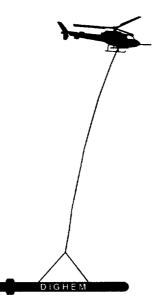


52M01SE2028 2.25505 TODD

FUGRO AIRBORNE SURVEYS


-Tugro

Report #2123A

2.28010

DIGHEM^V SURVEY FOR REDSTAR GOLD CORP. RIVARD RED LAKE AREAS ONTARIO

NTS 52M/1

RECEIVED	And a second sec
APR 2 9 2003	Contraction of the second
GEOSCIENCE ASSESSMENT	THE REAL PROPERTY AND ADDRESS

Fugro Airborne Surveys Corp. Mississauga, Ontario

December 16, 2002

Douglas L. McConnell, P.Eng. Geophysicist

> Paul A. Smith Geophysicist

010

SUMMARY

This report describes the logistics and results of a DIGHEM^{V-DSP} airborne geophysical survey carried out for Redstar Gold Corp., over three properties located near Red Lake, Ontario. Total coverage of the survey blocks amounted to 223 km. The survey was flown from November 3 to November 5, 2002.

2. E

The purpose of the survey was to detect zones of conductive mineralization and to provide information which could be used to map the geology and structure of the survey areas. This was accomplished by using a DIGHEM^{V-DSP} multi-coil, multi-frequency electromagnetic system, supplemented by a high sensitivity horizontal gradient cesium magnetometer. The information from these sensors was processed to produce maps which display the magnetic and conductive properties of the survey areas. A GPS electronic navigation system ensured accurate positioning of the geophysical data with respect to the base maps. Visual flight path recovery techniques were used to confirm the location of the helicopter where visible topographic features could be identified on the ground.

The survey properties contain numerous anomalous features, many of which are considered to be of moderate to high priority as exploration targets. Most of the inferred bedrock conductors appear to warrant further investigation using appropriate surface exploration techniques. Areas of interest may be assigned priorities on the basis of supporting geophysical, geochemical and/or geological information. After initial

investigations have been carried out, it may be necessary to re-evaluate the remaining anomalies based on information acquired from the follow-up program.

CONTENTS

1.	INTRODUCTION	1.1
2.	SURVEY EQUIPMENT	2.1
	Electromagnetic System	
	DSP System Calibration	
	Magnetometer	
	Magnetic Base Stations	
	Radar Altimeter	
	Barometric Pressure and Temperature Sensors	2.5
	Analog Recorder	
	Digital Data Acquisition System	
	Video Flight Path Recording System	
	Navigation (Global Positioning System)	
	Field Workstation	2.10
3.	PRODUCTS AND PROCESSING TECHNIQUES	3.1
	Base Maps	
	Electromagnetic Anomalies	
	Apparent Resistivity	3.4
	EM Magnetite (optional)	
	Total Magnetic Field	
	Calculated Vertical Magnetic Gradient	3.5
	Magnetic Derivatives (optional)	3.6
	Multi-channel Stacked Profiles (optional)	
	Contour, Colour and Shadow Map Displays	
	Resistivity-depth Sections (optional)	
	Digital Terrain (optional)	
4.	SURVEY RESULTS	4.1
	General Discussion	
	Magnetics	
	Apparent Resistivity	
	Electromagnetic Anomalies	
	Conductors in the Survey Area	
5.	CONCLUSIONS AND RECOMMENDATIONS	5.1

APPENDICES

.

- A. List of Personnel
- B. Statement of Cost
- C. Background Information
- D. EM Anomaly List
- E. Archive Description

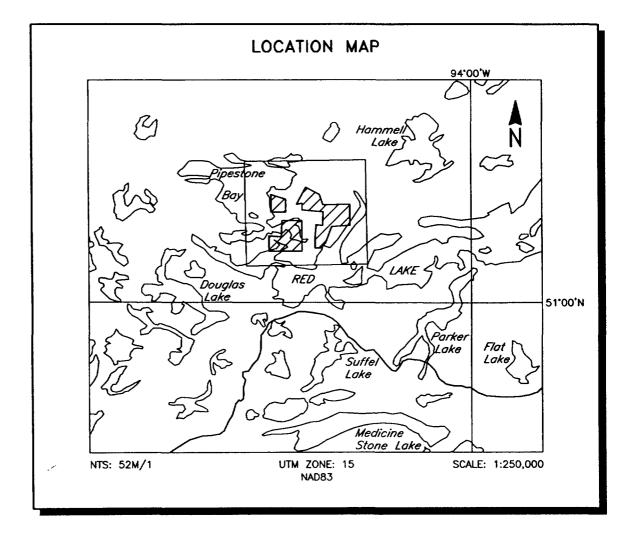


Figure 1 Redstar Gold Corp. Rivard Red Lake Areas Job #2123A

1. INTRODUCTION

A DIGHEM^{V-DSP} electromagnetic/resistivity/magnetic survey was flown for Redstar Gold Corp., from November 3 to November 5, 2002, over three survey blocks located near Red Lake, Ontario. The survey areas can be located on NTS map sheet 52M/1 (Figure 1). Table 1-1 lists the corner coordinates of the three survey blocks in NAD83, UTM Zone 15. Table 1-2 provides a summary of the coverage acquired over each area

Survey coverage consisted of approximately 223 line-km, including tie lines. Flight lines were flown in an azimuthal direction of 360°/180° with a line separation of 50 metres.

The survey employed the DIGHEM^{V-DSP} electromagnetic system. Ancillary equipment consisted of a magnetometer, radar and barometric altimeters, video camera, analog and digital recorders, and an electronic navigation system. The instrumentation was installed in an AS350BA turbine helicopter (Registration C-GJIX) which was provided by Questral Helicopters Ltd. The helicopter flew at an average airspeed of 118 km/h with an EM sensor height of approximately 30 metres.

Section 2 provides details on the survey equipment, the data channels, their respective sensitivities, and the navigation/flight path recovery procedure. Noise levels of less than 2 ppm are generally maintained for wind speeds up to 35 km/h. Higher winds may cause the system to be grounded because excessive bird swinging produces difficulties in flying

the helicopter. The swinging results from the 5 m^2 of area which is presented by the bird to broadside gusts.

Due to the presence of cultural features in the survey area, any interpreted conductors which occur in close proximity to cultural sources, should be confirmed as bedrock conductors prior to drilling.

	Area corner coo	ordinates in NAD8	33 – UTM Zone 15	
Block A	X=	416696	Y=	5657758
	X=	417639	Y=	5657433
	X=	417644	Y=	5656583
	X=	416696	Y=	5656572
Block B	X=	416501	Y=	5654995
	X=	417297	Y=	5654925
	X=	417379	Y=	5655997
	X=	418679	Y= .	5655987
	X=	418668	Y=	5653939
	X=	416501	• Y=	5653955
Block C	X=	418359	Y=	5657086
	X=	418977	Y=	5658208
	X=	419882	Y=	5657720
	X=	420109	Y=	5657027
	X=	421913	Y=	5657027
	X=	421897	Y=	5655607
	X=	420667	Y=	5655548
	X=	420256	Y=	5654486
	X=	419920	Y=	5654112
	X=	419540	Y=	5654134
	X=	419546	Y=	5654930
	X=	419622	Y=	5655689
	X=	420066	Y=	5655629
	X=	420120	Y=	5656550
	X=	419595	Y=	5656599
	X=	418701	Y=	5656696
	X=	418728	Y=	5657141

Table 1-1

Та	b	le	1	-2
	~			_

Block	Traverse km	Tie km	Total km	Flight #	Dates
A	19.1	0.9	20.0	4,5,6	Nov. 4-Nov. 5
В	70.8 ·	2.2	73.0	4,5	Nov. 4
С	125.7	4.3	130.0	2,3,4	Nov. 3-Nov. 4
			223.0		

2. SURVEY EQUIPMENT

This section provides a brief description of the geophysical instruments used to acquire the survey data and the calibration procedures employed.

Electromagnetic System

. .

Model: DIGHEM^{V-DSP}

Туре:

Towed bird, symmetric dipole configuration operated at a nominal survey altitude of 30 metres. Coil separation is 8 metres for 900 Hz, 1000 Hz, 5500 Hz and 7200 Hz, and 6.3 metres for the 56,000 Hz coil-pair.

Coil orientations/frequencies:	orientation	nominal	actual
	coaxial / coplanar / coaxial / coplanar / coplanar /	1000 Hz 900 Hz 5500 Hz 7200 Hz 56,000 Hz	1090Hz 874 Hz 5780 Hz 7235 Hz 56,500Hz
Channels recorded:	5 in-phase cha 5 quadrature c		
Sensitivity:	0.12 ppm at	1000 Hz Cx 900 Hz Cp 5500 Hz Cx 7200 Hz Cp 6,000 Hz Cp	
Sample rate:	10 per secor every 3 m, at a	•	to 1 sample of 110 km/h.

The electromagnetic system utilizes a multi-coil coaxial/coplanar technique to energize conductors in different directions. The coaxial coils are vertical with their axes in the flight direction. The coplanar coils are horizontal. The secondary fields are sensed simultaneously by means of receiver coils which are maximum coupled to their respective transmitter coils. The system yields an in-phase and a quadrature channel from each transmitter-receiver coil-pair.

The Dighem calibration procedure involves four stages; primary field bucking, phase calibration, gain calibration, and zero adjust. At the beginning of the survey, the primary field at each receiver coil is cancelled, or "bucked out", by precise positioning of five bucking coils.

DSP System Calibration

The phase calibration adjusts the phase angle of the receiver to match that of the transmitter. The initial phase calibration is conducted with a ferrite bar on the ground, and subsequent calibrations are conducted in the air using a calibration coil in the bird. A ferrite bar, which produces a purely in-phase anomaly, is positioned near each receiver coil. The bar is rotated from minimum to maximum field coupling and the responses for the in-phase and quadrature components for each coil-pair/frequency are measured. The phase of the response is adjusted at the console to return an in-phase only response for each coil-pair. Phase checks are performed daily.

The ferrite bar phase calibrations measure a relative change in the secondary field, rather than an absolute value. This removes any dependency of the calibration procedure on the secondary field due to the ground, except under circumstances of extreme ground conductivity.

Calibrations of the gain, phase and the system zero level are performed in the air, before, after, and at regular intervals during each flight. The system is flown to an altitude high enough to be out of range of any secondary field from the earth (the altitude is dependent on ground resistivity) at which point the zero, or base level of the system is measured. Calibration coils in the bird are activated for each frequency in turn by closing a switch to form a closed circuit through the coil. The transmitter induces a current in this loop, which creates a secondary field in the receiver of precisely known phase and amplitude. The phase and gain of the system are automatically adjusted by the digital receiver to set the measured calibration signal to the known values for the system.

Magnetometer

Model:	Fugro AM102 processor with two Geometrics G822 sensors
Туре:	Optically pumped cesium vapour
Sensitivity:	0.01 nT
Sample rate:	10 per second

The horizontal gradient magnetometer sensors are mounted on the EM bird, 28 m below the helicopter, with a transverse separation of 5.56 m.

Magnetic Base Stations

Model:	Fugro CF1 processor with Geometrics G822 sensor
Туре:	Digital recording cesium vapour
Sensitivity:	0.01 nT
Sample rate:	1 Hz
Model:	GEM Systems GSM-19T
Model: Type:	GEM Systems GSM-19T Digital recording overhauser

A digital recorder is operated in conjunction with the base station magnetometers to record the diurnal variations of the earth's magnetic field. The clocks of the base stations were synchronized with that of the airborne system to permit subsequent removal of diurnal drift.

Radar Altimeter

Manufacturer:	Honeywell/Sperry
Model:	RT 220
Туре:	Short pulse modulation, 4.3 GHz
Sensitivity:	0.3 m

The radar altimeter measures the vertical distance between the helicopter and the ground. This information is used in the processing algorithm which determines conductor depth.

Barometric Pressure and Temperature Sensors

Model:	DIGHEM D 13	00
Туре:		1115AP analog pressure sensor -impedance remote temperature sensors
Sensitivity:	Pressure: Temperature:	150 mV/kPa 100 mV/°C or 10 mV/°C (selectable)
Sample rate:	10 per second	

The D1300 circuit is used in conjunction with one barometric sensor and up to three temperature sensors. Two sensors (baro and temp) are installed in the EM console in the aircraft, to monitor pressure (1KPA) and internal operating temperatures (2TDC). An additional sensor is contained within the EM bird to monitor external temperatures (3TDC).

Analog Recorder

Manufacturer:	RMS Instruments
Туре:	DGR33 dot-matrix graphics recorde
Resolution:	4x4 dots/mm
Speed:	1.5 mm/sec

The analog profiles are recorded on chart paper in the aircraft during the survey. Table 2-1 lists the geophysical data channels and the vertical scale of each profile.

Digital Data Acquisition System

Manufacturer: RMS Instruments

Model: DGR 33

Recorder: San Disk 48 Mb flash card

The data are stored on a 48 Mb flash card and are downloaded to the field workstation PC at the survey base for verification, backup and preparation of in-field products.

Channel		Scale	Designation on
Name	Parameter	units/mm	Digital Profile
1X9I	coaxial in-phase (1000 Hz)	2.5 ppm	CXI1000
1X9Q	coaxial quad (1000 Hz)	2.5 ppm	CXQ1000
3P9I	coplanar in-phase (900 Hz)	2.5 ppm	CP1900
3P9Q	coplanar quad (900 Hz)	2.5 ppm	CPQ900
2P7I	coplanar in-phase (7200 Hz)	5 ppm	CP17200
2P7Q	coplanar quad (7200 Hz)	5 ppm	CPQ7200
4X71	coaxial in-phase (5500 Hz)	5 ppm	CX15500
4X7Q	coaxial quad (5500 Hz)	5 ppm	CXQ5500
5P5I	coplanar in-phase (56000 Hz)	10 ppm	CPI56K
5P5Q	coplanar quad (56000 Hz)	10 ppm	CPQ56K
ALTR	altimeter (radar)	3 m	ALTBIRDM
MG1F	magnetics, left sensor	2.0 nT	
MG2F	magnetics, right sensor	2.0 nT	MAG
CXSP	coaxial spherics monitor		
CPSP	coplanar spherics monitor		
CXPL	coaxial powerline monitor		
CPPL	coplanar powerline monitor		
1KPA	altimeter (barometric)	30 m	
2TDC	internal (console) temperature	1º C	
3TDC	external temperature	1º C	

.

Table 2-1. The Analog Profiles

Video Flight Path Recording System

Type: Sony DXC-101

Recorder: Panasonic AG-720 VCR

Fiducial numbers are recorded continuously and are displayed on the margin of each image. This procedure ensures accurate correlation of analog and digital data with respect to visible features on the ground.

Navigation (Global Positioning System)

Airborne Receiver

Model:	Ashtech Glonass GG24 with Picodas 2100 interface
Туре:	SPS (L1 band), 24-channel, C/A code at 1575.42 MHz,
	S code at 0.5625 MHz, Real-time differential.
Sensitivity:	-132 dBm, 0.5 second update
Accuracy:	Manufacturer's stated accuracy is better than 5 metres real-time

Base Station

Model:	Ashtech Z-Surveyor
Туре:	12-channel (dual frequency). Code and carrier tracking of L1 and L2 bands
Sensitivity:	-90 dBm, 1.0 second update
Accuracy:	Manufacturer's stated accuracy for differential-corrected GPS is better than 1 metre

The Ashtech GG24 receiver is coupled with a PNAV navigation system for real-time guidance.

The Ashtech GG24 is a line of sight, satellite navigation system which utilizes time-coded signals from at least four of forty-eight available satellites. Both Russian GLONASS and American NAVSTAR satellite constellations are used to calculate the position and to provide real time guidance to the helicopter.

An Ashtech Z-Surveyor was used to provide post-survey differential corrections. The dual frequency Ashtech base station utilizes time-coded signals from at least four of the twenty-four NAVSTAR satellites. The base station raw XYZ data are recorded, thereby permitting post-survey processing for theoretical accuracies of better than 2 metres.

Although the base station receiver is able to calculate its own latitude and longitude, a higher degree of accuracy can be obtained if the reference unit is established on a known benchmark or triangulation point. For this survey, the GPS station was located at latitude

51°03'20.95172"N, longitude 93°44'42.11895"W at an ellipsoidal elevation of 354.5 metres. The GPS records data relative to the WGS84 ellipsoid, which is the basis of the revised North American Datum (NAD83). Conversion software is used to transform the WGS84 lat/long coordinates to the NAD83 system (UTM Zone 15) displayed on the base maps.

Field Workstation

./

A PC is used at the survey base to verify data quality and completeness. Flight data are transferred to the PC hard drive to permit the creation of a database using a proprietary software package. This process allows the field personnel to display both the positional (flight path) and geophysical data on a screen or printer.

3. PRODUCTS AND PROCESSING TECHNIQUES

Table 3-1 lists the maps and products which have been provided under the terms of the survey agreement. Other products can be prepared from the existing dataset, if requested. These include magnetic enhancements or derivatives, percent magnetite, digital terrain or resistivity-depth sections. Most parameters can be displayed as contours, profiles, or in colour.

Base Maps

Base maps of the survey areas have been produced from published topographic maps (NAD27). These provide a relatively accurate, distortion-free base which facilitates correlation of the navigation data to the UTM grid. The original topographic maps are scanned to a bitmap format and combined with geophysical data for plotting the final maps. The geophysical data are in NAD83, so the NAD83 graticules are offset from the NAD27 grid lines shown on the scanned base map. All data have been presented using the following parameters:

Projection Description:

NAD83 Datum: Ellipsoid: **WGS84** Projection: UTM (Zone: 15) Central Meridian: 80°W False Northing: 0 False Easting: 500000 Scale Factor: 0.9996 WGS84 to Local Conversion: Molodensky Datum Shifts: DX: 0 DY: 0 DZ: 0

Table 3-1 Survey Products

1. Final Transparent Maps (+1 print) @ 1:10,000

Dighem EM anomalies Total magnetic field Calculated vertical magnetic gradient Apparent resistivity (7200 Hz) Apparent resistivity (56,000 Hz)

2. <u>Colour Maps</u> (1 set) @ 1:10,000

Total magnetic field Calculated vertical magnetic gradient Apparent resistivity (7200 Hz) Apparent resistivity (56,000 Hz)

3. Additional Products

Digital XYZ archive in Geosoft format (CD-ROM) Digital grid archives in Geosoft format (CD-ROM) Survey report (1 copy)

Note: Other products can be produced from existing survey data, if requested.

Electromagnetic Anomalies

EM data are processed at the recorded sample rate of 10 samples/second. If necessary, appropriate spheric rejection median or Hanning filters are applied to reduce noise to acceptable levels. EM test profiles are then created to allow the interpreter to select the most appropriate EM anomaly picking controls for a given survey area. The EM picking parameters depend on several factors but are primarily based on the dynamic range of the resistivities within the survey area, and the types and expected geophysical responses of the targets being sought.

Anomalous electromagnetic responses are selected and analysed by computer to provide a preliminary electromagnetic anomaly map. The automatic selection algorithm is intentionally oversensitive to assure that no meaningful responses are missed. Using the preliminary map in conjunction with the multi-parameter stacked profiles, the interpreter then classifies the anomalies according to their source and eliminates those that are not substantiated by the data. The final interpreted EM anomaly map includes bedrock, surficial and cultural conductors. A map containing only bedrock conductors can be generated, if desired.

Apparent Resistivity

The apparent resistivity in ohm-m can be generated from the in-phase and quadrature EM components for any of the frequencies, using a pseudo-layer half-space model. A resistivity map portrays all the EM information for that frequency over the entire survey area. This contrasts with the electromagnetic anomaly map which provides information only over interpreted conductors. The large dynamic range makes the resistivity parameter an excellent mapping tool.

The preliminary resistivity maps and images are carefully inspected to locate any lines or line segments that might require levelling adjustments. Subtle changes between in-flight calibrations of the system can result in line to line differences, particularly in resistive (low signal amplitude) areas. If required, manual levelling is carried out to eliminate or minimize resistivity differences which can be caused by changes in operating temperatures. These levelling adjustments are usually very subtle, and do not result in the degradation of anomalies from valid bedrock sources.

After the manual levelling process is complete, revised resistivity grids are created. The resulting grids can be subjected to a microlevelling technique in order to smooth the data for contouring. The coplanar resistivity parameter has a broad 'footprint' that requires very little filtering.

The calculated resistivities for the three coplanar frequencies are included in the XYZ and grid archives. Values are in ohm-metres on all final products.

EM Magnetite (optional)

The apparent percent magnetite by weight is computed wherever magnetite produces a negative in-phase EM response. This calculation is more meaningful in resistive areas.

Total Magnetic Field

The aeromagnetic data are corrected for diurnal variation using the magnetic base station data. Manual adjustments are applied to any lines that require levelling, as indicated by shadowed images of the gridded magnetic data or tie line/traverse line intercepts. The IGRF gradient can be removed from the corrected total field data, if requested.

Calculated Vertical Magnetic Gradient

The diurnally-corrected total magnetic field data are subjected to a processing algorithm that enhances the response of magnetic bodies in the upper 500 m and attenuates the response of deeper bodies. The resulting vertical gradient map provides better definition and resolution of near-surface magnetic units. It also identifies weak magnetic features that may not be evident on the total field map. However, regional magnetic variations and changes in lithology may be better defined on the total magnetic field map.

Magnetic Derivatives (optional)

1

The total magnetic field data can be subjected to a variety of filtering techniques to yield maps of the following:

enhanced magnetics second vertical derivative reduction to the pole/equator magnetic susceptibility with reduction to the pole upward/downward continuations analytic signal

All of these filtering techniques improve the recognition of near-surface magnetic bodies, with the exception of upward continuation. Any of these parameters can be produced on request.

Multi-channel Stacked Profiles (optional)

Distance-based profiles of the digitally recorded geophysical data are generated and plotted at an appropriate scale. These profiles also contain the calculated parameters which are used in the interpretation process. These are produced as worksheets prior to interpretation, and are also presented in the final corrected form after interpretation. The profiles display electromagnetic anomalies with their respective interpretive symbols. Table 3-2 shows the parameters and scales for the multi-channel stacked profiles.

In Table 3-2, the log resistivity scale of 0.06 decade/mm means that the resistivity changes by an order of magnitude in 16.6 mm. The resistivities at 0, 33 and 67 mm up from the bottom of the digital profile are respectively 1, 100 and 10,000 ohm-m.

1

Channel		Sca	ale
Name (Freq)	Observed Parameters	Units	/mm
MAG20	total magnetic field (fine)	20	nT
MAG200	total magnetic field (coarse)	200	nT
ALTBIRDM	EM sensor height above ground	6	m
CXI1000	vertical coaxial coil-pair in-phase (1000 Hz)	2	ppm
CXQ1000	vertical coaxial coil-pair quadrature (1000 Hz)	2	ppm
CP1900	horizontal coplanar coil-pair in-phase (900 Hz)	5	ppm
CPQ900	horizontal coplanar coil-pair quadrature (900 Hz)	5	ppm
CXI5500	vertical coaxial coil-pair in-phase (5500 Hz)	5	ppm
CXQ5500	vertical coaxial coil-pair quadrature (5500 Hz)	5	ppm
CPI7200	horizontal coplanar coil-pair in-phase (7200 Hz)	20	ppm
CPQ7200	horizontal coplanar coil-pair quadrature (7200 Hz)	20	ppm
CPI56K	horizontal coplanar coil-pair in-phase (56,000 Hz)	30	ppm
CPQ56K	horizontal coplanar coil-pair quadrature (56,000 Hz)	30	ppm
	Computed Parameters		
DIFI (7200 Hz)	difference function in-phase from CXI and CPI	10	ppm
DIFQ (5500 Hz)	difference function quadrature from CXQ and CPQ	10	ppm
RES900	log resistivity	.06	decade
RES7200	log resistivity	.00	decade
RES56K	log resistivity	.00	decade
DP900	apparent depth	.00	m
DP7200	apparent depth	6	m
DP56K	apparent depth	6	 m
CDT	conductance	1	grade
		L	graue

Table 3-2. Multi-channel Stacked Profiles

Contour, Colour and Shadow Map Displays

The geophysical data are interpolated onto a regular grid using a modified Akima spline technique. The resulting grid is suitable for generating contour maps of excellent quality. The grid cell size is usually 25% of the line interval.

Colour maps are produced by interpolating the grid down to the pixel size. The parameter is then incremented with respect to specific amplitude ranges to provide colour "contour" maps. Colour maps of the total magnetic field are particularly useful in defining the lithology of the survey areas.

Monochromatic shadow maps or images are generated by employing an artificial sun to cast shadows on a surface defined by the geophysical grid. There are many variations in the shadowing technique. These techniques can be applied to total field or enhanced magnetic data, magnetic derivatives, VLF, resistivity, etc. The shadowing technique is also used as a quality control method to highlight subtle changes between lines.

Resistivity-depth Sections (optional)

The apparent resistivities for all frequencies can be displayed simultaneously as coloured resistivity-depth sections. Usually, only the coplanar data are displayed as the close frequency separation between the coplanar and adjacent coaxial data tends to distort the

moderate to high resistivity where signal amplitudes are weak. In areas where in-phase responses have been suppressed by the effects of magnetite, the computed resistivities shown on the sections may be unreliable.

Both the Occam and Multi-layer Inversions compute the layered earth resistivity model which would best match the measured EM data. The Occam inversion uses a series of thin, fixed layers (usually 20 x 5m and 10 x 10m layers) and computes resistivities to fit the EM data. The multi-layer inversion computes the resistivity and thickness for each of a defined number of layers (typically 3-5 layers) to best fit the data.

Digital Terrain (optional)

The radar altimeter values (ALTR - aircraft to ground clearance) can be subtracted from the differentially corrected GPS-Z values, which are transformed to the local datum, to produce profiles of the height above mean sea level along the survey lines. These values are gridded to produce contour maps showing approximate elevations within the survey area. The resulting digital terrain contours are compared with published topographic maps and can be manually adjusted to remove differences between the two. The data are then subjected to a microlevelling algorithm to remove any remaining small line-to-line discrepancies.

The accuracy of the elevation calculation is directly dependent on the accuracy of the two input parameters, ALTR and GPS-Z. The ALTR value may be erroneous in areas of

heavy tree cover, where the altimeter reflects the distance to the tree canopy rather than the ground. The GPS-Z value is primarily dependent on the number of available satellites. Although post-processing of GPS data will yield X and Y accuracies in the order of 2 metres, the accuracy of the Z value is usually much less, sometimes in the ±20 metre range. Further inaccuracies may be introduced during the interpolation and gridding process.

Because of the inherent inaccuracies of this method, no guarantee is made or implied that the information displayed is a true representation of the height above sea level. Although this product may be of some use as a general reference, <u>THIS PRODUCT MUST NOT</u> BE USED FOR NAVIGATION PURPOSES.

4. SURVEY RESULTS

General Discussion

The survey results are presented on a single map sheet for each parameter at a scale of 1:10,000. Tables 4-1 to 4-3 summarize the EM responses in the survey areas, with respect to conductance grade and interpretation.

The anomalies shown on the electromagnetic anomaly maps are based on a near-vertical, half plane model. This model best reflects "discrete" bedrock conductors. Wide bedrock conductors or flat-lying conductive units, whether from surficial or bedrock sources, may give rise to very broad anomalous responses on the EM profiles. These may not appear on the electromagnetic anomaly map if they have a regional character rather than a locally anomalous character. These broad conductors, which more closely approximate a half-space model, will be maximum coupled to the horizontal (coplanar) coil-pair and should be more evident on the resistivity parameter. Resistivity maps, therefore, may be more valuable than the electromagnetic anomaly maps, in areas where broad or flat-lying conductors are considered to be of importance. Contoured resistivity maps, based on the 7200 Hz and 56,000 Hz coplanar data are included with this report.

TABLE 4-1 EM ANOMALY STATISTICS

BLOCK A, RED LAKE AREA

		1
CONDUCTOR GRADE	CONDUCTANCE RANGE SIEMENS (MHOS)	NUMBER OF RESPONSES
7 6 5 4 3 2 1 *	>100 50 - 100 20 - 50 10 - 20 5 - 10 1 - 5 <1 INDETERMINATE	0 0 0 0 1 18 21
TOTAL		40
CONDUCTOR MODEL	MOST LIKELY SOURCE	NUMBER OF RESPONSES
B S E	DISCRETE BEDROCK CONDUCTOR CONDUCTIVE COVER EDGE OF WIDE CONDUCTOR	11 25 4
TOTAL		40

(SEE EM MAP LEGEND FOR EXPLANATIONS)

•

TABLE 4-2 EM ANOMALY STATISTICS

BLOCK B, RED LAKE AREA

CONDUCTOR GRADE	CONDUCTANCE RANGE SIEMENS (MHOS)	NUMBER OF RESPONSES
7 6 5 4 3 2 1	>100 50 - 100 20 - 50 10 - 20 5 - 10 1 - 5 <1 INDETERMINATE	1 2 7 11 21 82 137 41
TOTAL		302
CONDUCTOR MODEL	MOST LIKELY SOURCE	NUMBER OF RESPONSES
D B S E	THIN BEDROCK CONDUCTOR DISCRETE BEDROCK CONDUCTOR CONDUCTIVE COVER EDGE OF WIDE CONDUCTOR	58 53 143 48
TOTAL		302

(SEE EM MAP LEGEND FOR EXPLANATIONS)

TABLE 4-3 EM ANOMALY STATISTICS

BLOCK C, RED LAKE AREA

CONDUCTOR GRADE	CONDUCTANCE RANGE SIEMENS (MHOS)	NUMBER OF RESPONSES
7 6 5 4 3 2 1	>100 50 - 100 20 - 50 10 - 20 5 - 10 1 - 5 <1 INDETERMINATE	2 3 8 21 25 107 133 119
TOTAL		418
CONDUCTOR MODEL	MOST LIKELY SOURCE	NUMBER OF RESPONSES
T D B S H E	THICK BEDROCK CONDUCTOR THIN BEDROCK CONDUCTOR DISCRETE BEDROCK CONDUCTOR CONDUCTIVE COVER ROCK UNIT OR THICK COVER EDGE OF WIDE CONDUCTOR	1 68 133 165 5 46
TOTAL		418

(SEE EM MAP LEGEND FOR EXPLANATIONS)

Excellent resolution and discrimination of conductors was accomplished by using a fast sampling rate of 0.1 sec and by employing a "common" frequency (5500 Hz/7200 Hz) on two orthogonal coil-pairs (coaxial and coplanar). The resulting difference channel parameters often permit differentiation of bedrock and surficial conductors, even though they may exhibit similar conductance values.

Magnetics

A GEM Systems GSM-19T overhauser magnetometer was operated at the survey base to record diurnal variations of the earth's magnetic field. The clock of the base station was synchronized with that of the airborne system to permit subsequent removal of diurnal drift.

The total magnetic field data have been presented as contours on the base map using a contour interval of 10 nT where gradients permit. The map shows the magnetic properties of the rock units underlying the survey areas.

The total magnetic field data have been subjected to a processing algorithm to produce maps of the calculated vertical gradient. This procedure enhances near-surface magnetic units and suppresses regional gradients. It also provides better definition and resolution of magnetic units and displays weak magnetic features that may not be clearly evident on the total field maps. There is some evidence on the magnetic maps which suggests that the survey areas have been subjected to deformation and/or alteration. These structural complexities are evident on the contour maps as variations in magnetic intensity, irregular patterns, and as offsets or changes in strike direction. Some of the more prominent linear features are also evident on the topographic base map.

Several other folds and faults can be inferred from the magnetic data. The individual magnetic sources and the structural complexity of the peripheral units are more evident on the calculated vertical gradient map.

If a specific magnetic intensity can be assigned to the rock type which is believed to host the target mineralization, it may be possible to select areas of higher priority on the basis of the total field magnetic data. This is based on the assumption that the magnetite content of the host rocks will give rise to a limited range of contour values which will permit differentiation of various lithological units.

The magnetic results, in conjunction with the other geophysical parameters, have provided valuable information that can be used to effectively map the geology and structure in the survey areas.

Apparent Resistivity

Apparent resistivity maps, which display the conductive properties of the survey area, were produced from the 7200 Hz and 56,000 Hz coplanar data. The maximum resistivity values, which are calculated for each frequency, are 8,100 and 25,000 ohm-m respectively. These cutoffs eliminate the erratic higher resistivities which would result from unstable ratios of very small EM amplitudes.

In general, the resistivity patterns show moderately good agreement with the magnetic trends. This suggests that many of the resistivity lows are probably related to bedrock features, rather than conductive overburden. There are some areas, however, where contour patterns appear to be influenced by conductive lake-bottom material. Most of the water-covered areas yield resistivity values of less than 2500 ohm-m.

There are other resistivity lows in the area. Some of these are quite extensive and appear to reflect "formational" conductors which may be of minor interest as direct exploration targets. However, attention may be focused on areas where these zones appear to be faulted or folded or where anomaly characteristics differ along strike.

Electromagnetic Anomalies

The EM anomalies resulting from this survey appear to fall within one of three general categories. The first type consists of discrete, well-defined anomalies which yield marked inflections on the difference channels. These anomalies are usually attributed to conductive sulphides or graphite and are generally given a "B", "T" or "D" interpretive symbol, denoting a bedrock source.

The second class of anomalies comprises moderately broad responses which exhibit the characteristics of a half-space and do not yield well-defined inflections on the difference channels. Anomalies in this category are usually given an "S" or "H" interpretive symbol. The lack of a difference channel response usually implies a broad or flat-lying conductive source such as overburden. Some of these anomalies may reflect conductive rock units or zones of deep weathering, both of which can be wide enough to yield "non-discrete" signatures.

The effects of conductive overburden are evident over portions of the survey areas. Although the difference channels (DIFI and DIFQ) are extremely valuable in detecting bedrock conductors which are partially masked by conductive overburden, sharp undulations in the bedrock/overburden interface can yield anomalies in the difference channels which may be interpreted as possible bedrock conductors. Such anomalies usually fall into the "S?" or "B?" classification but may also be given an "E" interpretive symbol, denoting a resistivity contrast at the edge of a conductive unit.

The "?" symbol does not question the validity of an anomaly, but instead indicates some degree of uncertainty as to which is the most appropriate EM source model. This ambiguity results from the combination of effects from two or more conductive sources, such as overburden and bedrock, gradational changes, or moderately shallow dips. The presence of a conductive upper layer has a tendency to mask or alter the characteristics of bedrock conductors, making interpretation difficult. This problem is further exacerbated in the presence of magnetite.

The third anomaly category includes responses that are associated with magnetite. Magnetite can cause suppression or polarity reversals of the in-phase components, particularly at the lower frequencies in resistive areas. The effects of magnetite-rich rock units are evident as negative excursions of the 900 Hz in-phase channel.

In areas where EM responses are evident primarily on the quadrature components, zones of poor conductivity are indicated. Where these responses are coincident with magnetic anomalies, it is possible that the in-phase component amplitudes have been suppressed by the effects of magnetite. Most of these poorly-conductive magnetic features can give rise to resistivity anomalies that are only slightly below or slightly above background. If it is expected that poorly-conductive economic mineralization could be associated with magnetite-rich units, most of these weakly anomalous features will be of interest. In areas

where magnetite causes the in-phase components to become negative, the apparent conductance and depth of EM anomalies will be unreliable. Magnetite effects usually give rise to overstated (higher) resistivity values and understated (shallow) depth calculations.

As economic mineralization within the area may be associated with massive to weakly disseminated sulphides, which may or may not be hosted by magnetite-rich rocks, it is impractical to assess the relative merits of EM anomalies on the basis of conductance. It is recommended that an attempt be made to compile a suite of geophysical "signatures" over any known areas of interest. Anomaly characteristics are clearly defined on the computer-processed geophysical data profiles which are supplied as one of the survey products.

A complete assessment and evaluation of the survey data should be carried out by one or more qualified professionals who have access to, and can provide a meaningful compilation of all available geophysical, geological and geochemical data.

Conductors in the Survey Area

The electromagnetic anomaly map shows the anomaly locations with the interpreted conductor type, dip, conductance and depth being indicated by symbols. Direct magnetic

indicated where anomalies can be correlated from line to line with a reasonable degree of confidence.

In areas where several conductors or conductive trends appear to be related to a common geological unit, these have been outlined as "zones" on the EM anomaly maps. The zone outlines usually approximate the limits of conductive units defined by the 100 ohm-m resistivity contours, but may also be related to distinct rock units that can be inferred from the magnetic data.

Most of the highly conductive zones on the property are coincident with moderate to strong magnetic anomalies. The causative sources, therefore, are considered to be due to magnetic sulphides, such as pyrrhotite, or possibly a banded combination of magnetite and graphite.

Approximately 30% of the bedrock anomalies in the survey blocks exhibit direct magnetic correlation. However, there are several other bedrock conductors that are associated with relatively non-magnetic units, inferred faults or shears, or in close proximity to the contacts of magnetic units. Variations in conductivity along strike can often reflect sulphide/oxide facies changes.

<u>Block A</u>

Two east-trending magnetic units are evident in Block A, with the vertical gradient map suggesting the presence of a third, north-trending unit in the southwestern corner. A probable SSE-trending fault can be inferred from the gradient data, along the shoreline, just east of anomalies 10220M and N.

Block A is generally quite resistive, except for the clearly defined resistivity low that hosts conductors 10250J-10280O and 10260K-10310L. These two parallel conductors occur near the north and south contacts of the central east-trending magnetic unit, and often resemble edge effects from a 100 m wide conductive zone.

The apparent resistivity and depth calculations for this magnetic/conductive unit are unreliable, due to the effects of magnetite. The presence of magnetite is clearly indicated by the negative inphase responses at the low (900 Hz) frequency.

Anomaly 10220N, at the eastern shore of Pipestone Bay, may also reflect a bedrock source. This incomplete anomaly occurs near an inferred SSE-trending (faulted) contact. The resistivity maps suggest this conductive zone is open to the west.

Block B

A complex multi-layered, ENE-trending magnetic zone dominates the southeastern portion of Block B. At least four southeast-trending linear breaks can be inferred from the vertical gradient magnetic data in the southern portion of the area. Similar disruptions or offsets in the resistivity parameter are associated with at least three of these inferred breaks.

Two of the three highly conductive zones in this area are lake-hosted. However, the highly conductive nature and magnetic correlation suggest that these are likely due to buried bedrock sources, rather than conductive overburden.

A major conductive unit that extends from anomaly 10230C through 10610E has been shown on the EM anomaly map as three distinct, highly conductive segments. These conductive units extend to depth and have been identified as Zones B1, B2 and B3.

Zones B1, B2 and B3

This multi-conductor unit comprises three or more segments of an interesting eastnortheast trending feature with a strike length of more than 2.3 km. The conductive trend is open to the east and west. Probable cross-cutting breaks can be inferred from the vertical gradient magnetic data in the vicinity of anomalies 10320D, 10440B, 10520D and 10600E. Segments B1 and B2 are both within the lake, but host similar, thin, south-dipping sources. A third, segmented, parallel source is evident near the south shore, from 10340D to 10390E. These poorly defined sources are non-magnetic.

The strongest conductive portions in B1 and B2 occur near 10270C and 10330G. Neither of these anomalies yields direct magnetic correlation, although they both occur on the northern contacts of strong magnetic units.

Zone B3 also contains deep, conductive zones, particularly near 10560F, 10700G and 10730H. In general, this segment hosts two or more narrow, south-dipping sources, within a magnetic unit. Only a small portion of this conductive unit is lake-hosted, from 10560F to 10610E

In addition to the main conductors in Zone B, there are several other interesting resistivity lows of shorter strike length that are evident beyond the outlined zone limits. These include the conductive zones near 10190E and 10350H, the thin south-dipping conductor at 10530H, the conductive edge at 10540I, and the two conductors through 10570A and 10570B. The last two conductors are associated with a small lake, on the flanks of a weak magnetic unit, just east of an inferred SE-trending fault or contact. However, they could be due to edge effects (sharp resistivity contrasts at the edges of the small lake) rather than two separate bedrock sources.

This block also hosts other strong resistivity lows that could be due to a combination of surficial and bedrock conductivity. Lows are evident in the vicinity of anomalies 10190E, 10390K, 10530I, 10550K, 10560K and 10590L. Anomalies 10440J-10540H are all associated with a very weak, southeast-trending magnetic anomaly.

Block C

The central portion of Block C is underlain by a relatively non-magnetic unit. The northern portion hosts a moderately strong, east-trending magnetic unit that is associated with weak resistivity lows at 10610O and 10710H, and a highly conductive lake-hosted zone from 10800M to 10860N.

A fourth, weak, resistivity low is located in a small lake at 10590P. This non-magnetic anomaly is likely due to conductive overburden.

There are four small plug-like magnetic anomalies that may also be of interest. These are located on line 10700 at fiducial 911, line 10710 at fiducial 786, 10760 at 7325, and 10890 at 4492. The anomalies on lines 10710 and 10890 are weakly conductive.

The southeastern portion of the survey block is dominated by a strong magnetic unit, the northern contact of which extends from anomaly 10790F to 11260L. The complexity and multi-layer characteristics of this unit are more clearly defined on the vertical

gradient map. Several possible offsets or folds can be inferred from the magnetic patterns.

Zones C1 and C2

Zones C1 and C2 are closely associated with the northwestern contact of the main magnetic unit. Although the general trend of these zones is northeast, there are at least four conductors that suggest an east/west alignment direction in the vicinity of anomalies 10800B, 10920D, 11000K and 11070I.

A highly conductive, thick bedrock source is evident at 10790E. Resistivity values of less than 1 ohm-m are not uncommon in this highly magnetic zone. This conductor is open towards the west.

There are several highly conductive areas in Zone C1. These occur in the vicinity of anomalies 10800E, 10890D, 10920D, 10920F, 11000G and 11060H. Most of these are associated with the magnetic unit that defines the southern contact of the central non-magnetic zone

Zone C2

Zone C2 follows the same major magnetic contact that hosts Zone C1. The most conductive portion has been attributed to a thin, southeast-dipping conductor with a

. •

strike length of at least 1.1 km. Most of the clearly defined anomalies comprising this conductive zone yield direct magnetic correlation. The conductive unit is not lake-hosted, and in most areas, the conductivity appears to increase with depth.

Parallel conductors, both north and south of the main axis, are evident on most lines, from 11070 to 11200. Although magnetite has distorted the inphase responses, there is a weak indication on some lines that dips are opposite, near the edges of Zone C2. Anomalies 11120J and 11120K, for example, suggest dips to the south and north respectively.

The presence of magnetite has also precluded accurate resistivity (conductivity) calculations. However, values of less than 20 ohm-m are commonly observed at the (900 Hz) low frequency. The strongest EM conductor is 11210J.

Although the foregoing may describe the most conductive sources, it is possible that some of the weaker conductors that are associated with structural breaks could be of greater economic significance. Possible breaks can be inferred in the vicinity of 10800D, 10820G, 10880F, 11010G, 11040H, 11110L and 11210J.

Most of the shorter conductors that occur beyond the zone outlines are also considered to be potential target areas. A few examples would include the conductors associated with 10830G, 10850I, 10890C, 10920I, 10950J, 10960I, 11000K, 11050K, 11070L, 11070N, 11100L, 11150K and the weak isolated magnetic source at 11130J. Most of these reflect probable bedrock sources with strike lengths of less than 200 m.

Zone C3

A. 28003

The resistivity data suggest that Zone C3 could be related to Zones C1 and C2, and that the apparent break between C1 and C2 is the result of an increase in magnetite that has suppressed the inphase responses, leading to erroneously high resistivities between 11060I and 11100J. The possible connection with C1 is supported by an east-trending bedrock conductor, 10970H-11020H. To the north, conductor 11030J-11040J indicates a possible link with Zone C2. The magnetic results, however, suggest that Zone C3 is likely due to a separate source, within the central non-magnetic unit, but near its southeastern contact.

The most conductive portion of Zone C3 occurs at 10970J. Two strong, thin magnetic sources are clearly indicated on this line. On the adjacent line 10980, up to four possible sources can be inferred. It is interesting to note that the 900 Hz resistivity profile suggests a probable connection at depth between Zone C1 and Zone C3, on at least seven lines (10960-11030).

The differences in resistivity and magnetic patterns tend to enhance the significance of this area. The vertical gradient results suggest that anomalies 10920J, 10950J and 11010J are all related to the magnetic unit that is associated with Zone C3.

Zone C4

A strong resistivity low on the shore of the lake coincides with a strong magnetic anomaly. This magnetic/conductive unit is open to the east, beyond line 11260. Resistivities of less than 1 ohm-m are evident on the low (900 Hz) frequency, at anomaly 11260H, where the unit exhibits a probable depth of about 12 m.

This broad unit appears to get slightly deeper towards the north, but this apparent increase in depth might actually be due to an increase in thickness of the overlying resistive material (a small hill) towards the north.

The magnetic results suggest that the southwestern limit of this zone abuts an eastsoutheast trending linear magnetic low that is likely due to a fault or a non-magnetic intrusion. Additional work is recommended to check the causative source of this highly conductive zone, in the vicinity of anomaly 11260H. A short, weak conductor, about 70 m northwest of Zone C4, occurs on the northern contact of the strong magnetic unit that hosts C4. This moderately thin source is also considered to be a potential target.

There are also a few anomalies in Block C that have been attributed to possible surficial or bedrock sources, but which could be due to culture. Anomalies 10920I, 10940J and 10990G-11090H, for example, have all been attributed to possible bedrock sources. However, all of these responses occur on, or in very close proximity to, the route of an old powerline shown on the topographic base map. A close inspection of the flight path video records did not reveal any poles or wires, so it has been assumed that the line has been removed, or that it is buried or obscured by snow.

In addition to the numerous conductive zones in the three survey blocks, there are several isolated, moderately small, plug-like magnetic anomalies that might also be of interest, even if they are relatively non-conductive. Examples include the magnetic highs on line 10240 at fiducial 1262, line 10320 at 8997, line 10360 at 8149, line 10390 at 7401, line 10430 at 6640, line 10630 at 2398, line 10680 at 1403, line 10700 at 911, 10830F, line 10890 at 4492, and at anomalies 10920J, 11020I and 11130I.

5. CONCLUSIONS AND RECOMMENDATIONS

This report provides a very brief description of the survey results and describes the equipment, procedures and logistics of the survey.

There are numerous anomalies in the three survey blocks that are typical of banded iron formation or massive sulphide responses. The survey was also successful in locating several moderately weak or broad conductors that also warrant additional work. The various maps included with this report display the magnetic and conductive properties of the survey areas. It is recommended that the survey results be reviewed in detail, in conjunction with all available geophysical, geological and geochemical information. An attempt should be made to determine the geophysical signatures over any known zones of economic mineralization within the survey blocks.

Most anomalies in the area are moderately strong and well-defined. Roughly 60% have been attributed to conductive overburden or deep weathering, although many of these appear to be associated with magnetite-rich rock units. Others coincide with magnetic gradients which may reflect contacts, faults or shears. Such structural breaks are considered to be of particular interest as they may have influenced mineral deposition within the survey areas. The interpreted bedrock conductors defined by the survey should be subjected to further investigation, using appropriate surface exploration techniques. Anomalies which are currently considered to be of moderately low priority may require upgrading if follow-up results are favourable.

It is also recommended that image processing of existing geophysical data be considered, in order to extract the maximum amount of information from the survey results. Current software and imaging techniques often provide valuable information on structure and lithology, which may not be clearly evident on the contour and colour maps. These techniques can yield images which define subtle, but significant, structural details.

Respectfully submitted,

FUGRO AIRBORNE SURVEYS CORP.

Douglas L. McConnell, P.Eng. Geophysicist

Paul A. Smith Geophysicist

PAS/sdp

R2123A-DEC.02

APPENDIX A

LIST OF PERSONNEL

The following personnel were involved in the acquisition, processing, interpretation and presentation of data, relating to a DIGHEM^{V-DSP} airborne geophysical survey carried out for Redstar Gold Corp., near Red Lake, Ontario.

Doug McConnell David Miles Emily Farquhar Riz Fazal Nick Venter Terry Thompson Gordon Smith Elizabeth Bowslaugh Paul A. Smith Lyn Vanderstarren Susan Pothiah Albina Tonello Senior Geophysicist Manager, Helicopter Operations Manager, Data Processing and Interpretation Senior Geophysical Operator Field Geophysicist Pilot (Questral Helicopters Ltd.) Data Processing Supervisor Data Processor/Geophysicist Interpretation Geophysicist Drafting Supervisor Word Processing Operator Secretary/Expeditor

The survey consisted of 223 km of coverage, flown from November 3 to November 5, 2002.

All personnel are employees of Fugro Airborne Surveys, except for the pilot who is an employee of Questral Helicopters Ltd.

APPENDIX B

STATEMENT OF COST

Date: December 16, 2002

IN ACCOUNT WITH FUGRO AIRBORNE SURVEYS

To: Fugro flying of Agreement dated October 22, 2002, pertaining to an Airborne Geophysical Survey in the Rivard Red Lake area, Ontario.

Survey Charges

223 km of flying @ \$102.00/km plus mobilization costs of	
\$2,427.00 (prorated)	\$ 25,173.00
Reports and maps	\$ <u>1,850.00</u>
	\$ <u>27,023.00</u>
Allocation of Costs	

- Data Acquisition(80%)- Data Processing(10%)- Interpretation, Report and Maps(10%)

- Appendix C.1 -

BACKGROUND INFORMATION

Electromagnetics

DIGHEM electromagnetic responses fall into two general classes, discrete and broad. The discrete class consists of sharp, well-defined anomalies from discrete conductors such as sulphide lenses and steeply dipping sheets of graphite and sulphides. The broad class consists of wide anomalies from conductors having a large horizontal surface such as flatly dipping graphite or sulphide sheets, saline water-saturated sedimentary formations, conductive overburden and rock, and geothermal zones. A vertical conductive slab with a width of 200 m would straddle these two classes.

The vertical sheet (half plane) is the most common model used for the analysis of discrete conductors. All anomalies plotted on the geophysical maps are analyzed according to this model. The following section entitled **Discrete Conductor Analysis** describes this model in detail, including the effect of using it on anomalies caused by broad conductors such as conductive overburden.

The conductive earth (half-space) model is suitable for broad conductors. Resistivity contour maps result from the use of this model. A later section entitled **Resistivity Mapping** describes the method further, including the effect of using it on anomalies caused by discrete conductors such as sulphide bodies.

Geometric Interpretation

The geophysical interpreter attempts to determine the geometric shape and dip of the conductor. Figure C-1 shows typical DIGHEM anomaly shapes which are used to guide the geometric interpretation.

Discrete Conductor Analysis

The EM anomalies appearing on the electromagnetic map are analyzed by computer to give the conductance (i.e., conductivity-thickness product) in siemens (mhos) of a vertical sheet model. This is done regardless of the interpreted geometric shape of the conductor. This is not an unreasonable procedure, because the computed conductance increases as the electrical quality of the conductor increases, regardless of its true shape. DIGHEM anomalies are divided into seven grades of conductance, as shown in Table C-1. The conductance in siemens (mhos) is the reciprocal of resistance in ohms.

The conductance value is a geological parameter because it is a characteristic of the conductor alone. It generally is independent of frequency, flying height or depth of burial, apart from the averaging over a greater portion of the conductor as height increases. Small anomalies from deeply buried strong conductors are not confused with small anomalies from shallow weak conductors because the former will have larger conductance values.

- Appendix C.3 -

Anomaly Grade	Siemens
7	> 100
6	50 - 100
5	20 - 50
4	10 - 20
3	5 - 10
2	1 - 5
1	< 1

Table C-1. EM Anomaly Grades

Conductive overburden generally produces broad EM responses which may not be shown as anomalies on the geophysical maps. However, patchy conductive overburden in otherwise resistive areas can yield discrete anomalies with a conductance grade (cf. Table C-1) of 1, 2 or even 3 for conducting clays which have resistivities as low as 50 ohm-m. In areas where ground resistivities are below 10 ohm-m, anomalies caused by weathering variations and similar causes can have any conductance grade. The anomaly shapes from the multiple coils often allow such conductors to be recognized, and these are indicated by the letters S, H, and sometimes E on the geophysical maps (see EM legend on maps).

For bedrock conductors, the higher anomaly grades indicate increasingly higher conductances. Examples: DIGHEM's New Insco copper discovery (Noranda, Canada) yielded a grade 5 anomaly, as did the neighbouring copper-zinc Magusi River ore body; Mattabi (copper-zinc, Sturgeon Lake, Canada) and Whistle (nickel, Sudbury, Canada) gave grade 6; and DIGHEM's Montcalm nickel-copper discovery (Timmins, Canada)

- Appendix C.4 -

yielded a grade 7 anomaly. Graphite and sulphides can span all grades but, in any particular survey area, field work may show that the different grades indicate different types of conductors.

Strong conductors (i.e., grades 6 and 7) are characteristic of massive sulphides or graphite. Moderate conductors (grades 4 and 5) typically reflect graphite or sulphides of a less massive character, while weak bedrock conductors (grades 1 to 3) can signify poorly connected graphite or heavily disseminated sulphides. Grades 1 and 2 conductors may not respond to ground EM equipment using frequencies less than 2000 Hz.

The presence of sphalerite or gangue can result in ore deposits having weak to moderate conductances. As an example, the three million ton lead-zinc deposit of Restigouche Mining Corporation near Bathurst, Canada, yielded a well-defined grade 2 conductor. The 10 percent by volume of sphalerite occurs as a coating around the fine grained massive pyrite, thereby inhibiting electrical conduction. Faults, fractures and shear zones may produce anomalies which typically have low conductances (e.g., grades 1 to 3). Conductive rock formations can yield anomalies of any conductance grade. The conductive materials in such rock formations can be salt water, weathered products such as clays, original depositional clays, and carbonaceous material.

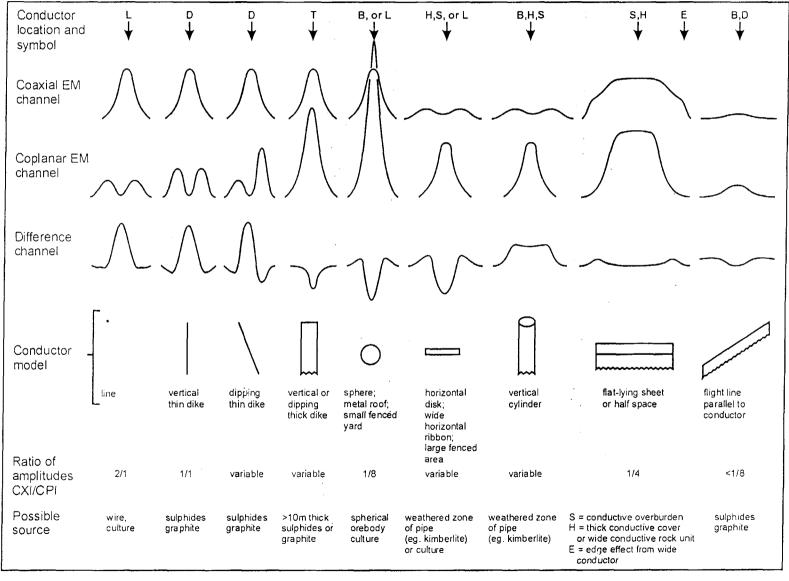
For each interpreted electromagnetic anomaly on the geophysical maps, a letter identifier and an interpretive symbol are plotted beside the EM grade symbol. The horizontal rows of dots, under the interpretive symbol, indicate the anomaly amplitude on the flight record.

- Appendix C.5 -

The vertical column of dots, under the anomaly letter, gives the estimated depth. In areas where anomalies are crowded, the letter identifiers, interpretive symbols and dots may be obliterated. The EM grade symbols, however, will always be discernible, and the obliterated information can be obtained from the anomaly listing appended to this report.

The purpose of indicating the anomaly amplitude by dots is to provide an estimate of the reliability of the conductance calculation. Thus, a conductance value obtained from a large ppm anomaly (3 or 4 dots) will tend to be accurate whereas one obtained from a small ppm anomaly (no dots) could be quite inaccurate. The absence of amplitude dots indicates that the anomaly from the coaxial coil-pair is 5 ppm or less on both the in-phase and quadrature channels. Such small anomalies could reflect a weak conductor at the surface or a stronger conductor at depth. The conductance grade and depth estimate illustrates which of these possibilities fits the recorded data best.

The conductance measurement is considered more reliable than the depth estimate. There are a number of factors which can produce an error in the depth estimate, including the averaging of topographic variations by the altimeter, overlying conductive overburden, and the location and attitude of the conductor relative to the flight line. Conductor location and attitude can provide an erroneous depth estimate because the stronger part of the conductor may be deeper or to one side of the flight line, or because it has a shallow dip. A heavy tree cover can also produce errors in depth estimates. This is because the depth estimate is computed as the distance of bird from conductor, minus the altimeter reading.


- Appendix C.6 -

The altimeter can lock onto the top of a dense forest canopy. This situation yields an erroneously large depth estimate but does not affect the conductance estimate.

Dip symbols are used to indicate the direction of dip of conductors. These symbols are used only when the anomaly shapes are unambiguous, which usually requires a fairly resistive environment.

A further interpretation is presented on the EM map by means of the line-to-line correlation of bedrock anomalies, which is based on a comparison of anomaly shapes on adjacent lines. This provides conductor axes that may define the geological structure over portions of the survey area. The absence of conductor axes in an area implies that anomalies could not be correlated from line to line with reasonable confidence.

DIGHEM electromagnetic anomalies are designed to provide a correct impression of conductor quality by means of the conductance grade symbols. The symbols can stand alone with geology when planning a follow-up program. The actual conductance values are printed in the attached anomaly list for those who wish quantitative data. The anomaly ppm and depth are indicated by inconspicuous dots which should not distract from the conductor patterns, while being helpful to those who wish this information. The map provides an interpretation of conductors in terms of length, strike and dip, geometric shape, conductance, depth, and thickness. The accuracy is comparable to an interpretation from a high quality ground EM survey having the same line spacing.

Typical DIGHEM anomaly shapes Figure C-1

- Appendix C.8 -

The attached EM anomaly list provides a tabulation of anomalies in ppm, conductance, and depth for the vertical sheet model. The EM anomaly list also shows the conductance and depth for a thin horizontal sheet (whole plane) model, but only the vertical sheet parameters appear on the EM map. The horizontal sheet model is suitable for a flatly dipping thin bedrock conductor such as a sulphide sheet having a thickness less than 10 m. The list also shows the resistivity and depth for a conductive earth (half-space) model, which is suitable for thicker slabs such as thick conductive overburden. In the EM anomaly list, a depth value of zero for the conductive earth model, in an area of thick cover, warns that the anomaly may be caused by conductive overburden.

Since discrete bodies normally are the targets of EM surveys, local base (or zero) levels are used to compute local anomaly amplitudes. This contrasts with the use of true zero levels which are used to compute true EM amplitudes. Local anomaly amplitudes are shown in the EM anomaly list and these are used to compute the vertical sheet parameters of conductance and depth. Not shown in the EM anomaly list are the true amplitudes which are used to compute the horizontal sheet and conductive earth parameters.

Questionable Anomalies

DIGHEM maps may contain EM responses which are displayed as asterisks (*). These responses denote weak anomalies of indeterminate conductance, which may reflect one

- Appendix C.9 -

of the following: a weak conductor near the surface, a strong conductor at depth (e.g., 100 to 120 m below surface) or to one side of the flight line, or aerodynamic noise. Those responses which have the appearance of valid bedrock anomalies on the flight profiles are indicated by appropriate interpretive symbols (see EM legend on maps). The others probably do not warrant further investigation unless their locations are of considerable geological interest.

The Thickness Parameter

DIGHEM can provide an indication of the thickness of a steeply dipping conductor. The amplitude of the coplanar anomaly (e.g., CPI channel on the digital profile) increases relative to the coaxial anomaly (e.g., CXI) as the apparent thickness increases, i.e., the thickness in the horizontal plane. (The thickness is equal to the conductor width if the conductor dips at 90 degrees and strikes at right angles to the flight line.) This report refers to a conductor as <u>thin</u> when the thickness is likely to be less than 3 m, and <u>thick</u> when in excess of 10 m. Thick conductors are indicated on the EM map by parentheses "()". For base metal exploration in steeply dipping geology, thick conductors can be high priority targets because many massive sulphide ore bodies are thick, whereas non-economic bedrock conductor is subparallel to the flight line, when the conductor has a shallow dip, when the anomaly amplitudes are small, or when the resistivity of the environment is below 100 ohm-m.

- Appendix C.10 -

Resistivity Mapping

Resistivity mapping is useful in areas where broad or flat lying conductive units are of interest. One example of this is the clay alteration which is associated with Carlin-type deposits in the south west United States. The Dighem system was able to identify the clay alteration zone over the Cove deposit. The alteration zone appeared as a strong resistivity low on the 900 Hz resistivity parameter. The 7,200 Hz and 56,000 Hz resistivities show more of the detail in the covering sediments, and delineate a range front fault. This is typical in many areas of the south west United States, where conductive near surface sediments, which may sometimes be alkalic, attenuate the higher frequencies.

Resistivity mapping has proven successful for locating diatremes in diamond exploration. Weathering products from relatively soft kimberlite pipes produce a resistivity contrast with the unaltered host rock. In many cases weathered kimberlite pipes were associated with thick conductive layers which contrasted with overlying or adjacent relatively thin layers of lake bottom sediments or overburden.

Areas of widespread conductivity are commonly encountered during surveys. These conductive zones may reflect alteration zones, shallow-dipping sulphide or graphite-rich units or conductive overburden. In such areas, anomalies can be generated by decreases of only 5 m in survey altitude as well as by increases in conductivity. The typical flight record in conductive areas is characterized by in-phase and quadrature channels which

- Appendix C.11 -

are continuously active. Local EM peaks reflect either increases in conductivity of the earth or decreases in survey altitude. For such conductive areas, apparent resistivity profiles and contour maps are necessary for the correct interpretation of the airborne data. The advantage of the resistivity parameter is that anomalies caused by altitude changes are virtually eliminated, so the resistivity data reflect only those anomalies caused by conductivity changes. The resistivity analysis also helps the interpreter to differentiate between conductive bedrock and conductive overburden. For example, discrete conductors will generally appear as narrow lows on the contour map and broad conductors (e.g., overburden) will appear as wide lows.

The apparent resistivity is calculated using the pseudo-layer (or buried) half-space model defined by Fraser (1978)⁵. This model consists of a resistive layer overlying a conductive half-space. The depth channels give the apparent depth below surface of the conductive material. The apparent depth is simply the apparent thickness of the overlying resistive layer. The apparent depth (or thickness) parameter will be positive when the upper layer is more resistive than the underlying material, in which case the apparent depth may be quite close to the true depth.

The apparent depth will be negative when the upper layer is more conductive than the underlying material, and will be zero when a homogeneous half-space exists. The

⁵ Resistivity mapping with an airborne multicoil electromagnetic system: Geophysics, v. 43, p.144-172

- Appendix C.12 -

apparent depth parameter must be interpreted cautiously because it will contain any errors which may exist in the measured altitude of the EM bird (e.g., as caused by a dense tree cover). The inputs to the resistivity algorithm are the in-phase and quadrature components of the coplanar coil-pair. The outputs are the apparent resistivity of the conductive half-space (the source) and the sensor-source distance. The flying height is not an input variable, and the output resistivity and sensor-source distance are independent of the flying height when the conductivity of the measured material is sufficient to yield significant in-phase as well as quadrature responses. The apparent depth, discussed above, is simply the sensor-source distance minus the measured altitude or flying height. Consequently, errors in the measured altitude will affect the apparent depth parameter but not the apparent resistivity parameter.

The apparent depth parameter is a useful indicator of simple layering in areas lacking a heavy tree cover. The DIGHEM system has been flown for purposes of permafrost mapping, where positive apparent depths were used as a measure of permafrost thickness. However, little quantitative use has been made of negative apparent depths because the absolute value of the negative depth is not a measure of the thickness of the conductive upper layer and, therefore, is not meaningful physically. Qualitatively, a negative apparent depth estimate usually shows that the EM anomaly is caused by conductive overburden. Consequently, the apparent depth channel can be of significant help in distinguishing between overburden and bedrock conductors.

- Appendix C.13 -

Interpretation in Conductive Environments

Environments having low background resistivities (e.g., below 30 ohm-m for a 900 Hz system) yield very large responses from the conductive ground. This usually prohibits the recognition of discrete bedrock conductors. However, DIGHEM data processing techniques produce three parameters which contribute significantly to the recognition of bedrock conductors in conductive environments. These are the in-phase and quadrature difference channels (DIFI and DIFQ, which are available only on systems with common frequencies on orthogonal coil pairs), and the resistivity and depth channels (RES and DP) for each coplanar frequency.

The EM difference channels (DIFI and DIFQ) eliminate most of the responses from conductive ground, leaving responses from bedrock conductors, cultural features (e.g., telephone lines, fences, etc.) and edge effects. Edge effects often occur near the perimeter of broad conductive zones. This can be a source of geologic noise. While edge effects yield anomalies on the EM difference channels, they do not produce resistivity anomalies. Consequently, the resistivity channel aids in eliminating anomalies due to edge effects. On the other hand, resistivity anomalies will coincide with the most highly conductive sections of conductive ground, and this is another source of geologic noise. The recognition of a bedrock conductor in a conductive environment therefore is based on the anomalous responses of the two difference channels (DIFI and DIFQ) and the

- Appendix C.14 -

resistivity channels (RES). The most favourable situation is where anomalies coincide on all channels.

The DP channels, which give the apparent depth to the conductive material, also help to determine whether a conductive response arises from surficial material or from a conductive zone in the bedrock. When these channels ride above the zero level on the digital profiles (i.e., depth is negative), it implies that the EM and resistivity profiles are responding primarily to a conductive upper layer, i.e., conductive overburden. If the DP channels are below the zero level, it indicates that a resistive upper layer exists, and this usually implies the existence of a bedrock conductor. If the low frequency DP channel is below the zero level and the high frequency DP is above, this suggests that a bedrock conductor occurs beneath conductive cover.

Reduction of Geologic Noise

Geologic noise refers to unwanted geophysical responses. For purposes of airborne EM surveying, geologic noise refers to EM responses caused by conductive overburden and magnetic permeability. It was mentioned previously that the EM difference channels (i.e., channel DIFI for in-phase and DIFQ for quadrature) tend to eliminate the response of conductive overburden.

- Appendix C.15 -

Magnetite produces a form of geological noise on the in-phase channels of all EM systems. Rocks containing less than 1% magnetite can yield negative in-phase anomalies caused by magnetic permeability. When magnetite is widely distributed throughout a survey area, the in-phase EM channels may continuously rise and fall, reflecting variations in the magnetite percentage, flying height, and overburden thickness. This can lead to difficulties in recognizing deeply buried bedrock conductors, particularly if conductive overburden also exists. However, the response of broadly distributed magnetite generally vanishes on the in-phase difference channel DIFI. This feature can be a significant aid in the recognition of conductors which occur in rocks containing accessory magnetite.

EM Magnetite Mapping

The information content of DIGHEM data consists of a combination of conductive eddy current responses and magnetic permeability responses. The secondary field resulting from conductive eddy current flow is frequency-dependent and consists of both in-phase and quadrature components, which are positive in sign. On the other hand, the secondary field resulting from magnetic permeability is independent of frequency and consists of only an in-phase component which is negative in sign. When magnetic permeability manifests itself by decreasing the measured amount of positive in-phase, its presence may be difficult to recognize. However, when it manifests itself by yielding a negative in-phase anomaly (e.g., in the absence of eddy current flow), its presence is assured. In this latter case, the negative component can be used to estimate the percent magnetic content.

A magnetite mapping technique was developed for the coplanar coil-pair of DIGHEM. The method can be complementary to magnetometer mapping in certain cases. Compared to magnetometry, it is far less sensitive but is more able to resolve closely spaced magnetite zones, as well as providing an estimate of the amount of magnetite in the rock. The method is sensitive to 1/4% magnetite by weight when the EM sensor is at a height of 30 m above a magnetitic half-space. It can individually resolve steep dipping narrow magnetite-rich bands which are separated by 60 m. Unlike magnetometry, the EM magnetite method is unaffected by remanent magnetism or magnetic latitude.

The EM magnetite mapping technique provides estimates of magnetite content which are usually correct within a factor of 2 when the magnetite is fairly uniformly distributed. EM magnetite maps can be generated when magnetic permeability is evident as negative inphase responses on the data profiles.

Like magnetometry, the EM magnetite method maps only bedrock features, provided that the overburden is characterized by a general lack of magnetite. This contrasts with resistivity mapping which portrays the combined effect of bedrock and overburden.

Recognition of Culture

Cultural responses include all EM anomalies caused by man-made metallic objects. Such anomalies may be caused by inductive coupling or current gathering. The concern of the

- Appendix C.17 -

interpreter is to recognize when an EM response is due to culture. Points of consideration used by the interpreter, when coaxial and coplanar coil-pairs are operated at a common frequency, are as follows:

- 1. Channels CXP and CPP monitor 60 Hz radiation. An anomaly on these channels shows that the conductor is radiating power. Such an indication is normally a guarantee that the conductor is cultural. However, care must be taken to ensure that the conductor is not a geologic body which strikes across a power line, carrying leakage currents.
- 2. A flight which crosses a "line" (e.g., fence, telephone line, etc.) yields a centre-peaked coaxial anomaly and an m-shaped coplanar anomaly.⁶ When the flight crosses the cultural line at a high angle of intersection, the amplitude ratio of coaxial/coplanar response is 8. Such an EM anomaly can only be caused by a line. The geologic body which yields anomalies most closely resembling a line is the vertically dipping thin dike. Such a body, however, yields an amplitude ratio of 4 rather than 8. Consequently, an m-shaped coplanar anomaly with a CXI/CPI amplitude ratio of 8 is virtually a guarantee that the source is a cultural line.
- 3. A flight which crosses a sphere or horizontal disk yields centre-peaked coaxial and coplanar anomalies with a CXI/CPI amplitude ratio (i.e., coaxial/coplanar) of 1/8.

6

See Figure C-1 presented earlier.

- Appendix C.18 -

In the absence of geologic bodies of this geometry, the most likely conductor is a metal roof or small fenced yard.⁷ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.

- 4. A flight which crosses a horizontal rectangular body or wide ribbon yields an mshaped coaxial anomaly and a centre-peaked coplanar anomaly. In the absence of geologic bodies of this geometry, the most likely conductor is a large fenced area.⁵ Anomalies of this type are virtually certain to be cultural if they occur in an area of culture.
- 5. EM anomalies which coincide with culture, as seen on the camera film or video display, are usually caused by culture. However, care is taken with such coincidences because a geologic conductor could occur beneath a fence, for example. In this example, the fence would be expected to yield an m-shaped coplanar anomaly as in case #2 above. If, instead, a centre-peaked coplanar anomaly occurred, there would be concern that a thick geologic conductor coincided with the cultural line.
- 6. The above description of anomaly shapes is valid when the culture is not conductively coupled to the environment. In this case, the anomalies arise from

⁷ It is a characteristic of EM that geometrically similar anomalies are obtained from: (1) a planar conductor, and (2) a wire which forms a loop having dimensions identical to the perimeter of the equivalent planar conductor.

- Appendix C.19 -

inductive coupling to the EM transmitter. However, when the environment is quite conductive (e.g., less than 100 ohm-m at 900 Hz), the cultural conductor may be conductively coupled to the environment. In this latter case, the anomaly shapes tend to be governed by current gathering. Current gathering can completely distort the anomaly shapes, thereby complicating the identification of cultural anomalies. In such circumstances, the interpreter can only rely on the radiation channels and on the camera film or video records.

Magnetics

Total field magnetics provides information on the magnetic properties of the earth materials in the survey area. The information can be used to locate magnetic bodies of direct interest for exploration, and for structural and lithological mapping.

The total field magnetic response reflects the abundance of magnetic material, in the source. Magnetite is the most common magnetic mineral. Other minerals such as ilmenite, pyrrhotite, franklinite, chromite, hematite, arsenopyrite, limonite and pyrite are also magnetic, but to a lesser extent than magnetite on average.

In some geological environments, an EM anomaly with magnetic correlation has a greater likelihood of being produced by sulphides than one which is non-magnetic. However,

- Appendix C.20 -

sulphide ore bodies may be non-magnetic (e.g., the Kidd Creek deposit near Timmins, Canada) as well as magnetic (e.g., the Mattabi deposit near Sturgeon Lake, Canada).

Iron ore deposits will be anomalously magnetic in comparison to surrounding rock due to the concentration of iron minerals such as magnetite, ilmenite and hematite.

Changes in magnetic susceptibility often allow rock units to be differentiated based on the total field magnetic response. Geophysical classifications may differ from geological classifications if various magnetite levels exist within one general geological classification. Geometric considerations of the source such as shape, dip and depth, inclination of the earth's field and remanent magnetization will complicate such an analysis.

In general, mafic lithologies contain more magnetite and are therefore more magnetic than many sediments which tend to be weakly magnetic. Metamorphism and alteration can also increase or decrease the magnetization of a rock unit.

Textural differences on a total field magnetic contour, colour or shadow map due to the frequency of activity of the magnetic parameter resulting from inhomogeneities in the distribution of magnetite within the rock, may define certain lithologies. For example, near surface volcanics may display highly complex contour patterns with little line-to-line correlation.

- Appendix C.21 -

Rock units may be differentiated based on the plan shapes of their total field magnetic responses. Mafic intrusive plugs can appear as isolated "bulls-eye" anomalies. Granitic intrusives appear as sub-circular zones, and may have contrasting rings due to contact metamorphism. Generally, granitic terrain will lack a pronounced strike direction, although granite gneiss may display strike.

Linear north-south units are theoretically not well-defined on total field magnetic maps in equatorial regions due to the low inclination of the earth's magnetic field. However, most stratigraphic units will have variations in composition along strike which will cause the units to appear as a series of alternating magnetic highs and lows.

Faults and shear zones may be characterized by alteration which causes destruction of magnetite (e.g., weathering) which produces a contrast with surrounding rock. Structural breaks may be filled by magnetite-rich, fracture filling material as is the case with diabase dikes, or by non-magnetic felsic material.

Faulting can also be identified by patterns in the magnetic total field contours or colours. Faults and dikes tend to appear as lineaments and often have strike lengths of several kilometres. Offsets in narrow, magnetic, stratigraphic trends also delineate structure. Sharp contrasts in magnetic lithologies may arise due to large displacements along strike-slip or dip-slip faults.

APPENDIX D

EM ANOMALY LIST

• •

1		T in the second			CX 55			200 HZ	CP	900 HZ	Vertica		Mag. Corr	······
Labe.	l Fid	Inter	•	YUTM m	Real ppm	Quad ppm	Real ppm	Quad ppm	Real ppm	Quad ppm	COND siemens	DEPTH* m	I NT	
LINE	10220		FLIGHT	5							/ 		 	
$ \mathbf{F} $	1686.5	S	416698	5656787	14.0	17.3	133.0	148.1	28.9	74.0	1.1	7	1474	• •
I N	1683.7	B?	416697	5656881	11.7	21.1	133.0	151.6	28.9	74.0	0.7	2	1 0	· · ·
LINE	10230		FLIGHT								i		1	
L	1525.0	S	416748	5657541	• 6.7	14.4	55.6	64.6	20.3	16.5	0.5	2	I 0.	
	10240		FLIGHT		· · ·								1	1
IJ I	1249.3	S	416798	5657564	4.2	17.3	17.7	67.0	18.2	13.1	', 		0	
	10250		FLIGHT				······						*	Ī
	1103.6	E	416847	5656929	8.2		106.5		26.6	63.1	0.3	0	1074	- <u>'</u>
13	1105.3	B?	416847	5656989	14.7	71.8	106.5	370.2	0.0	63.1	0.3	0	1 1073	. 1
LINE	10260		FLIGHT	6		····							¦	1
I K	534.0	B?	416897	5656893	23.8	54.9	227.3	504.7	61.6	92.9	· 0.8	0	1 882 -	1
L 	531.1	E	416898	5656992	21.2	67.5	227.3	504.7	61.6	92.9	0.6	0	1110 	.
	10270		FLIGHT				· · · ·				•		1	. 1
•	10063.7	S	416947	5656574	9.3	15.7	14.7	60.1	18.2	8.5	0.7	10	0	1
•	10073.7	B?	416945	5656915	25.9	47.3	177.7		56.1	78.9	0.9	0	0	1
1 N	10076.2	B?	416940	5657004 	23.3	67.8	177.7	423.4	0.0	78.9	0.6	0	1194. 	
	10280		FLIGHT				• •	<u> </u>						l
	9823.2	B?	416997	5656921	32.8	94.6	180.8	486.1	33.7	86.5	0.7	0	1 0	Ļ
	9820.8	B?	416996	5657001	21.8	75.0	180.8	486.1	16.6	86.5	0.5	0	1222	·
P 	9805.3	S	416993	5657527	0.9	6.0	37.3	80.4	19.8	17.0			I· 0 I	· · · · ·
	10290		FLIGHT			····		•		i			1	- 1
	9665.0	83	417044	5656921	27.8		160.0		38.5	74.9	0.9	0	1 0	I
N 	9667.5	S?	417044	5656990	17.3	62.2	160.0	415.4	0.0	74.9	0.5	0	1284 	1
LINE	10300		FLIGHT	•		<u>+_</u>	·		. <u></u>	- <u></u>	<u>_</u>		 	
•	9429.7	В?	417091	5656927 I	18.2	44.0	86.4	336.3	34.4	56.6	0.7	0	1390	1
L 	9428.7	S	417092	5656960	18.2	44.0	86.4	336.3	33.4	56.6	0.7	0	1390	- 1
	10310		FLIGHT							'	·			
L	9171.2	B?	417149	5656949	15.1	61.3	41.6	261.1	6.6	39.9	0.4	0	1627	۱

CX = COAXIAL

CP = COPLANAR	Note:EM values shown above
	are local amplitudes
TECT EDick	

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 1 -

..

1		T = =		VIIMA	CX 55			200 HZ	CP	900 HZ	Vertica COND		Mag. Corr	 – –
Labe] 	l Fid	Inter	MTUX c m	YUTM	Real ppm	Quad ppm	Real ppm	Quad ppm	Real ppm	Quad ppm	siemens	DEPTH* m	I NT	
i						rr	FF			P P P P	1		1	
LINE	10310		FLIGHT		· · ·						1]	
I M	9183.5	S	417148	5657368	5.9	16.4	39.9	86.7	45.1	11.7			0	
LINE	10320		FLIGHT	4						······································	¦		· · ·····	
10	8938.2	S	417197	5656616	4.0	9.9	24.4	153.3	12.3	21.0		-	0	
P	8936.7	E	417196	5656666	5.3	32.5	24.4	153.3	12.3	21.0	1		0	
IQ	8927.7	S?	417196	5656964	10.3	38.5	29.4	165.4	0.0	24.6			1459	·
LINE	10330		FLIGHT	4		·	•		····		! 		*	
M	8761.1	S	417249	5656580	5.5	11.1	45.6	196.9	16.1	27.4			1 0	·
N	8772.9	B?	417248	5656976	10.8	49.9	44.7	210.9	38.2	30.3			1348	1
0	8785.5	Е	417248	5657400	4.2	21.4	27.3	101.4	23.4	14.0			636	i
LINE	10340		FLIGHT	4			·····	······································			/ 		/	.]
N	8519.4	S	417296	5656991	10.1	42.2	28.8	208.9	14.6	30.0			1139 -	1
0	8506.1	S	417296	5657419	` 2.7	22.4	19.6	117.7	9.3	16.8			285	1
LINE	10350		FLIGHT	4									l	
J	8352.3	S	417345	5656589	3.2	13.2	18.8	82.0	11.0	10.8	-		22	· 1
К	8365.5	S	417350	5657062 1	3.2	15.3	31.1	158.2	18.4	22.5) Oʻ	•
L	8375.8	S	417347	5657429	4.4	20.2	20.6	115.0	6.3	15.5			43	1
LINE	10360		FLIGHT	4					<u>-</u>	I			۱ 	
L	8113.8	S	417397	5656996	4.7	28.3	15.4	127.3	6.2	18.0			1026	I
1 INE	10370		FLIGHT			· <u> </u>	····	<u>.</u>		'				1
	7855.0	S	417440	5656720	3.0	17.1	10.4	80.4	8.3	12.3 1			200	. ‡
К	7875.2	S	417452	5657453	7.4	25.7	9.2	50.2	14.9	5.3			0	
	10380		FLIGHT							'I			·····	···· ·
I	7618.2	S?	417499	5656672 1	9.1	46.2	38.4	199.7	10.3	28.9			86	1
LINE	10390		FLIGHT							I	· · ·	'	· · ·	<u> </u>
	7449.2		417552	5656664	7.6	30.1		190.9	23.0	28.1 ļ		1	0	1
N	7465.1	S	417554	5657226	5.6	17.1	50.4	241.4	23.4	33.0	0.4	4	0	I
	19020		FLIGHT							I f				1
A	1572.1	S	417283	5657352	1.9	0.0	28.5	128.6	21.5	18.1			0	1

CX = COAXIAL

СЪ	=	COPLANAR	

TEST FPick

Note:EM values shown above

are local amplitudes

2 -

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

.

. С. с. к

i.

i.

 Labe] 	l Fid	Interp	XUTM m	YUTM M	Rea		00 HZ Quad ppm	CP 7 Real ppm	200 HZ Quad ppm	CP Real ppm	900 HZ Quad ppm	Vertic COND siemens 	al Dike DEPTH* m	Mag. N'		
LINE I J	10400 7227.1 7213.5		FLIGHT 417597 417596	4 5656741 5657225	•	5.3 5.8	12.9 23.9		133.1 168.7	14.6 25.0	18.4 24.2	0.3	 0	1	0 0	

CX = COAXIAL

CP = COPLANAR Note:EM values shown above are local amplitudes TEST FPick

• 3 -

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

÷.,

Anomalies Summary

Conductor Grade No, of Responses

۰.

7 6	·	0 0
5		0
4		0
3		0
. 2		1
.1		18
0 .	•	21
Total		40

Conductor Model No, of Responses

.

.

E		4	
В		11	
S	• •	25	
Total		40	

 Labe	l Fie	d I	nterp	XUTM	YUTM	CX 55 Real	00 HZ Quad	CP Real	7200 HZ Quad	CP Real	900 HZ Quad		al Dike DEPTH*	Mag. Corr 	<u>-</u>
1				m	m	ppm	ppm	ppm	ppm	ppm	ppm	siemens	m	I NT	<u>;</u> †
IT INF	10190	<u>`</u>		FLIGHT	c	-!						l			
ID INE	2375.4			16543	5654415	2.5	16.6	6.1	65.5	3.5	9.1			1 0	
IE	2385.4			16544	5654770	38.6	69.0		477.4		113.2	, 1.1	0	1 0	1
F	2388.5			16544	5654886	21.9	37.3		477.4		113.2	0.9	õ	0	1
LINE	10200)		FLIGHT	5	·			•			l		¦	· 1
IC	2261.9	5	5 4	16598	5654879	22.6	20.2	371.8	465.2	52.0	99.6	1.9	13	I 0	
LINE	10210)		FLIGHT	5	;]	
IE 1	1860.0			16646	5654825	14.0	28.3	168.0	386.3	52.8	64.4	0.7.	1	1 0	Ĺ,
LINE	10220	1		FLIGHT	5	1						- <u>i</u>		 	
D	1758.8			16694	5654379	1 3.6	20.2	14.7		3.3	14.9			(O`	í
ΙE	1757.5			16693	5654421	3.1	20.1	14.7	104.4	3.3	14.9			1 0	. I
F 	1746.2		5 4:	16690	5654795	8.4 	27.5	54.1	233.2	22.4	33.8	0.4	0	1 O	۱,
LINE	10230)		FLIGHT	5.	1								1	
10	1419.4			16751	5653963	1 46.6	31.3	272.3	227.2	102.2	79.9	3.4	4	0	1
D	1432.5			16749	5654412	1.3	15.9	14.0	99.5	3.7	14.0			0	ŀ
E 	1443.3	SI	41	16749	5654794	9.0	29.4	32.4	72.0	26.6	10.2	0.4	0	0	I.
LINE	10240		I	LIGHT	5	1		•				- <u></u>			
1C	1358.0			16790	5653963	50.8	34.6	272.0		110.1	78.9	3.4	2	0	1
D	1345.3			6791	5654388	3.1	20.0	7.5	53.9	4.9	7.4			0	1
(E 1	1333.4	SE	41	6794	5654782	10.1	39.8	15.4	114.7	4.5	16.1	0.4	0	0	1
LINE	10250			LIGHT		1									1
IC	1020.7	-		6851	5654009	39.6			139.2		57.9	6.2	8	0.	• •
D 	1042.5	5	5 4]	6846	5654776	8.5	37.7	52.1	196.7	2.6	29.2	0.3	0	Ο.	ļ.
LINE	10260		E	LIGHT	6	1					. 1	······			<u> </u>
IC	627.2	0		6897	5654016	60.1	28.2	292.4	228.5	147.8	80.3 (5.9	3	0	1
D	606.2	C		.6896	5654638	9.6	55.9	70.0	262.2	3.7	37.0	0.3	0	0 .	1 ·
E	603.1	S		6897	5654735	11.2	52.8	69.9	330.7	4.2	53.0	0.3	0	0 .	.
] F 	600.9	B?	41	6898	5654805) 4.8 	22.2	69.9	330.7	2.5	53.0	0.3	0	0	·]
	1027 0			LIGHT		1					l	**************************************	I		1
IC	9982.5	D	41	6948	5654035	69.9	27.5	276.5	219.0	151.8	79.5	7.8	3	0 [1

CX = COAXIAL

0	• ••••••				
CP ≈	COPLANAR	Note:EM	values	shown	above
		are	e local	amplit	udes
mm 000	DD ! . I				

- 1 -

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

 Labe	el Fid	Interp	XUTM m	YUTM m	CX 55 Real ppm	00 HZ Quad ppm	CP 7 Real ppm	200 HZ Quad ppm	CP Real ppm	•	Vertica COND siemens	al Dike DEPTH* m	Mag. Corr NT	
LINE	10270		FLIGHT	4	·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
I D	9993.1		116947	5654349	3.4	17.1	٦.٦	59.9	0.8	8.5			I 0	I
ΙE	10005.3	•	116947	5654727	4.5	18.9	46.0	230.3	7.0	32.5	0.3	0	1 0	1
{ F	10009.0	S 4	116948	5654849	1 5.4	25.2	45.3	166.3	3.4	36.0	1 0.3	0	1 0	1
LINE			FLIGHT		¦		· · ·		<u> </u>				· · · · · · · · · · · · · · · · · · ·	·1
I C	9916.9	-	16994	5654039	72.8	37.5	300.1	275.3	165.7	93.8	1 5 .5	3	1 0.	1
ID	9904.7		16993	5654362	5.5	34.4	28.6	203.9	0.5	28.9	0.2	0	1 0	1
ΙE	9897.9		16997	5654569	1 4.0	30.4	1.4	150.0	18.3	21.3			195	1
F	9892.3		16998	5654750	1 4.5	14.5	66.3	378.9	9.1	54.3	1 0.3	6	1 0	
IG	9889.5	S 4	17000	5654841	8.3	52.6	66.3	378.9	21.3	54.3	0.2	0	1 0 .	1.
ILINE			FLIGHT		1	<u></u>					, 		i	Ī
E	9582.1		17043	5653980	19.8	26.9	260.0	250.7	89.3	77.3	1.1	8	1 0	ľ
F 	9604.2	S 4	17041	5654753	· 2.9	12.4	35.7	206.5	12.5	29.5			I 0 _.	1
LINE	10300		FLIGHT	4	1								1	1
D	9518 ,6	D 4	17096	5654004	51.5	31.5	214.1	217.3	77.4	71.6	4.0	8	1 0 .	.1
E	9497.1	S 4	17096	5654716	4.2	31.8	43.5	258.2	3.3	36.4	0.2	0	0	
LINE	10310		FLIGHT	4						·	<u>·</u>		· · · · · · · · · · · · · · · · · · ·	<u> </u> .
D	9085.8	D 4	17141	5654011	47.4	23.1	173.7	113.7	86.4	58.3	5.2	11	1 0	
ΙE	9089.8	B? 4	17141	5654142	1 10.9	26.5	48.2	21.9	15.7	14.1	0.6	4		1
F	9099.5	S 4	17141	5654465	1 : 5.3	24.0	21.5	172.9	15.6	20.6	0.3	0		ł
LINE	10320		FLIGHT	4	 				······	l		<u> </u>	۱ <u> </u>	
ic	9020.0		17193	5654016	26.8	15.8	88.6	68.2	37.0	30.4	3.3	17		. 1
D	9016.4	S 4	17191	5654129	7.5	29.6	7.8	195.1	4.8	9.0	0.3	0	õ N	1
E	9011.4		17194	5654282	13.1	5:9	200.7	59.5	112.3	69.5			848	I
F	9009.3	D 4	17195	5654345	53.5	3.7	200.7	77.9	112.3	69.5	92.6	17	ο΄ CΠ	ľ
G	9005.8	S 4	17195	5654449	12.9	49.3	42.2	191.4	52.2	31:0	0.4	0	0	
1					[·		Сл	
LINE	10330		FLIGHT			(a a					~ ~			I
I E	8687.9		17244	5654127	30.1	62.7	223.1	398.3	3.5	78.9	0.9	0 1		l
F	8693.4		17238	5654290	18.6	7.6	318.7	333.3	223.3	107.0 1	4.8	28	1660	ŀ
IG	8695.8		17236	5654366	101.4	6.3	141.0	201.2	223.3	107.0	133.5	6 1	° CT	
H	8698.3	E 4.	17235	5654444	9.9	43.7	29.9	201.2	6.5	40.5	0.3	U I	0	1

CX = COAXIAL

CP = COPLANAR

Note:EM values shown above

are local amplitudes

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 2 -

•

EM	Anomal	y List
	•	

1

1

														· · ·
				· · · · · ·	1 CX 55	500 HZ	CP 7	200 HZ	CP	900 HZ	Vertica	l Dike	Mag. Corr	
Labe.	l Fid	Interp	XUTM	YUTM	Real	Quad	Real	Quad	Real	Quad	COND	DEPTH*	J .	
		-	m	m	ppm	ppm	ppm	ppm	ppm	ppm	siemens	m	I NT	
													1	
LINE			FLIGHT	4	1						1		1	
D	8605.1		417296	5654160	47.4	61.8	432.2	397.9	21.2	129.6	1.6	0	I 0	
E	8602.7		417296	5654236	30.7	31.5	453.1	397.9	324.0	132.0	1.8	8	1 0	
F	8600.1	D ·	417297	5654324	47.4	25.9	465.6	397.9	324.0	148.1	4.5	7	3098	
G	8598.7	D	417296	5654371	127.0	39.9	465.6	186.6	324.0	148.1	13.1	0	1 0	
LINE	10350	. <u></u>	FLIGHT	^							 		1	
	8283.3	E 4	417343	35654176	42.0	51.5	427.7	440.5	33.9	131.0	1.6	0	1 0	
E	8286.4		417340	5654254	21.7	36.7	427.7	440.5	149.0	131.0	0.9	2	1 0	
F	8290.4		417337	5654370	1 77.0	33.9	362.5	174.0	149.0	105.4	7.0	2	i 0	
G	8313.7		417344	5655179	15.2	32.8	90.4	221.3	5.3	37.8	0.7	Ő	I 0.	
H H	8321.9		117343	5655489	1 56.5	77.9	250.4	210.8	9.6	58.6	1,1,6	ŏ	1 0	
	0521.7	υ.	11/343	0000400	1 30.3	11.2	230.4	210.0	9.0	50.0	1 1.0	0	1 0	
LINE	10360		FLIGHT	4	i						1		1	
)	8199.3	E 4	117398	5654160	51.5	63.6	357.2	442.2	9.7	115.4	1.7	0	0	
E	8196.3	B 4	117401	5654254	43.6	46.1	394.8	442.2	152.9	142.1	1.9	3	1 0	
-	8194.0		117402	5654327	87.1	29.0	394.8	442.2	152.9	142.1	10.7	6	2304	
G	8192.0	E 4	117405	5654390	58.6	59.4	394.8	275.9	152.9	142.1	2.3	0	1 0	
H	8184.0	S 4	117400	5654645	5.4	20.4	34.0	113.4	10.4	16.6	··		1 0	
I	8165.0	S 4	117399	5655266	1 5.9	16.8	67.1	260.5	11.7	40.2	0.4	6	1 10	
J	8157.8	B? 4	117402	5655502	36.1	45.9	220.6	241.2	7.7	54.1	, 1.5	1	1 0	
ĸ	8152.6	S 4	17398	5655 679	15.7	28.4	138.9	220.8	27.5	38.3	0.8	2	! 0	
		······································			!		·			!			¦	
	10370	-	FLIGHT						• •			<u>^</u>	075	
	7778.8		17446	5654159	30.5	46.2	34.7	295.8	8.6	69.7	1.2	0.	275	
	7782.3		17446	5654244	20.9	21.4	250.6	295.8	90.1	92.7	1.6	10	0	•
	7784.8		17446	5654314	1 38.0	7.9	250.6	278.7	90.1	92.7	15.9	15	1 1083	
	7787.6		17445	5654399	32.3	37.7	234.2	192.3	9.1	93.3	1.6	0	0	
	7820.9		17446	5655491	18.7	22.2	140.5	223.8	4.6	41.7	1.3	10	0	
	7825.9	S 4	17445	5655675	14.7	28.2	136.2	297.0	27.2	48.0	0,7	5	0	
INE	10380		FLIGHT	4	¦					I				
	7692.4		17498	5654211	43.5	72.3	317.4	360.3	152.3	122.1	1.2	0	0	· ·
	7690.3		17498	5654280	54.5	25.6	317.4	360.3	152.3	122.1	5.7	11	1272	
	7689.0		17498	5654323	83.5	16.9	317.4	208.2	152.3	122.1	21.5	9	1075	
	7680.5		17495	5654609	6.7	27.5	31.0	96.4	2.4	15.6			0	
	7654.2		17496	5655483	8.9	27.0	108.1	289.2	2.9	46.3	0.4	0	Ö.	
	7649.6		17497	5655640	9.3	18.1	195.3	296.6	9.9	56.8	0.6	10	0.	

CX = COAXIAL

CP = COPLANAR

Note:EM values shown above are local amplitudes TEST FPick

3 -

-

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

1				·····	1. CX 55	00 HZ	CP 7	200 HZ	CP	900 HZ	Vertica	al Dike	Mag. Corr	
Labe	el Fid	Inter	p XUTM	YUTM	\ Real	Quad	Real	Quad	Real		COND	DEPTH*	1	
1			m	m	ppm	ppm	ppm	ppm	ppm		siemens	m	I NT	j
1					1_			••		••	I			
LINE			FLIGHT		1						1			. 1
I D	7369.3	E	417538	5653960	1 3.9	34.9	15.1	224.9	35.5	33.5	I		1 0	1
ΙE	7380.0	В	417545	5654197	34.2	54.7	323.3	319.4	155.0	137.7	1.2	0	I 0 .	I
F	7383.0	D	417543	5654275	117.0	45.6	340.6	319.4	159.8	136.0	1 9.5	2	1 3241	11
G	7384.3	D	417541	5654313	96.6	44.5	340.6	319.4	159.8	136.0	7.1	3	1 0	. · · · · ·
H	7390.9	S	417545	5654525	4.4	36.6	66.4	343.8	6.7	50.4	0.2	0	1 . 0	1
I	7416.0	S?	417548	5655445	10.0	39.8	54.1	198.8	2.8	31.1	0.4	0	10	. 1
IJ	7420.1	E	417543	5655600	1 29.9	59.4	261.9	354.5	8.3	69.9	1 0.9	0	·0	1
K	7422.3	S	417542	5655684	29.9	15.4	261.9	354.5	8.3	69.9	4.1	16	0	. 4
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	۱						I			·
ILINE			FLIGHT		1						1	-	1	·
IC	7310.7	S?	417602	5653957	4.9	18.0	2.6	76.3	0.0	13.3			376	ł
I D	7299.4	D	417595	5654276	45.3	21.3	128.1	154.4	52.6	59.4	5.3	6	1 2770	ł
E	7291.9	S	417597	5654517		24.8	33.4	86.3	7.8	12.9			1 0	4
F	7261.9	В?	417598	5655505	11.3	41.9	57.7	192.2	0.6	29.8	0.4	0	13 %	
G	7258.6	Е	417597	5655620	26.2	56.8	200.4	299.7	5.0	57.3	· 0.8	0	1 0	1
H	7256.0	S	417595	5655714	7.6	28.7	200.4	311.4	5.0	57.9	0.3	0.	1 35	1
					l <u> </u>		•						۱ <u> </u>	
LINE			FLIGHT							i			1	I
B	6988.4	S?	417648	5653,972	1 7.4	20.5	9.4	39.5	11.5	9.0	:		318	
IC	6998.4	D	417643	5654270	98.5	38.4	210.2	162.1	123.4	95.9	8.9	0	3959	1
}D	7008.7	S	417644	5654572	2.6	24.3	38.5	160.3	9.2	23.2		·	0	1
E	7034.8	Е	417652	5655523	9.6	38.6	44.3	163.2	2.1	25.5	. 0.4	0	0	1
F	7038.8	S?	417650	5655670	16.6	34.3	80.7	224.9	2.3	35.2	0.7	0	26	1
G	7045.8	S	417651	5655934	6.6	24.2	38.9	192.1	1.4	27.5	0.3	0	0	1
1					l					1		I		
LINE		_	FLIGHT		1				_ .			1	· · · ·	. j .
B	6925. 3	S	417699	5653975	4.7	9.4	. 5.7	18.9	5.1	3.6		1	202	
IC	6915.1	D	417698	5654278	38.3	29.9	82.0	108.6	40.6	38.1	2.6	5	1894	1
D	6907.2	S	417702	5654539	3.0	12.0	41.8	145.9	7.5	23.0		1	0	· 1
I E	6877.1	S?	417697	5655536	12.2	36.6	37.9	228.8	7.3	33.2	0.5	0 1	10	- E
F	6872.9	S?	417697	5655678		35.2	22.2	43.7	3.1	24.0	0.5	0 1	16	1
IG	6864.9	S	417694	5655948	5.9	26.6	49.1	199.1	4.2	29.2	0.3	0 1	18	L.
!	10100									!		!		
ILINE			FLIGHT						. .			1	1	
IB	6601.7	S?	417761	5654016	5.1	13.9	8.8	64.1	9.4	10.0	•		119	1
I C	6608.5	В	417757	5654236	6.1	б.4	18.2	34.8	13.9	10.8	1.0	38	1666	1
I D	6609.8	D	417756	5654277	11.2	14.7	22.0	34.8	17.2	10.8	1.0	19	1666	. I

CX = COAXIAL

CP = COPLANAR Note

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

EM Anomaly List

				······································	I CX 55	00 HZ	CP	7200 HZ	CP	900 HZ		al Dike	Mag. Corr	
Label	. Fid	Interp		YUTM	Real	Quad	Ŗeal	Quad	Real	Quad	COND	DEPTH*		
			m	m	ppm	ppm	ppm	ppm	ppm	ppm	siemens	m	J NT	
INE	10430		FLIGHT	4	· · · · · ·									
;	6621.7		417757	5654664	7.9	16.1	20.5	94.1	25.9	13.1	0.6	11	1 0	
	6647.2		417748	5655526	12.9	60.9	50.2	237.0	8.5	34.4	0.3	0	1 0	•
	6651.5	S	417744	5655670	1 12.5	36.3	50.2	174.1	2.2	24.2	0.5	0	13	•
1	6657.9	S	417742	5655890	12.6	36.6	54.7.	249.6	2.3	35.6	0.5	0	I 0 .	
INE	10440		FLIGHT	4	¦						• <u>•</u> •••••••••••	····	1 	
	6541.3	S?	417800	5654032	5.0	17.4	10.5	77.3	2.7	12.5			44	
	6533.0		417798	5654302	1 12.8	15.4	66.6	78.0	48.5	30.9	1.1	22	1683	κ.
	6530.9		417798	5654368	16.9	9.7	66.6	71.3	48.5	30.9	3.0	19	1433.	
)	6527.7	В	417800	5654470	16.6	2.3	68.2	14.3	48.0	22.0			443	
2	6521.8	E	417801	5654655	1 21.3	43.8	124.0	271.5	28.2	46.0	0.8	0	1 0	
•	6518.8	S	417801	5654755	10.0	20.0	127.6	271.5	28.2	46.0	0.6	8	44	
	6515.1	Е	417800	5654877	1 12.6	43.1	117.5	277.6	16.1	46.5	0.4	0	1 0	
l	6493.9	E	417797	5655550	11.9	45.6	45.4	201.0	6.2	29.9	0.4	0	1 0	• •
	6490.8	S?	417797	5655659	14.2	42.3	45.4	201.0	6.2	29.9	0.5	0	1 19	
	6483.8	S?	417795	5655907	16.1	62.8	70.0	283.3	4.1	42.0	0.4	0	1 18	
INE	10450		FLIGHT	4			· · · · · · · ·					·		
	6124.5	S	417846	5654038	5.1	18.8	10.9	81.4	6.1	11.5	0.3	0	0	
	6134.0		417846	5654366	23.8	13.4	106.1	88.0	49.1	53.2	3.4	15	2623	
	6137.0	в	417847	5654472	17.8	12.7	112.2	62.4	37.9	53.2			0	
)	6143.5	E ·	417845	5654698	34.2	63.2	303.0	387.6	18.0	84.0	1.0	0	0	
	6146.5	S ·	417843	5654800	29.3	34.2	303.0	387.6	18.0	84.0	1.5	4	15	
· · · ·	6155.2	S d	417844	5655105	3.0	18.2	4.8	74.6	6.0	10.8	·		! 17	
	6167.8	S? •	417849	5655529	1 9.3	35.7	31.5	149.9	7.2	22.1	0.4	0	1 0	
	6170.9	S 4	417850	5655633	l 9.8	34.7	56.5	231.4	7.7	34.6	0.4	0	0	•
	6178.7	S 4	417849	5655904	24.5	60.7	131.3	441.3	2.6	67.0	0.7	0	21	
INE	10460		FLIGHT	4		·, ······		<u>,</u> ,				<u> </u>	t	·····
	6050.9	В	117900	5654256	22.0	10.5	132.9	110.8	76.2	50.8 i			0	
	6048.2		117899	5654346	22.5	16.5	132.9	110.8	76.2	50.8 I	2.4	16	3419	
	6042.8		117900	5654522	28.5	13.0	190.7	37.4	145.0	62.9	4.8	20	0	
	6038.2		17899	5654668	42.7	57.3	320.2	317.9	27.3	83.5	1.5	0	0	
	6036.3		117898	5654733	23.1	20.2	324.6	349.6	27.7	84.4	2.0	13	0	
(6033.1		117899	5654843	36.1	22.0	324.6	349.6	27.7	84.4	3.5	12	14	
(5027.8		17900	5655024	4.2	34.3	39.0	266.5	0.9	37.6	• 0.2	0 1	0	
	5012.7		17897	5655517		33.4	10.8	102.9	13.4	14.7	0.5	0 /	0	
6	5 009 .0	S 4	17898	5655642	11.7	47.5	70.8	273.4	13.4	40.3	0.4	0 1	0	

CP = COPLANAR

Note:EM values shown above are local amplitudes

1.1.1

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

.

•

.

TEST FPick

- 5 -

 Labe 	l Fid	Inter	o XUTM m	YUTM m	CX 55 Real ppm	00 HZ Quad ppm	CP Real ppm	200 HZ Quad ppm	CP Real ppm		Vertica COND siemens	al Dike DEPTH* m	Mag. Corr NT	
LINE J	10460 6001.6	S	FLIGHT 417900	4 5655883	21.7	46.9	202.4	593.9	3.8	93.1	0.8	0	1 18	1
LINE A B C I D E F G H I I C	5743.3 5749.4 5750.9 5754.0 5759.9 5763.1 5765.3 5769.8 5781.7	S S?	FLIGHT 417944 417942 417942 417943 417943 417944 417942 417941 417943 417943	5654144 5654349 5654399 5654503 5654711 5654823 5654902 5655066 5655503	6.7 32.5 29.5 13.3 46.3 23.9 45.5 3.8 14.3	35.1 9.4 7.4 13.3 65.5 21.0 60.3 27.4 36.5	94.2	238.0 116.0 116.0 73.7 325.6 343.3 343.3 238.5 237.6	0.8 142.3 142.3 100.8 14.6 14.6 2.7 0.5 3.7	37.5 66.4 66.4 81.2 81.2 73.4 33.3 39.5	0.3 9.4 11.1 1.4 1.5 2.0 1.5 0.2 0.6	0 26 23 18 0 11 0 0 0	380 0 3931 0 0 0 0 0 0 24 0	
J LINE A B C D E F G H I J K	5790.8 10480 5667.2 5664.1 5662.2 5660.7 5650.9 5647.7 5641.4 5633.0 5633.0 5630.4 5622.2 5618.5	S E B S E S? E S? S?	417948 FLIGHT 418000 417999 418000 418000 418000 418005 418005 418005 418005 418005	5655843 4 5654197 5654302 5654367 5654419 5654754 5654869 5655395 5655488 5655488 5655770 5655897	21.0 3.2 40.8 26.7 29.8 6.0 34.1 4.4 16.8 27.6 17.0 10.0	54.6 24.6 16.5 9.7 0.7 13.5 47.7 32.3 22.6 42.9 16.1 45.4	244.5 244.5 244.5 217.8 216.9 33.3 254.2 254.2	194.3 194.3 113.5 91.4 242.4 238.4 212.1 325.8	1.8 17.2 191.8 191.8 191.8 11.1 11.1 0.1 7.5 7.5 2.2 4.2	36.2 61.8 61.8 57.8 31.2 69.5 61.5	0.1 6.3 6.4 0.5 1.3 0.2 1.1 1.1 1.6 0.3	0 8 19 8 0 0 10 0 20 0	1 16 451 0 3672 3645 0 0 119 46 0 22 0	
 LINE A B C D E F G H	10490 5359.0 5361.8 5364.1 5369.5 5372.3 5376.3 5378.4 5389.9 5392.9 5396.4	S? B D E S? E S S	FLIGHT 418048 418046 418045 418049 418049 418049 418049 418049 418043 418043 418043		6.1 62.2 82.0 50.6 16.0 6.9 33.4 7.2 12.0 22.9	26.2 17.1 24.3 17.3 34.1 15.8 51.8 23.6 13.3 40.1	28.3 417.2 417.2 196.2 171.5 184.8 184.8 131.3 132.9 132.9	230.9 170.4 170.4 25.1 222.8 223.8 223.8 329.3 189.2	2.8 335.2 335.2 223.9 37.3 9.2 9.2 12.1 3.1 3.1	44.9 114.8 114.8 41.9 54.7 52.8 52.8 51.9 37.3 37.3	0.3 12.5 12.4 8.6 0.7 0.5 1.2 0.4 1.2 0.9	0 7 9 13 0 6 0 18 0	641 0 3821 0 0 0 0 26 0	

CX = COAXIAL

CP = COPLANAR

Note: EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 6 -

.

 Labe	l Fid	Inter	p XUTM	YUTM	CX 55 Real	00 HZ Quad	CP 7 Real	200 HZ Quad	CP Real		COND	al Dike DEPTH*	Mag. Corr	<u> </u>
1			m	m	ppm	ppm	ppm	ppm	ppm	ppm	siemens	m	I NT .	1
LINE	10490		FLIGHT	4									· 1	
K	5402.6	S?	418048	5655769	17.2	35.3	53.0	126.8	0.6	17.1	0.7	1	15	Ì
	5407.2	S	418049	5655931	1 3.9	33.5	76.5	307.7	1.2	46.3	0.1	0	1 0	1
1					Ĵ						l		l	
LINE	10500		FLIGHT		1							· _	1	
A	5282.1	S?	418095	5654230	5.3	52.2	114.0	312.9	23.4	51.6	0.1	0	1085	· [
B	5279.2	D	418096	5654326	44.6	18.3	123.2	312.9	75.4	41.1	6.4	16	0	
1C	5275.2	В	418099	5654462	59.7		499.2	40.8	419.4	146.1	29.3	13	1 1685	1
D	5273.6	D	418098	5654515	40.7	33.4	499.2	235.1	463.0	146.1	2.5	8		
E	5271.6	В	418098	5654580	103.4	43.4		235.1	463.0 10.2	86.7 64.7	8.2 · 2.2	0 6		J
I F	5262.0 5252.3	É E	418097 418097	5654894 5655212	37.0 9.4	33.4 23.1	178.4 64.5	357.6 188.0	0.6	29.4	0.5	2	1 29	1
G H	5250.3	S	418097	5655282	5.5	19.7	64.5	188.0 188.0	5.0	29.4	0.3	0	1 28	1
11 I	5241.6	B?	418108	5655577	14.6	24.2	0.0	15.7	2.8	2.2	0.8	6	0	1
1J	5237.4	S?	418105	5655729	18.7	27.4	54.6	114.2	2.8	18.0 .1		Š	11	1
1		•.			1				- · · •			-		•
LINE	10510		FLIGHT	4	i					1				 ŀ
	4963.5	S?	418151	5654110	6.8	37.9	13.1	146.3	3.9	20.4			I 0	ľ
	4967.6	S?	418149	5654231	13.2	48.7	73.4	228.6	5.7	38.8	0.4	0	468	-
	4972.3	В	418147	5654380	1 53.4	2.4	329.7	54.4	270.9	80.1			411	1.
	4976.9	В	418149	5654533	86.6	14.4	377.4	55.7	422.0	73.1	29.4	7	1843	
	4983.5	S?	418149	5654767	9.9		124.2	109.0	40.3	55.2 1	. 1.0	19	1 0	
1 -	4987.9	S	418147	5654924	24.7	42.6	191.3	373.8	23.7	66.3	1.0	0 0		
•	4994.1	D	418146	5655140	11.6	31.1	16.9 189.8	13.4 262.6	3.8 5.3	4.6 52.2	0.5	0	1 0.	1
•	5007.7 5010.5		418152 418153	5655606 5655701	28.4 28.6	20.0	189.8	262.6	5.3	52.2	2.8	10	19	
	5010.5	D	418153	5655741	30.2	47.1	189.8	262.6	5.3	52.2	1.1	10	19	1
10	5011.7	D	410155	3033741	1 30.2		107.0	202.0	5.5	52,2		0	1	•
LINE	10520		FLIGHT	4	í 				- <u></u>	······································			i	1
	4887.5	S?	418196	5654124	6.2	23.6	30.4	155.1	9.1	21.9	0.3	0	19	· I
	4881.6	S?	418203	5654304	4.7	31.5	64.7	179.4	21.6	23.0	0.2	0	149	1
	4877.1		418207	5654450	44.7	16.7	212.5	0.0	301.1	34.0	7.3	7	790	· 1
• -	4873.3		418210	5654574	69.3	12.5	304.6	162.2	301.1	85.9	24.0	19	0	
•	4870.5		418211	5654663	37.2	11.9		162.2	128.2	98.0	8.5	10	2312	1
	4861.9		418206	5654947	14.9	47.9	104.5.		7.1	41.9	0.5	0	0	!
•	4856.4		418203	5655142	11.2	25.5	5.2	37.5	2.9	4.6	0.6	0		· /
	4842.9		418191	5655592	38.7	45.5	322.6	426.5	9.4	91.4	1.7	2	30	1
	4840.2 4833.6		418194	5655675	44.6	50.8	322.6 68.3	426.5 173.2	9.4 0.5	91.4 25.1	1.8 0.4	2		l I
J	4033.0	3	418201	5655863	16.8	65.4	00.5	113.2	0.5	23.1	0.4	U_ 1		1

CX = COAXIAL

CP = COPLANAR

Note:EM values shown above are local amplitudes

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

7 ~

EM Anomaly List

1		······			I CX 55	500 HZ	CP	200 HZ	CP	900 HZ	Vertica	al Dike	Mag. Corr	
Labe	l Fid	Interp	XUTM	YUTM	Real	Quad	Real	Quad	Real	Quad	I COND	DEPTH*	1	
1			m	m	ppm	ppm	ppm	ppm	ppm	ppm	siemens	m	I NT	
LINE	10530		FLIGHT	4	·						¦		/	
A	4439.3	S	418245	5654131	4.5	26.9	25.6	131.8	11.5	18.7			1 140	
B	4450.0	D	418247	5654453	1 79.9	20.1		96.2	160.4	68.8	15.5	11	699	
IC	4454.8		418247	5654599	1 81.7	32.9	456.2	202.1	310.2	168.9	8.0	12	1 0'	
D	4456.5	в	418246	5654652	92.5	21.8	456.2	223.5	310.2	168.9	17.8	4	4330	
E	4459.2		418244	5654738	44.8	52.6	456.2	223.5	34.9	168.9	1.8	0	0	,
F	4464.6		418249	5654908	13.8	36.7	46.4	143.4	11.1	14.2	0.6	0	0	
G	4467.1		418253	5654986	19.5	40.5	46.4	143.4	2.4	14.2	0.8	0	i O	
Н	4471.9		418253	5655130	32.4	76.0	90.1	256.7	5.0	39.2	0.8	Ō	42	- 1
II	4487.9		418251	5655608	33.1	41.0	380.3	484.9	12.6	108.6	1.5	3	0	i
IJ	4490.8		418249	5655699	45.9	74.4	365.2	440.4	0.0	103.1	1.3	õ	23	
K K	4496.2		418253	5655874	24.0	67.9	96.1	281.5	3.0	46.4	0.6	õ	0	
LINE	10540		FLIGHT	A	ł						l		1	
	4364.6	s? •	418295	5654118	7.3	27.7	31.9	110.3	22.0	16.1			1 0	1
A			418295	5654334	7.9	42.6	21.6	203.0	64.1	35.1	·		1 1173	1
	4356.4					42.0 36.2	661.2	203.0	555.6	214.6	20.5	0	5893	1
С	4346.3		418298	5654652	J \150.9	36.0	661.2	245.1	555.6	214.6	13.2	0 0	1 0	1
	4344.1		418299 418297	5654721 5654957	117.2	75.3	69.1	170.0	5.5	23.2	0.5	0	1 0	1 1
	4336.5				•		87.0	229.6		35.0	0.9	0	1 0	. 1
	4330.2		418296	5655152	J 37.8	83.6	-		1.3	124.9	1.6	0 1	0	1
	4318.0		418292	5655536	50.1	66.1	408.7	597.8	12.4			0	1 24	ł i
	4314.3		418291	5655656	44.1	83.2	408.7	597.8	12.4	124.9	1.1		1 24	1
I	4306.9	B	418293	5655891	31.4	80.8	20.5	349.9	3.3	59.3	0.8	0	1 0	j
LINE	10550		FLIGHT	4	' 		·····						I	
A	4025.7	B? 4	418344	56540.93	11.9	68.1	85.7.	388.7	3.4	57.3	0.3	0	1 0	1
Б	4027.1	B? 4	418345	5654133	9.3	73.5	85.7	388.7	20.0	57.3	0.2	0	I .0	. 1
С	4036.4	S? 4	418347	5654369	4.6	23.5	0.5	139.9	3.8	24.4			I 953	i
D	4038.8	S? 4	418347	5654434	15.9	21.1	112.9	139.9	100.6	24.4	1.1	13	r O	ł
	4048.3	B 4	418345	5654722	202.3	83.3	1067.6	464.3	725.5	375.9 1	10.5	0	6581.	1
	4056.2	S? 4	418347	5654974	35.1	59.6	178.9	285.4	5.1	49.7	1.1	0	0	Ì
	4061.4	S? 4	418346	5655150	24.4	31.1	138.1	122.5	3.0	51.5	1.3	5	19	I
	4068.8	E 4	418348	5655407	39.3	61.7	255.6	362.0	8.2	74.6	1.2	0.	34	1
	4072.2	S 4	418347	5655525	26.2	25.2	255.6	362.0	8.2	74.6	1.8	8	0	.}`
	4075.9		418349	5655653	14.8	36.9	11.5	198.8	0.0	30.5	· 0.6	0	0.	1
	4083.9		118348	5655913	40.4	84.2	68.1	657.8	1.3	100.2	1.0	0	0	1

 $CX \approx COAXIAL$

 $CP \approx COPLANAR$

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

 Labe	el Fid	Inter	o XUTM	YUTM	CX 55	500 HZ Quad	CP Real	7200 HZ Quad	CP Real	900 HZ Quad	Vertic	al Dike DEPTH*	Mag. Corr	
1			m	m	l ppm	ppm	ppm	-	ppm	-	siemens	m	I. NT	i
1				·	۱ <u></u>						l		.I	·
LINE			FLIGHT		11						1	•	1 '	1
A	3953.7	B?	418398	5654096	1 35.2	109.5			1.2	86.8	0.7	0	I 0	1
(B	3951.2	B?	418397	5654155	15.3	77.5			31.2	86.8	0.3	0	1 0	I
IC	3942.0	S?	418388	5654378	6.4	28.6			61.1	25.6			978	1
D	3939.8	S	418386	5654438	19.3	21.5		152.1	44.7	25.6	1.4	8	1 0	1
ΙE	3934.2	D	418389	5654599	1 97.6	32,2	3.9.		0.3	61.0	11.2	0	930	I
F	3930.1	В	418391	5654726	220.0	44.8	941.1	312.2	807.5	278.4	29.5	0	1 5438	1
G	3926.4	Е	418394	5654848	61.9	71.0			19.7	83.4	2.0	0	1 0	1
H	3922. 2	S?	418397	5654988	36.5	53.4		221.8	7.9	56.9	1.3	0	1 0	
I	3918.3	S?	418396	5655119	28.5	31.9			7.9	56.9	1.6	6	I 0	1
·JJ	3907.9	ទ	418399	5655469	23.2	35.0	219.9	373.9	6.6	69.9	1.1	0	1 0	i
K	3905.5	В	418399	5655544	30.3	70.8	219.9	373.9	6.6	69.9	0.8	0	1 0	Į
					I		<u>_</u>							<u> </u>
LINE			FLIGHT		1		•			I		_	1	1.
(A	3607.8	D	418450	5654093	30.1	90.4		635.6	9.0	101.4 (0.7	0	1 0 .	. :!
B	3610.4	D	418450	5654176	28.4	113.9	244.0	635.6	20.1	101.4	0.5	0	1 0	1
1C	3621.6	S?	418452	5654471	1 0.0	37.7	135.8	276.7	154.5	44.1 !			1034	1
D	3624.0	D	418451	5654526	60.8		135.8		154.5	37.8			1 0	I
(E	3630.1	D	418448	5654669	93.9		1001.2		285.0	348.0 (2.7	0	1 1342	1
F	3633.1	В	418447	5654746	174.7	195.2	1001.2	1216.9	285.0	348.0	2.9	0	2922	1
١G	3641.7		418454	5655004	29.6	89.1		439.3	6.9	76.6	0.6	0	1 0	1
H	3644.8	S	418458	5655110	36.0	81.9	227.0	439.3	6.9	76.6	0.9	0	0	ł
(I	3654.0	S	418455	5655448	1 3.8	7.1	54.9	133.7	2.8	21.0 /	0.5	24	41	1
IJ	3660.4	S	418457	5655681	5.7	24.0	31.4	79.9	3.2	13.0 /	0.3	0	1 0	1
ΙK	3667.2	Ε	418451	5655921	74.2	113.3	548.4	729.6	15.1	159.7	1.6	0	0	. 1
1					l			_		I				
LINE			FLIGHT		ľ					1	· .		1	. 1
B	3532.6		418492	5654120	32.1	147.3	223.2			115.3	0.5	0	1 279	J
C	3530.7		418495	5654171	23.8	125.0	223.2	753.2		115.3	0.4	0	247	- j .
D	3521.0		418505	5654447	10.0	44.9	0.2	239.8	71.5	38.1	0.3	0	1473	Ŀ,
ΙE	3513.6		418503	5654677	59.2	46.1	506.3		242.0	138.6	3.1	0	1727	1
F	3510.9		418503	5654766	23.5	46.0	506.3	513.4	125.9	138.6	• 0.8	0	861	ł
G	3508.2	Е	418500	5654860	95.7	121.2	506.3	513.4	16.3	138.6	2.1	0	0	· ·
H	3501.1		418488	5655118	23.4	50.4	173.8	377.7	5.9	62.8	0.8	0	0	1
[]	3485.4	S	418490	5655683	5.8	20.4	29.0	147.5	2.8	20.5	0.3	0	0	1
LINE	10590		FLIGHT	4					····-	¦	·····		/	I
B	3212.2	S	418550	5654149	5.9	45.7	32.1	266.4	9.9	38.5 j	·		833	ļ

CX = COAXIAL

CP = COPLANAR Note:EM values shown above

are local amplitudes

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

Labe	l Fid	Inter	NTUX q	YUTM	CX 55 Real	00 HZ Quad	CP Real	7200 HZ Quad	CP Real	900 HZ 1 Quad	Vertic	al Dike DEPTH*	Mag. Corr].
Inape	I riu	Incer	p XOIM m	m	ppm	ppm	ppm	-	ppi	-	siemens		I NT	ł
i					l ppm	PP."	PP	. PP····	P P*	n Ppm	1			
ILINE	10590		FLIGHT	4	1								1	. 1
IC	3213.5	S?	418550	5654191	0.6	47.9	32.1	266.4	48.1	38.5			833)
JD	3223.1	B?	418552	5654472	1 19.4	66.6	26.2	348.2	128.0	56.2	0.5	0	1608.	j.
E	3225.4	B?	418553	5654542	44.3	33.1	472.3	348.2	462.9	128.9	2.9	8	0.	i.
F	3228.4	D	418554	5654639	151.6	20.7	472.3	301.7	462.9	128.9	47.6	. 0	1217	. I
IG	3230.8	D	418553	5654719	` 28.1	28.8	358.8	460.4	298.0	68.5	1.7	10	1060	
Η	3233.9	B?	418551	5654823	52.2	70.0	293.8	460.4	62.4	93.6	1.6	0	1 0	1
1 I	3242.4	S	418551	5655127	21.8	70.6	120.6	328.1	2.8	52.3	0.6	0	1 0	1
IJ	3245.9	E	418549	5655254	1 12.3	46.6	120.6	328.1	2.5	52.3	0.4	0	1 0	1
K	3258.3	S	418550	5655700	9.6	57.8	52.3	289.7	1.7	40.9	0.3	0	17	1
L	3264.6	B?	418547	5655922	34.8	110.7	163.8	532.9	4.3	80.8	0.7	0	1 0	. 1
LINE	10600		FLIGHT	4	1						/	······································	1	
B	3138.4	S?	418597	5654171	5.6	44.8	19.1	277.1	52.9	39.6			813	ļ
1C	3136.7	S?	418598	5654221	11.4	54.1	35.6	277.1	34.2	39.6		~	1 757	l l
D	3128.1	D	418601	5654479	12.4	61.1	39.5	28.8	75.4	55.6	0.3	0	1 1323	1
Ε	3122.3	D	418595	5654669	151.8	16.6	544.0	186.8	345.1	164.4	66.1	0	1 0	T.
F	3120.5	D	418592	5654729	41.8	19.1	318.1	377.1	199.6	100.3	5.4	14	921	1
IG	3117.6	В	418588	5654823	34.2	81.5	181.4	377.1	30.6	76.3	0.8	0	1 0	1
H	3107.9	S	418587	5655141	24.0	76.1	163.2	502.4	3.6	77.6	0.6	0	1 0	1
I	3105.5		418589	5655224	19.2	53.9	163.2	502.4	3.6	77.6	0.6	0	1 0	1
IJ	3092.9		418593	5655625	4.4	58.1	73.7	429.3	1.9	61.9			1 0	
ΙK	3090.3		418595	5655704	14.0	73.5	73.7	429.3	1.8	61.9	0.3	0	1 0	· [
L	3082.6	S	418601	5655951	1 3.3	20.4	26.4	207.6	0.7	29.6	0.2	0	0	ſ
LINE	10610		FLIGHT		¦		<u> </u>		······		· · · · · · · · · · · · · · · · · · ·			1
IВ	2732.0		418655	.5654242	3.6	34.7	25.9	146.4	30.7	21.6			0	, I.
IC I	2740.3		418646	5654504	1 13.4	93.0	39.5	136.5	99.8	20.8	0.3	0	1113	.]
D	2743.8		418647	5654617	84.2	115.3		1015.7	373.3	188.6	1.8	0	0]
ΙE	2745.6		418647	5654676	127.5	131.6		1015.7	373.3	188.6	2.9	0	0	ľ
F	2749.5		418649	5654806	11.9	10.7	65.6	175.0	0.0	36.2	1.5	30	987	, Į
G	2752.8		418650	5654916	6.7	22.8	24.0	0.0	28.1	5.1	0.4	0	0	1
Н	2759.0		418654	5655140	1 14.5	59.3	145.8	491.1	3.5	74.7	0.4	0	0	1
I	2760.2		418653	5655183	11.2	52.5		491.1	3.5	74.7	0.3	0	0	ł
J	2761.5		418652	5655230	16.7	72.7	145.8	491.1	3.5	74.7	0.4	0	0 -	
K	2774.3		418650	5655680	10.9	51.3	88.6	338.0	5.7	50.6	0.3	0 1	0	1
L	2776.6	Е	418648	5655759	10.5	54.0	88.6	338.0	5.7	50.6	0.3	0	0	1

CX = COAXIALCP = COPLANAR

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 10 -

ΕM	Anomaly	List

Label	Fid	Interp	xUTM m	YUTM m		CX 55 Real ppm	Quad Quad	CP 7 Real ppm	200 HZ Quad ppm	CP Real ppm	900 HZ Quad ppm	Vertica COND siemens	l Dike DEPTH* m	Mag. N	Corr T	1
LINE 1	19040	·	FLIGHT	6	-¦-	<u></u>			······					- '		i
E 21	135.7	S	416564	5654850	1	15.4	44.4	448.0	535.6	20.8	120.5	0.5	0	1	0	1
F 21	132.5	E	416671	5654851	1	45.2	88.4	443.5	535.6	20.8	120.5	1.1	0	1	0	1
G 21	126.1	Е	416885	5654852	1	4.0	40.7	62.2	312.4	4.7	44.0	•		ł	0	ļ
Н 21	123.8	S	416961	5654854	1	3.3	29.1	62.2	312.4	10.8	44.0	0.1	0	1	0	1
I 20)97.3	S	417868	5654854	ł	16.9	23.9	193.1	144.3	12.9	59.2	1.0	7	1	0	1
J 20	90.9	S	418100	5654854	Í.	21.9	35.6	97.4	223.9	3.0	33.7	1.0	1	1	Ο.	1
к 20)81.9	S	418411	5654853	1	30.3	65.9	100.9	323.8	34.4	48.7	0.9	0	1	0	I
L 20)79.3	S	418497	5654855	Ì	23.9	85.3	177.5	429.5	34.4	67.8	0.5	0	1	0	1.
M 20)76.4	В	418594	5654857	Ì	5.2	15.1	67.3	429.5	57.2	67.8	0.4	2	ł	0	· 1

CP = COPLANAR

TEST FPick

Note:EM values shown above are local amplitudes

- 11 -

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

.

.

Anomalies Summary

Conductor Grade No, of Responses

7 6 5 4 3 2 1	1 2 7 11 21 82 137
0	41
Total	302

Conductor Model No, of Responses

•	E B D S	48 53 58 143
	Total	302

.

1						00 HZ		7200 HZ	CP	900 HZ	Vertica		Mag. Corr		Ţ
Labe] 	l Fid	Inter	rp XUTM m	YUTM m	Real ppm	Quad ppm	Real ppm	Quad ppm	Real ppm		COND siemens	DEPTH* m	I NT		ł
LINE	10580		FLIGHT	4	_ <u>-</u>		·······	<u> </u>					·		- T
L	3439.2	Е	418500	5657158	11.7	66.6	52.9	308.5	3.4	45.1	0.3	0	1 0		i
M	3436.0	B?	418498	5657246	13.9		130.8	323.9	6.3	78.9	0.4	ō	0		ì
ILINE	10590		FLIGHT	4	·]						' 		1		T
10	3301.1	S	418554	5657181	16.6	60.7	140.3	383.4	9.7	60.1	0.5	0	1 0		1
P	3303.0	S	418553	5657247	12.5	44.2	140.3	383.4	9.7	60.1	j 0.4	0	1 0		I
LINE	10600	· · · · · · · · · · · · · · · · · · ·	FLIGHT	4	· /		· · ·	<u></u>		······································	 				ī
N	3046.8	Е	418600	5657145	12.3	65.3	122.7	441.7	2.8	66.2	0.3	Ο.	1 0		1.
10	3044.4	S	418599	5657227.	6.8	33.7	122.7	441.7	6.7	66.2	0.3	0	I 0 ·		1
P	3038.7	Е	418597	5657427	21.0	42.6	193.3	343.0	7.2	61.5	0.8	0	1 299	·	ľ
	10610		FLIGHT		1.		······································				- <u> </u>				1
N	2824.7	Ε	418651	5657484	23.4		174.8		4.6	67.5	0.7	0	246		1
10	2827.1	S	418650	5657573	16.3	41.5	174.8	416.5	19.2	67.5	0.6	0	I 0.		1
LINE	10620		FLIGHT	4		·			···.	<u> </u>			·		ī
N 	2556.3	S	418696	5657541	18.4	80.3	137.0	460.3	16.3	69.4 I	0.4	0	307 		1
LINE	10630		FLIGHT	4	;					'			1		ī
II	2427.0	S?	418750	5657088	3.1	14.2	5.1	30.9	3.0	4.6	·		0		11
IJ	2440.9	S	418748	5657599	9.4	13.5	43.8	158.7	23.9	22.5 !	0.8	18	268		I
LINE	10640		FLIGHT	4						'	- <u></u> ,				ī
I	2192.5	S?	418797	5657090	3.2	17.9	4.7	41.9	2.1	5.8			I 0		1
J 	2176.8	S?	418798	5657600	14.9	35.3	22.1	164.6	19.6	22.8	0.6	4	1 330		Í
	10650		FLIGHT	4	, <u> </u>			· · · · · · · · · · · · · · · · · · ·		í	- <u></u>		' <u></u>		ī
•	2050.4	S?	418849	5657089	1.8	16.8	6.2	45.2	3.1	6.5 I	·		1 0 .		1
I	2065.5	S	418348	5657624	7.3	26.3	10.6	85.9	12.9	12.0			0		ł
LINE	10660		FLIGHT	4				·····	•	- <u></u> '	<u> </u>				ī
I	1803.1	S	418895	5657032	2.1	24.7	14.3	134.2	3.0	19.0	— <u> </u>		1 0		í
	1801.0	S	418895	5657079	1.3	22.3	14.3	134.2	З.О	19.0		÷	0		I -
	1784.5	S?	418897	5657624	5.6	23.8	13.5	105.2	21.9	14.2			0		1
L	1773.4	S	418897	5658000	5.4	26.6	13.8	100.9	3.9	14.2			I 0 .		I

CX = COAXIAL

CP = COPLANAR

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

 Labe	l Fid	Inter	p XUTM	YUTM	/ CX 55 Real	00 HZ Quad	CP 7 Real	7200 HZ Quad	CP Real	900 HZ Quad	Vertic	al Dike DEPTH*	Mag. Corr	
I			m	m	l ppm	ppm	ppm	ppm	ppm	ppm	siemens	m	NT	·)
ILINE	10670	<u> </u>	FLIGHT	4	<u></u>	······		<u></u>			 		. <u></u>	
I	1551.5	Е	418950	5657028	2.6	40.2	44.0	296.2	2.3	42.1			1 0	1
ĴĴ	1553.4	ŝ	418949	5657096	6.4	50.6	44.0	296.2	1.1	42.1			0	1
IK	1564.6	S?	418947	5657461	1 1.9	11.4	5.6	53.6	8.2	7.4			i o	· · · · ·
L	1569.2	Ē	418946	5657620	6.7	35.8	2.7	130.0	18.7	17.9	·		0	i
M	1575.1	S	418949	5657820		20.2	4.5	92.4	8.9	13.0			338	
LINE	10680		FLIGHT	4		·····					۱ 		1	· <u>····</u>
IJ	1307.6	E	418995	5657045	3.0	30.5	30.0	191.8	4.3	26.3			1 0	1
(K	1305.3	S?	418997	5657122	3.8	29,8	30.0	191.8	8.2	26.3			1 0	1
L	1290.4	S	419000	5657608	5.8	17.8	13.4	157.2	22.4	21.8	0.4	1	700	ļ
ILINE	10690		FLIGHT	4									l	1
1K	1160.7	S	419045	5657138	3.8	25.8	24.2	198.0	12.4	28.0			1 0	J
L	1174.7	S	419049	5657619	8.1	44.3	59.8	330.1	3.7	48.2	0.3	0	47	1
LINE	10700		FLIGHT	4					<u> </u>				1	
II	915.1	S	419102	5657114	2.0	22.5	19.7	186.9	11.7	26.1			0	.]
IJ	901.4	S	419100	5657571	5.7	26.1	114.4	405.9	5.9	62.0	0.3	0	244	· 1
K	900.0	S?	419098	5657620	17.8	38.1	114.4	405.9	5.9	62.0	0.7	0	1 75	1
LINE	10710		FLIGHT	4	 					'		· ··	'	T
I F	778.7	S	419149	5657224	1.7	6.4	0.9	72.4	1.0	9.7			167 ·	1
IG	787.9	S	419149	5657573	8.9	44.9	137.6	404.8	10.7	63.2	· 0.3	0	298	. 1
H	789.3	S?	419150	5657624	19.3	53.9	137.6	404.8	10.7	63.2	0.6	0	I 0	ï
I	801.2	S	419146	5658052	1 7.3	29.1	15.7	111.3	2.1	16.1	. 		1 0 ⁻	1
LINE	10720		FLIGHT	4	/ 					l 1				
IJ	512.9	E	419203	5657455	4.8	46.0	3.8	270.4	17.7	35.9			0	I
	509.3	S	419204	5657576	13.5	25.2	77.3	288.0	19.2	43.0	0.7	3	0	1
	508.1	S?	419205	5657618	13.5	25.2	77.3	288.0	19.2	43.0	0.7	0	0	1
M	494.8	S	419205	5658075	9.4	36.4	32.6	121.9	31.9	17.4			0	1
LENE	10730		FLIGHT	3			· <u> </u>	<u> </u>		l	<u></u>			I
	8012.5	S	419247	5657632	16.8	50.4	53.8	282.0	14.2	43.4	0.5	0	0	1
LINE	10740		FLIGHT				· · · · · · · · · · · · · · · · · · ·			i	<u></u>	 	·	
IJ	7721.5	Ş	419296	5657636	11.8	27.8	49.8	140.6	35.3	21.4	0.6	0 1	0	.

CX = COAXIALCP = COPLANAR

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

 Labe	l Fid	Interd	XUTM	YUTM	CX 5	500 HZ	CP Real	7200 HZ Quad	CP Real	900 HZ	,	al Dike DEPTH*	Mag. Corr	<u> </u>
	i riq	Interr	m m	m	ppm	Quad ppm	ppm		ppn	-	siemens	m	I NT	
LINE			FLIGHT										1	
I K	7711.1	S	419300	5657994	4.8	18.2	27.7	100.9	29.0	15.2	 		107	
LINE	10750		FLIGHT	3	i		·····				;			·····
I	7607.1		419347	5657668	9.7	36.9		169.5	27.6	25.6	0.4	0	642	
J I	7615.6	S	419347	5657969	3.7	25.6	34.3	161.3	18.9	24.2			180	l
LINE			FLIGHT		¦						' 			
G	7338.0		419394	5656980	1 1.0	8.1	2.6	53.8	0.6	7.2			1. 0	I
H)	7320.3		419398	5657592	1 6.0	30.7	40.0	193.9	25.8	29.4	0.2	0	0	l.
II	7317.9	S	419397	5657676	9.6	30.0	40.0	193.9	12.3	29.4	0.4	0	564	ļ
LINE	10770		FLIGHT) ———				-	······	·		 	
I	7183.9		419441	5656964	2.4	10.8	1.9	57.4	0.6	7.9			1 0	. 1
IJ	7202.5		419446	5657590	8.4	44.6	49.9		22.9	49.9	0.3	0	1 0	1
K	7204.8	S	419446	5657667	15.4	52.7	49.9	332.3	10.6	49.9	0.5	0	l 278]
LINE	10780		FLIGHT	3	<u></u>		i		<u></u>	······	 			
IJ	6806.2		419495	5656948	1.0	13.0	7.4	83.2	0.9	12.0			I 0	
1K	6787.2	S?	419498	5657594	9.1	42.4	68.6	330.2	21.4	51.5	0.3	0	399	1
LINE	10790	- <u>.</u>	FLIGHT	3	/								/	
E	6569.4		419542	5654195	189.6	17.7	587.9	53.6	780.9	118.2	90.2	0 .	7506	1
F	6572.0		419542	5654283	68.3	5.1	587.9	173.8	780.9	118.2	90.1	11	0	1
K	6647.9		419550	5656843	0.9	24.2	6.7	106.4	0.9	15.9			0	· [
ΙL	6668.0		419553	5657506	25.8	86.4	232.0	645.7	34.9	108.0	0.6	0	0	ļ
M	6670.1		419553	5657582	22.9	81.5	232.0	645.7	13.0	108.0	0.5	0	0	
N 1	6673.5	Е	419553	5657703	20.8	86.4	18.8	529.5	26.7	103.1	0.4	0	141	I
LINE	10800		FLIGHT	3	¦									
10	6492.0	в	419598	5654189	75.6	4.0	175.6	169.6	378.8	42.5	154.4	8	2845	i
1E	6487.4		419597	5654342	121.7	6.3	604.9	175.8	468.0	176.3	189.5	Ō	3355	Í
F	6486.2		419597	5654383	121.7	39.4	604.9	175.8	468.0	176.3	12.4	0	0	i.
IG .	6479.3	B?	419596	5654619	10.2	9.9	39.0	31.4	10.3	19:4			0	· · · · · · · · · · · · · · · · · · ·
H	6462.7	S?	419592	5655153	16.7	43.2	64.1	298.4	10.5	47.3	0.6	0	0	l.
II	6454.9		419597	5655417	10.5	27.1	11.5	105.6	28.7	25.4	0.5	0 1	1443	ł
L	6411.5		419591	5656849	1.9	21.6	6.5	97.1	3.4	14.4		1	0	Í.
1 M	6387.5	B? (419595	5657585	69.4	189.1		1309.3	76.7	218.6	0.9	0	0	L
N	6384.1	B	419595	5657685	30.3	149.0	430.7	1309.3	2.5	218.6	0.4	0	913	I

CX = COAXIAL

CP = COPLANAR

Note:EM values shown above are local amplitudes

- 3 -

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

EM Anomaly List

1						500 HZ		7200 HZ	CP	900 HZ		al Dike	Mag. Corr	5
Labe]	l Fid	Interp	XUTM	YUTM	Real	Quad	Real	-	Real		COND	DEPTH*	1	
1			m	m	ppm	ppm	ppm	ppm	ppn	n ppm	siemens	m	I NT	
LINE	10810		FLIGHT								i		1	· · · ·
ΙE	6170.1	В	419638	5654173	1 17.9		42.4	177.2	108.8	8.8			1 0	
F	6174.8	В	419636	5654330	79.9	20.8	534.8	191.6	425.1	145.9	14.8	4	3039	
IG	6176.6	В	419636	5654387	66.9	21.2	534.8	191.6	425.1	145.9	10.5	11	1 0	
H	6179.4	В	419636	5654471	1 45.8	12.0	402.0	56.2	21.3	127.2	12.1	17) 0	
II	6186.6	D	419637	5654697	32.8	20.0	166.0	95.2	54.7	76.5	3.4	11	1 0	
IJ	6199.6	S	419647	5655129	17.8	41.3	77.3	333.5	5.4	51.6	0.7	0	11	
K	6209.7	S?	419645	5655461	1 12.1	26.9	151.3	320.3	28.6	63.9	0.6	0	498	1
L	6213.3	B?	419645	5655586	21.8		151.3	332.4	28.6	63.9	0.8	0	1 0	1
M	6251.2	S	419644	5656886	1 1.7		19.7	186.7	1.7	27.5			0	
I N	6271.7	B?	419644	5657541	1 52.8		333.5	865.8	54.6	150.7	0.8	0	0	1
10	6273.2		419644	5657590	j 21.9		333.5	865.8	17.8	150.7	0.4	0	0	
IP	6275.7		419646	5657672	i 21.2		333.5	865.8	26.6	150.7	0.5	0	1027	
IQ	6277.7	E	419647	5657738	17.3	62.1	6.8	561.8	49.8	15.9	0.5	0	0	í
1					i - · ·					_			1	:
LINE	10820		FLIGHT	3									1	
IC	6091.0	в	419700	5654162	32.4	15.3	269.3	298.2	44.1	84.2	4.7	19	0	1
	6087.4		419699	5654285	j 37.0	52.4	149.1	271.6	189.6	74.7	1.3	1	2535	1
E	6084.1	в	419699	5654399	9.9	12.3	149.1	75.3	176.6	74.7	1.0	10	i 0'	
F	6082.1		419700	5654467	j 9.6	2.5	84.3	0.6	176.6	27.6			0]
	6079.1		419698	5654569	1 24.5	15.4	241.7	85.5	115.8	98.7	3.0	21	0	1
	6076.3		419698	5654665	27.8	15.2	241.7	85.5	150.0	98.7	3.7	17	0.	•
	6073.5		419697	5654758	1 17.7	6.5	127.1	55.3	54.2	54.1			i 0	·
_	6062.0		419697	5655128	18.8	45.9	.94.1	283.2	5.2	46.0	0.7	0	244	· 100
	6052.3		419696	5655463	8.3	13.8	96.9	186.8	7.6	39.2	0.7	12	429	
	6048.6		419694	5655593	15.9	33.9	96.9	186.8	10.7	39.2	0.7	0	0	2
	6012.2		419695	5656834	3.6	35.2	31.2	232.7	3.8	33.7			0	·
	5988.1		419696	5657575	1 52.5	85.6	306.6	849.7	55.8	149.2	1.3	0	0	
	5986.9		419695	5657615	1 52.5	85.6	306.6	849.7	53.6	149.2	1.3	Ō	980	1 A.A.
	5984.5		119695	5657694	40.7	89.4	306.6	849.7	1.6	149.2	0.9	Ö	0	i i i
	0001.0	μ.	11/0/0		1 1017	02.1	500.0	0.5.1	2.0	1.5.2		Ŭ		
LINE	10830		FLIGHT	3	;					······································				
	5780.7	в 4	119748	5654592	59.2	33.6	396.4	176.3	275.9	147.6 j	4.6	4	0	6.10
	5783.8		119750	5654686	58.1	39.9	397.1	176.3	228.7	147.6	3.6	0	0	· · · · ·
	5799.6		119756	5655138	16.9	45.3	179.6	448.3	12.6	80.6	0.6	õ	1111	
	5801.0		119756	5655179	24.1	58.8	179.6	448.3	0.0	80.6 1	0.7	Ō	1111	• 1
	5812.1		19745	5655530	6.9	17.3	66.3	260.0	0.0	44.4	0.5	3	318	1.6
					•							õ	0	6 10
	5813.8		119744	5655588	1 12.6	45.7	66.3	260.0	5.5	44.4	0.4			£ . }

CF = COPLANAR

R Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

, **.**

TEST FPick

- 4 -

1				1/1/100		500 нг		7200 HZ	CP	900 HZ	•	al Dike	Mag. Corr	
Labe	el Fid	Inter	•		Real	Quad	Real	Quad	Real		COND siemens	DEPTH* m	I NT	1
1			m	m	ppm	ppm	ppm	ppm	ppr	n ppm	i stemens	10	1 . 1 tat	I
LINE	10830		FLIGHT	3	-								/	<u>_</u>
J	5852.0	S	419748	5656832	2.0	13.6	9.8	134.3	2.3	19.0			i o	i
IK	5876.6	Ĕ	419749	5657556	47.5	125.2	363.6	871.1	41.0	158.0	0.8	0	0	i
L	5879.5	s?	419750	5657637	50.4	72.3	363.6	871.1	0.0	158.0	1.5	Ō	844	· · · · · · · · · · · · · · · · · · ·
M	5880.5	E	419751	5657666	1 50.4	72.3	363.6	871.1		158.0	1.5	0	844	i
Ì					i		•				1.		1	
LINE	10840		FLIGHT	3	1						1	· · · · · · · · · · · · · · · · · · ·	1	1
B	5495.1	Н	419796	5654133	21.1	20.3	213.1	300.5	17.5	72.1	1.7	13	Ι.Ο	1
1 C	5490.3	В	419796	5654290	10.6	10.1	3.7	75.9	18.0	6.7			1126	· 1
I D	5482.7	В	419796	5654526	1 55.3	17.6	486.0	15.9	299.4	170.4	9.8	17	2044	1
E	5479.8	В	419796	5654610	109.0	36:9	486.0	336.7	299.4	178.0	11.2	1	1 0	1
F	5464.1	S?	419797	5655079	18.6	38.1	150.0	361.6	29.9	61.6	0.8	0	1 71	1
I G	5460.5	B?	419797	5655196	21.8	61.3		·361.6	2.5	61.6	0.6	0	681	1
H	5451.1	S	419793	5655509	4.9	15.9	38.5	162.8	7.0	27.8	0.3	3	157	1
II	5411.0	S	419789	5656852	1.4	1.6	1.1	36.6	3.7	4.6			1 0	
IJ	5387.7	E	419788	5657558	40.0	97.9	360.9	680.2	18.3	129.1	0.8	0	1 O ·	ŀ
1K	5385.6	S?	419789	5657629	1 9.8	51.0	360.9	680.2	34.9	129.1	0.3	0	674.	1
L	5383.8	E	419789	5657690	54.8	98.7	360.9	680.2	34.9	129.1	1.2	0	670	1
LINE	10850		FLIGHT	3	.¦) 	
D	5188.1	S?	419845	5654334	8.2	34:4	43.7	173.7	0.0	30.0	0.3	0	1716	
IE	5192.7	В	419841	5654470	23.4	0.5	63.0	2.0	135.8	4.4			936	i
F	5196.8	В	419841	5654603	45.3	23.9	265.1	207.5	177.4	105.7	4.6	4	2654	. 1
10	5199.2	B	419842	5654683	20.7	26.7	265.1	207.5	177.4	105.7	1.2	6	0	·
I E	5202.5	В	419844	5654796	28.1	30.1	157.9	131.6	60.8	68.5	1.7	6	0	1
II	5209.6	В	419854	5655043	1 24.3	30.2	133.4	288.5	46.3	49.0	1.3	7	132 .	ŀ
13	5256.5	S?	419848	5656697	1.4	9.7	0.9	57.6	1.8	8.1			0	. 1
K	5283.9	Е	419848	5657549	1 44.5	128.2	468.2	812.8	24.8	162.2	0.8	0	0	1
1L	5287.6	S?	419846	5657660	54.8	68.6	468.2	812.8	25.2	162.2	1.8	0	520	.1
M	5289.1	E	419845	5657708	68.6	123.3	468.2	798.1	25.2	162.2	1.3	0	575	· • • •
1					l					l			l	
LINE			FLIGHT		1					1		_		ł
B	5106.2	D	419897	5654116	1 37.9	40.1	195.2	320.8	59.8	81.9	1.9	5	0	
IC	5102.9	B?	419896	5654220	1 30.4	40.7	195.2	320.8	59.8	81.9	1.3	6	2224	1
I D	5093.8	В	419897	5654510	34.9	12.9	223.8	0.0	175.0	83.1	6.8	25	0	1
IE.	5091.7	D	419895	5654577	57.7	40.5	354.4	270.3	193.5	146.0	3.5	5	3349	
F	5089.7		419895	5654643	20.7	20.3	354.4	241.2	193.5	146.0	1.7	14	0	1
G	5087.2		419896	5654731	10.1 27.7	19.9	251.4 249.9	241.2	126.5 126.5	119.9	0.6 1.6	11 8	0	1
(H	5084.8	Þ	419898	5654815	1 27.7	30.4	247.9	241.2	120.3	82.7	1.0	0	U	I

CX = COAXIAL

CF = COPLANAR

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 5 -

EM Anomaly List

		· ······			I CX 55	00 HZ	CP -	7200 HZ	CP	900 HZ	Vertic	al Dike	Mag. Corr	
Labe	l Fid	Interp	XUTM	YUTM	Real	Quad	Real	Quad	Real	Quad	COND	DEPTH*	1	
1		•	m	m	ppm	ppm	ppm	ppm	ppn		siemens	m	1 NT	1
۱					I						۱		i	·····
LINE	10860		FLIGHT		l						1		1	ł
II	5077.8		419900	5655062	13.3	27.2	141.9	224.5	27.9	50.2	0.7	4	I 0 ·	. 1
IJ	5066.7		419893	5655440	1 5.6	23.9	43.3	180.3	2.9	29.8	0.3	0	0	ł
IK	5029.3		419892	5656678	2.7	14.4	6.8	81.5	4.8	11.3	• • • • • • •		11	ļ
L	5023.5		419893	5656865	0.0	16.1	7.8	71.7	2.5	10.8			0	.
M	5002.4		419901	5657520	35.9	84.8	10.4	677.6	7.7	15.8	1 0.8	0	0	l
I N	4999.8	S?	419905	5657609	37.2	62.9	488.2	726.9	63.3	150.8	1.1	0	419	. I
LINE	10870		FLIGHT	3	/	·······	·				/		1	
1D	4796.5	S	419949	5654206	20.0	15.3	155.6	196.6	72.2	58.6	2.2	14	0	· .1
IE	4800.7		419950	5654352	0.5	17.8	56.3	122.6	55.1	5.9	1		2441	i
F	4806.7		419947	5654547	21.0	3.7	166.3	9.5	109.8	61.5	16.9	29 [.]	0	i
IG	4810.6		419949	5654676	64.1	35.7	370.2		187.9	130.0	4.8	0	1683	ŕ
H	4813.6		419949	5654775	1 19.4	36.7	370.2	297.7	187.9	130.0	0.8	2	0	İ
I	4822.9	Н	419946	5655091	9.8	14.5	161.2	214.9	15.3	52.9	0.8	15	0	Ì
JJ	4833.1	S	419947	5655445	1 5.0	17.8	43.3	158.5	2.3	26.3	0.3	0	0	1
ΙK	4874.3	S	419946	5656844	2.9	13.4	10.0	87.5	0.4	11.9	·		43	
Ĺ	4894.8		419942	5657508	37.6	103.2	427.5	722.1	3.5	144.0	0.8	0	0	1
I					I						l		l	
	10880		FLIGHT		1						I			:
	4713.2		419996	5654368	6.2	15.4	65.8	67.1	37.6	32.9	0.4	7	538	1
	4703.6		419990	5654690	l 85.1	31.0	563. <u>5</u>	208.3	465.2	171.3	9.3	1	2148	1
	4697.2		419996	5654915	13.3	16.3	95.1	156.2	247.1	31.4	1.1	16	0	
	4692.2		419999	5655094	1 18.5	20.5	242.8	200.6	51.7	83.9	1.4	14	0	ł
	4683.4		419992	5655407	1 .9.7	39.4	70.3	266.3	3.9	42.2	0.4	0	48	ł
	4681.8		419992	5655463	8.6	38.6	70.3	266.3	3.9	42.2	0.3	0 1	0	4.
J	4640.0	S?	419993	5656866	1 3.3	30.3	34.1	255.5	1.8	37.0		1	0	1
LINE	10890		FLIGHT			,			······					
	4413.6	D	420047	5 5654293	21.4	28.2	0.0	228.0	48.5	68.8	1.2	4	1100	1
	4413.6		420047	5654625	21.4	28.2	173.4	11.3	48.5	12.8	7.6	27	0	1
	4424.0		420046	5654850	31.2	27.0	325.1	320.1	241.3	227.6	2.2	6	554	1
	4431.0		420050	5654928	69.0	27.0	325.1	500.9	241.3	227.6	1.9	0 1	1430	1
	4434.0		420031	5655052	1 25.4	13.1	263.5	180.5	241.3 90.1	97.3	: 3.9	22	0	1
	4449.3		420048	5655430	1 7.4	33.6	77.2	264.4	3.4	39.0	0.3	0	40	1
	4454.8		420039	5655620	12.0	29.3	81.5	305.6	0.2	42.6	0.5	0	40 0	1
	4495.2		420039	-5656926	3.6	43.2	25.3	210.5	2.3	30.0		1	0	۱ ۱.
-1	4490.2	с ⁴	420040	.1020920	5.0	43.2	20.5	210.5	2.3	30.0 1		1	v	.i.

CP = COPLANAR Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

۰.

TEST FPick

6 -

Ń

EM Anomaly List

Ī					I CX 55			7200 HZ	CP	900 HZ	-	al Dike	Mag. Corr	
Labe	el Fid	Interp		YUTM	Real	Quad	Real	Quad	Real	Quad	COND	DEPTH*		
1			m	m	ppm	ppm	ppm	ppm	ppm	ppm	siemens	m	I NT	
LINE	10900	<u> </u>	FLIGHT	3	·				<u>.</u>	······	 			········
D	4186.6	в	420099	5654626	32.2	14.4	122.7	65.7	138.5	23.3	. 5.1	19	1 0	•
E	4176.4		420095	5654955	61.7	38.8	241.9	322.4	120.2	163.6	4.1	1	2751	
1 F	4173.0		420095	5655058	1 10.1	30.7	241.9	322.4	94.0	144.7	0.5	0	1680	
G	4169.4	в	420097	5655215	23.5	7.8	238.9	110.6	84.7	84.6	6.9	27	0	
1E	4158.5	S ·	420101	5655607	1 13.0	56.4	219.1	592.1	2.4	97.0	0.4	0	0	
II	4156.1	E	420102	5655689	28.9	89.7	219.1	592.1	16.0	97.0	0.6	0	0	
JJ	4155.1		420101	5655722	1.2	19.6	53.1	65.8	16.0	21.0			1 0	
I.K.	4124.4		420092	5656767	3.5	30.6	18.5	146.1	3.1	21.0	·	~- -	41	
L	4120.5		420091	5656902	3.7	43.1	18.5	146.1	3.1	21.0	·		0	
LINE	10910		FLICHM		l		- <u></u>		<u> </u>			· · · · · · · · · · · · · · · · · · ·	l	
-	3908.6	D	FLIGHT	3 5654551	1 10 0		496.5	216.0	421.5	132.1	10.2	32	0	1
D	3908.0		420154 420154	5654551	1 19.0	4.6	496.5	216.0 216.0		132.1	17.7	32 0		1
IE IE					134.0	34.5			421.5			-		I
F	3924.1		420147	5655049	11.7	6.3	109.8	75.0	89.4	38.3	2.8	29	1457	1
IG	3928.6		420147	5655202	1 170.4	78.8	679.9	468.4	335.6	299.8	8.5	0	2682	1
1 H	3930.0		420146	5655250	138.2	78.8	679.9	468.4	335.6	299.8	6.0	1		
11	3931.6		420144	5655305	41.0	37.2	679.9	468.4	335.6	299.8	2.3	8	1 0	I
[J	3941.9		120146	5655664	15.6	44.4	262.2	·612.7	10.1	102.8	0.5	0	0.	!
K	3944.0		120145	5655740	28.0	80.6	262.2	612.7	10.1	102.8	0.7	0	0	1
L	3952.7		420143	5656047	1.4	6.4	7.7	65.3	2.3	10.0			1 0	
M	3973.0		120146	5656742	1.8	26.1	22.1		1.5	27.4	. – ––		1 0	1
N	3977.3	S 4	20147	5656885	3.3	30.7	22.1	146.5	3.9	20.8			0	ł
LINE	10920		FLIGHT	3				··			·		l	
D	3809.5		20199	5654642	103.8	16.3	452.9	158.6	389.3	116.2	33.9	3	3467	1
JE	3804.7		20199	5654806	4.7	7.6	61.8	19.7	73.0	4.4	0.6	27	0	· 1
F	3790.1		20198	5655254	155.0	80.7	742.9	638.2	443.4	292.8	7.0	0	2632	í
IG	3786.1		20199	5655382	70.7	108.8	88.0	638.2	20.9	40.0 1	1.5	0 i	0	i
H	3777.1		20197	5655680	10.5	45.8	222.3	520.9	25.5	80.7	0.3	0 i	0	i
I	3775.5		20196	5655733	26.0	77.2	222.3	520.9	25.5	80.7	0.6	0 1	0 0	l
J	3772.3		20192	5655838	11.5	8.7	176.4	398.1	25.5	70.7	1.9	32	679	
K	3770.0		20190	5655917	6.6	11.4	30.9	183.2	2.5	29.0			0	, i
11	3742.3		20195	5656802	0.8	13.6	11.4	132.1	1.3	19.2			Õ	1
IM	3739.8		20195	5656886	2.1	26.8	12.1	132.1	1.4	19.2		1	Ő	1
LINE	10930		FLIGHT	2		·····				<u> </u>		[
D D	3534.5		20243	3 5654636	. 92.6	20.8	381.3	141.7	313.5	103.1	19.1	5 1	2632	

CP = COPLANAR

Note:EM values shown above are local amplitudes

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

.

Labe	l Fid	Interp			CX 55 Real	Quad	Real	7200 HZ Quad	CP Real	-	COND	al Dike DEPTH*	Mag. Corr NT	
F I			m	m	l ppm	ppm	ppm	ppm	ppn	n ppm	siemens	m	I NI .	I
LINE	10930		FLIGHT	3	·				······································		۱	······································		
1 E	3539.3	В	420251	5654801	7.0	16.7	86.8	36.5	90.0	7.0	0.5	7	í 0	· í
F	3554.3		420254	5655301	63.7	53.9	350.0	501.7	114.7	137.5	2.9	0	2482	
IG	3556.5		420251	5655388	46.3	72.8	350.0	501.7	114.7	137.5	1.3	Ō	1 0	i
H	3558.0		420250	5655438	53.8	85.5	350.0	501.7	40.8	120.9	1.4	Ō	0	·
11	3568.7		420246	5655793	1 5.9	16.0	120.2	373.6	11.8	57.3	0.4	4	0	Í
IJ	3599.4	S	420248	5656883	0.8	16.0	9.0	99.2	1.8	13.9	·		0	. 1
1					ÎN -						Ì		ſ	
LINE			FLIGHT								· ·			
ΙE	3428.1		420296	5654668	I 69.6	50.9		244.2	166.2	127.0	3.5	4	3642	1
F	3426.2		420295	5654730	46.9	19.2	317.6	244.2	166.2	127.0	6.5	7	3453	1.
ļĢ	3422.7		420295	5654846	5.5	0.9	57.8	32.5	55.4	9.4			1 0	Ĺ.
H	3404.8		420292	5655371	52.0	67.1	324.2	538.1	73.0	110.1	1.7	0	I 0	1
ΙI	3401.7		420291	565 5468	~ 41.5	88.1	324.2	538.1	73.0	110.1	1.0	0	I 0 _.	1
IJ	3392.9		420292	5655742	2.4	33.3	77.1	300.6	8.2	45.8			0	I.
ΙK	3391.0		420292	5655800	4.3	18.2	77.1	300.6	9.3	45.8	. 0.3	0	I 0	
L	3388.7		420293	5655873	8.0	26.5	77.1	300.6	9.3	45.8	0.4	0	352	i
M	3380.0		420294	5656129	5.4	27.7	33.3	189.1	2.8	29.5	0.2	0	.0	ł
N 	3356.1	S	420298	5656905	2.6	33.2	30.4	222.4	3.2	31.5			0	ł
LINE	10950		FLIGHT	3	1								i	1
G	3024.0	В	420351	5654774	42.9	36.4	239.9	270.9	64.6	148.7	2.5	7	0	1
H	3026.5	В	420354	5654856	0.7	0.3	36.4	32.6	18.4	17.5	·		0	1
II	3046.2		420352	5655466	41.9	93.9	251.0	522.2	70.6	114.4	0.9	0	0	1
IJ	3061.5	B?	420345	5655928	13.0	19.4	30.7	150.6	12.6	25.7	0.9	20	409	ŀ
K	3067.7	S? -	420347	5656131	10.5	21.1	60.9	212.2	8.1	38.8	0.6	5	459	1
L	3092.6	S	420352	5656939	1.6	35.0	41.0	289.3	7.4	41.3			0	, I
LINE	10960	· · · · · · · · · · · · · · · · · · ·	FLIGHT	3	 					·				
II	2905.9	D	420399	5654952	25.6	6.9	92.2	52.4	86.4	23.7	9.6	24	751	1
J	2891.2		420391	5655368	16.6	20.9	62.8	46.4	47.9	25.3	1.2	6	1181	
IK	2888.6		420392	5655446	71.5	94.8	374.9	499.4	133.0	156.1	1.8	ŏ	462	
	2886.5		420393	5655514	34.0	59.2	374.9	499.4	133.0	156.1	1.1	0 I	296	l
IN	2870.2		120396	5656031	12.1	11.9	95.6	126.6	36.1	50.8	1.4	28	0	i
IN	2867.2		420394	5656127	28.3	42.8	187.4	331.2	36.1	90.4	1.2	2 1	1120	Í
0	2841.8		420397	5656927	2.8	35.4	23.9	288.4	0.4	40.1			0	Ì
LINE	10970		FLIGHT	3	! 					l				<u> </u>
G	2663.1	В	120449	5655538	73.5	29.6	351.7	226.4	183.3	140.6	7.7	5	1220	i

CX = COAXIAL

CP = COPLANAR

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

8 -

EM	Anoma	lv	List
1 111	THI VILLA	чy	

1		.			I CX 5			7200 HZ	CP	900 HZ		al Dike	Mag. Corr	
Labe	l Fid	Interp			Real	Quad	Real	Quad	Real		COND siemens	DEPTH* m		
1			m	m	ppm	ppm	ppm	ppm	ppn	n ppm	Siemens	IU	i ta T	
LINE	10970		FLIGHT	3	· ¦						, 		· '	
I H	2677.0	D	420445	5655984	47.7	46.1	226.5	264.8	85.4	111.6	2.2	0	0	
I	2678.6	D	420446	5656037	52.6	35.7	226.5	264.8	85.4	108.1	3.5	9	1 1310	
IJ	2682.0	D	420446	5656151	51.7	5.9	263.7	103.1	139.0	108.1	i		1792	•
ΙK	2688.5	S	420447	5656376	9.9	31.9	44.3	266.6	1.2	40.0	0.4	0	1 0	
L	2705.3	S	420448	.5656906	0.7	15.6	6.9	75.4	1.5	10.3			1 0	· .
LINE	10980	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FLIGHT								·		· · · ·	
F	2504.1	В	420496	5655547	83.5	26.4	270.7	125.5	160.9	92.8	11.3	3	1 2013	
G	2491 .2	D	420496	5655991	36.7	33.0	217,9	156,8	93.8	97.1	2.2	5	1 584	
ΙH	2489.3		420497	5656055	I 9.2	0.0		156.8	93.8	97.1			612	
II	2487.6		420497	5656111	13.7	9.9	217.9	156.8	114.3	97.1	2.1	28	431	1
IJ	2485.3		420497	5656185	9.6	16.9	169.3	101.3	114.3	79.2	0.7	14	1754	I
K	2482.5		420498	5656278	13.2	69.6	274.3	698.2	56.6	120.7	0.3	0	1 0	1
L	2480.3		420498	5656353	l. · 19.7	59.0	274 . 3	698.2	9.9	120.7	0.6	0	1 0	1
M	2477.4		420498	5656451	31.9	9 9.4	253.6	698.2	1.4	116.8	0.6	0	1 0.	ł
N	2460.0	S?	420501	5656986	0.7	12.2	1.3	41.1	0.4	6.2			0.	L
LINE	10990		FLIGHT	3						'				·
F	2274.1	в	420550	5655591	52.3	12.3	274.0	86.7	216.1	71.9	14.8	10	3145	.
G	2276.8	B?	420550	5655687	36.9	14.3	197.4	86.7	135.6	71.9			1 0	
H	2285.7	D	420549	5656006	38.6	30.3	98.5	100.7	49.1	47.4	2.7	б	I 0	1
II	2292.5	В	420549	5656255	27.8	67.9	323.1	573.4	81.1	113.7	0.8	۵	851	
IJ	2296.2	S	420548	5656389	1 35.2	40.9	323.1	573.4	5.6	113.7	1.6	2	0	ľ
K	2298.0	E	420548	5656452	46.5	91.6	20.2	573.4	0.0	111.5	1.1	0	I 0 .	. 1
LINE	11000		FLIGHT	3	1					' ا	<u></u>	<u></u>	1	1
IG	2115.8	D	420600	5655607	81.5	15.6	443.1	117.4	333.4	126.6	23.3	4	1 0	1
H	2114.0		420601	5655665	34.0	14.5	443.1	117.4	333.4	126.6	5.6	19	i 0	I
II	2109.4		420600	5655811	1 32.3	50.2	77.7	250.6	34.3	42.2	1.2	0	1 0	1
IJ	2106.0	В	420601	5655925	0.5	6.3	54.8	250.6	25.4	42.2			1 0	I
K	2103.5	D	420601	5656007	33.4	15.4	47.4	19.9	20.3	10.9	4.9	16	1 0	, j
L	2098.0	В	420597	5656176	9.0	18.1	25.0	69.8	62.8	17.8	0.6	8	255	ļ.
M	2094.7	В	420595	5656281	43.4	80.1	428.8	771.0	62.8	154.6	1.1	0	I 0	1
I N	2092.0	S	420596	5656370	31.7	50.3	428.8	771.0	16.6	154.6			1 0	1
10	2090.8	E	420597	5656409	56.1	114.5	428.8	771.0	8.3	154.6	1.1	0) O	1
	11010		FLIGHT		 		· · · · ·						·	1
G	1894.9	B	420648	5655681	106.1	32.7	631.6	173.4	473.9	184.4	.12.7	8	0	I

CP = COPLANAR

Note:EM values shown above are local amplitudes

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

9 -

-

.

EM Anomaly Lis	EΜ	Anoma	lv	List	5
----------------	----	-------	----	------	---

1					CX 55			200 HZ	CP	900 HZ		al Dike	Mag. Corr	
Lab	el Fid	Inter	р ХИТМ	YUTM	Real	Quad	Real.	' Quad	Real	l Quad	COND	DEPTH*	1	1
I			m	m	ppm	ppm	ppm	ppm	ppn	n ppm	siemens	m	NT	1
۱					۱						۱		۱	
LIN			FLIGHT		1									
] H	1897.1	В	420646	5655759	74.6	9.0	631.6	235.1	473.9	184.4	45.2	6	1 0	ļ
II	1904.5	D	420645	5656014	24.9	18.3	6.3	.49.9	26.5	18.1	2.5	8	243	ļ
IJ	1910.1	D	420646	5656208	32.3	62.1	351.5	539.3	43.9	132.6	1.0	Q	974	
ļΚ	1913.4	S?	420646	5656323	33.3	49.3	351.5	617.4	43.9	132.6	1.2	0	0	1
L	1916.9	Е	420645	5656446	1 39.4	64.4	21.6	588.9	2.4	14.5	1.2	0	0 .	1
1					1						1		1	
LIN	E 11020		FLIGHT	3.	· ·						1		,	I
F	1606.6	В	420701	5655679	43.8	6.9	427.0	102.3	426.9	125.2	25.2	21	388.	1
G	1601.9	В	420703	5655828	158.5	77.2	523.6	497.3	385.9	191.2	7.7	0	0	1
ΪH	1595.2	В	420704	5656038	8.1	6.8	30.7	10.1	12.4	15.5	1 1.4	27	65	İ
II	1589.2	E	420698	5656212	19.4	26.3	34.4	447.8	21.3	115.6	1.1	1	1 0	1
13	1585.5	B?	420697	5656333	1 17.5	63.4	330.3	581.5	22.9	120.4	0.5	0	i 0	
İK	1583.3	Е	420696	5656406	49.4	88.5	330.3	581.5	22.9	120.4	1.2	0	0	İ
1												-	ł	
LIN	E 11030		FLIGHT	3	·						1		· · · · · · · · · · · · · · · · · · ·	
IE	1384.4	В	420747	5655677	34.3	17:0	279.0	64.1	198.6	81.3	4.5	14	i 0	i
IF	1387.9	D	420748	5655805	60.9	17.9	354.1	213.8	275.1	136.2	11.3	5	3355	
IG	1389.2	В	420748	5655853	46.9	17.9	354.1	213.8	275.1	136.2	7.2	8	i 0	i i
I H	1390.5	B	420748	5655901	57.4	37.7	354.1	213.8	275.1	136.2	3.8	ŏ	i 0	. İ
I	1397.3	В	420746	5656125	0.0	0.2	0.0	0.0	8.5	0.0			0	
IJ	1403.1	D	420743	5656311	35.6	83.9	288.3	610.6	40.3	109.6	0.8	0	573	i
I K	1405.6	S	420742	5656390	42.4	78.5	288.3	610.6	6.5	109.6	1.1	õ	0	í
1	1400.0	0	120/12	3030370	12.1	10.0	200.0	010.0	0.0	105.0		Ŭ	1	
LINE	E 11040		FLIGHT	3	¦					i			' <u></u>	·····i
IE IE	1219.7	B?	420798	5655656	5.9	15.0	29.7	3.2	78.4	11.9			337	1
	1215.3	D: D	420797	5655800	65.5	22.3	467.3	123.8	402.8	149.1	9.4	15	4277	· 1
IG	1213.3	D	420797	5655863	36.4	7.0	493.3	167.0	402.8	150.2	17.6	13	0	1
10 H	1213.4	В	420798	5655917	69.3	29.6	493.3	167.0	402.8	150.2	7.0	3	0	1
IL II	1202.0	В	420798	5656207	0.4	29.0	493.3	0.0	402.8	0.0			221	1
13	1198.2	D	420800	5656323	33.0	92.2	287.3		47.9	112.7	0.7	0		+ • 1
IK	1198.2	S	420800		44.4	92.2 67.3	287.3	656.4	47.9	112.7	1.3	0		·
1	119313	3	420000	5656422	44.4	01.3	201.3	030.4	13.0	116.1	1.3	U		I
LINE	E 11050		FLIGHT	2					<u></u>		·			`
F	999.0	B?	420845	5655645	1.0	10.9	13.5	47.3	18.5	3.1	-		0	1
											2.8	15	4517	1
G	1002.7	E	420844	5655780	24.2	15.7	184.2	88.1	102.3	84.5				1
H	1004.6	⇒ D	420843	5655850	34.4	8.0	318.3	88.1	284.3	84.5	13.1	19	4517	
I	1008.1	D	420844	5655975	47.0	5.3	318.3	76.7	284.3	85.8	43.4	15	0	.
J	1012.0	B?	420848	5656108	21.0	12.2	329.6	76.7	284.5	85.8			3978	ľ

CP = COPLANAR

Note:EM values shown above are local amplitudes

- 10 -

.

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

.

EM Anomaly List

 Labe 	l Fid	Interp	> XUTM m	YUTM m	CX 55 Real ppm	500 HZ Quad ppm	CP Real ppm	200 HZ Quad ppm	CP Real ppm	900 HZ Quad ppm	Vertic COND siemens	al Dike DEPTH* m	Mag. Corr NT	
LINE K L	11050 1016.8 1021.6	B S?	FLIGHT 420850 420846	3 5656267 5656424	8.3	5.0 118.7	125.5 282.8	2.8 679.2	165.7 14.5	0.3 111.5	2.2 1 1.0	32 0		
ILINE IF IG IH IJ J	11060 765.6 758.7 754.2 744.4 739.6		FLIGHT 420893 420891 420896 420894 420894	3 5655622 5655843 5655993 5656292 5656444	8.6 19.5 67.5 3.0 42.8	11.1 13.5 5.1 4.6 83.2	45.3 229.5 295.4 5.6 213.8	0.0 127.3 127.3 0.0 517.5	80.1 114.1 307.8 35.4 18.5	0.0 85.2 36.9 0.0 88.7	2.5 87.5 1.0	17 10 0		
ILINE IJ IK IL IM	11070 7112.8 7120.4 7123.6 7132.5 7137.5 7139.2	D D D B	FLIGHT 420941 420945 420943 420945 420945 420943	2 5655606 5655851 5655955 5656233 5656402 5656461	3.3 14.1 45.7 17.3 30.5 40.5	14.5 -34.1 40.5 9.0 42.8 35.3	81.0 133.4 111.6 65.7 193.3 193.3	3.7 208.2 208.2 15.1 306.4 306.4	98.0 89.7 74.3 67.0 89.9 87.9	0.6 68.1 68.1 1.7 50.1 50.1	 0.6 2.4 3.4 1.3 2.4	 0 8 17 1 2	0 0 5585 0 0	
LINE F G H I J K I. M 	11080 6961.6 6950.0 6944.5 6939.7 6937.8 6934.8 6934.8 6931.2 6928.6	S? B? D D S	FLIGHT 420992 420994 420993 420990 420990 420990 420990 420990 420991	2 5655596 5656000 5656202 5656369 5656434 5656539 5656673 5656673 5656770	16.6 37.1 30.7 4.8 14.2 11.5 5.5 14.7	11.8 27.1 2.5 0.0 24.3 43.1 14.5 54.6	54.5 102.8 118.8 55.6 136.1 5.6 138.4 138.4	19.2 159.2 20.1 7.6 16.9 299.5 353.1 353.1	66.7 113.6 138.7 69.5 69.5 4.3 5.3 1.0	3.2 63.6 25.2 5.1 20.4 12.5 56.9 56.9	2.8 0.8 0.4 0.4 0.4	8 9 0 3 0	4372 0 0 0 0 0 0 0	
ILINE IH IJ IK IL IM IN IO IP	11090 6748.2 6760.7 6763.2 6766.0 6770.6 6773.5 6778.2 6780.3 6782.3	S? S? D B B? S	FLIGHT 421043 421046 421046 421045 421045 421044 421044 421046 421047 421048	2 5655600 5655999 5656083 5656173 5656319 5656410 5656568 5656568 5656638 5656704	16.0 14.5 28.9 20.9 34.6 6.5 18.0 6.3 15.6	15.2 32.0 25.8 19.7 15.0 0.0 57.2 37.3 46.2	64.8 52.3 52.3 0.0 151.2 91.3 176.6 176.6 176.6	11.7 190.5 190.5 113.5 37.5 6.6 472.9 472.9 472.9	76.5 44.0 16.0 124.9 115.5 115.5 56.2 4.4 4.4	0.9 38.4 38.4 30.2 31.2 0.0 68.4 68.4 68.4	0.7 2.1 5.5 0.2 0.5	4 12 	0 0 3210 2104 0 165 0	

CP = COPLANAR

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 11 -

EM Anomaly List

					CX 55			200 HZ	CP	900 HZ		al Dike	Mag. Corr	<u></u>
Label	l Fíd	Interp	XUTM	YUTM	Real	Quad	Real	Quad	Real	Quad	COND	DEPTH*		
		•	m	m	mqq	ppm	ppm	ppm	ppm	ppm	siemens	m	I NT	
LINE	11100		FLIGHT	2									1	
G	6594.6	_S? 4	421096	5655572	8.5	13.5	88.0	25.5	99.7	4.3		[`]	0	
Н	6582.0	S? 4	421091	5655984	8.3	14.7	90.5	34.8	96.6	5.2			1 0	
I	6578.3	S 4	421092	5656108	1 23.8	33.7	90.5	127.3	101.6	25.1			1 0	
J	6571.6	D 4	421092	5656331	1 52.3	17.2	142.1	52.8	111.4	34.3	9.2	8	2239	
<	6568.7	В 4	421091	5656422	4.4	0.7	32.3	2.9	156.7	2.7			I 0	
L	6563.9	B? 4	121089	5656569	16.5	59.0	144.5	449.3	30.3	65.0	0.5	0	1 0	
М	6560.2	S 4	121087	5656695	1 12.8	37.9	144.5	449.3	1.6	65.0 (0.5	0	1 0	
LINE	11110		FLIGHT	2			<u> </u>			l	<u> </u>			<u>.</u>
	6377.5	S? 4	21149	5655580	7.8	32.9	24.1	171.6	30.2	24.1			0	
	6387.4	s? 4	21144	5655869	0.0	13.0	0.0	37.3	0.0	5.9			265	
	6395.5		21144	5656108	20.7	34.8	54.1	143.7	116.9	27.4	0.9	1	0	
J	6400.0		21143	5656244	57.1	40.7	262.2	170.9	267.8	44.1	3.4	3	1329	
	6401.6		21143	5656292	49.3	27.0	262.2	170.9	267.8	44.1	4.5	7	0	
	6404.5		21143	5656379	48.5	18.4	262.2	10.7	267.8	31.4	7.3	9	59	
	6410.8		21143	5656575	17.5	59.6	111.6	385.4	4.6	59.1	0.5	0	I 0	
	6415.1		21142	5656720	25.6	64.3	111.6	385.4	26.0	59.1	0.7	0	0	
LINE	11120		FLIGHT	2	 				. <u></u>		<u> </u>			
	6200.7		21192	5656027	6.5	6.0	21.6	58.8	39.3	9.8			, 0 ⁻	
	6197.9		21192	5656114	6.3	35.5	45.1	146.4	28.2	24.0	·		27	
	6193.3		21194	5656262	43.0	58.9	190.8	371.5	61.5	70.7	1.5	1	288	
	6191.7		21195	5656311	30.5	47.2	294.7	371.5	251.5	70.7	1.2	2	0	
	6188.2		21192	5656423	27.8	15.8	294.7	48.0	251.5	44.7	3.6	16	697	
	6183.0		21186	5656589	22.7	51.6	92.8	215.8	83.7	35.0	0.7	0	0	•
	6180.0		21185		0.9	17.6	80.2	215.8	28.3	41.0		1	941	
	6178.2		21184	5656754	21.6	36.8	80.2	215.8	4.7	41.0	0.9	0 1	0	
								210.0	•••					
	11130		FLIGHT		1					1				
	5994.0		21243	5655575	21.2	57.6	187.4	301.7	75.8	42.7	0.6	0 1	0	
	6019.5		21249	5656392	30.6	25.4	263.0	172.9	213.8	60.2	2.3	8	0	
	6022.3		21250	5656484	59.6	17.6	263.0	100.9	213.8	60.2	11.1	8	350	
	6024.7		21249	5656564	10.8	0.0	2.0	0.0	53.6	0.0			0	
	6029.1		21247	5656712	6.5	60.4	92.7	342.6	22.3	60.7	0.2	0 1	901	
1 (6030.6	B? 4	21247	5656762	17.4	56.5	92.7	342.6	33.1	60.7	0.5	0 1	891	

CP = COPLANAR

Note:EM values shown above are local amplitudes

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 12 -

÷

										_			•	
1					CX 55	600 HZ	CP	200 HZ	CP	900 HZ	Vertica	al Dike	Mag. Corr	·
Label	l Fid	Interp	XUTM	YUTM	Real	Quad	Real	Quad	Real	Quad	COND	DEPTH*	1	1
1			m	m	ppm	ppm	ppm	ppm	ppm	n ppm	siemens	m	I NT	I
1					1						I		1	
LINE	11140		FLIGHT	2	1		······							
F	5837.3	S?	421294	5655614	17.3	28.2	190.3	415.4	92.9	62.2	0.9	5	0	1
G	5813.9	B	421293	5656428	32.3	31.2	332.6	225.6	234.9	96.3	2.0	9	0	
H	5812.4	D	421294	5656479	24.1	0.0	332.6	225.6	234.9	96.3			0	J
II	5810.6	D	421295	5656540	74.2	31.7	332.6	225.6	234.9	96.3	7.2	5	1432	İ.
J	5809.2	в	421296	5656587	1 15.6	27.8	332.6	20.6	72.8	96.3	0.8	11	0	Í
•	5804.8		421298	5656735	3.1	29.6	36.6	188.1	0.9	29.9			441	
1		0.			1		00.0	10011		2515			1	•
LINE	11150		FLIGHT	2	i	· · · · · · · · · · · · · · · · · · ·	·····*,				····		·	. 1
	5538.4	S	421348	5655712	19.4	28.8	157.4	293.0	89.9	45.3	1.0	7	0	Í
	5543.8		421347	5655889	8.2	21.8	6.7	92.9	17.3	13.7			0	1
	5552.6		421340	5656155	1 8.8	9.7	20.7	6.4	44.5	1.1	·		1 0	
	5563.3		421347	5656476	30.1	31.3	225.1	247.4	156.9	65.8	1.8	6	, Ŭ	1
•	5565.7		421349	5656551	55.1	32.5	225.1	247.4	156.9	65.8	4.2	5	535	1
	5568.3		421351	5656637	8.2	5.0	102.6	48.7	82.3	15.4	2.1	44	0	1
	5575.3		421351	5656870	J 6.7	25.0	31.5	116.5	9.1	18.9	2.1		0	- 1
ļL	5515.5	5:	421302	3636670	1 0.7	25.0	31.5	110.5	9.1	10.5			1 0	1
LINE	11160		FLIGHT	2	¦		·			·			I	i
•	5373.7	S	421391	5655731	11.9	19.5	77.3	202.0	30.2	29.9	0.8	3	0	1
	5359.3		421391	5656210	1 1.9	11.1	51.2	34.2	64.7	1.9				1
	5348.0		421394	5656583	29.4	20.1	222.7	176.5	207.1	43.8	2.9	=	436	
	5345.6		421398	5656669		11.5	193.0	176.5	192.8		· 3.3	23	1 430	
•					20.5					43.8	3.3	23	0	I I
L	5336.0	S?	421394	5656998	1.5	16.6	8.4	81.8	2.9	11.3				i
	11170		ET TOUR	~	·] 	
	11170		FLIGHT				00.1	201 7	~~ ~		0.6	,	0	1
	5158.0		421442	5655793	10.7	25.4	82.1	321.7	28.9	46.2		1	•	1
•	5171.2		421443	5656209	4.6	10.1	69.7	32.1	81.8	1.7			0	1
-	5185.8		421445	5656649	1 121.3	42.5	434.2	292.3	320.8	133.5	11.1	0	1009	ļ
H.	5196.9	S	421447	5657011	4.5	17.0	8.9	84.5	1.2	11.9			0	1
					!		·							
	11180		FLIGHT								• •	~		I.
	4989.7		421497	5655811	9.4	49.7	79.8	253.9	27.4	36.3	0.3	0	0	1
Н	4965.6	В	421494	5656672	57.2	27.9	339.5	210.8	253.7	100.7	. 5.5	10	1094	1
										!				<u> </u>
	11190		FLIGHT			>		.				_		ļ
	4778.6		421548	5655830	12.3	23.0	47.0	94.4	16.7	13.9	0.7	1	0	ļ
	4783.9		421546	5656013	10.1	12.4	68.5	125.7	65.1	17.4			0	l.
I	4803.5	E ·	421549	5656642	27.7	26.8	303.7	172.7	204.5	110.6	1.8	8	12 .	1

- 13 -

CX = COAXIAL

CP =	COPLANAR	Note:EM values	shown above
		are local	amplitudes
TECT	EDial		

litudes

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

.

TEST FPick

ΕM	Anoma	ly	List
----	-------	----	------

		T			CX 55			7200 HZ	CP	900 HZ	•	al Dike	Mag. Corr	1
Labe	el Fid	Inter	p XUTM m		Real	Quad	Real	Quad	Real	~	COND siemens	DEPTH* m	I NT	1
I I			10	m	ppm	ppm	ppm	ppm	ppr	n ppm		111		. 1
ILINE	11190		FLIGHT	2	·		<u>.</u>			<u> </u>	1		·	1
JJ	4807.2	D	421549	5656762	90.0	28.2	303.7	172.7	204.5	110.6	11.7	3	1754	·I.
LINE	11200		FLIGHT	2	·				_		1		·	
F	4590.6	S	421594	5656115	14.0	19.7	82.4	160.3	65.8	22.5	i		1 0	Í
G	4574.8	E	421594	5656642	30.4	27.3	223.0	103.6	196.9	43.2	2.1	4	1 0	1
H	4571.8	В	421592	5656743	1 20.0	7.8	223.0	103.6	196.9	43.2	5.3	24	1460	1
II	4570.5	D	421593	5656785	1 20.0	12.8	223.0	100.1	196.9	43.2	2.7	18	1460	1
IJ	4563.9	S?	421594	5656994	19.9	102.9	152.4	575.1	10.2	86.1	0.4	0	1 0	I
LINE	11210		FLIGHT	2	[ſ		(1
H	4285.3	S?	421640	5656157	i ·35.4	40.9	102:8	125.6	84.8	18.1			10	i
II	4303.4	S	421639	5656706	9.0	18.1			222.1	106.8	0.6	15	1098	i
JJ	4307.3	D	421640	5656829	110.4	21.0		121.0		106.8	26.0	9	1529	. 1
LINE	11220		FLIGHT	2	1			•					[
IG	4080.7	S?	421690	5656173	j 15.2	37.5	80.9	174.4	47.1	26.1			j 0	. 1
H	4060.6		421694	5656868	40.2	10.1		25.9	130.9	48:9	12.3	19	1983	i
I	4055.8	S?	421692	5657018	17.9	65.9			45.0	83.7	0.5	0	0	i
I	11230		FLIGHT	2	¦									· · · · · · · · · · · · · · · · · · ·
H	3872.2	Е	421745	5655847	32.9	92.2	222.4	475.4	19.4	82.8	0.7	0	I 0	i
) I	3874.2		421745	5655912	16.9	53.2	222.4	475.4	19.4	82.8	0.5	õ	0	j
JJ	3879.6		421745	5656080	14.7	0.0	52.0	4.5	73.2	17.9			I 0	i
K	3884.7		421744	5656242	22.1		138.5	232.2	107.1	33.7	0.7	0	0	i
L	3905.7		421739	5656887	45.8	4.9	181.6	51.1	160.6	39.6	46.5	18	3239	i
LINE	11240		FLIGHT	2						¹	<u> </u>			· · · · · · · · · · · · · · · · · · ·
H	3687.9	E	421800	5655841	47.0	64.5	322.5	397.2	81.9	103.2	1.5	0	i O	1
II	3685.6		421798	5655923	39.3	46.2	322.5	397.2	81.9	103.2	1.7	Ō	i Ō	i
J	3681.1		421795	5656080	22.4	22.9	135.8	104.0	55.0	44.7	1.6	9	0	İ.
IK	3675.7		421793	5656265	13.3	36.0	94.4	253.0	29.1	38.3			47	i
IL.	3657.1		421794	5656895	27.8	0.0	152.2	75.2	194.9	48.2			5173	i
İ		-												
	11250		FLIGHT										1	1
IG	3481.1		421847	5655861	1 72.1	47.7	460.5	200.5	313.0	148.3 J	4.0	0	0	1
H	3483.3		421847	5655933	33.7	16.7	460.5	200.5	313.0	148.3	4.5	17	0	1
II	3495.9		421845	5656367	10.1	19.4	99.1		79.3	21.0			0	ł
IJ	3503.6	S	421848	5656617	7.6	24.8	91.4	49.6	93.7	7.5			0	1

CP = COPLANAR

Note:EM values shown above are local amplitudes *Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects

TEST FPick

- 14 -

EM Anomaly List

 Labe	el Fid	Inter	o XUTM	YUTM	CX 55 Real	00 HZ Quad	CP 7 Real	200 HZ Quad	CP Rea	900 HZ Quad	Vertica COND	al Dike DEPTH*	Mag. Corr	1
1			m	'n	ppm	ppm	ppm	ppm	ppr		siemens	m	NT	I
LINE	11250	·····	FLIGHT	2	- <u>'</u>					······································	'		·	
K	3514.7	D	421846	5656983	30.0	48.5	115.3	152.5	111.3	43.9	1.1	0	1973	1
LINE	11260		FLIGHT	2	· 		······································				 ·		. '	1
IG	3296.2	В	421891	5655861	92.2	19.7	583.3	58.7	528.7	151.4	20.6	0	0	Í
H	3294.5	В	421892	5655922	50.0	1.1	583.3	58.7	528.7	151.4			4369	i
II	3291.5	В	421893	5656028	1 72.3	23.2	583.3	81.4	518.5	141.8	10.5	10	0	, i
J	3285.7	Е	421894	5656228	15.3	29.9	138.2	50.5	80.8	6.1	0.7	0	0	Ì
K	3274.4	S?	421893	5656626	7.2	17.0	56.5	190.3	60.7	26.5			1088	1
j L	3263.7	D	421889	5657006	1 13.0	33.7	155.8	202.7	180.0	34.3	0.6	2	2420	.1
1					1		•		_				1	
ILINE	19020		FLIGHT	6 .	1					·			1	1
F	1534.9	E	418576	5657355	1 8.7	41.6	63.4	290.1	12.6	42.0	0.3	0	1 15	J
١G	1514.0	S	419264	5657350	0.7	2.4	3.6	46.3	0.9	5.9			1 0	1
۱					1 <u>.</u>					1			۱	<u>.</u>
LINE			FLIGHT	-	ł								1	
IC	1801.6		420359	5656101	19.0	22.5	183.7		7.5	56.7 I	1.3	12	1 0	
D	1804.0		420436	5656102	27.3	0.0	186.8	225.1	105.2	56.7			897	1
ŀΕ	1805.6		420487	5656105	41.3	18.2	186.8	82.6	105.2	56.7	5.7	14	1 157	1
F	1818.2		420889	5656105	35.0	8.3	135.8	36.6	154.9	38.3	12.8	18	1 0	1
G	1822.6		421031	5656103	16.6	27.0	106.1	169.9	168.9	38.3			0	1
H	1825.2		421116	5656104	16.3	22.6	106.1	169.9	169.4	19.6			1 0	1
II	1828.8		421237	5656105	1.4	18.2	26.7	124.2	34.4	19.4			33	1
J	1839.5		421597	5656103	13.5	31.4	67.6	146.2	48.4	21.3			0	
I K	1844.2	S	421765	5656104	15.6	6.0	55.4	88.0	33.8	17.6	4.9	27	1 0	1
I					!					l				
LINE	19040	_	FLIGHT		1	.				1				
P	2035.3		419876	5654852	47.5	63.8	456.0	375.5	88.4	136.0	1.5	0	0	1
I Q	2032.6		419959	5654855	46.1	37.6	464.9	375.5	297.0	138.2	2.7	6	0	
R	2031.0	В	420009	5654856	92.5	43.6	464.9	375.5	297.0	138.2	6.7	0	841	I

- 15 -

CX = COAXIAL

CP = COPLANAR

Note:EM values shown above are local amplitudes

TEST FPick

*Estimated Depth may be unreliable because the stronger part of the conductor may be deeper or to one side of the flight line, or because of a shallow dip or magnetite/overburden effects Anomalies Summary

Conductor Grade No, of Responses

7 6 5 4 3 2 1	2 3 8 21 25 107 133
Total	418

Conductor Model No, of Responses

E B	N	46 133
D		68
S		165
Н		5
T		1
Total		418

•

APPENDIX E

ARCHIVE DESCRIPTION

APPENDIX E

ARCHIVE DESCRIPTION

Reference: CCD01905 Disc 1 of 1 Archive Date: 2002-Dec-16 This archive contains final data archives of an airborne geophysical survey conducted by FUGRO AIRBORNE SURVEYS CORP. on behalf of REDSTAR GOLD CORP. during November, 2002 Job # 2123 This archive comprises 24 files contained in 3 directories ****** Disc 1 of 1 ****** \GRIDS Grids in Geosoft binary format MAG_*.GRD CVG_*.GRD - Total Magnetic Field (nT) - Calculated Vertical Magnetic Gradient (nT/m) RES900_*.GRD RES7200_*.GRD RES56K_*.GRD - Apparent Resistivity 878 Hz (ohm·m) - Apparent Resistivity 7116 Hz (ohm·m) - Apparent Resistivity 55800 Hz (ohm·m) where * is area A, B or C \LINEDATA REDSTAR *.XYZ - Data archive in Geosoft Ascii format ANA *.XYZ - Anomaly archive in Ascii format - Documentation for linedata XYZ files REDSTAR.TXT - Documentation for anomaly XYZ files ANOMALY.TXT where * is area A, B or C REPORT\ - Logistics Report in MSWord v6.0 format REDSTAR.DOC ______ The coordinate system for all grids and GDB files is projected as follows Datum NAD83 Spheroid GRS 1980 Projection UTM Central meridian 93 West False easting 500000 False northing 0 Scale factor 0.9996 Northern parallel N/A Base parallel N/A WGS84 to local conversion method Molodensky Delta X shift 0

Delta Y shift Delta Z shift

If you have any problems with this archive please contact

Processing Manager FUGRO AIRBORNE SURVEYS CORP. 2270 Argentia Road, Unit 2 Mississauga, Ontario Canada L5N 6A6 Tel (905) 812-0212 Fax (905) 812-1504 E-mail toronto@fugroairborne.com

• •

Geosoft XYZ ANOMALY ARCHIVE SUMMARY

JOB TITLE:

JOB # :2123 TYPE OF SURVEY :EM, MAGNETICS, RESISTIVITY AREA :Red Lake Area, Ontario CLIENT :Redstar Gold Corp.

SURVEY DATA FORMAT:

NUMBER OF DATA FIELDS : 15

#	CHANNAME (16LONG)) TIME	UNITS	/ DESCRIPTION
1	EASTING	0.10	m	UTME-NAD83
2	NORTHING	0.10	m	UTMN-NAD83
3	FID	1.00	n/a	Synchronization Counter
4	FLT	0.10	n/a	Flight
5	MHOS	0.10	siemens	Conductance based on Vertical Dike Model
6	DEPTH	0.10	m	Depth based on Vertical Dike Model
7	MAG	0.10	nT	Mag Correlation, local amplitude
8	CXI1	0.10	ppm	Inphase Coaxial 5780 Hz, local amplitude
9	CXQ1	0.10	ppm	Quadrature Coaxial 5780 Hz, local amplitude
10	CPI1	0.10	ppm	Inphase Coplanar 7235 Hz, absolute amplitude
. 11	CPQ1	0.10	ppm	Quadrature Coplanar 7235 Hz, absolute amplitude
12	CPI2	0.10	ppm	Inphase Coplanar 874 Hz, absolute amplitude
13	CPQ2	0.10	ppm	Quadrature Coplanar 874 Hz, absolute amplitude
14	LET	0.10	n/a	Anomaly Identifier
15	SYM	0.10	n/a	Anomaly Interpretation Symbol
 .	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * *	*******	* * * * * * * * * * * * * * * * * * * *
	UE DATE			
		:December	•	
FOR	WHOM	:Redstar	Gold Corp	
BY	WHOM	.FUGRO AT	RBORNE SU	RVEYS CORP.
DI	MICH			D, UNIT 2
			UGA, ONTA	
		CANADA		······································
			5) 812-02	12
		100. (90	5, 012 02	± 6

FAX (905) 812-1504

2.255555

SURVEY DATA FORMAT:

NUMBER OF DATA FIELDS : 29

	CHANNAME (16LONG)	TIME		/ DESCRIPTION	BYTES	decimal
1		0.10	m	UTME-NAD83	10	2
2		0.10	m	UTMN-NAD83	11	2
	FID	1.00	n/a	Synchronization Counter	10	1
4	DATE	0.10		Date	10	0
	FLT	0.10	n/a	Flight Number	6	1
	RMAG	0.10	nT	Uncorrected Total Magnetic Intensity	10	3
		0.10	nT	Daily Variations of Magnetic Field	10	3
	MAG	0.10	nT	Corrected Total Magnetic Intensity	10	3
9	ALTBIRDM	0.10	m	Em Bird to Earth-Surface	9	2
10	GALT	0.10	m	Height above ellipsoid	9	2 .
11	BARO	0.10	m	Barometric Altimeter	9	2
12	CPI900	0.10	ppm	Inphase-Coplanar 874 Hz	10	2
13	CPQ900	0.10	ppm	Quad-Coplanar 874 Hz	10	2
14	CXI1000	0.10	ppm	Inphase-Coplanar 1090 Hz	10	2
15	CXQ1000	0.10	ppm	Quad-Coplanar 1090 Hz	10	2
16	CXI5500	0.10	ppm	Inphase-Coaxial 5780 Hz	10	2
17	CXQ5500	0.10	ppm	Quad-Coaxial 5780 Hz	10	2
18	CP17200	0.10	ppm	Inphase-Coplanar 7235 Hz	10	2
19	CPQ7200	0.10	ppm	Quad-Coplanar 7235 Hz	10	2
20	CPI56K	0.10	ppm	Inphase-Coplanar 56500 Hz	10	2
21	CPQ56K	0.10	ppm	Quad-Coplanar 56500 Hz	10	2
22	RES900	0.10	ohm•m	Apparent Resistivity 874 Hz	10	2
23	RES7200	0.10	ohm•m	Apparent Resistivity 7235 Hz	10	2
24	RES56K	.0.10	ohm•m	Apparent Resistivity 56500 Hz	10	2
25	DEP900	0.10	m	Apparent Depth 874 Hz	10	2
26	DEP7200	0.10	m	Apparent Depth 7235 Hz	10	2
27	DEP56K	0.10	m	Apparent Depth 56500 Hz	10	2
28	DIFI	0.10	ppm		10	2
	DIFQ	0.10	ppm	Quadrature Difference Channel	10	2
* * *	* * * * * * * * * * * * * * * * *	* * * * * * * *	*****	*****	******	* * *
ISS	UE DATE :	December	16, 2	002		
FOR		REDSTAR				
BY			ENTIA	SURVEYS CORP. ROAD, UNIT 2		

:FUGRO AIRBORNE SURVEYS COR 2270 ARGENTIA ROAD, UNIT 2 MISSISSAUGA, ONTARIO, CANADA L5N 6A6 TEL. (905) 812-0212 FAX (905) 812-1504

Work Report Summary

Transaction No:	W0320.00716	Status:	APPROVED
Recording Date:	2003-APR-29	Work Done from:	2002-NOV-03
Approval Date:	2003-JUL-08	to:	2002-NOV-05

Client(s):

129617	ENGLISH, PERRY VERN
301254	RUBICON MINERALS CORPORATION
303592	REDSTAR GOLD CORP.

AEM

TODD

Survey Type(s):

AMAG

52M01SE2028 2.25505

900

Work Report	Work Report Details:								
Claim#	Perform	Perform Approve	Applied	Applied Approve	Assign	Assign Approve	Reserve	Reserve Approve	Due Date
G 2020195	\$610	\$610	\$0	\$0	\$0	0	\$610	\$610	
G 2020196	\$1,349	\$1,349	\$0	\$0	\$0	0	\$1,349	\$1,349	
G 2020197	\$355	\$355	\$0	\$0	\$0	0	\$355	\$355	
G 2020200	\$731	\$731	\$0	\$0	\$0	0	\$731	\$731	
G 2020201	\$803	\$803	\$0	\$0	\$0	0	\$803	\$803	
G 2020202	\$669	\$669	\$0	\$0	\$0	0	\$669	\$669	
G 2020203	\$666	\$666	\$0	\$0	\$0	0	\$666	\$666	
G 2020204	\$467	\$467	\$0	\$0	\$0	0	\$467	\$467	
G 2020205	\$350	\$350	\$0	\$0	\$0	0	\$350	\$350	
G 2020206	\$512	\$512	\$0	\$0	\$0	0	\$512	\$512	
G 2020207	\$1,075	\$1,075	\$0	\$ 0	\$0	0	\$1,075	\$1,075	
G 2020208	\$1,338	\$1,338	\$0	\$0	\$0	0	\$1,338	\$1,338	
G 2020209	\$1,290	\$1,290	\$0	\$0	\$0	0	\$1,290	\$1,290	
KRL 118513	2 \$1,372	\$1,372	\$800	\$800	\$0	0	\$572	\$572	2004-JUL-18
KRL 118513	3 \$1,929	\$1,929	\$1,600	\$1,600	\$0	0	\$329	\$329	2004-JUL-18
KRL 123420	1 \$5,724	\$5,724	\$2,000	\$2,000	\$ 0	0	\$3,724	\$3,724	2004-MAY-02
KRL 123420	5 \$1,903	\$1,903	\$800	\$800	\$0	0	\$1,103	\$1, 1 03	2004-MAY-07
KRL 123426	9 \$809	\$809	\$400	\$400	\$0	0	\$409	\$409	2004-JUL-17
KRL 123450	2 \$7 92	\$792	\$331	\$331	\$0	0	\$461	\$461	2006-JUN-26
KRL 1234519	9 \$983	\$983	\$400	\$400	\$0	0	\$583	\$583	2004-AUG-24
KRL 1234524	\$911	\$911	\$400	\$400	\$0	0	\$511	\$511	2004-AUG-24
KRL 123453	3 \$921	\$921	\$400	\$400	\$0	0	\$521	\$521	2004-AUG-08
KRL 1234534	\$1,464	\$1,464	\$400	\$400	\$0	0	\$1,064	\$1,064	2004-AUG-08
	\$27,023	\$27,023	\$7,531	\$7,531	\$0	\$0	\$19,492	\$19,492	• •

External Credits:

Reserve:

\$19,492 Reserve of Work Report#: W0320.00716

\$19,492

\$0

492 Total Remaining

Status of claim is based on information currently on record.

Ministry of Northern Development and Mines

REDSTAR GOLD CORP.

Ministère du Développement du Nord et des Mines

Date: 2003-JUL-08

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.25505 Transaction Number(s): W0320.00716

Dear Sir or Madam

V6B 1N2

Subject: Approval of Assessment Work

SUITE 611 - 675 WEST HASTINGS ST. VANCOUVER, BRITISH COLUMBIA

CANADA

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

PLEASE NOTE: Duplicate copies of the Declaration of Assessment Work forms are no longer required.

If you have any question regarding this correspondence, please contact BRUCE GATES by email at bruce.gates@ndm.gov.on.ca or by phone at (705) 670-5856.

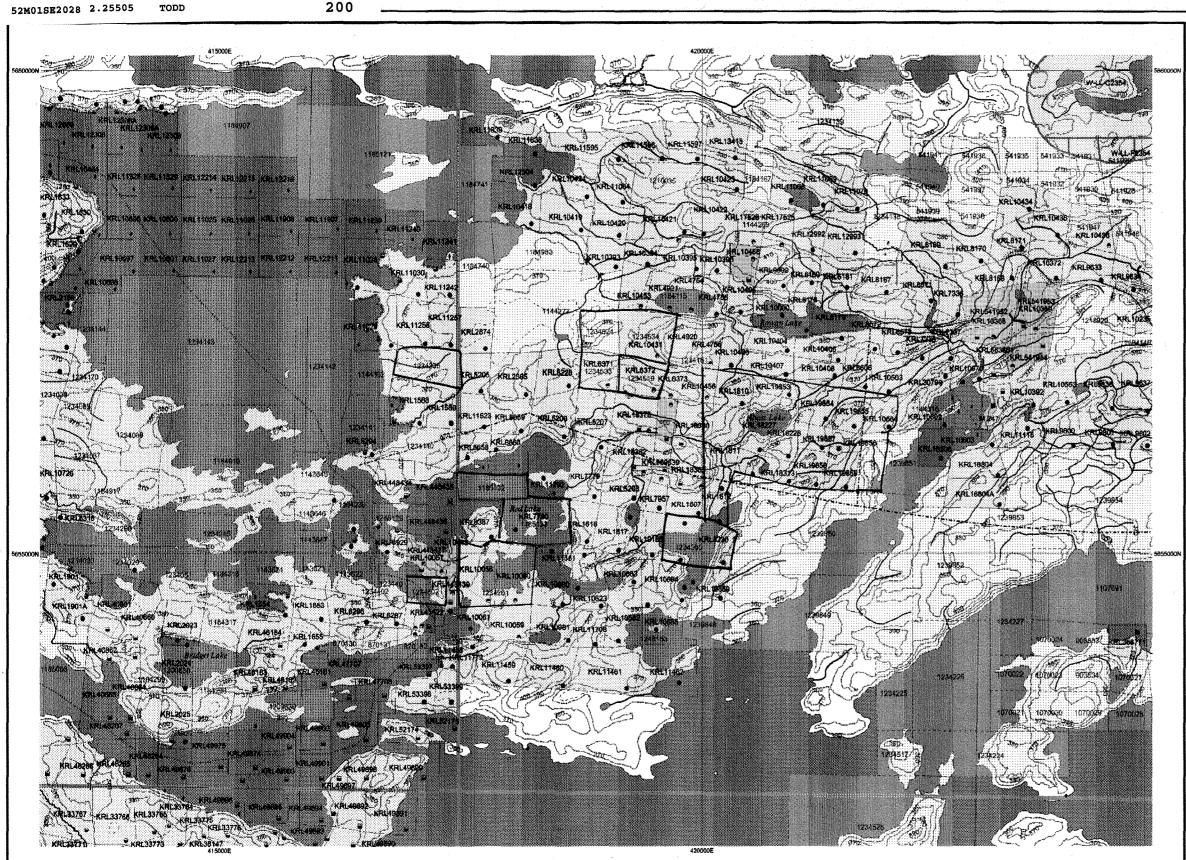
Yours Sincerely,

Racadal.

Ron Gashinski Senior Manager, Mining Lands Section

Cc: Resident Geologist

Perry Vern English (Claim Holder)


Redstar Gold Corp. (Claim Holder)

Assessment File Library

Rubicon Minerals Corporation (Claim Holder)

Redstar Gold Corp. (Assessment Office)

UTM Zone 15 5000m grid

Those wishing to stake mining claims should consult with the Provincial Mining Recorders' Office of the Ministry of Northern Development and Mines for additional information on the status of the lands shown hereon. This map is not intended for navigational, survey, or land title determination purposes as the information shown on this map is compiled from various sources. Completeness and accuracy are not guaranteed. Additional information may also be obtained through the focal Land Titles or Registry Office, or the Ministry of Natural Resources.

General Information and Limitations
 Context Information:
 Toll Free
 Map Datum: NAD 83

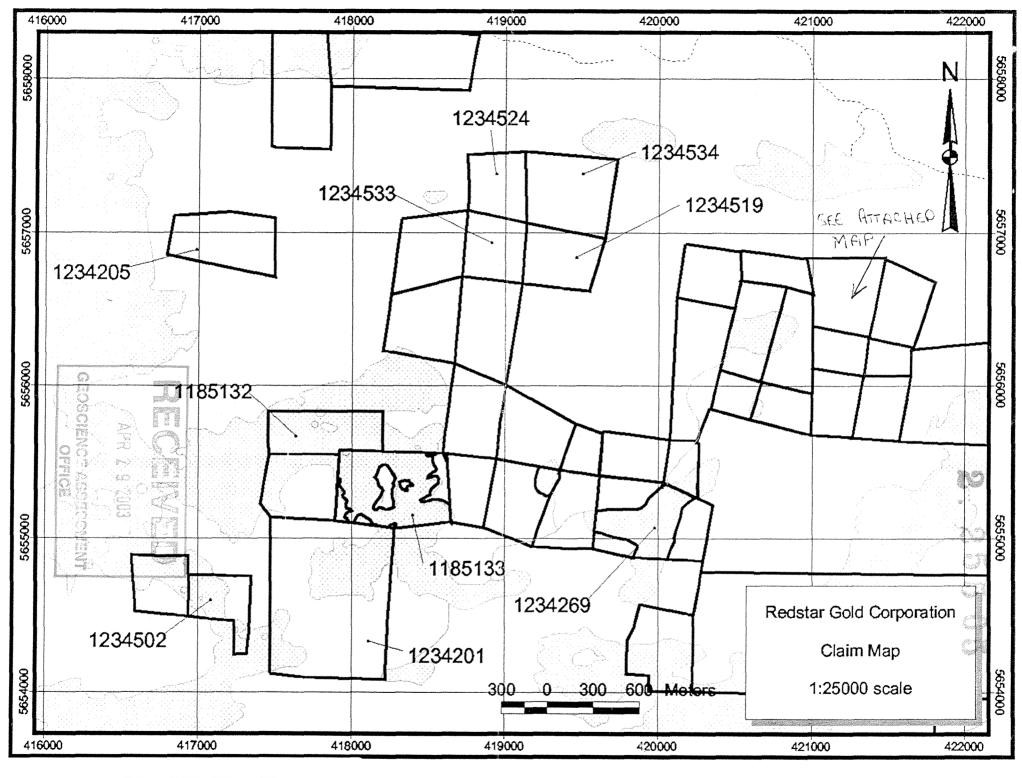
 Provincial Mining Recorders' Office
 Tel: 1 (888) 415-9845 ext 57% bjection: UTM (6 degree)

 Willet Green Miller Centre 933 Ramsey Lake Road
 Fax: 1 (877) 670-1444
 Topographic Data Source: Land Information Ontario

 Sudbury ON P3E 685
 Home Page: www.mndm.gov.on.ca/MNDM/MINES/LANDS/mismnpge.htm
 Mining Land Tenure Source: Provincial Mining Recorders' Office

This map may not show unregistered land tenure and interests in land including certain patents, leases, easements, right of ways, flooding rights, licences, or other forms of disposition of rights and interest from the Crown. Also certain land tenure and land uses that restrict or prohibit free entry to stake mining daims may not be illustrated.

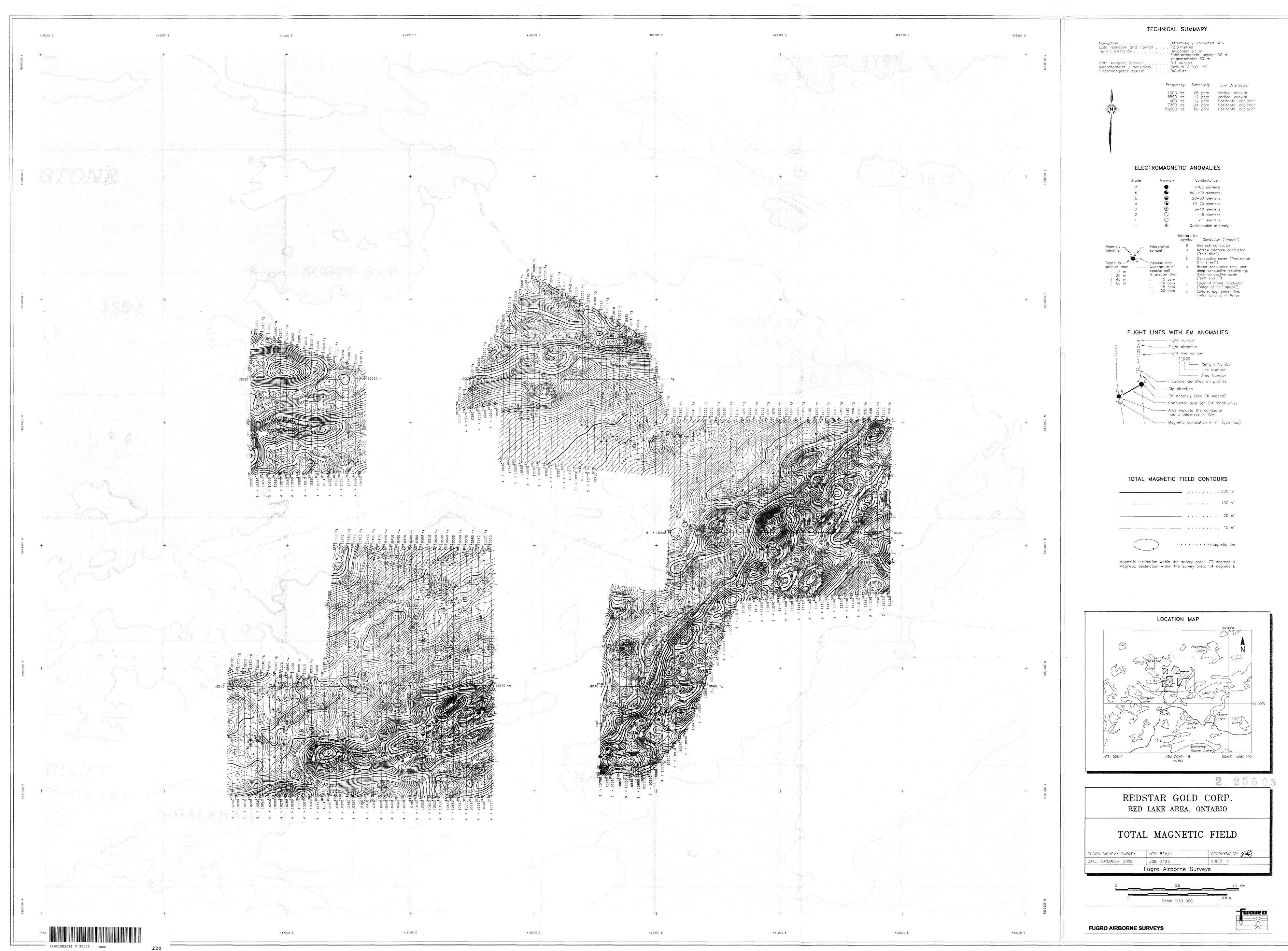
The information shown is derived from digital data available in the Provincial Mining Recorders' Office at the time of downloading from the Ministry of Northern Development and Mines web site

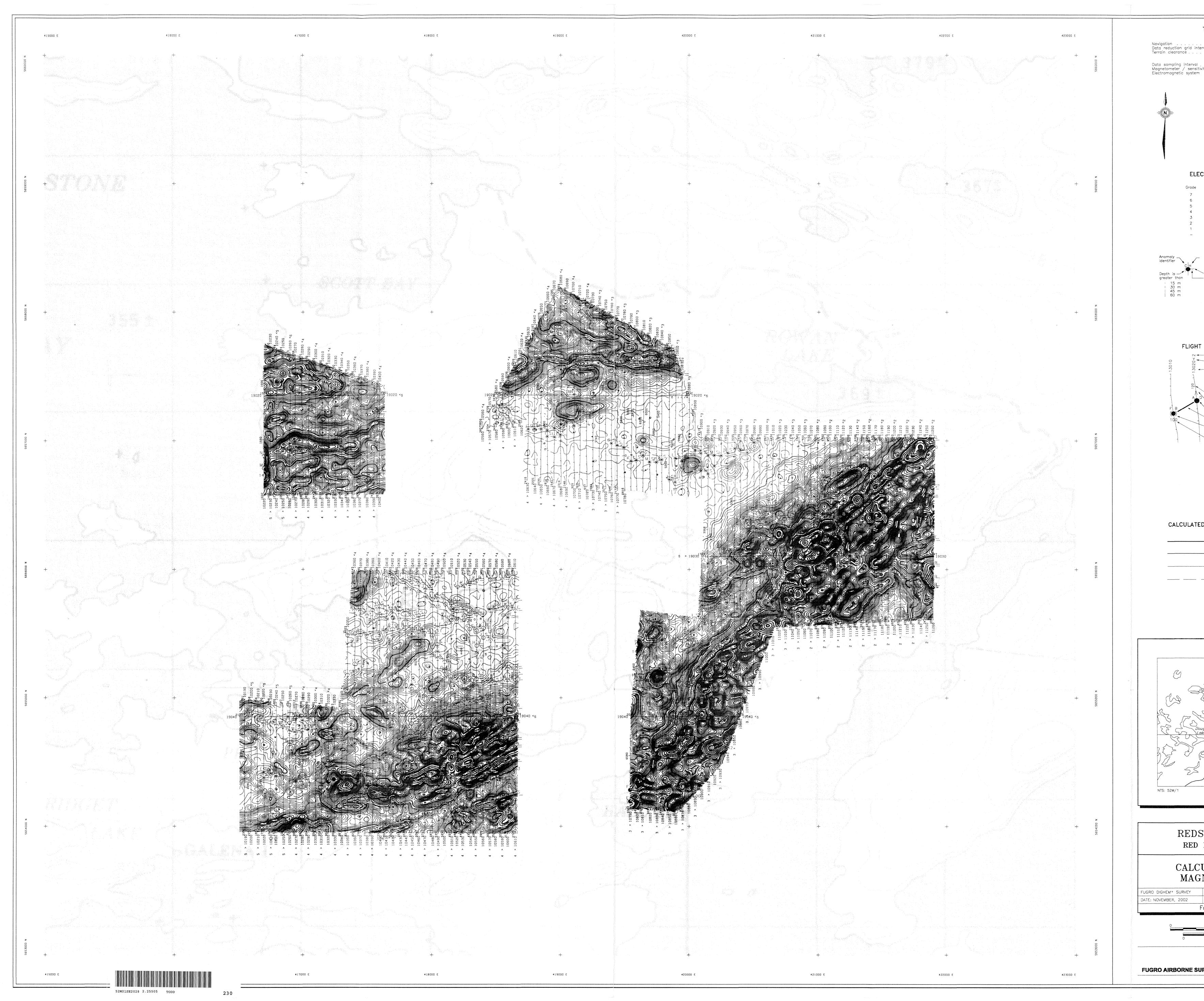

ONTARIO CANADA	MINISTRY OF NORTHERN Development and Mines Provincial Mining Recorder's Office	Mining Land Tenure Map
Date / Time of Issue: Thu Jul 1 FOWNSHIP / AREA FODD		PLAN G-1789
ADMINISTRATIVE Mining Division and Titles/Registry Divis Ministry of Natural Resou	lon	DIVISIONS Red Lake KENORA RED LAKE
		Land Tenure Freehold Patent Freehold Patent Surface And Mining Rights Surface Rights Only Lesseshold Patent Surface Rights Only Lesseshold Patent Uses Not Specified Surface Rights Only Leence of Occupation Uses Not Specified Surface And Mining Rights Surface And Mining Rights Lend Use Permit Lend Use Permit Lend Use Permit Surface And Mining Rights Filed Only Filed Data Data Kather Power Lesse Agreement Filed Data Data Kather Power Lesse Agreement Filed Data Data Kather Power Lesse Agreement Filed Data Data Kather Power Lesse Agreement Filed Data Mining Rights Surface Rights Only Kather Power Lesse Agreement Filed Data Mining Rights Kather Power Lesse Agreement Filed Data Mining Rights Kather Power Lesse Agreement Filed Data Mining Rights Surface Rights Only Su
	55216 1:49888	IMPORTANT NOT

Description

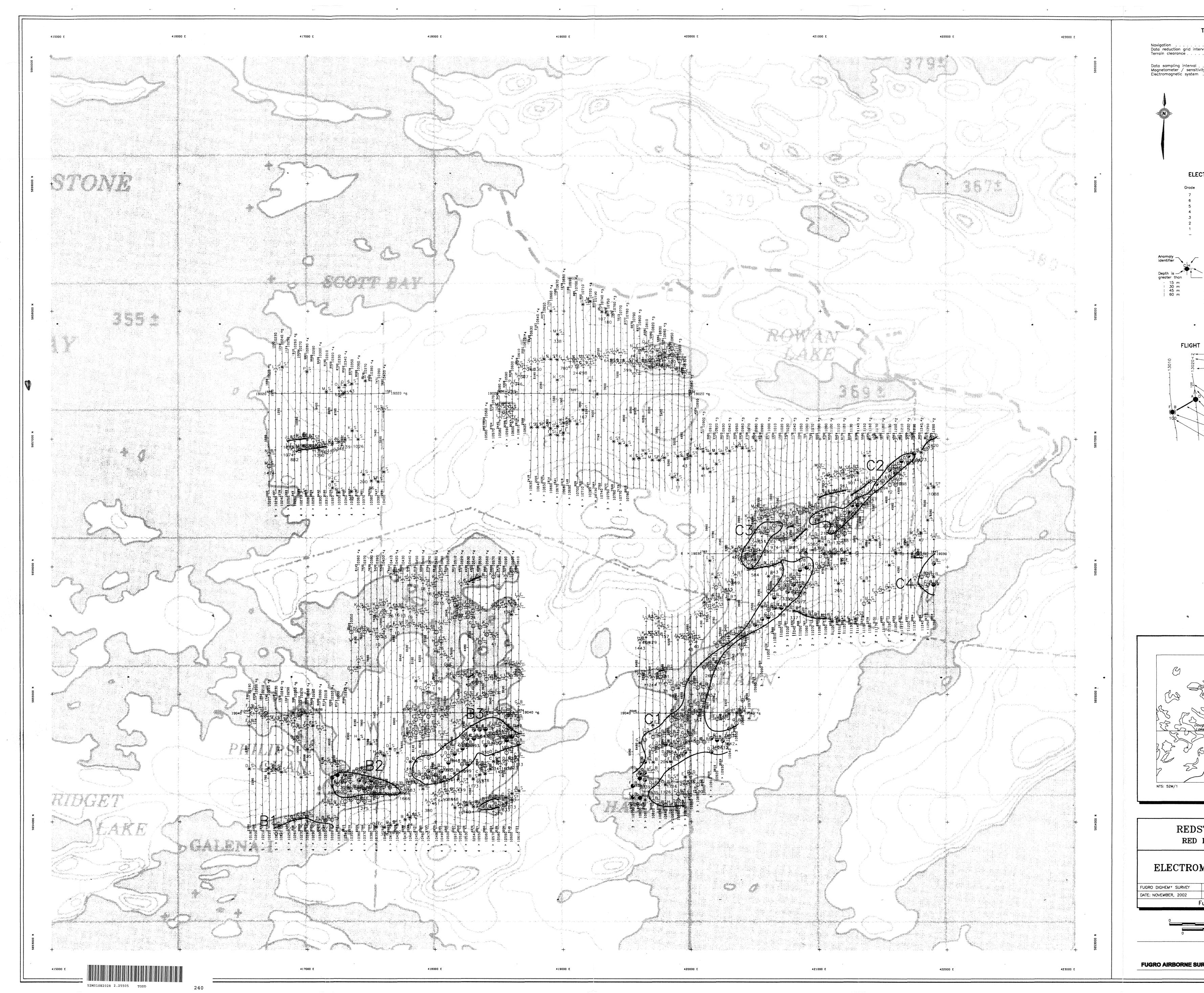
268	Wsm	Jan 1, 20
8940	Wsm	Jan 1, 20
W-LL-C2354	Wsm	Feb 26, 2
W-LL-F2354	Wsm	Feb 26, 2
W-LL-F2370	Wsm	Aug 29, 2
W-LL-P2370	Wsm	Aug 29, 2
159	Wsm	Jan 1, 20

001 PENDING APP.FOR EXPLORITORY LICENSE OIL NATURAL GAS (001 M.N.R. RESERVE FILE NO. 188535 DATE 9 MARCH, 1976 002 <a href="http://www.mndm.gov.on.ca/MNDM/MINES/LANDS/livleg/bo 2002 <a href="http://www.mndm.gov.on.ca/MNDM/MINES/LANDS/I/vieg/bi 2002 <a href="http://www.mndm.gov.on.ca/MNDM/MINES/LANDS/I/vieg/bi 2002 4a href="http://www.mndm.gov.on.oa/MNDM/MINES/LANDS/livleg/bi 2001 WOODLAND CARIBOU PROVINCIAL PARK

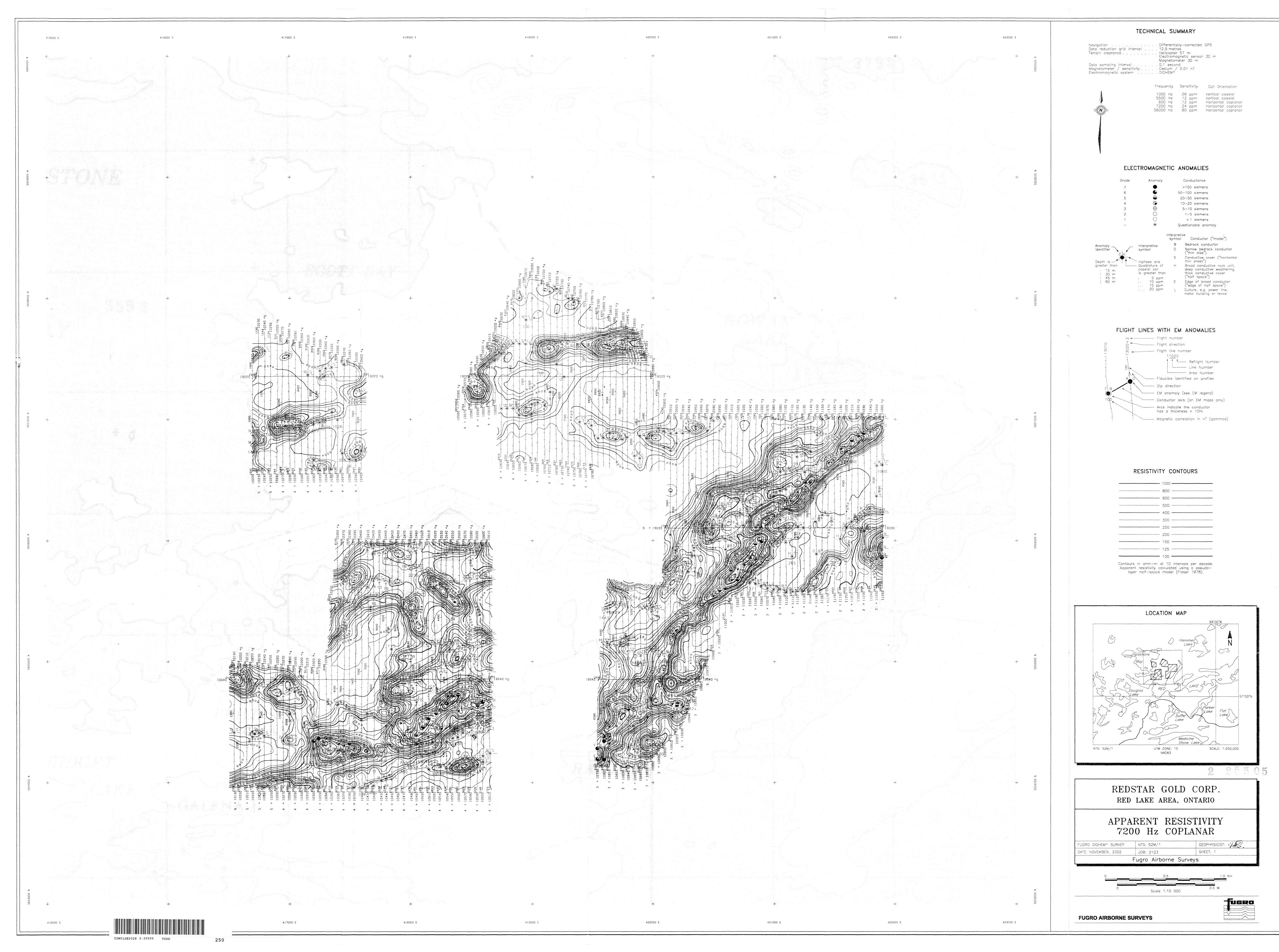

2.25505 AMAG AEM


52M01SE2028 2.25505

210

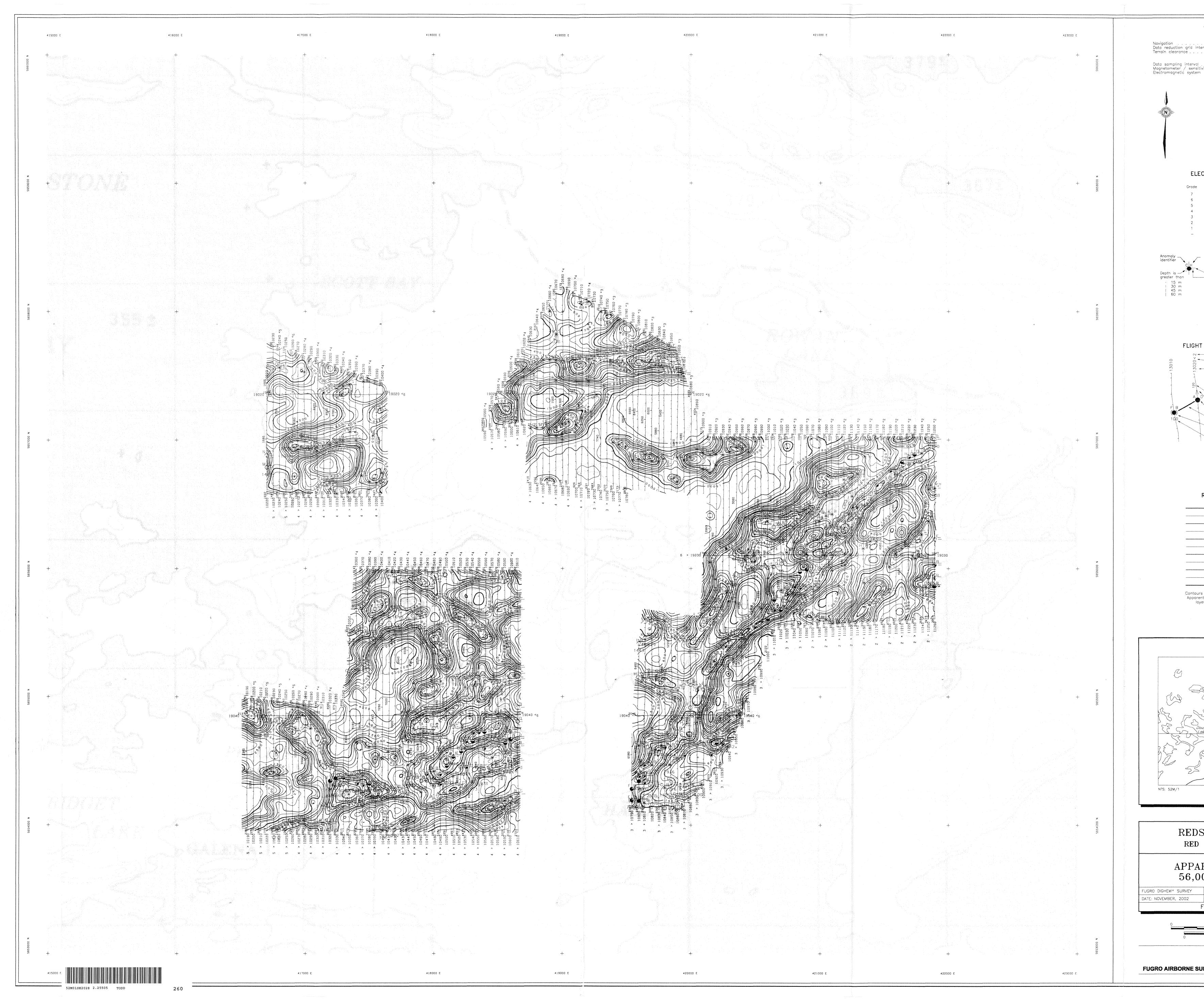


CHN				
	ICAL			
	Differ	metres opter 5	7 m	
	Magn . 0.1 s	etomete econd	er 30 m	or 30 m
	. Cesiu . DIGHE		UINI	
	Frequen	cy S	ensitivity	Coil Orientation
	1000 H 5500 H 900 H 7200 H 56000 H	tz. tz. tz.	06 ppm 12 ppm 12 ppm 24 ppm 60 ppm	Vertical coaxial Horizontal coplanar Horizontal coplanar
An	AGNET omaly O O O O X	50 2 1	Conducto >100 sie -100 sie 0-50 sie 0-20 sie 5-10 sie 1-5 sie <1 sie	ance mens mens mens mens mens mens
		Qu terpretiv		e anomaly
kial reat 10 15	ive and ure of	symbol B D S H E L	Bedrock Narrow ("thin d Conduct thin she Broad co deep co thick co ("half s Edge of ("edge Culture,	ive cover ("horizontal eet") conductive rock unit, onductive weathering, onductive cover
IES	- Flight - Flight - Flight 1 - Fiducic - Dip dir	number directio line nu 1020 t t s iden rection	n — Reflig — Line — Area tified on (see EM	ALIES ht Number Number profiles legend) M maps only)


		 • •	• •		. 5	500	nT
		 • •	• •		. 1	00	nT
		 				20	nT
adaronan takan kata kata Manaka ing Kata	-arabamintaria utamamatrika	 				10	nT
		 		• mc	igne	tic I	ow
lination within lination within							

				······································
TECHNICAL S	SUMMARY			
terval Differe	netres			
tivity0.1 se	tometer 30 m econd n / 0.01 nT	30 m		An and a second second second second second second second second second second second second second second seco
m DIGHEN	√ ×	Coil Orientation		and and and and and and and and and and
		Vertical coaxial Vertical coaxial Horizontal coplanar Horizontal coplanar Horizontal coplanar		and the second second second second second second second second second second second second second second secon
7200 H. 56000 H.	z .24 ppm z .60 ppm	Horizontal coplanar Horizontal coplanar		
				and the second second second second second second second second second second second second second second secon
ECTROMAGNETI	C ANOMALII	ES		
Anomaly	Conductanc >100_sieme			
• •	50-100 siem 20-50 siem 10-20 siem	ens		
€ ⊕ ○ ○ *	5-10 siem 1-5 siem < 1 siem	ens		
Int	Questionable of	·		
_ Interpretive symbol	B Bedrock c	drock conductor		
Inphase and Quadrature of coaxial coil	thin sheet H Broad con deep cond	ductive rock unit, ductive weathering,		
is greater than . 5 ppm 10 ppm 15 ppm	("half spa E Edge of b ("edge of	proad conductor half space")		
· 20 ppm	L Culture, e. metal buili	.g. power line, ding or fence		
+				
IT LINES WITH		ALIES		
Flight c	firection ine number 020			
D Fiducial Dip dire	s identified on p			
Conduc	omaly (see EM le tor axis (on EM dicate the condu	maps only)		
has a	thickness > 10m c correlation in	1		
ED VERTICAL	GRADIENT C	CONTOURS		
		10.0 nT/metre 2.0 nT/metre		
		0.4 nT/metre		
		0.2 nT/metre		
-18				
		1999 - 1999		
LOCATION	I MAP	94°00'W		
(Hammell	A		
Pipestone	Loke			
Bay Da				
Douglas RED	LAKE <	2 geo		
Lake 2 1		Parker	1°00'N	
B (S) S	Suffel Loke))Lake Flat Lake		
Jogg	Medicine Stone Lake			
UTM ZONE NAD83	: 15	SCALE: 1:250,000		
STAR GO	OLD CC	DRP.		
LAKE ARE	EA, ONTA	RIO		
CULATED				
NTS: 52M/1		ENT		
JOB: 2123 Fugro Airborn	St	неет: 1		
0.5		1.0 Km		
Scale 1:10) 000	0.5 Mi		
			RO	
URVEYS				
		n an an an an an an an an an an an an an		

#	ę
TECHNICAL SUMMARY	
terval Differentially-corrected GPS terval	
Magnetometer 30 m 	
FrequencySensitivityCoil Orientation1000 Hz.06 ppmVertical coaxial5500 Hz.12 ppmVertical coaxial900 Hz.12 ppmHorizontal coplanar7200 Hz.24 ppmHorizontal coplanar56000 Hz.60 ppmHorizontal coplanar	
Anomaly Conductance >100 siemens 50–100 siemens 20–50 siemens 10–20 siemens 5–10 siemens 1–5 siemens < < < < < < < <	
Flight number Flight direction Flight direction Flight line number 11020 Line Number Area Number Fiducials identified on profiles Dip direction EM anomaly (see EM legend) Conductor axis (on EM maps only) Arcs indicate the conductor has a thickness > 10m Magnetic correlation in nT (gammas)	
Decention map 9'0'' Image: Construction of the state of the st	
STAR GOLD CORP. LAKE AREA, ONTARIO MAGNETIC ANOMALIES NTS: 52M/1 GEOPHYSICIST: CO JOB: 2123 SHEET: 1 Fugro Airborne Surveys	
0.5 Mi Scale 1:10 000 URVEYS	



TECHNICAL	. SUMMA	RY			
terval	icopter 57 m stromagnetic gnetometer 3 second ium / 0.01	n sensor 30 m			
Frequ	ency Sensi	itivity	Coil Orier	ntation	
5500 900 7200	Hz .06 Hz .12 Hz .24 Hz .60	թթm թթm թթm թթm	Vertical co Vertical co Horizontal Horizontal Horizontal	axial coplanar coplanar	
ECTROMAGNE	TIC ANO	MALIE	S		
Anomaly	>10 50-10 20-5 10-2 5-1 1-	nductance 10 siemer 10 siemer 20 siemer 20 siemer 25 siemer 1 siemer 20 ander an	ns ns ns ns ns ns		
	Interpretive symbol	Conducto	or ("model"))	

		symbol	Conductor ("model")
Interpretive symbol		В	Bedrock conductor
		D	Narrow bedrock conducto ("thin dike")
Inpt	nase and	S	Conductive cover ("horizo thin sheet")
— Qua coa	 Quadrature of coaxial coil is greater than 		Broad conductive rock u deep conductive weather thick conductive cover
	5 ppm		("half space")
• •	10 ppm 15 ppm	E	Edge of broad conductor ("edge of half space")
••••	20 ppm	L	Culture, e.g. power line, metal building or fence

	Flight number
No balance any device the spectrum of all and shall be	Flight direction
	Flight line number
	1 1020
	Line Number Area Number
	Fiducials identified on profiles
× /	Dip direction
	EM anomaly (see EM legend)
	Conductor axis (on EM maps only)
	Arcs indicate the conductor has a thickness > 10m
	Magnetic correlation in nT (gammas)

	1000	••••••••••••••••••••••••••••••••••••••
1.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	800	
	600	
	500	
	400	
	300	
	250	
, 1994, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1	200	and a second strange of the second strange o
	150	
	125	
	100	

TECHNICAL SUMMARY	
 Differentially-corrected GPS 12.5 metres Helicopter 57 m Electromagnetic sensor 30 m Magnetometer 30 m Second tivity Cesium / 0.01 nT DICHEM* 	and a balance of the second and the second and the second and the second and the second and the second and the
Frequency Sensitivity Coil Orientation 1000 Hz .06 ppm Vertical coaxial 5500 Hz .12 ppm Vertical coaxial 900 Hz .12 ppm Horizontal coplanar 7200 Hz .24 ppm Horizontal coplanar 56000 Hz .60 ppm Horizontal coplanar	
ECTROMAGNETIC ANOMALIES Anomaly Conductance > 100 siemens Co-50 siemens Cuestionable anomoly Interpretive symbol Donductive could conductor ('thin dike') Soconductive could conductor ('thin sheet') Sopp Conductive could conductor ('thin sheet') Conductive could conductor ('edge of brid space')	
Fiducials identified on profiles Dip direction EM anomaly (see EM legend) Conductor axis (on EM maps only) Arcs indicate the conductor has a thickness > 10m Magnetic correlation in nT (gammas) RESISTIVITY CONTOURS 1000 800 600 500 400	
300 250 200 150 125 100 rs in ohm-m at 10 intervals per decade. ent resistivity calculated using a pseudo- yer half-space model (Fraser 1978).	
DCATION MAP 94'00'W Hammel Image: Comparison of the compari	
2.25505 STAR GOLD CORP. LAKE AREA, ONTARIO RENT RESISTIVITY 000 Hz COPLANAR	
NTS: 52M/1 GEOPHYSICIST: JOB: 2123 SHEET: 1 Fugro Airborne Surveys 0.5 1.0 Km 0.5 Mi Scale 1:10 000	
URVEYS	