.0	40	242	332	5.94	0.30	2.49	1145	2	0.78
385668	205 294			>100	0.46	20	< 10	< 0.5	1105	0.54	3.5	49		>10000	4.84	0.07	0.28	125	< 1	0.03
385669	205 226	315		2.0	0.42	5	< 10	< 0.5	36	0.64	< 0.5	3	185	74	0.73	0.04	0.21	175	1	0.10

CERTIFICATION:

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : WRL Comments: ATTN: DOUG FULCHER Page Number :1-B Total Pages :1 Certificate Date: 22-JUL-2002 Invoice No. : I0219700 P.O. Number : WRL-S002 Account :BM

CERTIFICATE OF ANALYSIS A0219700

SAMPLE	PREP CODE	Ni ppm 1 (ICP)	Ppm (ICP)	Pb ppm (ICP)	S% (ICP)	Sb ppm (ICP)		Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)	
385516	205 294 205 226 205 294 205 226 205 226 205 226	22 8 120 1795 530	670 170 200 90 130	8 < 2 2 < 2	1.23 0.09 0.01 0.07 < 0.01	<pre></pre>	270 15 150 14 26	0.05 0.25 0.07 0.16	12 191 78 179	< 10 < 10 < 10 < 10 < 10	4 86 62 70	
385519 385520 385551 385551 385553	205 226 205 226 205 226 205 226 205 226 205 226 205 226 205 226	31 144 162 1065	80 100 110	12 206 400 12	0.06 0.51 7.11 0.35	55	344 28 14 37	0.18	31 42 50 109	< 10 < 10 < 10 < 10 < 10	52 672 1035 136	
3055697 3055698 385699 385691 385611	205 226 205 226 205 226 205 226 205 226 205 226	184 133 288 50 956	70 210 220 320 120	2 2 6 56 < 2	0.04 < 0.01 0.03 0.73 0.01	<pre>< 5 5 < 5 < 5 < 5 5</pre>	43 115 27 31 	0.25 0.27 0.06 0.16 0.13	202 209 33 128 107	< 10 < 10 < 10 10 < 10	92 52 32 40	
385612 385613 385614 385615 3 25651	205 226 205 226 205 226 205 226 205 226 205 226	41 175 70 11 206	90 300 170 70 170	32 6 10 2 230	0.16 0.76 7.76 0.48 3.12	<pre>< 5 10 125 < 5 </pre>	5 124 29 6 32	0.10 0.55 0.26 0.01 0.11	43 321 157 25 111	< 10 60 10 < 10 	64 132 134 16	
385652 285653 285654 385655 385656	205 226 205 254 205 226 205 226 205 226 205 226	18 105	230 180 290 150 700	< 2 18 2 10 2	0.05 0.13 0.19 0.05	10 < 5 < 5 10 < 5	137 33 79 93 365	0.32 0.05 0.13 0.28 0.55	264 23 20 216 203	< 10 < 10 < 10 10 < 10	78 40 18 52 104	
365657- 585659 365659 365560 365560	205 226 205 226 205 226 205 226 205 226 205 226	128	300 200 340 150 270	< 2 6	< 0.01 < 0.01 0.05 < 0.01 0.01	< 5 5 5 10	55 11 84 27 36	0.40 0.35 0.33 0.16 0.41	272 248 210 139 341	10 < 10 <u>10</u> < 10 < 10	76 76 110 134	
385662 385663 385664 385665 385665 385666	205 226 205 226 205 226 205 226 205 226 205 294	126	150 10 320 180 80	66	0.42 < 0.01 1.08 < 0.01 0.35	< 5 < 5 < 5 5 < 5		< 0.01 < 0.01 0.39 0.20 0.08	13 30 243 135 53	< 10 < 10 10 < 10 < 10	12 8 156 42 70	
385667 385668 385669	205 226 205 294 205 226	49	190 40 10	< 2 574 16	0.97 3.66 0.05	15 < 5 < 5	65 3 5	0.29 0.01 0.01	196 21 20	< 10 < 10 < 10	72 100 14	

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

Page Number :1-A Total Pages :2 Certificate Date: 12-AUG-2002 Invoice No. :10221274 P.O. Number :WRL-S004 Account :BM

Project : WRL Comments: ATTN: DOUG FULCHER

VANCOUVER, BC V6B 1N2

611 - 675 W. HASTINGS ST.

CERTIFICATE OF ANALYSIS A022

A0221274

SAMPLE	PREP CODE	Au ppb FA+AA	Au FA g/t	Ag ppm (ICP)	Al % (ICP)	As ppm (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cd ppm (ICP)	Co ppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)	Mo ppm (ICP)	Na (IC
35521 5522	205 226	< 5		< 0.5	0.86	< 5	< 10	< 0.5	< 2	0.31	< 0.5	8	120	52	1.34	0.04	0.43	165	3	0.
15 E F	205 226	< 5		< 0.5	4.14	< 5	400	0.5	2	1.15	< 0.5	3	60	16	1.06	1.56	0.54	320	سيست	0.
5562	205 226	< 5		< 0.5	2.86	< 5	110	< 0.5	2	0.33	< 0.5	3	104	4	0.71	0.77	0.30	-125	- ī	0.
1553	205 226	615		6.0	0.85	< 5	10	< 0.5	2	2.5	0.5	27	430	800	3.45	0.05	3.66	545	1	Ο.
556	205 226	25		40.5	8.51	< 5	70	< 0.5	< 2	2.9	0.5	19	54	-79-	4.83	0.47	1.93	685	< 1	4.
5565	205 226	10		< 0.5	-5-31	< 5	40	< 0.5	< 2	6.4	1.5	30		317	7.06	0.13	2.89	1245	1	0.
5566	205 222	10		< 0.5	4.16		20	< 0.5	2	4.6	4.5		141	2830	19.52	0.08	2.98	1380	2	0.
5622	205 222			9.0	3.10	< 5 < 5		<u>< 0.5</u>	8	0.69	2.0	652	185	2700	20.67	0.32	2.24	425	1	0.
5023	205 222	80		6.0	4.98	< 5	30	< 0.5	\geq	0.66	0.5	42	290	1995	9.94	0.18	3.42	505	< 1	0.
5624 5625	205 222 205 226	< 5 355		< 0.5	3.86	20		< 0.5	6 < 2	4.2	< 0.5	64	187	148	11.61	0.22	7.60	3890	< 1	0. 0.
5626	205 222			د.ن سق.0>		< 5	110	< 0.5	< 2 < 2	1.00	< 0.5	4	112	128	2.69 2.31	0.32	0.43	2580 3350	2	0.
5627	205 226			- × 0.5	8.14	< 5	490	0.5	2	1.15	< 0.5	8	46	176	-1.96	2.55	0.72	140	< 1	2.
5628	205 222	<u>`</u>		1.5	3.21	5	20	< 0.5	4	1.05	< 0.5	25	145	49	4.88	-0.08	2.21	735	1	Ō
	205 226	110		6.5	0.48	< 5	< 10	< 0.5	< 2	0.06	< 0.5	3	130	2040	0.65	0.08	0.06		1	0
5686	205 226	435		25	8.68	< 5	70	0.5	4	0.67	< 0.5	13	69	5590	3.02	0.76	0.64	180	T	- 5
5007	205 226	->10000-	-13.05		1:49			- - 0.5		0.23		8	142		0.87	0.31	0.17	60		0
35688	205 226	20		< 0.5	8.07	< 5	800	1.0	6	0.70	< 0.5	< 1	25	28	0.65	2.60	0.23	180	1	2
35689	205 226	< 5		< 0.5	0.36	< 5	< 10	< 0.5	< 2	0.20	< 0.5	3	102	19	0.63	0.02	0.19	90	< 1	0
5690	205 226	50		~ 0.3	1.59		× 10	. 0.3		1.80				72	11.17	0.04	1.39	2290	3	
5691	205 226	< 5		< 0.5 < 0.5	0.28	< 5 < 5	< 10 210	< 0.5	< 2 < 2	0.21	< 0.5	< 1	96	10 77	0.44	0.04	0.03		1	0
15692 - 1 5693	205 226	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		< 0.5	2.54	< 5	210	< 0.5	< 2	0.05	< 0.5	< 1	99 118	11	1.53	0.84	0.04	335	< 1 < 1	0
1509 1	205 226			< 0.5		~ 5	510	0.5	2	1.45	< 0.5		35	103	2.20	2.24	0.04	160	3	2
		<u>``</u>							-									100		
5695	205 222	< 5		< 0.5	2.50	< 5	140			0 82	< 0.5	3	102	7	0.60	0.50	0.12	140	1	0
15696 15697	205 226	< 5		< 0.5 < 0.5	0.09 0.53			< 0.5	2 < 2	19.5 0.38	< 0.5		9	3	0.38	0.04	12.17	185	< 1	0
35698	205 226				1.33	20	< 10		10	1.45	< 0.5	< 1	86 102	176	2.21	0.10	0.08	110 605	< 1	0 0
5698	205 222			1.0	0.70	5	10		< 2	0.27	< 0.5	8	155	1920	1.77	0.06	0.42		< 1	
704	205 226	-2660-			0.49			+ 0.5					26	272	0.38	0.13	0.07			0
5705	205 294	5		< 0.5	1.31	< 5	< 10	< 0.5	< 2	1.05	< 0.5	11	140	176	1.87	0.03	0.85	280	< 1	Ō
5706	205 294	5		< 0.5	7.47	15	20			6.9	2.0	48	172	204	8.09	0.07	3.83	1335	1	1
35707	205 226	5		< 0.5	0.19	< 5	240		< 2	0.41	< 0.5	1	179	7	0.52	< 0.01	0.10	100	1	0
	205 226	+ 5	- <u></u>	+ 0.5	1.49			~ (015	`````````````````````````````````	0.23	~ 0.5	1		5	0.45	0.50	0.11	100		
5789	205 226	-		< 0.5	1.34					2.5	5.5	7			>25.00	0.10	2.47	3580	4	0
5740	205 226			< 0.5	1.70	< 5	100			0.30	- 0.5	2	154	1	0.47	0.22	0.15	65	< 1	0
5711	205 226			<u></u>		~ 5	< 10			0.76	< 0.5	7	180	+	<u> 1 19 </u>	0.05	0.61	225	1	0
5712-	205 226			< 0.5	6.95	< 5	330		< 2	5.7	1.5	35		21	6.54	0.37	4.71		5	2
	- 205 226	; ∢-5-			1.17					0.12			96	3	0.37		-0.07		T	0

CERTIFICATION:

Chemex AL S Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: PAMICON DEVELOPMENTS LIMITED

##

Page Number :1-B Total Pages :2 Certificate Date: 12-AUG-2002 Invoice No. : I0221274 P.O. Number : WRL-S004 Account BM

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : WRL Comments: ATTN: DOUG FULCHER

> **CERTIFICATE OF ANALYSIS** A0221274

٨	02	21	27	

	PREP	Nippm P ppm Pb ppm S % Sb ppm Sr ppm Ti % V ppm W ppm Zn ppm	
SAMPLE	CODE	(ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP) (ICP)	
85521 85522	205 226	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2000	205 226		
85562	205 226	21 110 < 2 < 0.01 < 5 39 0.05 13 10 20	
	205 226	182 150 < 2 0.06 < 5 8 0.03 32 130 40	
\$550 P	205 226		
05565	205 226		
85566	205 222		
05022	205 222		
85623	205 222	50 340 0.23 < 5 35 0.22 180 < 10 64	
05024	205 222		
85625 85626	205 226		
85627	205 222		
23020-	205 222		
05685	205 226	6 50 2 0.25 < 5 4 0.02 5 < 10 10	
****	205 226		
05607	205 226	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
85688	205 226		
85689	205 226		
	205 226		
05691	205 226	5 60 2 < 0.01 < 5 3 < 0.01 3 5 10 4	
05601	205 226	11 150 < 2 0.05 < 5 29 0.08	
195699	205 226		
85694	205 226	12 460 6 0.28 < 5 137 0.17 33 < 10 24	
95695	205 222		· · · · · · · · · · · · · · · · · · ·
05696	205 226		
85697	205 226		
85698	205 220		
385690	205 222	22 80 < 2 0.19 < 5 4 0.06 26 < 10 34	
	205 226	7 - 10 + 2 - 0.03 + 5 - 3 - 0.01 - 5 + 102	
385705	205 294		
385706 385707	205 294		
385707 3 8570 7	205 226		
395709	205 226		
3 8571 0	205 226		
3 95710 3 95711	205 226		
385712	205 226		, ¹ · · · ·
305412	205 226		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : WRL - RERUN Comments: ATTN: DOUG FULCHER Page Number :1 Total Pages :1 Certificate Date: 23-JUL-200/ Invoice No. :10220540 P.O. Number : Account :BM

						CERTIFIC	ATE OF ANALYSIS	A0220540
SAMPLE	PREP CODE	Au tot g/t	Au - g/t		Wt - grams	Wt + grams		
385502 385509	94039414 94039414	1.01 0.16	0.74	0.081	120 129	48.06 51.64		
, 								
	••••••		· · · · · · · · · · · · · · · · · · ·	·				(Resulting Ug

CERTIFICATION:

.

•

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : WRL - RERUN Comments: ATTN: DOUG FULCHER Page Number :1 Total Pages :1 Certificate Date: 06-AUG-2002 Invoice No. :10220770 P.O. Number : Account :BM

					······	CERTIFIC	ATE OF ANALYS	IS A02	220770	
SAMPLE	PREP CODE	Au tot g/t	Au - g/t	Au + mg	Wt - grams	Wt + grams				
-385552		1.14		0.037	907					
-385610 -385614	32063288	9.67 4.68	5.02 4.59	0.660	954	23.45 31.81				
385651 385668	32063288 32063288	2.16	0.36 1.64	0.019 0.571	663 962	33.06 34.95	+			
385669	32063288	0.47	0.39	0.088	978	25.99				
363663	32003200	0.4/	0.39	0.000	570	25.99				
	1									
		ļ								
· .										
										1
		J	<u> </u>	<u> </u>	L					l

r

a la come <u>į</u> įrienters CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: PAMICON DEVELOPMENTS LIMITED

##

611 - 675 W. HASTINGS ST. VANCOUVER, BC V6B 1N2

Project : WRL - WR RERUN Comments: ATTN: DOUG FULCHER Page Number :1 Total Pages :1 Certificate Date: 31-JUL-2002 Invoice No. :10220541 P.O. Number : Account :BM

CERTIFICATE OF ANALYSIS A0220541 PREP A1203 BaO CaO Cr203 Fe203 K20 MgQ MnO Na2O P205 SiO2 SrO TiO2 LOI TOTAL Nb Rb Y Zr SAMPLE * XRF % CODE % XRF % XRF ppm ppm ppm ppm 30551 244 11:16 0.02 8.66 0.10 10.38 0.63 7.72 0.15 1.87 0.04 37.31 0.01 0.39 1.03 99.51 < 10 1.00 385518 10.95 0.57 17.31 0.04 47.52 21 12 33 244 8.49 < 0.01 7.56 0.22 0.20 1.02 0 01 0.28 4.82 99.00 < 10 0.01 385007 244 9.32 < 0.019.18 0.13 11.18 0.09 11.99 0.04 52 29 0.38 1.81 99.24 < 10 11 13 34 0.24 2.30 385608 244 1.16 < 0.010.08 8.73 0.28 8.91 0.17 3.15 0.06 53.34 0.03 0.56 4.86 16 8.36 99.69 < 10 44 385611 244 5.05 0.28 14.70 0:32 0.03 43.60 0.01 2.98 0.13 21.140.16 0.02 0.21 10.13 98.76 **T** 10 15 27 385613 244 14.79 0.02 11.16 0.03 12.17 2.50 6.55 0.42 0.41 0.06 41.24 0.02 0.81 7.97 98.15 75 21 47 < 10 995652 244 11.70 ~ 0.01 8.26 0.09 12.45 9.39 0.19 3.02 50.20 99.16 47 0.14 0.05 0.03 0.52 3.04 < 18 01 385654 2.32 0.70 0.05 12 244 14.86 0.00 0.01 1.85 5.05 0.07 72.09 0.01 0.22 1.51 99.81 < 10 71 134 383033 7.84 244 _ _ 10.99 < 0.010.08 13.01 0.30 9.65 2.44 0,05 51.94 0.02 0.46 2.79 99.77 < 10 26 11 47 385656 244 ----10.72 0.04 0 20 0.18 10.13 1.09 11.86 0.18 2.31 0.16 48.78 99.46 31 15 89 0.05 0.80 3.96 12 385660 244 5.86 < 0.01 5.88 0.37 11.76 0.05 22.21 0.23 0.26 0.04 43.64 0.01 0.22 7.76 98:29 < 10 12 34 385664 244 12.18 < 0.01 9.17 0.05 12.67 0.22 4.08 98.08 20 15 37 ---5.46 0.20 1.08 0.07 52.28 0.01 0.61 < 10

CERTIFICATION

Work Report Summary

Transaction No:	W0220.	01240	Status:		APPROVED					
Recording Date:	2002-JL	2002-JUL-29			rom:	2002-JUN-25				
Approval Date:	2002-N	2002-NOV-13			to: 2002-JUL-24					
Client(s):										
1296	17 E	NGLISH, PER	RY VERN							
301254 RUBICON MINERALS CORPORATION										
Survey Type(s):										
		ASSAY		GEOL						
Work Report Det	ails:									
Claim#	Perform	Perform Approve	Applied	Applied Approve	Ass	ign	Assign Approve	Reserve	Reserve Approve	Due Date
KRL 1185127	\$1,911	\$1,987	\$0	\$0		\$0	0	\$1,911	\$1,987	2003-JUN-26
KRL 1234517	\$0	\$0	\$400	\$400		\$0	0	\$0	\$0	2003-AUG-01
KRL 1234525	\$0	\$0	\$4,800	\$4,800		\$0	0	\$0	\$0	2003-AUG-01
KRL 1239854	\$9,165	\$9,817	\$0	\$0	\$5,	200	5,200	\$3,965	\$4,617	2002-NOV-12
KRL 1239855	\$1,482	\$1,696	\$0	\$0		\$0	0	\$1,482	\$1,696	2002-NOV-12
_	\$12,558	\$13,500	\$5,200	\$5,200	\$5,	200	\$5,200	\$7,358	\$8,300	-
External Credits:		\$0								
Reserve: \$8,300 Reserve of Work Report#: W0220.01240										
		\$8,300 Tota	l Remaining							

Status of claim is based on information currently on record.

52M01SE2024 2.23971

Ministry of Northern Development and Mines

Date: 2002-NOV-13

Ministère du Développement du Nord et des Mines

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

PERRY VERN ENGLISH BOX 414 SOURIS, MANITOBA R0K 2C0 CANADA Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.23971 Transaction Number(s): W0220.01240

Dear Sir or Madam

Subject: Approval of Assessment Work

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

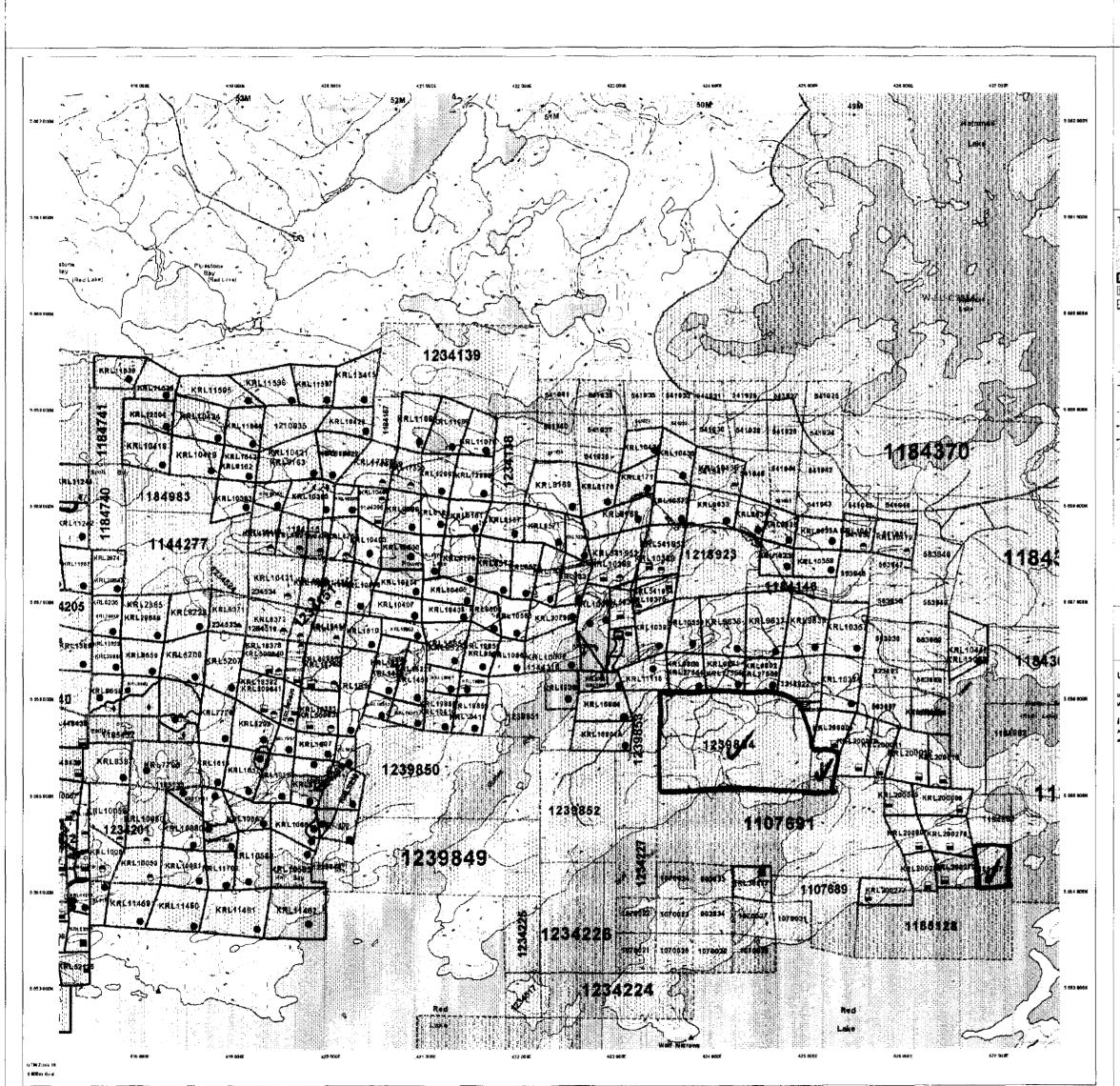
The total value of work has been increased to \$13,500.00 to include the cost of the analysis reported.

If you have any question regarding this correspondence, please contact LUCILLE JEROME by email at lucille.jerome@ndm.gov.on.ca or by phone at (705) 670-5858.

Yours Sincerely,

mc chit.

Ron Gashinski Senior Manager, Mining Lands Section


Cc: Resident Geologist

Perry Vern English (Claim Holder) Assessment File Library

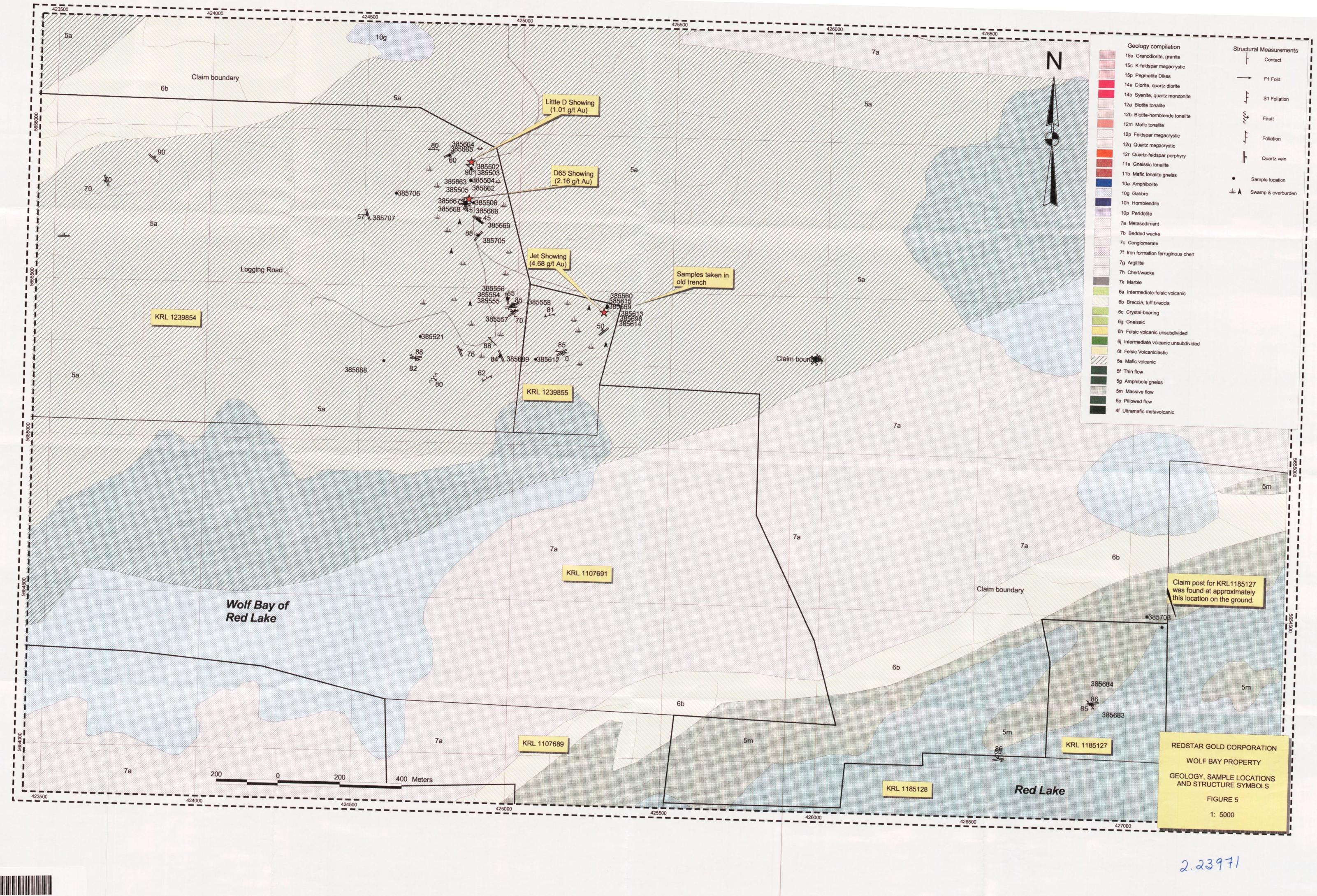
Perry Vern English (Assessment Office)

Rubicon Minerals Corporation (Claim Holder)

Visit our website at http://www.gov.on.ca/MNDM/LANDS/mlsmnpge.htm

These wishing is state moving dates closed child with the Provincia Mining Records of Office of the Mining Records of Mining Records of Office of the Mining Records of the Mini

General Information and Limitations


Соптаст (и/и/mailon: Рерукисиа) убрада Record and Office Tell Fran Withol Grown Alexe Control TeC 1 (1998), 415-8645 913 Remarka), Ами Road Fact, 4 (172) 870.1844 Правину, DN ROE 1966 Интер Баника и Правина и Правина и Правина

Map Datum: MAD 83 Proyactore (1174 H) dagrag) Topographic plats Societics (, Lami information Golaria Militing Lahu) (anya p Bolirica): Pajadirola) Mining Recordors' (This triage chap (s) is shown being later as it and tenture and interests in 1 and instanting curtain particula, lasees, assaying and interest here, by colleging inter, licenses, it is there forms of deep ratios of rights build interest here, by the Crains. Also created land land leaves and here uses there realized a scheduling control in the second and the second and the second and the second and the second second

6	MINISTRY OF NORTHERN DEVELOPMENT AND NULS	MINING LAND TENURE					
C	PROVINCIAL LENNING RECORDER'S OFFICE	MAF	2				
De	ate / Time of Issue Aug 2	2001 08	1:36h Eastern				
Ţ	OWNSHIP / AREA	P	LAN				
T	ODD	G	G-1789				
	DMINISTRATIVE DISTR	ICTS / DIVISION: Red La	-				
	ining Division and Titles/Registry Division	KENOR					
	inistry of Natural Resources	District RED LA	KE				
IOP	OGRAPHIC	LAND TENURE					
•	Administrative Sources	Freshold Palent					
	Township	Surface Ara M	ining Rights				
	Concession Just	Sumes 4 phr	Orly				
]]	Provincial Pract	Ш иниценция:	1447				
3	inden Kasevil CirkuPis end Pre	Leasehuld Patant Surface and G	nina Riples				
	Contau	Barner Rynne					
	Cértouz - Approx., Auxiéty () épréseilon	Marrish Pighters	2 Miy				
8	Shet	Liosnes of Operapation					
•	N TA HANDBATT	Dist: A 31 S page	5nd				
н	Ře⊃ né †	Surface And Mi Surface Rights					
	Read	Sutface Rights					
	Valurs. Ges P Fa 16	_					
-	≪yor⊎ Lina	and Des Parks					
-	C ឯក កំណូង៩ស៊ើ ¹ ហើកម	the grider in Council					
.: •	Widoded Ame	weiter Power unsee	Agreement				
•	Manyapan det - Castastral, t-Mitelizer, Merix, Cantral	an a	g Cilitica				
			WITHDRAWALS				
			WINDRAWALS				
		Bissibareinterial bissing Art 400	un frem Diepsellon Referent fylst				
		Witt Burtoep Sight	downy Bughts Weindowen a Goly Withdram a Goly Withdram				
		Orderen Caua ₩7947 Sartesseren	n: B Vining ir geneti Tyrpine Aning: Bright a Natifikirianin 11 Dena (Michaelanin				
		With Allowing Bands	Only With grave				
		No.	PORTANT NOTICES				
	٥		000 D m				
.AN	ID TENURE WITHDRAWAL D	SCRIPTIONS					
iantifia N 1.12		CENERGE CHIL MAY DO'GO SAM					
	ORTANT NOTICES						
reas u	inter which spacial regulations, imitations () condition	s as itsi thaf aff act motional prospecting,					
inite ng	594 m moral devalopment octivity a						
	2.239	M					
	1239						
	a	• 1					
	GEOL						
	CFOL	-					
	00-	, nur					
	ASS	5775					
	71						

200

210

2M01SE2024 2.23971 TODD