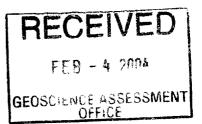


ASSESMENT WORK REPORT of work done on

PIPESTONE WEST AREA


RED LAKE MINING DIVISION, NW ONTARIO

for

REDSTAR GOLD CORPORATION

Prepared By Bob Singh Rob Falls Redstar Gold Corporation

December 2003

52M01SE2035 2.27190

010

TABLE	OF CO	DNTENTS

LIST OF FIGURES	2
LIST OF TABLES	3
LIST OF APPENDICIES	<u>3</u>
1.0 Introduction and Terms of Reference	<u> 4</u>
1.0 Introduction and Terms of Reference	4
2.0 PREVIOUS WORK	7
3.0 PHYSIOGRAPHY	8
4.0 REGIONAL GEOLOGY	8
4.1 Stratigraphy	8
4.2 Regional Structure	
4.3 Metamorphism	9
4.4 Hydrothermal Alteration	10
4.5 Red Lake Gold Deposits	10
5.0 Property Geology	12
5.1 Introduction	12
5.2 Geology	12
5.3 Structural Geology	16
5.4 Alteration and Mineralization	21
6.0 Conclusions and Recommendations:	. 22
6.0 References	23

LIST OF FIGURES

Table 1. Property description3Error! Bookmark not definTable 2. Historical Work7Error! Bookmark not definTable 3. Rock types12Error! Bookmark not definAPPENDIX I- BIRON BAY PROPERTY AGREEMENT24 Error! Bookmark	ned. ned.
defined.	_
APPENDIX II - RUBICON MINERALS PROPERTY AGREEMENT 25 Eri	ror!
Bookmark not defined.	
APPENDIX III - Sample Descriptions 26 Error! Bookmark not defin	1ed.
APPENDIX IV – Assay Certificates 27 Error! Bookmark not defin	1ed.
Figure 1. Property Location Map	5
Figure 2. Claim Map	
Figure 3. Geology of the Red Lake greenstone belt, showing critical age determination	IS
of volcanic and plutonic rocks (M. Sanborn-Barrie and T. Skulski, GSC, western	
Superior NATMAP program1997-2002)	. 11
Figure 6. Folding in Iron Formations	15
Figure 9. Foliation measurements - Stereonet	
Figure 7. Fold closure at 991 showing (Area 4)	
Figure 8. "Chevron" style folding in Felsic (light colored bands) and Iron Formation	
(dark colored bands).	18
Figure 9. Folding in Iron Formations is often unpredictable	
Figure 10 - Photograph of re-folded fold defined by magnetite horizon within felsic	
• • • •	20
volcanic unit	20

Figure 11 - Photograph showing transposed breccia zone with strong iron-oxide staining
from main 991 outcrop20

LIST OF TABLES

Table 1.	Property description	4
Table 2.	Historical Work	7
Table 3.	Rock types1	3

LIST OF APPENDICIES

APPENDIX I - BIRON BAY PROPERTY AGREEMENT	
APPENDIX II - RUBICON MINERALS PROPERTY AGREEMENT	
APPENDIX III - Sample Descriptions	
APPENDIX IV – Assay Certificates	

1.0 Introduction and Terms of Reference

During the Summer of 2003, Redstar Gold Corporation undertook a property mapping and sampling program on certain properties on the western side of Pipestone Bay in Red Lake, ON. The properties consist of the Biron Bay Property, and portions of the Pipestone North and Pipstone South Properties collectively referred to as the Pipestone West Properties ("The Property") (Figure 1). The following table summarizes each property:

Property	Туре	Size	Description
Biron Bay	Patented	33 patented	Acquired in 2003 from Biron Bay
	mining	claims	Resources, and included in an underlying
	claims	totaling	option agreement with Rubicon Minerals
		666.7 Ha	Corporation. This report covers the west
			side of Pipestone Bay (23 claims)
Pipestone North	Unpatented	9	Acquired from Rubicon Minerals
	Mining	unpatended	Corporation in 2002. This property
	Claims	claims	includes three claims staked by Redstar
		totaling	Gold Corporation in 2003. This report
		575.20 Ha.	covers CLAIM # KRL1239679 (Figure
			2)
Pipestone South	Unpatented	15	Acquired from Rubicon Minerals
	Mining	unpatended	Corporation in 2002. This report covers
	Claims	claims	claim numbers: KRL1239677, and
		totaling 954	KRL1239678 (Figure 2)
		Ha.	

Table 1. Property description

(See figure 2 for claim map)

See Appendix I & II for property agreements.

The property is accessed via the Pine Ridge Road & McIntosh Roads as well as by boat through Pipestone Bay of Red Lake. (Figure 1) An access trail was established by, Redstar, from the McIntosh road to facilitate mechanical stripping and sampling during July 2003.

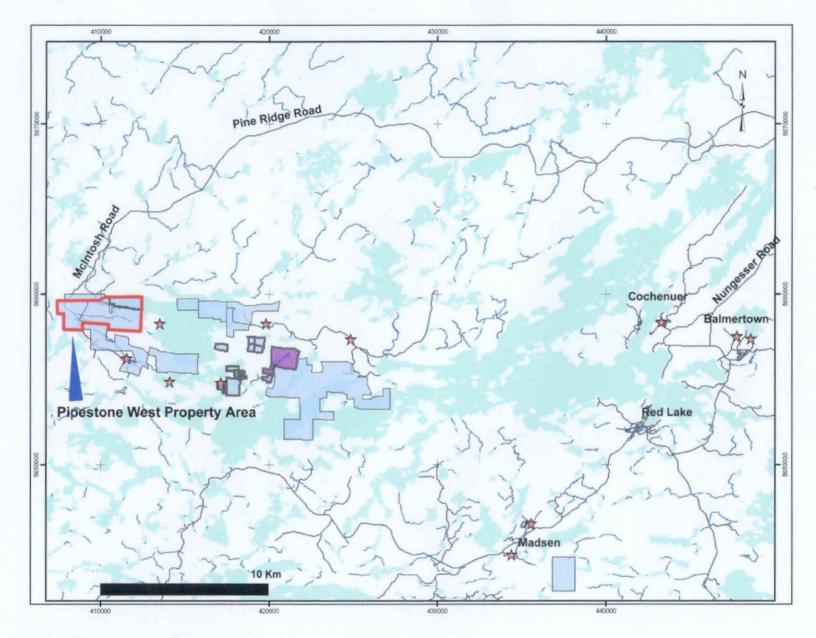


Figure 1. Property Location Map

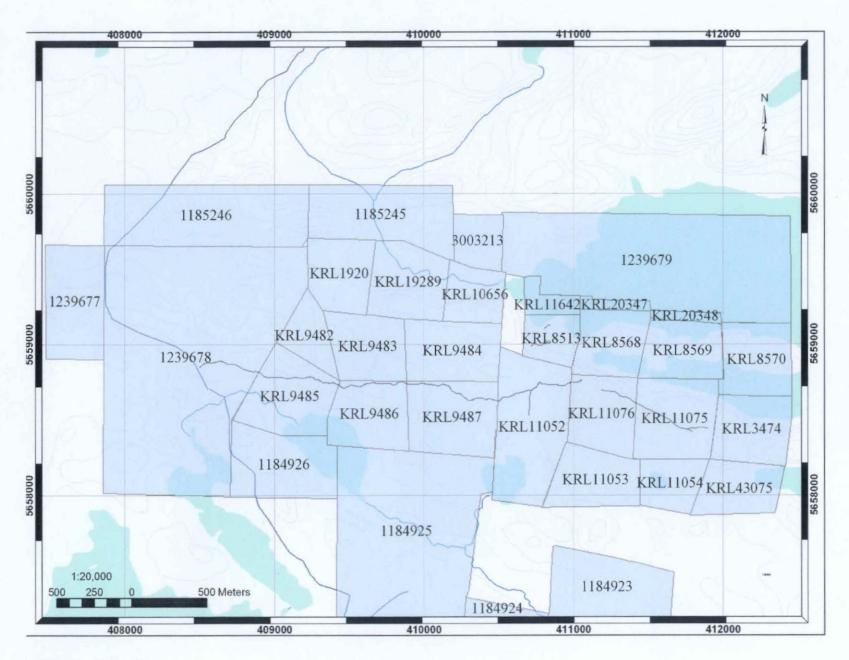


Figure 2. Claim Map

Between June 1, 2003 and September 15, 2003 A total of 92 man-days were spent on the property collecting geological samples, grid cutting, and mapping. The property was mapped by Geologists Rob Falls, Mike Allen, Bob Singh, Chris Lee of SRK consultants and prospector Mark Ralph. Line cutting was contracted to Top-Notch exploration in Red Lake ON.

2.0 PREVIOUS WORK

The property had been prospected during the Red Lake Gold Rush during the 1920's and 1930's. A number of shallow pits and trenches were excavated, however no significant gold deposits were discovered at this time. Since the 1930's the properties have seen limited exploration for gold and base metal mineralization. The Ontario Dept. of Mines has mapped and compiled information on the property area at 1:12000 (1 inch to 1 mile) in 1962. The following table summarizes historical work on the properties:

Date	Comp	any	Work
PROPERTY Pipestone North, CLAIM KRL1239679		, CLAIM KRL1239679	
2003	Winter		Grid Line cutting and IP survey totaling 6Km
2002 -	Redsta	ar Gold	Prospecting and sampling, discover of the 991
Summer	Corpo	ration	Showing with significant gold in grab samples (up
			to 22.7 g/t Au).
2001-2002	Rubic	on Minerals	airborne magnetic survey (continuous sampling
	Corp.		along 50 m spaced lines);
Pre-2001	Na		Evidence in the field exists in the form of
			overgrown shallow pits and trenches. One shallow
			< 10m, shaft has been located on the claim. The
			work was most likely completed during the 1950-
			1970's. No evidence of this work exists in the
			public domain.
PROPERTY	ζ	Pipestone South	, CLAIMS KRL1239677 & 1239678
1969	Coche	enour	geological mapping and soil sampling (1150
	Explo	rations Ltd.	samples);
			ground EM survey
1966	66 Cochenour		drilling, 3 holes (111 m)
Explorations Ltd.		rations Ltd.	
PROPERTY	ł	Biron Bay Prop	erty (all claims)
Unknown			Evidence in the field suggest diamond drilling and

		trenching in areas other than stated in public domain data. Saw-cut channel samples have also been found on the property with no known reference in the literature.
1971	Biron Bay Gold Mines Ltd.	Geophysics, EM surveys (7 miles)
1958	Biron Bay Gold Mines	Diamond Drilling, one hole (314 feet)
1946	Biron Bay Gold Mines Ltd.	Geology summary, sampling of old pits and trenches, (total number of samples not reported)
1945	Ontario Dept. Mines	Geological Mapping and report.

3.0 PHYSIOGRAPHY

Physiography and topography are typical of glaciated Precambrian areas. Dominant landforms are rounded rocky ridges and hills, interspersed with low ground. The hills and ridges are generally elongated parallel to the strike direction of the underlying bedrock. The property has a fairly steep northern slope into Biron Bay, with elevation changes of 40m over a distance of 150m. Vegitation on the property consists mostly primary forest.

4.0 REGIONAL GEOLOGY

4.1 Stratigraphy

The Red Lake gold camp is situated in the Red Lake greenstone belt, an accumulation of Archean-age metavolcanic, metasedimentary and intrusive rocks comprising a portion of the Uchi Province of the Canadian Precambrian Shield. (Figure 3.)

The Red Lake district is underlain by Mesoarchean rocks that have been subdivided into three assemblages (Sandborn-Barrie *et al.*, 1999): Balmer, Ball and Bruce Channel. Neoarchean strata of the 2.75-2.73 Ga. Confederation assemblage overlie these older assemblages. The contact between Balmer and Confederation, exposed in a number of localities, thus represents a 200 Ma time span. Both Meso- and Neoarchean sequences are intruded by diorite to granodiorite stocks such as the Dome stock which has been dated at 2718 + 1 Ma.

Balmer assemblage rocks host all of the major gold mines in the camp but it is important to note that 1.6 M. ounces of gold has been extracted from intrusive hosted deposits. The Balmer assemblage consists of mafic to ultramafic flows (including komatiites) and intrusives, minor felsic and interflow sedimentary rock types. Age dates from Balmer assemblage felsic rocks range from 2992 to 2964 Ma. (Corfu and Andrews, 1987).

Ball assemblage rocks underlie much of the western part of the district and consist of ultramafic to mafic flows, intermediate volcaniclastics and massive to spherulitic rhyolites. Chemical sedimentary rocks (iron formations) also characterize Ball assemblage rocks and include stromatolites (Hofmann *et al.*, 1985). The latter are bracketed by felsic rocks that are dated between 2940 Ma and 2925 Ma. Unlike the Balmer assemblage, the Ball is dominated by Felsic.

Bruce Channel assemblage rocks, as currently defined, are confined to the eastern part of the belt and comprise intermediate volcaniclastics and clastic rocks (2894 +/- 1.5 Ma). A distinctive magnetite bearing iron formation occurs at the top of the assemblage and forms a key marker horizon.

Confederation rocks comprise intermediate to felsic flows, volcaniclastic and metasedimentary rocks. Age dates for this assemblage range from 2748 + 15 Ma to 2733 + 100 Ma.

Granitoid rocks were intruded in three main episodes:

- 1) The 2734 +/- 2Ma Douglas Lake pluton, the 2731 +/- 3Ma (Little Vermilion Lake batholith) and 2729 +/- 1.5 Ma Red Crest stock.
- 2) The 2717 +/-2 Ma Hammell Lake pluton, The McKenzie Island stock (2720 +/-2Ma), the Dome Stock 2718 +/-1Ma, the 2720 +7/-5 Ma Abino granodiorite and late QFP dykes at the Campbell Mine, dated at 2714 +/-4 Ma.
- 3) Intrusion of the Killala Kspar megacrystic Killala-Baird granodiorite at 2704 +/- 1.5 Ma, the 2699 Walsh Lake pluton and a 2699 +-4Ma dyke at the Madsen Mine.

4.2 Regional Structure

At least two major deformation events have affected the rocks of the belt resulting in the generation of type 2 interference fold structures on all scales. Overall strain in the belt is low, however, local high strain zones do occur, typically in areas of strong alteration with locally associated gold mineralization. Previous workers identified five major shear or deformation zones within which major gold deposits of the camp occur. Recent work (Sandborn-Barrie *et al., op. cit)* has questioned the validity and usefulness of the deformation zone concept in the camp.

4.3 Metamorphism

Supracrustal rocks in the area have been regionally metamorphosed to greenschist facies with higher-grade contact metamorphic aureoles around the major felsic intrusions. No

genetic or spatial relationship between regional metamorphic facies and gold deposition has been established.

4.4 Hydrothermal Alteration

A pervasive and often intense carbonate hydrothermal alteration event is superimposed on the deformation zones and appears to have had its greatest affect on mafic and ultramafic rocks. Primary minerals of the altered rocks have been converted to quartz, carbonate, epidote, plagioclase, chlorite and sericite (fuchsite and talc in the ultramafics).

4.5 Red Lake Gold Deposits

Gold occurs in the free state or with pyrite, pyrrhotite and arsenopyrite and lesser amounts of magnetite, chalcopyrite, sphalerite, galena and sulph-arsenides in quartzankerite and/or 'cherty' quartz veins, stockworks, lenses, stringers and silicified zones. In rare instances, scheelite is reported (Ferguson, 1966).

Silicification and carbonatization, together with very anomalous K-enrichment and Na + Ca (minor Mg)-depletion, occur in the alteration aureoles surrounding ore zones (Andrews and Wallace, op. cit.). One important aspect, particularly with respect to exploration, is the presence of geochemically elevated Au and As in the alteration aureoles (Durocher, 1983).

Andrews and Wallace (1983) point out that most of the productive areas of the Red Lake camp are underlain by tholeiitic to komatiitic mafic and ultramafic volcanics, and that past and present production zones occur within highly altered metavolcanics at or near the stratigraphic top of the Balmer sequence.

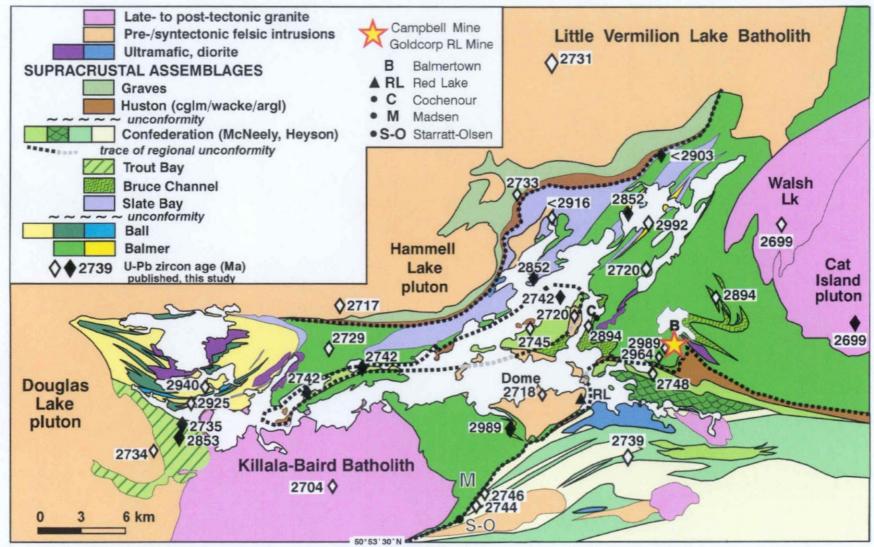


Figure 3. Geology of the Red Lake greenstone belt, showing critical age determinations of volcanic and plutonic rocks (M. Sanborn-Barrie and T. Skulski, GSC, western Superior NATMAP program1997-2002).

5.0 Property Geology

5.1 Introduction

In July 2003, shortly after Redstar acquired the Property, an exploration plan was established to create a geological map of the property at 1:2000 scale. The property was also prospected and sampled. The goal of this program was to locate historical gold showings and find new mineralization. 28 line Km of grid were cut on the property to facilitate geological mapping and sampling. The grid was cut at 100m line spacing over the eastern portion of the property and 200m line spacing on the western portion. An existing grid cut by Redstar in the winter of 2003 was used to map claim KRL1239679. (Figure 4).

In addition to Geological mapping, Chris Lee of SRK consultants in Vancouver, was contracted to create a structural interpretation of the property by analyzing aero-magnetic data and field relationships. Mr. Lee spent a total of 5 days creating a detailed structural interpretation of the property.

A large scale mechanical stripping and sampling program was initiated during this phase of mapping (see Redstar assessment report, 2003 for details on this program)

To date, the results of this phase of work have been very encouraging. The work led to the discovery of several new showings as well as favorable geology for discovering more mineralization. Geological mapping was very detailed and has provided Redstar with a good understanding of the regional setting in the area as well as created drill targets for a winter 2004 drill program.

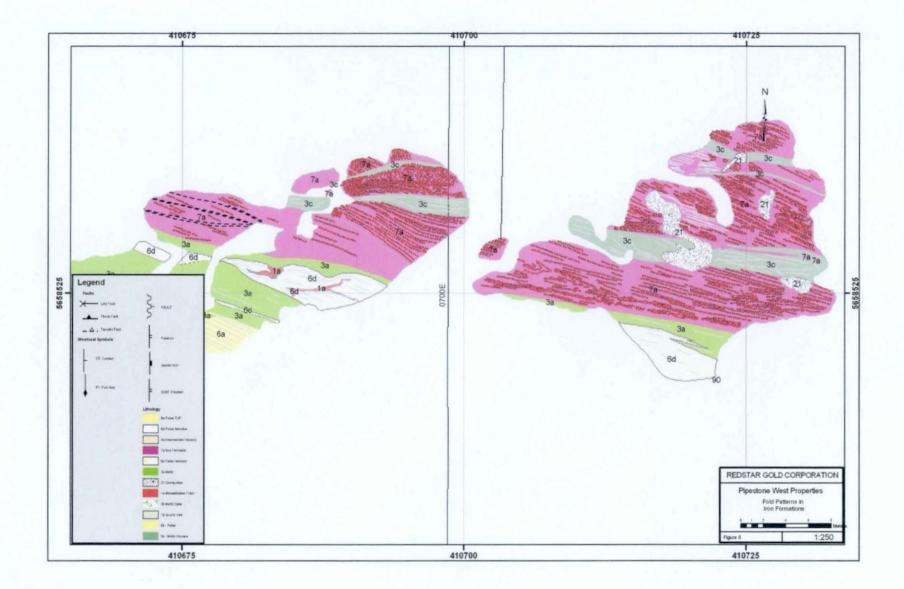
5.2 Geology

The property area is underlain primarily by quartz and feldspar crystal tuffs and/or flows, Mafic volcanics and lesser ultramafic volcanic rocks. (Figure 5). Foliation and strike of units is generally NW oriented to E-W in some areas. The units tend to be folded with fold axis plunging north to north-westerly (Lee, 2003), iron formation units tend to show more chaotic folding and generally do not reflect the regional trend. On the outcrop scale, two penetrative fabrics have been identified (S1 and S2), with the S1 fabric being the most dominant. Due the the tight isoclinal nature of the F1 folds and subsequent transposition of this fabric into the S2 direction, the S1 and S2 fabrics are sub-parallel and often difficult to distinguish. Structurally, the property area lies with a single structural domain, that is the rocks have been affected by the same regional events. Geologically, the property can be sub-divided into four areas based upon the occurrence of rock units.(Table 3). Area 1 located west of Line 0600E and south of 9600N is underlain primarily by crystal bearing (quartz and feldspar) Felsic rocks with minor mafic

and iron formation units. Area 2, located east of Line 0600E and south of BL8600N is underlain primarily by apheric Felsic units with mafic and minor iron formation units. And minor ultramafic units. Area3, located north of BL8600N, east of 0900E and south of 9600N is underlain primarily by fine grained apheric Felsic and coarse grained mafic units with very minor iron formations. Area4, located at the northern end of the property north of 9600N, consists primarily of Felsic volcanic rocks and ultramafic rocks. (Figure 5)

(Figure 5) Area1: This area comprises much of the western portion of the property area. Rock in this area are dominantly quartz and feldspar (QF) bearing crystal tuffs and intrusive rocks. In outcrop, it is often difficult to distinguish between tuff, flow and intrusive units as the tuffaceous units do not contain lithic fragments. In some areas such as L9800E, 8200N on Figure 5, a contact relationship has been clearly observed between tuff and intrusive units. Interbedded within the QF units are a series of iron formations. The iron formations tend to have folded contacts with the QF units and are internally folded. At times the units are chaotically folded (Figure 6). Three distinct "limbs" of iron formation are noted crossing this domain. Minor mafic units, generally fine to medium grained intrusives have been observed in contact with Felsic and iron formation units. The mafics tend to be intrusive in nature with many being sills or dykes. One possible mafic flow units is noted at L9200E, 8200N (Figure 5).

Area2: This area comprises much of the eastern portion of the property area. Rocks in this area are dominantly apheric- biotitic Felsic tuffs and/ or flows and instrusives. The overall absence of QF bearing felsic units is remarkable in this area, suggesting a Felsic volcanic center further to the west. Minor amounts of Iron formation are interbedded with the Felsic units as well as occasional coarse QFP dykes and sills and mafic dykes and sills.


Area3: This area comprises much of the northern portion of the property area. Rocks in this area are dominantly apheric – biotitic Felsic and instrusive mafic rocks. The overall percentage of mafic rocks is significantly higher in this domain. Iron formations still occur in this area in minor amounts.

Area4: This area comprises the northern part of the property. This area is underlain by both Felsic volcanic/volcaniclastic rocks and ultramafic rocks. The ultramafic rocks are strongly magnetic, folded and are coincident with aero-magnetic high anomalies. Felsic rocks in the area are generally apheric to weakly feldspar pheric. In areas of mineralization, the Felsic rocks tend to be brecciated. (Figure 5.)

Rock Unit	Description	
6b	Felsic Volcanic Undifferentiated:	
	Fine grained generally apheric to weakly feldspar pheric Felsic tuff or	
	flow.	
6c	QFP	
	Medium to coarse grained quartz and feldspar bearing Felsic intrusive or	

Table 3. Rock types

	flow. Quartz eyes range from 1mm up to 4mm in size. Generally very equigranular with subhedral to euhedral crystals.
6t	Felsic Volcanic Fine to coarse grained Felsic volcanic to volcaniclastic unit. Generally appears tuffaceous with subhedral to broken phenocrysts of quartz and feldspar. Rare bedded occurances with fine mm to 10 cm scale beds.
5a	Mafic Volcanics. Fine to medium grained, generally dykes or sills with occasional flow units.
7f	Iron Formation Magnetite to cherty iron formations. Some areas are sulphide replaced with up to 25% pyrite, pyrrhotite and occasional chalcopyrite. Iron formations are chaotically folded and thinly bedded.
10p	Ultramafic Fine to medium grained ultramafic intrusive or flow. Generally serpentinized and strongly magnetic.

5.3 Structural Geology

Property Scale structure:

The property area has been influenced by both D1 and D2 regional deformation events (Lee, 2003). The D1 event has a penetrative S1 foliation and is a result of SW directed thrusting creating tight isoclinal folding. D2 has a weak penetrative fabric in the property area and is a result of dextral-oblique thrust re-activation and associated 'z' shaped folding (Lee, 2003). Detailed interpretation of aeromagnetic data collected by Rubicon Minerals Corp. in 2001 has outlined several regional scale thrust faults as interpreted by Lee, 2003. One of these regional structures is located in Biron Bay and is interpreted to be a deep crustal feature (Lee, 2003). (Figure 5). The dominant foliation direction on the property is : 293 / 64 N. (Figure 9)

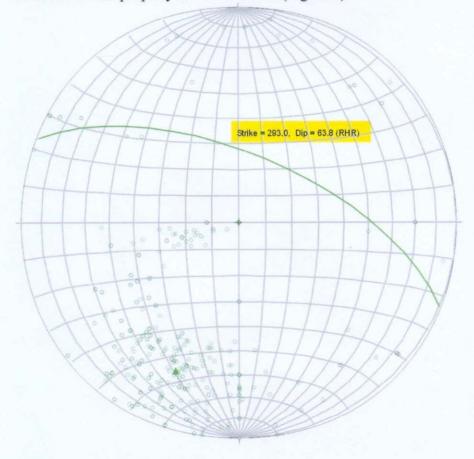


Figure 9. Foliation measurements - Stereonet

Folding in Area 4, as determined by bedding cleavage relationships is, plunges towards the NW. This fold hinge is sub-parallel to the dominant foliation direction in this area. Opposing bedding cleavage directions at confusion point and the 991 showing indicate a fold closure to the east. (Figure 7).

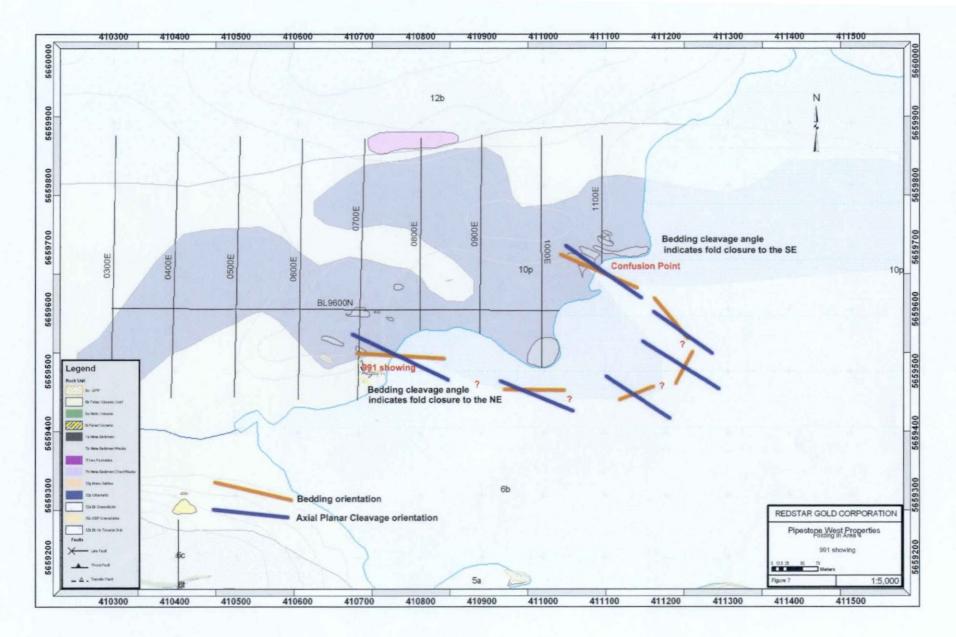


Figure 7. Fold closure at 991 showing (Area 4)

Outcrop scale structure:

Folding and faulting on the outcrop scale can vary greatly from outcrop to outcrop. Faulting is generally observed as minor offsets (2-3cm) in foliation planes. Large-scale faults > 2m offset are rare.

Folding can be highly variable depending upon rocktype with the most common fold styles being isoclinal. Folds are observed in both lithological contacts and foliation fabrics:

Litholigical fold contacts: Folds with amplitude of up to 5m have been observed in outcrop. The contacts tend to be isolcinally folded with fold plunges to the NW (Lee, 2003). A stretch lineation occurs on the foliation plane and is generally plunging 51 degrees towards 328 (Lee, 2003).

Figure 8. "Chevron" style folding in Felsic (light colored bands) and Iron Formation (dark colored bands).

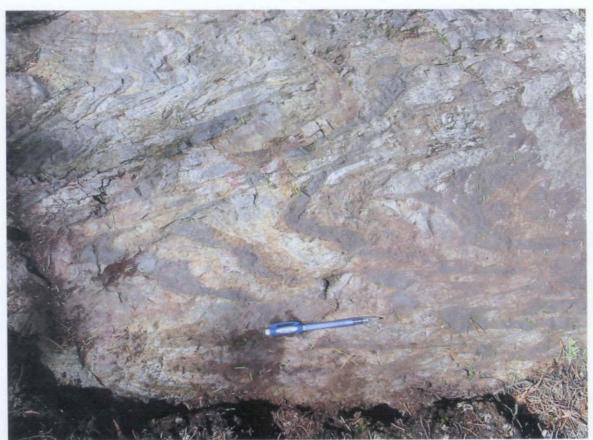


Figure 9. Folding in Iron Formations is often unpredictable

Figure 10 - Photograph of re-folded fold defined by magnetite horizon within felsic volcanic unit.

Two magnetite layers close off in isoclinal fold termination, out of view to the lower right. (Lee, 2003)

Figure 11 - Photograph showing transposed breccia zone with strong iron-oxide staining from main 991 outcrop.

Note minor folding (S2 parallel) along breccia contacts with relatively intact rock. (Lee, 2003)

5.4 Alteration and Mineralization

In general, the rocks show weak to strong regional biotite alteration. Locally, alteration consists of strong silicification, sericite, biotite and chlorite alteration. Mineralization consists of pyrite, pyrrhotite, chalcopyrite, sphalerite, galena, scheelite, native copper and visible gold in quartz veins, sulphidized iron formations and mineralized wall rock at vein margins.

Several new gold showings have been discovered on the property, some of these were found in areas of existing pits and trenches excavated during the Red Lake Gold rush. Table 4 summarizes the characteristic of each showing. (see Figure 12 for sample locations).

Showing Name	Description			
L1	Base metal associated sulphide quartz vein within Felsic volcanic. Values			
	up to 19.25 g/t Au over 0.60m. (Redstar Assessment Report, 2003). The			
	vein is up to 2 meters wide in places and can contain up to 6 % sphalerite,			
	1-2% chalcopyrite and minor tungsten most likely in the form of Scheelite.			
	The vein is traced for approximately 75m in this showing.			
L2	Base metal associated sulphide quartz vein within Felsic volcanics. Values			
	up to 22.10 g/t Au over 0.50m (Redstar Assessment Report, 2003). The			
	vein is up to 2.5m wide and contains up to 1% chalcopyrite, with occasional			
	visible gold. This vein is traced for approximately 50 meters in this			
	showing and is the same vein as the L1 showing.			
L3	Sulphide (pyrite) bearing Iron Formation. The zone is up to 1.5m wide and			
	values up to 2.77 g/t Au over 1.0m were obtained from this showing			
	(Redstar Assessment report, 2003)			
L4	Sulphide (pyrite, chalcopyrite) bearing iron formation. The zones are			
	mostly pyritic with up to 2-3 % chalcopyrite locally. The iron formation is			
	in contact with Felsic Volcanic and can be traced along strike for			
	approximately 75m. The best values obtained from sampling was 6.41 g/t			
	Au over 0.5m.			
700 Zone	Sulphidized iron formation in contact with Felsic Volcanic. A sulphide			
	bearing (pyrite, chalcopyrite) quartz vein in the Felsic volcanic returned			
	4.57 g/t in a grab sample. The iron formation did not return any significant			
	gold values.			
Baseline	This showing consists of sulphidized iron formations in contact with Felsic			
	volcanics. Samples of sulphidized (pyrite) quartz veins return values up to			
	8.87 g/t Au in grab samples.			
991	This showing consists of sulphide bearing (pyrite, chalcopyrite) bearing			
	quartz veins within a brecciated felsic volcanic unit. The veins are			
	approximately 20m away from an ultramafic contact which is buried under			

Table 4. Showing names

	overburden. Sample in 2003 returned values up to 4.40 g/t Au over 0.5m.
	With visible gold in several veins.

6.0 Conclusions and Recommendations:

The Pipestone West area is a highly prospective property for gold mineralization. It is the author's opinion, that the property has the potential to host several economically significant gold deposits.

Much of the area requires further geological mapping and sampling, in particular the western portion of the property should be mapped at 1:2000 scale with a 100 meter grid. Prospecting of the Iron Formations is also highly recommended.

The Ledge showings, (L1-L2) should be tested with drilling. These two showings are on a 375m long structure which can be up to 2.5m wide at surface and contains up to 22.10 over 0.5m.

The 991 showing is also a priority drill target. The presense of high grade gold veins with visible gold near a folded ultramatic horizon indicate the potential for mineralization similar to the producing mines of Red Lake.

A phase I drill program should consists of 2500 – 3000m of drilling to adequately test these targets.

6.0 References

Andrews, A. J. and Wallace, H, 1983 - Alteration, Metamorphism and Structural Patterns Associated With Gold Deposits - Preliminary Observations in the Red Lake Area; In The Geology of Gold in Ontario, Ont. Geol. Surv., Misc. paper 110, 278 p.

Corfu, F. and Andrews, A.J. 1987 : Geochronological constraints on the timing of magmatism, deformation and gold mineralization in the Red Lake greenstone belt, northwestern Ontario; Canadian Journal of Earth Sciences, v. 24, p1302-1320.

Durocher, M.E., 1983: The nature of Hydrothermal Alteration Associated with the Madsen and Starratt-Olsen Gold Deposits, Red Lake, Ontario; <u>In</u> The Geology of Gold in Ontario, Ont. Geol. Surv. Misc. Paper 110, A.C. Colvine ed.

Ferguson, S.A. 1966 - Geology of Dome Township, . Ont. Dept. of Mines Geological Report 45

Hofmann, H.J., Thurston, P.C., and Wallace, H. 1985 : Archean stromatolites from the Uchi greenstone belt, north-western Ontario; *in* Evolution of Archean Supracrustal Sequences; Geological Association of Canada, Special Paper 28, p. 125-132.

Lavigne, M.L. 1983: Geological, Geochemical and Sulfur Isotope Investigations of the Gold Mineralization and Sulfide Facies Banded Iron Formation At The Dickenson And Campbell Red Lake Mines, Red Lake Ontario; unpub. MSc Thesis, McMaster University; 324p.

Lee, C.B., 2002. Preliminary structural interpretation of aeromagnetic data and field mapping – Pipestone South Property; Redstar Gold Corporation Internal Report, August 2002, 35p.

Lee, C.B., 2003. Regional Interpretation and Structural Setting of Key Localities in the Pipestone Bay AreaRed Lake, Ontario; Redstar Gold Corporation Internal Report, August 2003, 33p.

Ontario Geological Survey, 1991 - Geology and Gold Mineralization, Red Lake Greenstone Belt, OGS Map P310

Roth G. 1989: Evaluation of Results of Previous Geophysical Surveys, Fisher islands Property, private report for Strathcona Mineral Services Pirie, James, 1977b: Geology of McDonough Tp. District of Kenora, Ontarion: Ontario Geol. Surv., Prelim. Map 1240

_____, 1981: Regional Geological Setting Of Gold Deposits In The Red Lake Area, Northwestern Ontarion. <u>In</u> Genesis Of Archean Gold Deposits Volcanic-Hosted Gold Deposits: Ontario Geol. Surv. Misc. paper 97, PP 71-73

Rigg, D.M. and Helmstaedt, H., 1981: Relations Between Structure And Gold Mineralization In Campbell Red Lake And Dickenson Mines, Red Lake Area, Ontario; <u>in</u> Genesis Of Archean Volcanic-Hosted Gold Deposits, O.G.S. Misc. Paper 97, 111-127.

Riley, R A, 1970 Ball Township; *in summary* of field work, 1970 Ontario Dept of Mines and Northern Affairs, Miscellaneous Paper 43, p. 12-15.

Sanborn-Barrie, M, Skulski, T, Parker, J and Dube, B.: Integrated regional analysis of the Red Lake Greenstone Belt and its mineral deposits, western Superior province, Ontario. GSC Current Research 2000-C18, 16pp.

Seyler, R., 1996 - personal communication

Strathcona Mineral Services Ltd., 1990: Report On Field Work Dorion Island Area, March - April, 1990: private company report for Outokumpu Mines Ltd. with Drill Logs For Holes FT90-1 to FT90-7

Strathcona Mineral Services Ltd., 1989: Report On Field Work February - April, 1989: private company report for Outukumpu Mines Ltd - with Drill logs for Holes FT89-1 To FT89-12

_____, 1988: Report on Field Work, Fisher Islands Property, Fall, 1988: private company report for Outokumpu Mines Ltd. by R. Guttenberg

APPENDIX I - BIRON BAY PROPERTY AGREEMENT

REDSTAR GOLD CORP.

RGTLL

611-675 West Hastings St., Vancouver, B.C. VEB 1N/ Tel: 604.488.0051 Fax: 604.488.0053 www.redstargold.com redstar_resources@hotmail.co 1 TSX Venture Exchange Symbol: RGC

May 14, 2003

Biron Bay Gold Mines Limited C/O - 1 Royal Gate Blvd., Woodbridge, Ontario L4L 8Z7 Attention: Mr. Douglas Dunsmuir

Via Fax: 1-905-264-0702

Letter Agreement to Option Biron Bay Properties, Ball Township, Ontario

Dear Mr. Dunsmuir:

Redstar Gold Corporation ("Redstar") would ike to set out the terms of an option agreement (the "Option") whereby Redstar can acquire a 100% interest in the mineral claims and patented claims (the "Property") hild by Biron Bay Gold Mine Limited and Biron Bay Resources Limited (the "Vendors" in the Ball Township, Red Lake area, Ontario (List of claim numbers attached in Schedule "A"). The terms are as follows:

Exercise of Option

- 1. Redstar can exercise the Option and e rn 100% of the right, title and interest in and to the Property, subject to a net sn elter royalty (NSR), in consideration of the following cash payments and share iss nances:
 - (a) cash payments of \$50,000 to the Vendors as set out below:
 - (i) 515,000 on the date of T: X Venture Exchange approval (the "Approval Date");
 - (ii) \$25,000 on or before the first anniversary of the Approval Date; and
 - (iii) \$10,000 on or before the second anniversary of the Approval Date.
 - (b) 100,000 common shares of Relistar (the "Shares") to be issued to the Vendors as set out below:

RiWord Perfect and Ward Agreements Biron Bay property option, d. c.

- (i) 50,000 Shares within fiv : (5) business days of the Approval Date;
- (ii) 25,000 Shares on or befc re the first anniversary of the Approval Date; and
- (iii) 25,000 Shares on or befc re the second anniversary of the Approval Date.
- 2. Upon payment of the \$50,000 in acco dance with paragraph 1(a) and the issuance of the 100,000 Shares in accordance v ith paragraph 1(b), Redstar will have exercised the Option and have earned 100% of the right, title and interest in and to the Property, subject only to the NSR

Additional Payments

Redstar shall also issue an additional 100,000 Shares to the Vendors upon a decision by the Board of Directors of Redstar to place a n ine on the Property into production. Should a production decision be made prior to the se ond anniversary of the Approval Date, all remaining Shares will be issued to the Vendo's forthwith.

Good Standing

Redstar will be responsible for all costs relating to maintaining the Property in good standing during the term of the Option.

Net Smelter Royalty

Upon exercise of the Option, Redstar would : rant a 1.0% Net Smelter Royalty to the Vendors. Redstar, or its assignee, at any time will have the right to purchase back the 1.0% NSR for \$1,000,000.

Formal Agreement

The parties agree to use their reasonable best effort to complete a formal agreement to include, but not be limited to the above terms. In the event that such contemplated agreement is not completed, this Agreement is nall remain in force and effect.

Please acknowledge your receipt and agreement to the terms of this Letter Agreement by signing below and returning three original covies to us whereupon this will form a binding agreement between the parties. Upor receipt of the executed Letter Agreement,

,

۲

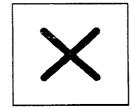
Redstar will undertake to file the Letter Agr ement with the TSX Venture Exchange for approval. As consideration for the grant of this Option by the Vendors to Redstar, the Vendors acknowledge receipt of Redstar's cheque in the amount of \$10.00.

Sincerely,

Doug Fulcher Director Redstar Gold Corporation

Acknowledge and agreed to this 3 day of JUNIVE, 2003

Biron Bay Gold Mines Limited Biron Bay Resources Limited Doublass Duwsmun -Doublins


R:Word Perfect and Word Agreements Biron B y property option. doo

APPENDIX II - RUBICON MINERALS PROPERTY AGREEMENT

. .

7 March 2002

Mr. Steve Todoruk 611 675 West Hastings St. Vancouver, B.C. V6B 1N2

CONFIDENTIAL

Sent via E-Mail

RE: Letter Agreement for West Red Lake Properties Between Redstar Resources Corporation ("Redstar") And Rubicon Minerals Corporation ("Rubicon")

Dear Mr. Todoruk;

We suggest the following revised basic terms for Rubicon to grant to Redstar the exclusive right and option (the "Option") to earn a 51% interest in the Pipestone South, Pipestone North, Baird and Wolf Bay Properties (the "Property", as attached in Schedule A):

1. Grant of Option

In order for Redstar to exercise the Option and earn its 51% interest in the Property, Redstar must, over the four year period comprising the currency of the Option (the "Option Period"), carry out \$2,575,000 in exploration on the Property, issue 500,000 common shares of Redstar (the "Shares") and make cash payments aggregating \$135,000 to Rubicon, and make all cash payments required pursuant to the underlying agreements governing the Property, all as more particularly follows.

2. Work Expenditures

In order to keep the Option in good standing, Redstar shall incur, during the Option Period, not less than \$2,575,000 in exploration expenditures on the Property as follows:

\$450,000 on or before the first anniversary (as a firm and binding commitment). This year one work commitment will cover the assessment requirements for all claims in Schedule A;

\$600,000 on or before the second anniversary; \$650,000 on or before the third anniversary; and \$875,000 i on or before the fourth anniversary.

> Rubicon Minerals Corporation Suite 888, 1100 Melville Street, Vancouver, B.C., Canada V6E 4A6 Tel: 604.623.3333 Fax: 604.623,3355 E-mail: rubicon@rubiconminerals.com

RMX,CDNX

The expenditure requirements in years two, three and four are optional only (but are nonetheless required to keep the Option in good standing) and, accordingly, unlike the \$450,000 expenditure requirement in year one, are not firm and binding commitments of Redstar.

3. Share and Cash Payments

In order to keep the Option in good standing, Redstar must make, during the Option Period, the following share and cash payments to Rubicon:

125,000 Shares and \$15,000 cash, upon CDNX approval to be obtained as soon as practicably possible (it is acknowledged that Redstar has initiated a share roll-back and that all "Shares" would be post-consolidation and issued immediately after the date the consolidation is completed).

125,000 Shares and \$35,000 on or before the first anniversary 125,000 Shares and \$35,000 on or before the second anniversary 125,000 Shares and \$50,000 on on or before the third anniversary

4. Underlying Agreement Cash and Share Payments

In order to keep the Option in good standing, Redstar will be responsible for and, in any event agrees to make, during the Option Period, all underlying cash option payments payable pursuant to the underlying agreements and required thereunder on or before the first anniversary of this Agreement to the underlying owners (the "Underlying Agreements", beingattached as Schedule B of this Agreement). Rubicon will be responsible during the Option Period for making all share payments defined in the Underlying Agreements. The following 2002 cash payments on the Property are all due on or before September 1, 2002 and constitute firm and binding commitments required on the part of Redstar:

PROPERTY	2002 (firm commitment)	2003(optional)	2004(optional)	2005(optional)
Pipestone South	\$12,000	\$25,000	\$50,000	\$10,000 each year after
Pipestone North	\$10,000	\$25,000	\$50,000	\$ 8,000 each year after
Wolf Bay	\$14,000	\$24,000	\$45,000	\$10,000 each year after
Baird	\$0	\$	\$ 6,000	\$ 6,000 each year after
Pipestone East	\$	\$	\$	\$

Rubicon acknowledges that Redstar is desirous of including Rubicon's Pipestone East property under this Agreement as part of the Property. Rubicon will agree to include this property subject to receiving a verbal waiver from third party and, upon receiving such approval and giving Redstar written notice to that effect, the Pipestone East Property will be subject to the terms of this Agreement and Redstar will have the obligation to make any cash option payments required therender to underying owners as contemplated under this paragragh 4. The claims comprising the Pipestone East property are set out in Schedule "C" attached.

Rubicon Minorals Corporation Suite 888, 1100 Melville Street, Vancouver, B.C., Canada V6E 4A6 Tel: 604.623.3333 Fax: 604.623.3355 E-mail: rubicon@rubiconminerals.com

RMX.CDNX

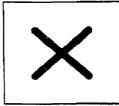
As Operator, Redstar will, during the currency of the Option, be responsible for keeping all of the Property and the Underlying Agreements in good standing.

5. Dropping Claims.

Redstar shall, at any time during the Option Period on or after the first anniversary date, be permitted to drop up to 50% of the claims comprising the Property. To do so, it must provide written notice of its intention to drop the claims to Rubicon who shall then have the right for a period of 60 days to acquire the claims. Redstar further agrees that any dropped claims shall be returned to Rubicon with a minimum of 180 days work filed on them before their next anniversary date.

6. Grant of First Option to Earn an Additional 9% Interest (for a total of 60%)

If Redstar fulfills all of the requirements necessary to exercise the Option and thereby earns a 51% interest in the Property, then Redstar will have a one-time 60 day period to elect by notice in writing to Rubicon whether to exercise an option to earn an additional 9% interest (the "Second Option") by spending an additional \$7,500,000 in work on the Property over the four year period following such election. A Joint Venture will be created at the time that Redstar earns its 51% interest in the Property and the parties will enter into an industry standard joint venture agreement. Redstar shall be the Operator of the Joint Venture. At the creation of the Joint Venture, total deemed expenditures for the purposes of calculating dilution will be \$5,150,000, allocated as to Redstar 51% and Rubicon 49%. Should Redstar exercise the Option and thereafter exercise the Second Option thereby earning an additional 9% interest in the Property, total deemed expenditures will be \$12,650,000, allocated as to Redstar 60% and Rubicon 40%.


7. Third Option to Earn an Additional 10% interest (for a total of 70%)

If Redstar exercises the Second Option and thereby carns an additional 9% interest in the Property, then Redstar, , will have the exclusive right and option (the "Third Option") to increase its interest in the Property by agreeing to pay for all costs on the Property to fund a positive and bankable feasibility study and arranging for all project financing for a mine or mines. The Third Option is subject to approval by Rubicon. For doing so, Redstar will earn an additional 10% interest in the Property for a total interest of 70%.

8. NSR Buy Down

Upon Redstar earning an interest in the Property, Redstar will also earn an equivalent interest in the right of Rubicon to buy down any NSR Royalty granted in the Underlying Agreements attached in Schedule "B" of the Agreement.

Rubicon Minerals Corporation Suite 888, 1100 Melville Street, Vancouver, B.C., Canada V6E 4A6 Tel: 604.623.3333 Fax: 604.623.3355 E-mail: rubicon@rubiconminerals.com

9. Operatorship

Redstar will be the Operator of the project during its entirety. During the Option Period, (including the currency of the First Option, Second Option, and Third Option), Redstar and Rubicon would form a technical committee that would meet on a minimum quarterly basis to ensure Rubicon has technical input on the exploration and development of the Property. Redstar shall be permitted to include administration fees as part of its earn-in requirements. These fees will be as follows:

a) During the exploration stage - 8%

b) During the development stage -3%

c) During the Mining Phase - 1.5%

10. Area of Interest

There shall be a two-kilometer area of interest surrounding the Property as described in Schedule A as at March 7, 2002. Any properties acquired, directly or indirectly by way of staking or third party acquisition, by Redstar or Rubicon during Option Period, except for those indicated in paragraph 4, shall become part of the Property at no cost to the other party and such property will be subject to the terms of this Agreement. After the Option Period, properties acquired in the Area of Interest shall be offered to the non-acquiring party in the joint venture for their share of costs according to their interest. Otherwise, if the non-acquiring party declines an interest, the acquiring party shall obtain a 100% interest in the property and the acquired property would not be subject to the terms of this Agreement.

11. Non-compete Area for Redstar

Redstar shall not compete with Rubicon for mining rights, whether by staking or through third parties in connection with the Heath Property and within one kilometer of the current boundaries of the Advance Red Lake Property, as described in Schedule "D"attached, unless written consent is obtained from Rubicon.

12. Assignment

This Agreement shall inure to the benefit of and be binding upon each party's assigns and successors. In the event that either party wishes to assign or sell its interest in this Agreement or the Property, then each party shall offer the other party the right of first offer on its interest to the other party. Such right to be exercised within 30 days of receiving written notification from the other party of its intention to sell. Either party shall be free to assign its interests to a subsidiary of the party (as defined in the B.C. Company Act).

13. Formal Agreement

Rubican Minerals Corporation Suite 888, 1100 Melville Street, Vancouver, B.C., Canada V6E 4A6 Tel: 601.623.3333 Fax: 604.623.3355 E-mail: rubicon@rubiconminerals.com

The parties agree to use their reasonable best efforts to complete a formal agreement to include, but not be limited to the above terms. In the event that such contemplated agreement is not completed, this Agreement shall remain in force and effect.

14. Confidentiality

The parties agree to keep all information pertaining to this Agreement and all data and information concerning the Property confidential unless required by regulatory or similar related disclosure. Both Rubicon and Redstar agree to provide the other with a minimum of 48 hours to review any news releases pertaining to this Agreement or the Property. Each party shall be permitted to make comments on each release, and the other party agrees to take such comments into account before issuing any release.

15. <u>Reports.</u>

Redstar shall provide monthly summary technical and accounting reports to Rubicon and will provide a detailed technical and accounting roport on a quarterly basis in conjunction with Technical Review committee meetings.

This Agreement is subject to regulatory approval, and Redstar closing its \$600,000 financing within 30 days of CDNX approval of Redstar's share consolidation. The meeting to obtain shareholder approval to the share consolidation is scheduled to take place on or about April 11, 2002 and it is anticipated that CDNX approval will be obtained shortly thereafter.

The first year work program shall include a mutually agreed component of independent structural analysis by an industry-recognized structural consultant(s). Rubicon is not necessarily concerned with operatorship of work on the West Red Lake project but believes a close working relationship regarding the technical approach will benefit both parties.

I hope that the above terms meet with your understanding of our conversations and look forward to forming this new joint venture partnership with Rubicon.

This offer is open for acceptance up to 5 pm EST on March 11th⁴ 2002.

Yours sincerely.

Michael Gray

V.P. Exploration Rubicon Minerals Corporation

Į

Rubicon Minerals Corporation Suite 888, 1100 Melville Streat, Vancouver, B.C., Canada V6E 4A6 Tel: 604.623.3333 Fax: 604.623.3355 E-mail: rubicon@rubiconminerals.com

•

-

Accepted this 10 day of March, 2002

Steve Todoruk Redstar Resources Corporation

.

<u>SCHEDULE B</u>

TO THE LETTER AGREEMENT BETWEEN STEPHEN STARES & JAMES CROCKER AND RUBICON MINERALS CORPORATION ON THE NTS PROPERTY

NET SMELTER RETURNS

The following constitutes the terms and conditions with respect to the calculation and payment of the \pounds % Net Smelter Returns Royalty (the "Royalty") payable in connection with the West Rcd Lake Property (the "Property") should a party become a royalty holder as contemplated by the letter Agreement between Rubicon Minerals Corporation ("Rubicon") and Redstar Resources Corporation ("Redstar"), dated March 7th, 2002 concerning the Property.

Definition of Net Smelter Returns. "Net Smelter Returns" are defined as the gross 1. revenues actually received by the non-royalty Participant (the "Payor") from the sales of any ores, mineral resources or mineral products ("Products") extracted and produced from the Property, less (i) all costs to the Payor of weighing, sampling, determining moisture content and packaging such material and of loading and transporting it to the point of sale, including insurance and intransit security costs; (ii) all smelter costs and all charges and penalties imposed by the smelter, refinery or purchaser; and (iii) ad valorem taxes, severance taxes and governmental royalties and any other taxes, charges or assessments as are imposed upon the production except for applicable federal, state or provincial income taxes. Notwithstanding the foregoing, for purposes of determining the percentage of the royalty payable to the Vendor (the "Payee") on any precious metals produced or sold from the Property, the price attributed to gold or platinum group metals ("PGMs") shall be the price per ounce of gold or PGMs as quoted on the London P.M. fix averaged over the quarter prior to the date of final settlement from the smelter, refinery or other buyer of the gold or PGMs on which the Royalty is to be paid (the "Quoted Price"). For purposes of calculating Net Smelter Returns in the event the Payor elects not to sell any portion of any precious metals extracted and produced from the Property, but instead elects to have the final product of any such precious metals credited to or held for its account with any smelter, refiner or broker, such precious metals shall be deemed to have been sold at the Quoted Price on the day such precious metals are actually credited to or placed in the Payor's account. With respect to any metals other than precious metals extracted and produced from the Property, the price attributed to such other metals shall be calculated based on the relevant London Metal Exchange official settlement quotation (or other generally accepted quotation) averaged over the quarter prior to the date of final settlement for the smelter or refinery or other such purchaser of relevant metals.

2. <u>Certain Characteristics of the Royalty</u>. The Payee's (Royalty holder) interest in the Royalty is a non-participating interest in the Property which entitles the Payee to receive certain payments based upon the production and sale or deemed sale of Products from the Property as provided herein. The Royalty does not: (a) entitle the Payee to direct or control or be consulted in any manner with respect to the timing, nature, extent or any other aspect of exploration, development, production or other operations on the Property; (b) entitle the Payee to grant to third

Rubicon Minorals Corporation Suite 888, 1100 Melville Street, Vancouver, B.C., Canada V6E 4A6 Tel: 604.623.3333 Fax: 604.623.3355 E-mail: rubicon@rubiconminerals.com

RMX.CDNX

SCHEDULE A

To attach to the Option Agreement between Rubicon Minerals and Redstar on the Pipestone North, Pipestone South, Wolf Bay and Baird Properties

Property Achievent				Record of Dates King	in Dire Dates
Pipestone North	KRL 1239679		BALL	25-Jul-00	25-Jul-02
Pipestone North	KRL 1184741	2	HAMMELL LAKE	17-Sep-99	17-Sep-02
Pipestone North	KRL 1184740		HAMMELL LAKE	17-Sep-99	17-Sep-02
Pipestone North	KRL 1185121		BALL	18-May-00	18-May-02
Pipestone North	KRL 1184983	3	HAMMELL LAKE	17-Sep-99	17-Sep-02
Pipestone North	KRL 1184907		BALL	4-Jul-00	4-Jul-02
Pipestone South	KRL 1184924		BALL	17-Feb-00	17-Feb-02
Pipestone South	KRL 1184923	4	BALL	17-Feb-00;	17-Feb-02
Pipestone South	KRL 1184926		BALL	17-Feb-00	17-Feb-02
Pipestone South	KRL 1234037		BALL	18-Jun-99	18-Jun-02
Pipestone South	KRL 1234038		BALL	18-Jun-99	18-Jun-02
Pipestone South	KRL 1234086	(·	BALL	18-Jun-99	18-Jun-02
Pipestone South	KRL 1184925		BALL	17-Feb-00	17-Feb-02
Pipestone South	KRL 1234085		BALL	18-Jun-99	18-Jun-02
Pipestone South	KRL 1184921		BALL	7-Feb-00	7-Feb-02
Pipestone South	KRL 1184918	1	BALL	7-Feb-00	7-Feb-02,
Pipestone South	KRL 1239677		INDIAN HOUSE LAKE	25-Jul-00	25-Jul-02
Pipestone South	KRL 1239678		BALL.	25-Jul-00	25-Jul-02
Pipestone South	KRL 1184919		BALL	10-Feb-00	10-Feb-02
Pipestone South	KRL 1184922		BALL	17-Feb-00	17-Feb-02
Pipestone South	KRL 1184917	[BALL	10-Feb-00	10-Feb-02
Baird	KRL 1234505)	BAIRD	18-Jul-00	18-Jul-02
Baird	KRL 1234504		HEYSON	18-Jul-00	18-Jul-02
Wolf Bay	KRL 1234224		TODD	15-Jun-01	15-Jun-03
Wolf Bay	KRL 1234226		TODD	15-Jun-01	15-Jun-03
Wolf Bay	KRL 1239855		TODD	12-Nov-99	12-Nov-02
Wolf Bay	KRL 1234227		TODD	15-Jun-01	15-Jun-03
Wolf Bay	KRL 1107691		TODD	12-Mar-01	12-Mar-03
Wolf Bay	KRL 1107689		TODD	12-Mar-01	12-Mar-03
Wolf Bay	KRL 1234225		TODD	15-Jun-01	15-Jun-03
Wolf Bay	KRL 1239854		TÖDD	12-Nov-99	12-Nov-02
Wolf Bay	KRL 1239849		TODD	12-Nov-99	12-Nov-02
Wolf Bay	KAL 1239850		TODD	12-Nov-99	12-Nov-02
Wolf Bay	KRL 1239851		TODD	12-Nov-99	12-Nov-02
Wolf Bay	KRL 1239853		TODD	12-Nov-99	12-Nov-02
Wolf Bay	KRL 1239848		TODD	12-Nov-99	12-Nov-02
Wolf Bay	KRL 1185128		TODD	26-Jun-00	26-Jun-02
Wolf Bay	KAL 1185127		TODD	26-Jun-00	26-Jun-03
Wolf Bay	KRL 1234525	Ann	KILLALA	1-Aug-00	1-Aug-02
Wolf Bay	KRL 1234517		TODD	1-Aug-00	1-Aug-02
Wolf Bay	KRL 1239852	6	TODD	12-Nov-99	12-Nov-02

Total Units:

226

- Accepted and agreed to this _____ day of _____, 2002. ---

Marso

parties leases, licenses, easements or other rights to conduct operations on the Property; (c) entitle the Payee to any partition of the Property; or (d) entitle the Payee to any ownership interest in any improvements on the Property, equipment and other personal property located thereon, or in any proceeds received by the Payor from the sale, lease or other disposition thereof. The Payee will be entitled to register the Royalty against title to the Property.

3. <u>Commingling</u>. The Payor shall have the right to commingle Products with ores, minerals or materials produced from lands other than the Property, after such Products have been weighed or measured, sampled and analyzed in accordance with sound mining and metallurgical practices such that the Payee's production Royalty can be reasonably and accurately determined. Upon written request by the Payee to the Payor and at the Payee's expense, the Payce shall have the right to have a representative present at the time all such samples and measurements are taken. The Payee's representative shall have the right to secure sample splits for the purpose of confirming the accuracy of all measurements.

4. <u>Stockpiling</u>. The Payor may stockpile any Products from the Property at such place or places as it may elect, either upon the Property or upon other property.

5. <u>Calculation and Delivery of Royalty Payments</u>. Royalty payments shall be due on the first day of the second month following the end of each calendar quarter during which production of Products occurs, and on the first day of the second month following each and every subsequent calendar quarter for so long as the Payor mines and sells Products or otherwise receives proceeds from the production of Products from the Property. Production Royalty payments shall be accompanied by a statement sufficient to allow the Payee to determine the method of computation of each Royalty payment and the accuracy thereof. Each statement furnished to the Payee shall be deemed to be correct and binding on the Payee unless, within one year of its receipt, the Payee notifies the Payor in writing that it disputes the correctness of such statement and specifies its objections in detail.

6. <u>Audit</u>. The Payor shall maintain true and correct records of all Products mined, processed and sold (or deemed to be sold) and all proceeds otherwise received from the Property, and the Payee shall have the right to audit such records at the Payor's offices during normal business hours upon reasonable prior notice, provided such audit is conducted by the Payee or by an accounting firm of recognized standing, at least one of whose members is a member of the Canadian Institute of Chartered Accountants. The Payor shall make available all books and records, refinery statements, and other invoices, receipts and records necessary for purposes of such audit, and shall make available work space and copying facilities, or permit the Payee and its representatives to install copying facilities for use in connection with its audit activities.

7. <u>Method of Making and Reporting Payments</u>. All payments of money required to be made by the Payor to the Payee hereunder shall be made by cheque to the Payee on or before the due date at the Payee's address as set forth in the Agreement, or such other address as may be designated in writing from time to time by the Payee. Upon written request from the Payee to the Payor prior to the due date of any payment of money, the Payee may direct that the payment be made by way of wire transfer to an account designated by the Payee. Upon making payment as provided herein, the Payor shall be relieved of any responsibility for the distribution of such payment among the Payce and any of its successors or assigns. Concurrently with the payment of

> Rubicon Minerals Corporation Suite 888, 1100 Melville Street, Vancouver, B.C., Canada V6E 4A6 Tel: 604.623.3333 Fax: 604.623.3355 E-mail: rubicon@rubiconminerals.com

the Royalty, the Payor shall furnish to the Payee a statement of account setting forth in reasonable detail the computation of the Royalty.

8. <u>Commercial Production</u>

The phrase Commercial Production as used herein means: a) either the construction of a mine and related facilities with respect to the first deposit of ores from the property governed by the Agreement as defined in the March 7, 2002 Letter Agreement on the Property between Rubicon and Redstar occurring after March 7th, 2003 as to which mining and processing from such deposit has occurred at a rate of not less than 75% of design capacity of the mine and related facility for one month without interruption, or b) the transportation and processing on a regular commercial basis of ores to and through processing facilities owned by a third party at industry accepted contract rates. Commercial production shall not include any minor refining for metallurgical tests, pilot projects and facility start-up testing.

9. Additional Agreements of the Parties.

(1) <u>No Obligation</u>. In no event, by the creation of the Royalty hereunder or otherwise, shall the Payor be deemed subject to any duty, express or implied, to explore for ores, mineral resources or mineral products or produce Products from the Property, and the timing, manner, method and amounts of any such production and exploration shall be in the sole discretion of the Payor.

(2) <u>Hedging</u>. The Payor and the Payee hereby expressly agree that in no event shall the Payor have any liability to the Payee as the result of the amount of revenues received by the Payor from any forward sales or other hedging activities engaged in by the Payor with respect to Products from the Property. In addition, the Payor and the Payee agree that the Payor shall have no obligation, express or implied, to engage in (or not to engage in) any forward sales or other hedging activities with respect to Products from the Property.

10. Arbitration. Any dispute or differences between the parties hereto concerning this schedule which cannot be resolved or settled by the said parties shall be settled by final and binding arbitration in the City of Vancouver, at the request of any party pursuant to the provisions of the Commercial Arbitration Act (British Columbia), (subject to the specific terms hereof). The party desiring arbitration shall notify the other party of its intention to submit any dispute(s) or difference(s) to arbitration as well as a brief description of the matters(s) to be submitted for arbitration. Should the parties fail to agree on a single arbitrator to settle the relevant dispute(s) or difference(s) within 15 days of delivery of the aforesaid notice, then each such party shall within 30 days thereafter nominate an arbitrator familiar with the mineral exploration and/or mining business (failing which nomination by a party, the arbitrator nominated by the other party may proceed to determine the dispute alone as he or she shall deem fit and the 2 arbitrators so selected shall select a chairman of the arbitral tribunal of similar knowledge and/or background to act jointly with them. The decision of the single arbitrator or any 2 of the 3 arbitrators shall be non-appealable, final and binding with respect to the issue(s) in dispute. The arbitrator(s) shall further determine the location of the arbitration proceedings. If said arbitrators shall be unable to agree in the selection of such chairman, such chairman shall be designated by the President or

> Rubicon Minerals Corporation Suite 888, 1100 Melville Street, Vancouver, B.C., Canada V6E 4A6 Tel: 604.623.3333 Fax: 604.623.3355 E-mail: rubicon@rubiconminerals.com

.

another officer of the Canadian Institute of Mining and Metallurgy, bearing no relationship to either of the parties hereto, or, if no designation has been made within 30 days of such request having been made, the Chairman shall be selected as contemplated in the Commercial Arbitration Act (British Columbia). The costs of the arbitration shall be borne by the parties hereto as may be specified in the determination of the arbitrator(s). The arbitrator(s) shall further be authorized to retain such legal counsel and other professional advisors to render any advice to the arbitrator(s) as the arbitrator(s) deem appropriate.

.

RMX.CDNX

July 16, 2002

Mr. Steve Todoruk 611 – 675 West Hastings Street Vancouver, BC V6B 1N2

CONFIDENTIAL

Dear Mr. Toduruk:

RE: First Amendment to the Letter Agreement for West Red Lake Properties Between Redstar Resources Corporation ("Redstar") And Rubicon Minerals Corporation ("Rubicon")

This is to inform you, pursuant to paragraph 4 of the West Red Lake Properties Agreement dated March 7, 2002 (the "Agreement"), that Rubicon has agreed to add the Pipestone East Property to the Agreement. The Pipestone East Claims are described in Schedule C of the Agreement (see attached).

The Pipestone East Property will be subject to the terms of Agreement and Redstar will have the obligation to make the cash option payments and exploration work expenditures required thereunder to the underlying owners to maintain the option in good standing, as follows:

2002 (firm commitment) \$10,000 – option payment \$12,000 – work obligation (due by Sept. 1, 2002) <u>2003</u> (optional) \$20,000

2004 (optional) \$50,000 2005 (optional) \$10,000 each year after

Please acknowledge your receipt and agreement to the terms of this amendment to the Agreement by signing below and returning one original copy to us in the envelope provided.

Yours sincerely, Rubicon Minerals Corporation

Michael J. Gray Per:

VP Exploration

Acknowledge and agreed to this 16 day of July, 2002

Steve Toduruk, Redstar Resources Corporation

Rubicon Minerals Corporation Suite 888 – 1100 Melville Street, Vancouver, BC CANADA V6E 4A6 Tel: 604.623.3333 Toll free: 866.365.4706 Fax: 604.623.3333 E-mail: rubicon@rubiconminerals.com www.rubiconminerals.com

RMX.TSX Venture

SCHEDULE C

To attach to the Option Agreement between Rubicon Minerals and Redstar on the Pipestone East Property

Property/Agreeme	nt Claim's 👘	Units	Township	Recording Date C	aim Due Date
Pipestone East	KRL 1234503	1	BALL	26-Jun-00	26-Jun-02
Pipestone East	KRL 1234269	1	TODD	17-Jul-01	17-Jul-03
Pipestone East	KRL 1234519	1	TODD	24-Aug-00	24-Aug-02
Pipestone East	KRL 1185132	2	HAMMELL LAKE	18-Jul-00	18-Jul-02
Pipestone East	KRL 1234502	1	BALL	26-Jun-00	26-Jun-02
Pipestone East	KRL 1234524	1	TODD	24-Aug-00	24-Aug-02
Pipestone East	KRL 1234533	.1	HAMMELL LAKE	8-Aug-00	8-Aug-02
Pipestone East	KRL 1234201	5	TODD	2-May-01	2-May-03
Pipestone East	KRL 1185133	4	HAMMELL LAKE	18-Jul-00	18-Jul-02
Pipestone East	KRL 1234534	1	HAMMELL LAKE	8-Aug-00	8-Aug-02
Pipestone East	KRL 1234205	2	Ball	7-May-01	7-May-03

.

,

MQ.D.

May 14, 2003

Mr. Mike Gray Rubicon Minerals Corporation 888 – 1100 Melville Street Vancouver, B.C. V6E 4A6

CONFIDENTIAL

Dear Mr. Gray

RE: Second Amendment to the Letter Agreement for West Red Lake Properties Between Redstar Resources Corporation ("Redstar") And Rubicon Minerals Corporation ("Rubicon")

As per our discussions regarding the amendment of the West Red Lake Property Agreement dated March 7, 2002 (the "Agreement"), we agree the following amendments be incorporated into the above noted Agreement.

1. Work Expenditures

- a) Redstar agrees to a firm work commitment of \$600,000 in year 2 to be completed by May 6, 2004, subject only to a financing into Redstar of a minimum of \$450,000 (gross) to be completed by July 20, 2003. The expenditure requirements in years three and four are optional and are not a firm and binding commitment of Redstar. The underlying payments due to Perry English or Rubicon would also be firm and binding commitments in 2003.
- b) All exploration expenditures incurred on the Newman Todd property by AngloGold (Canada) Exploration Company, Rubicon, Redstar or any other J.V. partner shall be deemed as exploration expenditures by Redstar under the Agreement, as amended, and form part of the yearly requirement, however, the total amount of exploration expenditures incurred by JV partners on the Newman Todd property to be applied as expenditures under the Agreement shall be capped at C\$1,200,000.
- c) All exploration expenditures in excess of the yearly requirements shall be carried forward to the subsequent years.

- d) Any cash option payments or cash purchase costs incurred by Redstar after September 16, 2002 in acquiring additional properties in the Area of Interest (as defined in the Agreement) that become part of the Agreement will be deemed to be exploration expenditures and shall form part of and be included in the yearly exploration requirements.
- e) All cash payments made to Rubicon and or Perry English as required by the Agreement, after May 15, 2003, shall be deemed to be exploration expenditures and form part of the yearly exploration requirements.

2. Newman Todd Property

The Newman Todd property was acquired by Redstar and falls within the Area of Interest outlined in the Agreement and therefore falls under the terms of the Agreement.

3. Anniversary Date

As a point of clarification: the anniversary date of the Agreement shall be calculated from the date of acceptance of the Agreement by the TSX Venture Exchange, which date was May 6, 2002.

If you are in agreement with these terms, please indicate your acceptance to these terms by signing and dating in the space provided below, whereupon the Agreement will be amended as set out in this amending letter. In all other respects the Agreement will remain in full force and effect.

Yours truly.

Doug Fulcher Director Redstar Gold Corp.

Accepted this <u>day of May</u>, 2003

Mike Gray VP Exploration Rubicon Minerals Corporation

May 15, 2003

Mr. Mike Gray Rubicon Minerals Corporation 888 – 1100 Melville Street Vancouver, B.C. V6E 4A6

CONFIDENTIAL

Dear Mr. Gray

RE: Third Amendment to the Letter Agreement for West Red Lake Properties Between Redstar Resources Corporation ("Redstar") And Rubicon Minerals Corporation ("Rubicon")

As per our discussions regarding the amendment of the West Red Lake Property Agreement dated March 7, 2002 as amended by a letter agreement dated July 16, 2002 and a second amendment dated May 14, 2003 (the "Original Agreement"), we agree the following additional amendments be incorporated into the above noted Original Agreement.

1. Newman Todd Property

- a) Upon the execution of a Joint Venture Agreement ("Joint Venture Agreement") between AngloGold, Rubicon and Redstar concerning the Newman Todd Property ("Newman Todd Property"), the Newman Todd Property will be removed from the claims subject to the Original Agreement and the Newman Todd Property will no longer be subject to the terms and provisions of the Original Agreement. Redstar will then have a 100% interest in the Newman Todd Property, subject only to any existing royalties.
- b) In the event that Redstar defaults under the terms of the Original Agreement and the Original Agreement is terminated, Redstar shall transfer 100% of its interest in the Newman Todd Property and including the Property as defined in the Original Agreement to Rubicon.

- c) If AngloGold elects to terminate the Joint Venture Agreement at any time during the earn in period, then Rubicon may elect to opt into AngloGold's position and continue the earn-in of AngloGold's 60% interest under the same terms and conditions outlined in the Joint Venture Agreement. If Rubicon does not elect to opt into AngloGold's position, the Newman Todd Property will revert back into the Original Agreement between Redstar and Rubicon to be governed by the terms and provisions of that agreement.
- d) The due dates for work expenditures in the Original Agreement, including the date in the Second Amendment by which to expend \$600,000 in year two, will be changed to correspond to the due dates for work expenditures in the Joint Venture Agreement.

If you are in agreement with these terms, please indicate your acceptance to these terms by signing and dating in the space provided below, whereupon the Original Agreement, as amended by the First and Second Amendments, will be further amended as set out in this amending letter. In all other respects the Original Agreement will remain in full force and effect.

Yours truly

Doug Fulsker Director Redstar Gold Corp.

Accepted this _____ day of May, 2003

Mike Gray VP Exploration Rubicon Minerals Corporation

October 20, 2003

Mr. Dave Adamson Rubicon Minerals Corporation 888 – 1100 Melville Street Vancouver, B.C. V6E 4A6

CONFIDENTIAL

Dear Mr. Adamson

RE: Fourth Amendment to the Letter Agreement for West Red Lake Properties (the "Property") Between Redstar Resources Corporation ("Redstar") and Rubicon Minerals Corporation ("Rubicon")

As per our discussions regarding the amendment of the West Red Lake Property Agreement dated March 7, 2002 as amended by a letter agreement dated July 16, 2002, a second amendment dated May 14, 2003 and a third amendment dated May 15th, 2003 (collectively the "Original Agreement"), we agree the following additional amendments be incorporated into the above noted Original Agreement.

- 1. If a third party (the "Third Party") acceptable to both Rubicon and Redstar agrees to earn an interest in the Property on terms acceptable to Redstar and Rubicon, both Rubicon and Redstar agree to contribute and dilute their interests in the Property on a pro rata basis and to enter into such agreements and/or amend the Original Agreement as necessary. If the agreement with the Third Party (the "New Agreement") is entered into before Redstar has earned its initial 51% interest in the Property, Redstar and Rubicon will each be deemed to have an equal 50% interest in the Property for purposes of determining the interests of the parties in the New Agreement.
- 2. The maximum percentage interest which the Third Party would be entitled to earn in the Property would not exceed a 60% interest, unless Rubicon and Redstar both agree to a higher percentage interest being offered to the Third Party.
- 3. Any cash payments required to be made by the Third Party in accordance with the terms of the New Agreement will solely be for the account of Redstar.
- 4. All exploration expenditures incurred by the Third Party on the Property shall be deemed as exploration expenditures by Redstar under the Original Agreement, and credited to Redstar under paragraph 2 of the Original Agreement in the event

that the Third Party does not earn its interest in the Property as contemplated by the New Agreement.

- 5. Unless otherwise stated in the New Agreement, Redstar shall continue to make the cash payments and share issuances to Rubicon as set forth in paragraph 3 of the Original Agreement.
- 6. Unless otherwise stated in the New Agreement, Redstar shall continue to be responsible for making the underlying cash payments pursuant to the Underlying Agreements as set forth in paragraph 4 of the Original Agreement.
- 7. Paragraph 6 of the Original Agreement is amended by changing the number "\$7,500,000" in the fourth line to "\$3,000,000" and changing the number "\$12,650,000" in the tenth line to "\$8,150,000".
- 8. Paragraph 7 of the Original Agreement is deleted.
- 9. As consideration for this fourth amendment, the parties agree as follows:
 - (a) Redstar will issue Rubicon 150,000 common shares in the capital stock of Redstar within five business days of the acceptance of this amendment by the TSX Venture Exchange (the "Exchange");
 - (b) Rubicon will purchase, by way of private placement, 350,000 units of Redstar at a price of \$0.15 per unit. Each unit will consist of one common shares and a one-year share purchase warrant exercisable at a price of \$0.20 per share (subject to the acceptance of the pricing by the Exchange);
 - (c) Upon execution of the New Agreement by the Third Party, Redstar will issue to Rubicon the number of common shares in the capital stock of Redstar equal to the lesser of:
 - (i) 1,000,000 common shares; and
 - (ii) 4% of the issued and outstanding common shares of Redstar on the date of execution of the New Agreement;
 - (d) Redstar grants to Rubicon the right to maintain its percentage interest in the shares of Redstar by participating in all future financings of Redstar as follows:
 - (i) The number of securities which Rubicon will be entitled to purchase will be calculated as follows:

Total Financing	х	Rubicon's Shareholdings in Redstar	= Rubicon's
Securities		Total Redstar Issued and Outstanding Shares	Participation

- (ii) Rubicon's right to participate in future financings of Redstar under this paragraph will terminate if:
 - A. Rubicon fails to participate in two consecutive financings; or
 - B. Rubicon fails to participate in a total of three financings.
- (e) Redstar agrees to a firm work commitment of \$650,000 in year 3 to be completed by June 2nd, 2005, subject only aggregate financing into Redstar of a minimum of \$800,000 (gross) to be completed within four months of the signing of this amendment. The underlying payments due to Perry English or Rubicon would also be firm and binding commitments in 2004.
- 10. Rubicon agrees to vote all shares of Redstar owned by Rubicon, or under the control or direction of Rubicon, in favour of the management nominees of Redstar for a period of two years from the date of this amending agreement.
- 11. The terms of this amending agreement, including the issuance of any shares of Redstar, are subject to the acceptance of the Exchange.

If you are in agreement with these terms, please indicate your acceptance to these terms by signing and dating in the space provided below, whereupon the Original Agreement, as amended by the First, Second and Third Amendments, will be further amended as set out in this amending letter. In all other respects the Original Agreement will remain in full force and effect.

Yours truly

Doug Fulcher

Doug Fülcher Director Redstar Gold Corp.

Accepted this _____ day of October, 2003

Dave Adamson President Rubicon Minerals Corporation

sample	nortning	easting	госктуре	(ppb)	-
385980	5658667		Alt'd Maf (UM?)	12	dk gy - v dk gy,« tr cpy »,« Bt »,« tr aspy »?,« po », pentlandite?, 1-2% v dk qtz-veins mm scale. S2« S1 50.00- 48.00°».
385987	5658744	411265	Q-Sul Vein	24	massive to semi massive sulphide in wall rock to quartz vein. Dark grey- black« sph 12.00-20.00%»,« cpy 2.00-3.00%», sulphides tend to be in massive pods. « py 3.00-5.00%»,« po 2.00-3.00%»,« tr aspy »,« tr sph », 4-15cm wide. « QV 80.00-5.00°».
385988	5658744	411267	Well foliated well silc'd u/m	14	Wall rock sample. Well foliated well silc'd talcose rock, u/m? Talc on« fol 46.00-2.00°» Locally garnetiferous - almandine 1-2mm. « mafic dyke 54.00-10.00° 40.00-50.00cm»
385989	5658749	411267	Str Sil Maf? Fels?	0	massive to semi massive sulphide in wall rock to quartz vein. Dark grey- black« sph 12.00-20.00%»,« cpy 2.00-3.00%», sulphides tend to be in massive pods. « py 3.00-5.00%»,« po 2.00-3.00%»,« tr aspy »,« tr sph », 4-15cm wide. « QV 80.00-5.00°». « str sil », maf?, fels?. in contact with dyke. « SO 54.00-10.00°» at dyke contact. « S2 46.00-2.00°».
385990	5658749	411268	Maf Dyke	5	med-dk grey equigranular,« tr py » cpy , 40-50cm wide,« SO 54.00- 10.00°», note X cutting mm late quartz veins throughout dyke and wall rock.
385991	5658688	411348	Str foliated silc'd mafic volc	0	Str foliated mafic volc. Fol« fol 75.00- 12.00°»« possible carb » « tr asp »« py 1.00%»
385992	5658754	411433	Str Silc'd str foliated mafic volc	5	Str silc'd str foliated mafic volc. « fol 55.00-40.00°» mod magnetic« po 1.00-2.00%» asp« poss asp » dark blue black. « py 1.00%» Rare« qvein 55.00-40.00°» Po along foliation, Py

Au

rocktype

Description

as stringers

8 talcose u/m with« serp vein 64.00-315.00°» Massive host with

stockworking of veins,« mag » cores, two additional orientations of « serp vein 78.00-18.00°» and serp« serp vein 52.00-1.00°» Stockworks

developing by serpentine alteration of host, leaving unaltered cores. Mag

APPENDIX III - Sample Descriptions

sample northing easting

385995

5659541

410696 Talcose u/m

sample	northing	easting	rocktype	Au (ppb)	Description
					cores to larger serp veins Highly magnetic.
385996	5659593	410714	Talcose u/m	5	Talcose u/m, coarse to med grained. Minor« talc/serp vein » « tr vfg po »« tr chr »« minor mag » highly magnetic. Where talc veins occur, they are 1-5 cm. 5 cm veins approx N/S
385997	5659695	410913	Folded talcose u/m	0	Foliated and folded talcose u/m. « fol 56.00-4.00° »Serpentine on foliation planes. "M" folds noted« fold 50.00- 274.00° »
385998	5659703	410951	Wkly fol t al cose u/m	22	Wkly foliated to massive talcose u/m, possibly very weakly silc'd. Network of talc veins on o/c highly magnetic. Massive on N side of o/c. « fol 58.00- 26.00°»
385999	5659712	411105	U/m	0	Ultramafic with serp veins. Denser towards south. Rare x-cutting« vein »
386000	5659684	411104	Hematitic Serp u/m	5	Hematitic serp u/m with « poss chr » highly magnetic, fine grained poss wk silc'd, « hem » at contacts with « vein 1.00mm»
387101	5658889.863	408633.7 55	Q Vein	0	
387102	5658921.786	408675.8 43		152	
387110	5658343	410399	limonitic qvein in FG sericitic fel	25	boudins. « qvein 6.00-62.00° 3.00- 4.00cm» in fine grainined sericitic felsi. no sulphides observed
387111	5658343	410399	Banded mag chert IF	842	selective float sample. Outcrop with two small pits. Fe Formation bedding« S0 20.00-60.00°» sample from float excavated from pits. BIF with poddy« poddy, vuggy qvein »« py 1.00- 5.00%»« minor po »
387112	5658675	410418	Irregular qvein	8870	 « slightly irregular qvein 20.00-80.00° 20.00cm» hosted within foliated felsic (int?) near contace with« gar »« mag »« chl »« chert » iron formation. « vein »is buggy with« py 1.00%» exposed by old trench.
387113	5658675	410418	Irregular qvein	68	6 m east from 387112, along strike. « irregular qvein 2.00-5.00cm» smokey veins in foliated felsic int near« contact »with BIF. sample includes« vein »material and« massive py » from a 10X 5cm pod marginal to« vein »« py 1.00%» of sample overall, exposed in old pit.

sample	northing	easting	rocktype	Au (ppb)	Description
387114	5658672	410325	smokey qvein/silc'd zone	5260	east of 112/113. another old pit exposure, 0.75 X 1.0. « qvein 75.00- 100.00cm»at felsic int/BIF « contact »« py 1.00%» in« vein »sample included a 3cm patch or marchasite, from vein/bif margin.
387115	5658660	410460	sh'd limonitic qvein	60	eastward along strike from 114. another old pit. « sh'd limonitic qvein 20.00-80.00° 20.00cm»smokey in felsic volc. near« contact » of BIF no sulphides noted.
387116	5659157	410210	shear in felsic	64	composite grab from several locations along a 20 metre exposure of a 50 cm wide shear in felsic volc or int. Slightly limonitic well« fol 20.00-64.00°» minor x-cutting« qvein 1.00-4.00cm» sample is qvein+wallrock material« minor tour »
387117	5658453	410043	feld porph felsic	6	Character grabb from large outcrop of moderately« fol 21.00-70.00°» grey feldspar porph felsic (int?) « feld 20.00-30.00% 1.00-2.00mm» dissem« py -1.00%»looks similar to O/c on L410400E but more foliated.
387118	5659197	409642	BIF	14	from several different sites along a 1 m wide« chl »« chert » BIF layer between foliated mafics and qxtal felsics. « fol 41.00-79.00°» bedding parallel (magnetism?) slightly magnetic« tr fine py », locally vuggy qveins, limonitic.
387119	5659261	409692	qtz-felds-xtal felsic	5	med grey massive to locally well« fol 17.00-80.00°» felsic, xtal content variable, at sample location« ovoid xtals qtz 10.00% 1.00-3.00»« white xtals feld 30.00% 1.00-3.00mm» xtals alligned with foliation a some appear flattened,« bio »« tr py »
387120	5658612	409602	Qvein	8	sample taken from several« subparrallel to crosscutting qvein 3.00-4.00cm» in fg felsic volc. limonitic patches in veins« fol 33.00- 60.00°»
387121	5658520	409348	Felsic Tuff	357	sample from limonitic 10 cm wide horizon of« coarse xtaline qtz 10.00cm» with « coarse py 1.00% 1.00cm»« fol 15.00-70.00°» traceable for 10 metres along strike
387122	5659061	409432	Qvein	5	« boudiny, limonitic qvein 30.00- 80.00° 5.00-15.00cm» sub parallel to fol« fol 30.00-85.00°» in felsics.

sample	northing	easting	rocktype	Au (ppb)	Description
					foliation and« vein »orientation estimated due to magnetics of neaby BIF.
387123	5658872	409199	Qvein	0	several irregualr« qvein 1.00- 20.00cm» smokey in massive to wkly foliated xtal« feld », same o/c as RF087. Mild limonitic staining. no sulphides observed
387124	5659140	409178	BIF or qvein?	0	either« chert » BIF or« qvein 26.00- 70.00° 10.00-30.00cm» in felsic tuff. Limonitic. no sulphides observed. roughly parallel to foliation
387125	5659182	409076	qvein	0	from several parallel boudiny smokey« qtz »« chl »« vein 20.00- 80.00° 1.00-10.00cm» 4 m strike length. veins occur at transition from« qtz »« feld »xtal tuff to fine felsic tuff. limonitic pods but no sulphides observed.
387126	5659365	409030	Qtz-Feld-xtal felsic tuff	0	fine grained siliceous with« xtal qtz 5.00-10.00% 1.00-3.00mm»« xtal feld 5.00% 1.00-2.00mm» xls aligned with« fol 24.00-80.00°» slightly« bio »
387127	5658826	408872	Qvein	0	grab from« boudinaged qvein 22.00- 64.00° 1.00-4.00cm» in fine grained felsic tuff with local sparse« xtal qtz » local limonitic patches in« vein » but no sulphides observed
387128	5658670	409544	BIF	2370	sample from throw rock from on trench in« mag »« chert »Iron Formation. select pieces of BIF showing banded« banded py 2.00- 3.00% 1.00-2.00mm»« banded po 2.00-3.00% 1.00-2.00mm» as a replacement of« mag »in cherty BIF. only a small portion of rock from trench appears to contain sulphides
387129	5658670	409544	qvein?	17	25X25 boulderof« chl »« qtz »« ank »« vein »material?presumably from same trench 387128. poor exposure in trench. Ankerite material contains a« tr py »
387130	5658660	409565	chert or qvein?	195	select float. vuggy re-xtalized« chert »or« qvein » from trench in« mag »« chert »BIF. traces of « blebby py »
387131	5658685	410276	BIF	6	very limonitic weathering. well banded« gar »« chert »« chl »« amph »BIF. no magnetite or sulphides observed but limonitic weathering. "S" folding observed in O/c, plunging steeeply (~70) to NW.

sample	northing	easting	rocktype	Au (ppb)	Description
387132	5658669	410165	Qvein	0	irregular« limonitic stockworky qvein 1.00-15.00cm»« tr py » hosted within grey« qtz »« feld »porph felsic approx 2m wide. unit lies between fine grained felsic« bio »felsic to int tuff to South and« mag »« chert »« chl »ampj« amph » BIF to North
387133	5658669	410165	Felsic	0	weaker foliated to massive grey (fresh) beige weathered« qtz »« feld »porph or xtal tuff. sample for whole rock, +/- thin section
387135	5658715	411081	Massive Mafic	45	dark green grey, med grained equigranular massive mafic« dyke » on L1. Sample for whole rock +/- thin section
387136	5658963	409425	Maf Vol	11	Dark green fine grained, massive to wk foliated,« wk-mod chl », non magnetic, possible pillow textrures visible in outcrop.
387137	5658973	409435	Quartz Vein	5	Boundinaged, irregular, 15-20cm wide 6m strike Ineght,« strikes SO 77.00- 15.00°», but folds to the south. Liminitic patches but no sulphides, hosted in massive mafic of 387136
387138	5658143	409990	QXL FXL T	0	Tuff or dykes, interlayered with fine grained well foliated felsic tuff. Foliation« S1 63.00-34.00°»,« py 0.50%».
387139	5658144	409990	Quartz Vein	0	Grab from 2-4cm wide, q-vein cross- cutting in fine felsic tuff and qxl, fxl felsics. Folded but trends approx.« SO 40.00-90.00°», limonitic, slightly vuggy with bleached out pyrite.
387147	5658666	410440	Quartz Veins	2540	Select grab from old pit just east of other pits N of baseline. Quartz vein irregular ~20cm wide, subvertical, possible zone up to 2m wide. Contains spherical aggregates of« py 3.00-4.00%»cubes in sample. ~8m east of 387114. Host is felsic dyke volcanic between two BIF units. Flag labelled 387146 in field.
387151	5658833	411129	qvein	0	« quartz-chlorite vein 90.00-142.00°- 4.00cm» crosscuts foliation of 61-022 in felsic volcanic host rock.
387152	5658659	411572	Mafic intrusive	17	Character grab sample of dark green, massive, medium grained, equigranular intrusive . Composition mainly plagioclase+mafic minerals, 5- 10% alkali feldspar, < 5% quartz (Diorite to Gabbro composition). Non-

sample	northing	easting	rocktype	Au (ppb)	Description
					magnetic.
387153	5658685	411575	Felsic Volcanic	0	Character grab sample of medium grey, siliceous, aphanitic felsic volcanic rock. « fol 82.00-40.00°» « mod ser »« mod qtz »alteration« trace disseminated py »Intruded by mafic rock of sample 387152.
387154	5658696	411496	qvein	0	guartz« vein 90.00-100.00°-20.00cm» in fine to medium grained mafic. Exposed for 1 metre along strike. Discontinuous. No sulphides observed.
387155	5658665	411454	qvein	7	Quartz-ankerite« vein 82.00-260.00°- 5.00cm»« trace py », dicontinuous, <1 metre strike length exposure. Host is slightly schistose, sericitic felsic volcanic rock with foliation 78-009.
387156	5658705	411499	Felsic Volcanic ?	9	Composite grab sample in old trench. Felsic Volcanic? moderate« sil »,« ser »« bio »alteration,« disseminated py 1.00-3.00%», band of semi massive« mag -10.00cm» wide near« contact 74.00-38.00°»with mafic intrusive to south.
387157	5658716	411497	Garnet-amphibole- biotite-quartz sch	5	Character grab sample of Garnet- amphibole-biotite-quartz schist. Fine euhedral « trace mag ». Estimated« fol 74.00-38.00°». Sample includes a 3 cm wide qv parallel to foliation.
387160	5658700	411529	Quartz-chlorite vein	9	Quartz-chlorite« vein 60.00-106.00° 20.00-25.00cm». Hosted within fine grained mafic intrusive exposed in creek gully. Slight ly limonitic but no sulphides observed.
387161	5658827	411323	(Garnet)-biotite- quartz schist	0	Character grab sample of mediumvgrey coloured (garnet)- biotite-quartz schist.« fol 55.00- 25.00°»
387162	5658938	411378	Banded iron formation	72	Alternating« mag »layers up to 10 cm thick, cherty layers and (garnet)- biotite-chlorite schistose layers. Approximate« fol 60.00-360.00°». Limonitic,« trace py »,« trace cpy ».
387163	5658823				Character grab sample of greyish yellow coloured cherty sediments?« fol 85.00-27.00°» Non-magnetic. Approximately on strike with iron formation of 387162. To the north it grades into biotite-quartz schist.
387164	5658740	411622	Gabbro	6	Character grab sample from shoreline

sample	northing	easting	rocktype	Au (ppb)	Description
					outcrop of massive, dark green-grey, equigranular, fine to medium grained gabbro. Non-magnetic. Limonitic on fractures.« Trace py ».
387165	5658710	411774	Gabbro	8	Fint to medium grained gabbro with « blebby po -1.00%». Minor, narrow, vertical quartz veins striking approximately north.
387166	5658884	411957	Felsic Volcanic?	6	Medium grey coloured, massive, very fine grained, siliceous rock. Minor biotite and sericite flakes along fractures. A trace of 1mm feldspar xls? Probably a felsic volcanic but could be a cherty sed.
387167	5658562	412179	Quartz veinlet	33	Quartz« veinlet -1.00mm» in quartz- biotite schist (altered sed or volc). Contains« trace cpy »,« trace py ». Crosscuts fabric in schist.
387168	5658413	412084	Talc schist	0	Sample from scattered BQ core at old drill site. Consists of mottled pale green and dark green-grey talc schist with rusty weathering ankeritic patches« fine, euhedral mag 1.00- 5.00%».
387169	5658413	412084	Biotite-quartz schist	16	Siliceous bioite schist (felsic volcanic?) in scattered drill core at on drill site. Same location as 347168. Minor quartz-chlorite veins.
387170	5658373	412046	Biotite-quartz schist	0	Fine grained, moderately foliated, light grey coloured biotite-quartz schist (felsic volcanic?).« fol 50.00- 24.00°»Intruded by intermediate intrusive to south (sample 347171).
387171	5658373	412046	Biotite-quartz monzonite to mozodio	0	Light grey coloured, fine to medium grained, equigranular, massive, blocky weathering biotite-(quartz) monzonite to monzodiorite. In contact swith schist to north. Intrusive dis slightly foliated near contact but contact looks intrusive.
387172	5658193	412002	Smoky quartz vein	0	Smoky« quartz vein 40.00-156.00° 4.00-8.00cm» in fine grained, siliceous sfelsic volcanic. Vein crosscuts fabric in host rock. No sulphides observed.
387173	5659164	410956	Smoky quartz vein	0	Composite grab sample from several parallel smoky « quartz veins 90.00-28.00° 2.00-5.00cm» hosted in felsic volcanics.
387174	5659160	410952	Quartz-diorite	5	Grab sample fine to medium grained«

sample	northing	easting	rocktype	Au (ppb)	Description
					mod chl » alteration. Weakly foloiated. Minor quartz sweats with« trace py ».
387175	5659050	411622	Smoky quartz veins	0	Composite grab of several parallel smoky quartz veins over 1 metre. Quartz « veins 70.00-14.00° 2.00- 15.00cm», hosted within biotitic, siliceous felsic volcanic. No sulphides observed but veins are locally limonitic. Possible old blast pit on outcrop.
387176	5658851	412563	Chert?	0	Character sample of very fine grained, massive, siliceous rock. Probably a cherty sed or felsic volc. Minor chlorite and ankerite on fractures. « trace mag »locally.
387177	5658166	412227	Magnetite-talc schist (utramafic)	0	Character grab sample of brownish- black weathering, well foliated, calcareous magnetite-talc schist. « very fine euhedral mag 5.00-10.00%- 0.50mm». estimated « fol 65.00- 20.00°» local 2 cm wide blebs of ankerite. Probably a strongly altered ultramafic. Elsewhere along strike in same unit there are crosscutting veinlets of pure platy talc/serpentine.
387178	5658186	412402	Quartz vain	6	Anqular Quartz Chlorite vien Float. Viens of up to 6cm wide.« cpy 0.10%»« py 0.10%» limonitic, Ankerite. Host maybe magnetite talc schist. Sampled just inside of claim boundry of krl3474.
387179	5658991	411900	Diorite	7	Grab sample from 10 cm wide mylonitic shear in medium grained, equigranular, slightly foliated diorite. Shear« fol 70.00-219.00°»Intermittent 1-2 cm wide quartz veins within the shear contain a trace of« py ».
387180	5659002	412082	Quartz stockwork in felsic volcanic	0	Composite grab sample from a quartz vein« qtz 90.00° 0.50-1.00cm» stockwork in felsic volcanics. Zone is 1 to 2 m wide parallel to 25 metre wide E-W gully. Trace specular hem.
387181	5658076	412267	Quartz float	15	Several peices 0f angular« qtz 1.00- 5.00cm» vein float in felsic volc. Near ultramafic contact.
387183	5658971	411673	Quartz stockwork in diorite	19	« qtz 0.10-2.00cm»- ankerite-feldspar veinlets as an irregular stockwork in diorite. trace « ga »?« trace py ».
387184	5658714	411496	Vein/Silicified volcanic	9	« sil 40.00-20.00°-1.50m» zone/vein exposed in old trench. Py« patchy py 1.00-5.00%»,« minor po »,« trace cpy

.

sample	northing	easting	rocktype	Au (ppb)	Description
					».« band of mt -5.00cm»wide. Host is silicified felsic or chert/iron formation.
387185	5658243	411531	Quartz vein	0	« greyish white qtz 44.00-104.00°- 10.00cm»vein.« trace py », limonitic. Crosscuts foliation in fine grained siliceous felsic volcanic.
387186	5658176	411431	Quartz veins	287	Sample from numerous subparallel« qtz 70.00-130.00° 1.00-4.00cm» veins crosscutting foliation in felsic volcanic. Local limonite stain, no sulphides observed. Vein density 1 vn per metre.
387187	5658026	411528	Quartz veins	103	« irregular qtz 7.00-187.00° 10.00- 75.00cm»veins in medium grained biotite-granodiorite. Exposed in old trench. Veins are locally vuggy and druzy with local patches of« euhedral py 0.50% 0.50-1.00cm».
387189	5658742	411414	Felsic volcanic	10	« wispy+blebby py 1.00-5.00%»in schistose felsic volcanic. Limonitic.« fol 75.00-34.00°».
387190	5658668	411421	QFP Dyke	27	1-3 % finely disseminated« py »+« po »in biotite-quartz-feldspar porphyritic dyke. estimated « fol 55.00-10.00°».
387191	5658196	411658	Felsic volcanic?	0	« trace py »,« trace po »in dark grey, fine grained, siliceous rock.« wk ser ».« wk fol 70.00-22.00°». An old trench was observed off the east end of the outcrop.
387192	5658433	411837	Siliceous rock	6	« Trace cpy » in grey, siliceous (cherty looking) felsic volcanic?« Moderate fol 60.00-10.00°»« Weak ser ».
387195	5658628	411232	Quartz veins	0	Several« qtz 80.00-30.00° 1.00- 5.00cm» veins,« trace py ». Host is (quartz)-Monzonite. Possible old pit on outcrop.
387196	5658799	411198	Felsic volcanic	0	very fine grained, grey, very siliceous felsic volcanic« wk-mod fol 66.00- 39.00°» « trace cpy »
387197	5658380	410876	Chert	19	Alternating granular quartz rich layers and green chlorite- amphibole+(garnet) layers, non- magnetic but associated with nearby iron formation, limonite +hematite staining,« fol 70.00-30.00°»
387199	5658926	410721	Felsic volcanic	0	Felsic tuff, grey brown, very fine grained, siliceous,« mod bio »,« wk ser »,« py -1.50%»,« po -1.50%»,« fol 60.00-25.00°».

sample	northing	easting	rocktype	Au (ppb)	Description)						
387201	5659521	410709	Hornfels Fels? Maf?	94	str« fol », med-dk grey color fg with sparse FP's 1-3mm size. « Bt » as partings parallel to foliation. « Bt 5.00- 10.00%»,« cpy 1.00-2.00%», wispy disseminated, with some« py ». float adjacent to old trench. trench trends at 080 deg. 0.5 x 5m long.						
387202	5659534	410650	Qvein	67	« qvein 90.00-353.00° 2.00cm» dark grey. Noted black metallic mineral. Wall rock approx 20% of sample. Ultramafic« contact » approx 20 m North						
387203	5658502	411651	Qvein	0	« qvein 6.00cm»approx 1.5 m strike length. « hem » stained. host rock is laminated fine grained slightly silc meta sed. Laminated. « qvein 50.00- 3.00°» parallel fol/bedding						
387204	5659086	411965	cg Maf Int?	0	cg- med to d grey color. Hb« Bt », 10%. Hm stain on quartz vein in sample. v weakly foliated . « S2 80.00-40.00°».						
387205	5659094	411980	Sil Maf?	8	med grey color mod-str foliated. Subcrop. unable to measure foliation direction. fg« py 1.00-1.50%»,« tr cpy ». NOTE: stronger silicification than previous sample. « mod-str sil ».						
387206	5658951	411922	Q Amyg ((QP)) R	5	med to light grey, tr metallic mineral spec?. (non-mag), 3-5% 2-4mm elongate q-amygs, mod foliation,« S2 80.00-20.00°», rare 1mm QP's NOTE foliation parallel flow banding, mm- 5mm scale dark and light bands contorted (very rare).						
387207	5659405.178	409587.8 12	1	16	in Felsic Xtal Tuff dark grey to blue grey 4 inches wide. « S2 70.00- 10.00°» 1-5mm QXI bkn« str Bt », alteration						
387208	5659447.035	409585.7 24	Q Vein	0	white sugary quartz, « S2 75.00- 15.00°» NOTE folded veins and foliation						
387209	5659263.06	409680.2 66	[10	In Felsic T. Host« S2 90.00-120.00°»						
387210	5659141.223	409619.7 37	Q Vein	90	in IF host, note folding in IF. « F2 54.00-355.00°» chevron folds amplitude about .5m.« SO 80.00- 30.00°». foliation parallel.						
387211	5659144.28	409607.1 25	1	19	Strongly« mag », magnetite bands in felsic tuff. QXI's are broken and 1 - 3mm in size. This unit appears to be an interbed within iron formations.						

36

• •

sample	northing	easting	rocktype	Au (ppb)	Description
					Some cherty iron formations noted.
387253	5658744.29	1	Felsic/Mafic Volcanics	330	VG pit. Felsic volcanic - Mafic Volcanic Contact. Weak carbonate alteration in mafics. ~5% Vein material. « po 1.00%»,« cpy 1.00%»
387401	5658938	411317	BIF		Interbedded Magnetite/siliceous iron formation. Weathered surface shows interlayer between black, tan, and grey lamenea. Tan layer appears thinnest and rarely exceeds several mms in width. Black and grey layers are also variable with widths ranging from mm to 10cm(in fold noses). this section is tightly folded with the fold axis parrallel to foliation. « fol 67.00°»
387402	5658359	412403	Qtz Monzonite	11	This area shows a high variability in OC orientation. Almost all OC observed so for show a strong ESE- WNW trend whereas this localitiy is fingering out at 140 degrees (SE- NW). Felsic Dyke, 2 plag. Fine grained slightly foliated (chilled?) biotite qtz monzonite dyke. Sample taken near northern contact with felsic schist. Minor py was noted.
387403	5658309	412394	Qtz Vien	15	Qtz vien running 220 then turns towards the west. This vien sits within a silicified leached zone aprox 30 cm wide. The vien itself ranges from 1 cm to 8 cm. Qtz is variably wht to smokey with vugs and rusty inclusions, biotite, and deep blue staining (pyrolusite?)
387404	5658309	412394	Mafic Intrusive	8	Silicified altered rock with Bio and« py 1.00%». Some areas are highly chloritic and garnetiferous and serecitic.
387406	5658611	411889	Felsic Volcanics	480	Tan weathered, dk grey, massive (weak foliation), siliceous rk. Bio, serecite, and Quartz with« minor carb 1.00%»vienlets which appear to be coincedent w/ sulphidization of« py 1.00%» and« po 1.00%» Minor Quartz vienlets were noted.
387407	5658499	411902	Quartz vien	8	Quartz vien (1cm wide) found in float. Host rock is a med grey weakly foliated quartz, bio,ser, schist. « py 1.00%» both in vien and in host.
387408	5658076	411276	Qtz float	9	Duplicate of 387181
387409	5658971	411673	Qtz float	22	Duplicate of 387183

sampie	northing	easting	rocktype	Au (ppb)	Description
387417	5658668	411614	Gabbro	71	Sample taken from a highly slicified patchwork area in this fine grained gabbro. Sample includes both host rock and silicified section of host. Py« py 2.00%» and« cpy 2.00%» or in moderate amounts. Sulphidation is both patchy (1-3mm sizes) and very finely disseminated. Minor« carb »« bio » and« ser » in host and silicified area.
387418	5658320	411581	Qtz carb vien	0	Qtz Carb vien with mica, « trace py 0.50%». Carbonate forms large well defined xtals as well as a surgary texture. Vien is stock work like and ~ 1/2 m wide « V1 64.00-34.00°» See notes for drawing.
387419	5658454	411901	Qtz vien	0	Qtz blob/breccia (30cm x 30cm) with minor host rock. Variabley grained white to dk grey with ser« ser »« bio » trace py« trace py 0.50%» and« trace po 0.50%»?. This sample was taken from a felsic volcanic host at location MR-03-041. severa small viens run from this blob following the foliation. Brecciation is confined to the contact between the blob and the host.
387420	5658398	411939	Qtz vien	22	Qtz vien - friable black weathered quartz vien with hematite stained fracture filling. Host is a felsic volcanic. « QV 45.00-148.00°»
387421	5658672	411116	Qtz Breccia/vien	48	Sample taken from 2 narrow (~5cm) zones of a breccia textured w/ fragments of host rock included within vien matrix. These fragments are aligned with foliation and the breccia zone trend. « trace py 1.00%»
387422	5658611	411992	Qtz vien	0	Qtz vien float found on base line. Vien is folded and minor sulphide was noted.
387423	5657970	410933	Qtz vien	14	Highly slicified multicolored weathering with variably colored quartz (from wht to dk grey). « trace py 0.50%» was noted as was chlorite, hematite staining and limonite. Some pyrolusite may be present. This sample came form a blowover atop of a BIF.
387424	5658237	410544	Qtz Vien / Cherty BIF	11	Band of rusty (limonitic) siliceous felsic volcanics/ cherty BIF ~ 32 cm

•

sample	northing	easting	rocktype	Au (ppb)	Description
					wide and following« fol 66.00- 360.00°». Some Qtz viening is apparent and this whole band may be one Qtz Vien, however all of the material taken was friable, gaussonous and heavily sulphidized. The wall rock (FW) shows signs of heavy slicification to the point of forming and chert. This band is also reccessed into the OC. « py 20.00%»« po 1.00%»« trace cpy 0.50%» and pyrolusite. Peacock staining was noted in small blebs.
387425	5658236	410544	Felsic Volcanics	0	Footwall contact to 387425. This wall rock shows signs of heavy silicification and sulphidization to the point of forming a chert. « py 2.00%»
387427	5658232	410407	Mafic Volcanic	0	Fined grained mafic volcanic, carbonate altered, with PO« po 1.00%»,« py 1.00%» and possibly some« cpy 1.00%».
387430	5658441	410799	Gart Cherty BIF	0	Tight isoclinal folds of Garnetiferous BIF. Segregated into garnet rich bands, amphibole, chlorite, mica bands(moderately magnetic), and siliceous bands.
387434	5658279	409798	qvein and felsic	22	 med grey weathered fine grained to microxtaline rk with« minor bio »seams and« py »seams. Limonitic« qvein »with minor sx« sx »« minor chl »« minor ser » hoested« fol 32.00-70.00°»
387435	5658156	409763	qvein and mafic volc	745	« qvein »
387436	5658156	409764	Composite Qtz vein and Mafic int.	4590	Composite x-section grab from an intensly altered zone within pit. This zone was highly limonitic with friable messed up rocks. An old sample flag was seen here. Sulphides are abundant, however finding a fresh sample was near impossible, even after gettin 1' into the zone. Host appears similiar to 387435. Malachite was noted. Trend of zone 68/038
387437	5659226	409890	Composite Qtz vein and Mafic int.	25	Imbircated, vuggy quartz vein running through altered mafic intrusive. (see unit 6 of MR-03-078). Sample includes some HW rock. Disseminated« py 1.00%»and« trace cpy 0.10%» Minor limonititic and

sample	northing	easting	rocktype	Au (ppb)	Description
T					hematic staining.
387438	5658655	410565	Composite Qtz vein and Felsic Vol	7	White to smokey quartz vein with a microcrystaline to sugary texture set in Fv on Cat rd. Very limonitic, with chlorite and diss« trace py 0.10%»
387443	5658616	410410	Felsic	12	
387451	5659672	411079	Interbedded mafic volcs	0	Interbedded mafic, u/m and felsic, plus qveins, « tr mal »cpy« cpy 1.00% at« contact » with« qvein 67.00-5.00° » py« tr py » str silc'd
387452	5659535	410644	White-smokey qvein	549	white-smokey« irregular qvein »« carb 2.00-3.00%»« tr cpy »with assoc« bio » hosted within xtall tuff. Fol« fol 58.00-26.00°» 1-2%« qtz » eyes with 5% mica
387453	5659547	410658	Silc'd mafic-u/m	19	Float sample, from above cribbing in trench. « coarse to fine py 5.00%» Contact rock?
387454	5659639	410770	Coarse u/m, wkly silc'd	0	E end of o/c wkly silc'd coarse u/m, serpentinized olivines? to 8mm. Highly magnetic. « dissem mag 1.00- 2.00%»« poss chr » « tr dissem py » local « wk fol 54.00-20.00°»
387455	5659513	411026	Coarsely talcose u/m	0	wkly magnetic, tr py
387456	5659514	411027	Mod silc'd u/m	0	mod silc'd u/m mod magnetic. Ants!
387457	5659625	411077	wk-mod foliated u/m	0	wk-mod foliated u/m.« hem 3.00- 5.00%» wk magnetic. « fol 84.00- 25.00°» bleached
387458	5659627	411085	Blocky talcose u/m	0	Blocky talcose u/m. highly magnetic.« hem »on fractures. Noted possible mafic xenolith?
387459	5659693	411131	Coarse silc'd u/m intusive	0	Coarse silc'd u/m intrusive. Hard. Mod magnetic. « mag 1.00-2.00%»« py 1.00%»« po po » local silc'd serp« vein »vfg amphorous silica with fibrous txt, parallel to intrusion? « vein 80.00-291.00° wdyke?
387460	5659722	411112	Carb altered silc'd u/m	0	carb altered mod silc'd (mafic?) u/m. Non magnetic (?) wkly veined. « qtz » replacing serp? Carb on fracture surfaces. « tr vfg py » « poss chr »massive, serp and« qvein »network
387461	5659677	411092	Mod-str fol, mod silc'd u/m	8	Mod-str fol, mod silc'd u/m magnetic. « fol 84.00-15.00°»hem« hem » on foliation planes. S edge of talc veined u/m
387462	5659660	411078	Qtz amygdule basalt?	23	Qtz amygdule basalt?« cpy 1.00%» in smokev« qtz » amygdules@ between

sample	northing	easting	rocktype	Au (ppb)	Description
					foliated mafic units Unit is folded « fold 85.00-281.00°» « contact 48.00- 10.00°»
387469	5659671	411054	qvein	223	Several« qvein 67.00-20.00° 2.00- 5.00cm» smokey to white hosted withing silc'd felsic tuff. « tr cpy » at margins of veins. appox 5m of strike length. Cpy at margins of veins. Located approx 2m south of Foliated Mafic? u/m?« contact » and 10m South of u/m. Veins for zone 80- 100cm wide.

APPENDIX IV – Assay Certificates

•

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

. .

ę.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 D: F SON ELOI ITS L..... ED 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

___e#. _ A Total # of pages : 2 (A - B) Date : 17-Jul-2003 Account: BM

Project : WRL03-007

CERTIFICATE OF ANALYSIS TB03025342

で

.

6123

Sample Description	Method Analyte Units LOR	WEI-21 Rocvd Wt kg	Au-AA23 Au ppb	ME-ICP61 Ag ppm	ME-ICP61 A1 % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm	ME-ICP61 Be ppm 0,5	ME-ICP61 Bi ppm	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm	ME-ICP61 Cu ppm 1	ME-ICP61 Fø % 0.01	ME-ICP61 K % 0.01
Sample Description	LOR	0.02	5 .	0.5	0.01		10	0.5	2	0.01	0,5	1	1	۲ 	0.01	0.01
387101		2,16	<5	<0.5	4.94	<5	260	0.7	<2	0.74	<0.5	2	23	18	1.06	1.32
387102		1,10	152	1.3	2.46	<5	170	<0.5	<2	0.37	<0.5	3	11	182	1.66	1.14
387105		0.91	<5	0.7	1.96	<5	40	<0.5	3	5,73	1.4	77	2040	30	5.64	0.02
387106		.0.62.	<5	<0.5	3.62	63	120	<0.5	<2	4.19	1.8	80	2160	27	7.86	0.17
387108		1.04	100	<0.5	3.96	<5	230	<0.5	<2	0.98	<0.5	8	16	4	1,85	0.98
387188		1.39	7730	69.6	0.98	<5	<10	<0.5	<2	1.81	5.1	26	26	7310	4.51	0.04
387189		0.95	10	1.1	2.09	<5	10	<0.5	<2	2.11	0.9	29	26	540	8.33	0.10
387190		0.79	27	1.4	7.81	<5	200	<0.5	<2	1.54	<0.5	5	7	128	3.19	1.18
387191		0,67	<5	<0.5	7.30	<5	310	<0.5	<2	2.11	<0.5	4	5	15	2.60	1.50
387192		0,90	6	<0.5	7.57	<5	110	0.7	<2	1.41	<0.5	10	4	257	1.62	0.87
387193		1.04	113	1.7	0.36	<5	<10	0.5	7	2.01	<0.5	16	19	100	14.50	0.02
387194		0.75	1845	2.3	0.22	<5	<10	<0,5	5	1.34	1.2	104	14	492	16,10	0.01
387195		0,83	<5	<0.5	5.15	<5	320	0,5	<2	1.08	0.5	2	10	13	1.44	1.15
387004		0.02	1845	0.8	5.16	9	510	<0.5	<2	1.56	<0.5	33	810	63	3,28	1.44
387417		3.17	71	0.9	7.31	<5	30	<0.5	<2	7.27	1.0	41	95	420	5.76	0.18
387418		1.76	<5	<0.5	3.80	<5	160	<0.5	<2	13.35	0.6	13	20	36	3.20	0.44
387419		2.08	<5	<0.5	7.20	<5	90	0.5	<2	4:19	0.6	11	16	66	3.93	1.00
387420		0.52	22	1.7	0.13	<5	10	<0.5	<2	0.04	<0.5	3	12	63	1.50	0.04
387421		3.80	48	0.5	3.94	<5	20	<0.5	<2	7.75	0.8	37	45	106	5.53	0.20
387422		2.60	<5	<0.5	8.32	5	170	<0.5	2	5.19	<0.5	10	18	55	3.81	1.44
387483		1,36	<5	<0.5	0.93	<5	20	<0.5	<2	0.60	<0.5	6	20	16	1.32	0.13
387484		0,79	30	0.5	7.66	<5	30	<0.5	2	6.46	1.6	41	102	118	8.19	0.23
387485		0.93	<5	<0.5	7.72	<5	260	<0.5	<2	2.94	<0,5	9	21	25	2.94	1.68
387486		1.30	<5	<0.5	2,00	<5	60	<0.5	<2	0.99	<0.5	3	14	8	1.44	0.23
387406A		0.34	10	<0.5	8.31	<5	1140	<0.5	<2	3.88	0.6	15	32	47	4.07	3.50

): P/ ON [____LOP IS L Ð 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

Total # of payes: 2 (A - B) Date : 17-Jul-2003 Account: BM

Project : WRL03-007

CERTIFICATE OF ANALYSIS TB03025342

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 NI ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-1CP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 TJ % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
87101		0.18	110	6	1,86	21	70	8	0.01	<5	82	0.05	7	<10	10
387102		0.11	61	26	0.25	5	270	11	0.09	<5	-41	0.04	7	<10	3
387105		7.84	1130	1	0.02	1280	70	<2	0.20	<5	96	0.01	62	<10	74
387106		5.51	1840	<1	0.04 0.88	1215	140	<2 3	0.39 0.01	<5 <5	57 41	0.04	143 17	10 10	.97 35
387108		1.44	190	<1		59	130								
387188		0.49	364	1	0.03	15	330	<2	1.73	<5	47	0.03	10	<10	196
387189		1.18	724	<1	0.16	12	460	<2	0.58	<5	17	0.14	33	<10	109
387190 387191		0.60 0.64	662 335	3 <1	3.88 2.52	3 2	550 380	11 3	0.06 0,04	<5 <5	174 120	0.25 0.20	27 22	<10 <10	85 44
387192		0.64	192	1	3.92	22	320	10	0,03	<5 <5	120	0.20	12	<10	28
387193		1.94 1.08	2670 1575	1	0.04 0.02	39 67	230 130	<2 <2	4.62 >10	<5 <5	11 10	0.01 0.01	7 8	10 10	54
387194 387195		0.24	1575	<1 <1	2.01	5	180	~ <u>~</u> 8	0.08	<5 <5	133	0.01	0 11	<10	36 26
387004		0.24	595	23	1.64	1370	440	27	0.08	<5 <5	133	0.09	71	10	42
387417		4.20	1135	<1	1.12	110	330	<2	0.05	<5	144	0.27	166	10	58
			1355		0.95			5	0.04	<5	184	0.14	96	<10	26
387418 387419		1.34 1.34	673	<1 1	0.95	32 22	110 560	5 <2	0.04	<5	181	0.14	90 43	10	20 57
387420		0.01	23	1	0.24	4	40	<2	0.08	~5 <5	.3	<0.01	43 1	<10	3
387420		3.40	1120	3	0.03	4 76	120	<2	0.01	<5	52	0.07	110	410	51
387422		1.06	665	1	1,96	22	830	8	0.01	<5	134	0.31	74	10	74
387483		0.44	120	2	0.20	12	40	<2	<0.01	<5	12	0.03	20	<10	11
387484		4.07	1480	<1	2.22	79	170	5	0.01	<5	190	0.40	247	10	91
387485		0.73	277	<1	1.76	22	720	8	0.06	<5	188	0.32	59	<10	35
387486		0.34	205	<1	0.70	9	300	<2	0.01	<5	109	0.09	16	<10	23
387406A		1.84	582	<1	0.47	47	1420	3	0.34	<5	154	0.48	90	<10	48

ALS Cnemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

»#: 3

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

 D: P.
 ON I
 LOP
 IS L
 D

 615-800 W PENDER ST
 VANCOUVER BC V6C 2V6

Total # of payes : 3 (A - C) Date : 30-Sep-2003 Account: BM

Project : WRL03-020

CERTIFICATE OF ANALYSIS TB03035923 WE1-21 Au-AA23 Au-AA23 Au-GRA21 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP61 ME-ICP81 ME-ICP61 ME-ICP61 Method **Recvd Wt** Au Check BI Ca Cđ Au Δu Ag AI As Ba Be Co Cr Cu Analyte % % Units kg ppb ppb ppm ppm ppm ppm ppm ppm ppm pom ppm ppm **Sample Description** LOR 0.02 5 5 0.05 0.5 0.01 5 10 0.5 2 0.01 0.5 1 1 1 0,5 7.56 <5 <2 94416 0.32 11 110 0.5 6.62 <0.5 45 95 120 0.43 <5 <0.5 <5 260 <2 1.49 <0.5 94417 7.41 0.9 5 78 6 0.45 <5 <0.5 7.81 <5 300 0.8 <2 1.36 <0.5 94418 2 5 4 <0.5 8.12 <5 <2 <0.5 0.29 5 80 0.6 2.31 25 23 94419 167 94420 0.39 <5 <0.5 7.74 <5 170 0.8 <2 0.78 <0.5 4 13 8 0.74 11 0.5 12 60 <0.5 <0.5 48 124 387136 8.03 <2 6.49 215 387137 1.20 5 <0.5 6.05 <5 270 <0.5 <2 4.57 <0.5 38 7 124 387138 1:29 <5 <0.5 7.73 <5 450 1.1 <2 1,36 <0.5 3 130 54 0.60 <5 <0.5 0.10 10 50 <0:5 <2 >25 <0.5 94425 1 1 1 387139 0.78 <5 <0.5 0.34 <5 20 <0.5 4 0.17 < 0.5 3 587 33 261 6.9 0.80 <2 387140 2.18 8 10 < 0.5 1.41 <0.5 72 24 1185 <5 <0.5 7.77 <5 <2 0.94 <0.5 387141 1.10 160 0.7 5 93 17 387142 0.71 <5 <0.5 0.27 34 10 0.9 <2 7.10 <0.5 5 14 14 <5 <0.5 13 30 <0.5 <2 7.09 <0.5 387143 0.89 6.86 50 417 74 387144 0.61 <5 <0.5 1.33 <5 10 <0.5 <2 0.49 <0.5 10 24 29 3.28 48 <0.5 0.16 <5 <10 <0.5 <2 0.83 <0.5 17 387145 2 513 1.97 <5 <0.5 0.90 6 10 <0.5 <2 1.42 <0.5 387146 92 1385 9 387147 1.92 2540 <0.5 2.15 <5 200 0.5 7 0.23 <0.5 13 313 75 94426 0.09 >10000 NSS 7.6 6.78 114 390 3.8 8 0.50 1.1 17 177 198 387148 0.67 28 < 0.5 5.02 <5 190 0.6 <2 0.08 < 0.5 11 11 4 32 387149 1.08 <0.5 7.19 12 150 0.6 <2 0.50 <0.5 5 64 6 23 <2 387150 1.23 881 2.4 5.47 100 <0.5 0.20 <0.5 6 9 6 <0.5 <5 <2 387439 0.45 103 7.40 250 0.8 1.09 < 0.5 26 104 40 <2 387440 0.49 22 <0.5 7.01 <5 30 <0.5 7.28 <0.5 51 418 4 19 0.5 13 <2 7.23 387441 0.54 7.58 60 <0.5 < 0.5 43 226 107 5 05 8.24 <5 160 <2 3.81 <0.5 17 37 135 387442 0.60 0.8 <0.5 <2 387443 12 8.60 <5 400 1,26 <0.5 1.63 1.2 1 98 7 387444 1.24 5 <0.5 8.35 <5 520 1.3 <2 0.66 <0.5 3 5 5 17 <2 >25 94427 0.75 <5 < 0.5 0.10 40 <0.5 < 0.5 <1 13 1 387445 1.95 <5 <0.5 5.32 10 150 0.6 <2 5.27 < 0.5 9 35 17. 2.07 45 54 387446 <0.5 4.45 14 190 <0.5 <2 4.18 <0.5 1325 19 387437 1.78 25 0.5 6.35 <5 70 0.5 <2 4.74 <0.5 23 309 268

Comments: Sample 94594 exhibits Au nugget effect. NSS is non-sufficient sample.

ALS Cnemex EXCELLENCE IN ANALYTICAL CHEMISTRY

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue

615-800 W PENDER ST VANCOUVER BC V6C 2V6

....e#: . B Total # of pages : 3 (A - C) Date : 30-Sep-2003 Account: BM

Project : WRL03-020

CERTIFICATE OF ANALYSIS TB03035923

Sample Description	Method Analyte Units LOR	ME-ICP61 Fø % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP6 W ppm 10
94416		8.35	0.90	3.82	1380	<1	0.95	94	210	<2	0.01	<5	175	0.35	263	<10
94417		1.75	2.44	0.62	419	<1	1.73	7	350	<2	<0.01	<5	76	0.16	23	<10
94418		2.01	1.56	0.31	187	<1	3.37	5	220	2	<0.01	<5	168	0.14	18	<10
94419		6.79	0.37	2.73	457	<1	2.86	24	890	3	<0.01	<5	282	0.62	143	<10
94420		2,44	1.46	0.54	209	<1	3.53	7	350	2	<0.01	<5	75	0.17	24	<10
387136		8.34	0.21	5.14	1375	<1	1.57	130	220	<2	0.01	<5	154	0.42	247	<10
387137		6.93	1.13	3.73	1285	<1	0.55	88	150	<2	<0.01	<5	75	0.38	178	<10
387138		1.68	2.26	0.42	124	1	2.77	4	330	2	0.21	<5	229	0.12	22	<10
94425		0.22	0.03	1.06	123	<1	0.03	2	40	<2	<0.5	<5	95	0.01	2	<10
387139		1.31	0.11	0.05	71	4	0.02	12	60	3	0.02	<5	6	0.03	9	<10
387140		15.95	0.03	1.12	1755	<1	0.06	23	440	<2	2.67	<5	22	0.05	15	<10
387141		1.87	0.84	0.37	153	<1	4.14	4	500	2	0.03	<5	141	0.23	29	<10
387142		>25.0	0.02	1.10	252	<1	0.08	1	920	<2	0.01	<5	52 97	0.01	8	<10
387143 387144		9,15 3,48	0.06 0.01	5.65 1.13	1600 281	<1 <1	0.92 0.02	130 20	170 240	<2 <2	0.01 0.04	<5 <5	97 5	0.33 0.04	261 45	<10 <10
387145		1,95	0.01	0.07	121	2	0.01	16	240	<2	0.06	<5	3	0.01	8	<10
387146		7.28	0.01	>15.0	1150	<1	0.02	1650	60	2	0.00	<5	14	0.09	60	<10
387147		3.19	0.62	0.13	989	2	0.28	37	30	4	1.77	<5	20	0.03	5	<10
94426	1	3.34	3.46	0.54	363	20	0.29	165	580	380	1.52	5	192	0.24	142	20
387148		1.23	1,71	0.21	74	1	0.24	20	200	<2	0.03	<5	64	0.06	16	10
387149		1.18	1.90	0.25	323	<1	0.50	13	290	<2	0.02	<5	86	0.08	22	<10
387150		1.28	1.58	0.19	239	<1	0.36	41	230	<2	0.26	<5	32	0.06	16	200
387439		2.03	1.95	0.34	218	<1	1.88	13	290	<2	<0.01	<5	138	0.15	11	<10
387440	(8.23	0.25	6.21	1590	<1	1.11	174	140	<2	<0.01	<5	102	0.23	224	<10
387441		8.61	0.51	4.08	1510	<1	1.17	86	240	<2	0.08	<5	172	0.38	271	<10
387442		4.41	1.39	1.14	460	<1	1.85	28	710	<2	0.30	<5	201	0.32	70	<10
387443		1.12	1.47	0.13	236	<1	3.85	6	160	8	0.02	<5	124	0.05	6	<10
387444	1	1.19	2.03	0.14	144	<1	3.66	3	130	5	<0.01	<5	109	0.06	5	<10
94427		0.13	0.02	0.80	111	<1	0.05	2	60	<2	<0.5	<5	88	<0.01	1	<10
387445		5.65	0.42	1.32	4300	<1	0.46	48	330	9	1.04	<5	69	0.14	64	<10
387446		5.61	0.66	4.19	881	<1	0.13	430	140	<2	0:11	<5	54	0,06	124	<10
387437		4.32	0.49	2.08	782	<1	0.93	120	420	<2	0.09	<5	116	0.24	97	<10

ALS Cnemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 D: P.ON L LOP TS L D 615-800 W PENDER ST VANCOUVER BC V6C 2V6

_e#: C Total # of p_des: 3 (A - C) Date: 30-Sep-2003 Account: BM

Project : WRL03-020

CERTIFICATE OF ANALYSIS TE

TB03035923

Sample Description	Method Analyte Units LOR	ME-ICP61 Zn ppm 2
94416 94417		73 12
94418 94419 04420		29 118 37
94420 387136		54
387137 387138 94425		73 11 4
387139		3
387140 387141 387142 387143 387144		81 14 7 72 26
387145 387146 387147 94426 387148		7 56 10 164 8
387149 387150 387439 387440 387441		22 16 27 85 70
387442 387443 387444 94427 387445		61 13 14 3 77
387446 367437		86 32
Commente: Sample 0450	04 evhibi	its Au nugget effect. NSS is non-sufficient sample.

Comments: Sample 94594 exhibits Au nugget effect. NSS is non-sufficient sample.

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

CANCOUVER BC V6B 1N2

CERTIFICATE OF ANALYSIS

Total # of pages : 3 (A - C) Date : 17-Jul-2003 Account: BM

TB03024292

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

									_							····
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppb 5	Au-GRA21 Au ppm 0.05	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
385980		1.10	12		<0.5	7.33	<5	230	<0.5	<2	3,09	<0.5	10	19	83	2.27
385981		1.34	>10000	18.40	4.7	0.42	5	10	<0.5	23	0.66	13.6	. 8	17	138	1.96
385982		1.27	4050		0.9	0.27	<5	10	<0.5	6	0.26	0.9	2	17	60	1.11
385983		2.41	>10000	17.20	28.3	0.20	<5	10	<0.5	13	0.16	102.5	8	18	4750	3.60
385984		2:80	8310		4.6	0.30	<5	20	<0.5	<2	0.24	400	89	15	640	10.05
385985		1.38	1040		48.0	6,49	<5	200	<0.5	47	8.31	94.3	19	67	2500	7,05
385986		0.18	1510		>100	0.49	<5	20	<0.5	313	0.40	>500	24	13	283	5.02
385987		0.93	24		1,3	3.46	<5	70	<0.5	<2	1.08	6.3	4	14	64	2.64
385988		0.76	14		0.5	9.32	<5	430	<0.5	<2	0.93	2.3	2	7	7	2.49
385989		0.95	<5		<0.5	7.35	<5	170	0.5	<2	1.64	0.6	5	6	6	1.67
385990		0.30	5		<0.5	8.46	<5	570	<0.5	2	3.89	0.7	17	16	23	5.05
385991		1.03	<5		<0.5	7.57	<5	290	<0.5	<2	2.48	<0.5	8	20	35	2.95
385992	1	2.01	5		<0.5	4.22	<5	230	<0.5	<2	0.63	<0,5	27	25	104	6,76
385993		0.22	177		2.3	0.84	<5	20	<0.5	<2	0.13	<0.5	5	12	217	1.30
385994		0.23	894		13.8	7.57	<5	310	<0.5	<2	1.86	<0,5	32	24	4520	4.63
385995		1.59	8		<0.5	1.52	<5	<10	<0.5	<2	1.91	0.7	126	2510	27	7.00
385996		1.20	5		<0.5	1.48	<5	<10	<0.5	<2	1.08	<0.5	107	1550	10	6.53
385997		0.36	<5		<0.5	1.18	8	<10	<0.5	<2	0.49	<0.5	97	1080	3	5.64
385998		1.14	22		<0.5	1.83	<5	<10	<0.5	<2	3.55	<0,5	91	1890	17	6.64
385999		1,09	<5		<0.5	5.95	<5	10	<0.5	<2	1.86	1.9	46	1210	3	3,78
386000		0.64	5		0.5	0.66	9	10	<0.5	<2	0.05	<0.5	112	1870	11	6.05
387467		0.40	<5		<0.5	0.08	<5	70	<0.5	<2	>25	<0,5	1	9	6	0.22
387151		0.17	<5		<0.5	1.64	<5	40	<0.5	2	0,56	<0,5	4	27	4	1.81
387152		1.39	17		<0.5	6,98	<5	40	<0.5	<2	7.08	<0,5	50	162	86	7,96
387153		0.74	<5		<0.5	8.05	<5	530	<0.5	<2	2.80	<0.5	18	41	69	3.34
387154		0.88	<5		<0.5	1.58	<5	20	<0.5	2	1,65	<0.5	14	38	16	2.56
387001		0.08	>10000	21.2	7.4	6.81	108	240	3,3	<2	0.56	1.0	17	178	203	3,24
387155		0.36	7		<0.5	7.11	<5	150	<0.5	<2	5.43	<0.5	6	18	17	2.41
387156		1.06	9		0.9	2.01	<5	10	<0.5	4	2.34	1.0	51	. 21	217	16.45
387157		0.44	5		<0.5	4.80	<5	330	<0.5	<2	0.79	<0.5	10	26	30	10.20
387158		1.06	10		<0.5	7.42	<5	60	<0.5	<2	6.60	<0,5	47	120	59	8.45
387159		0.79	7		<0.5	7.05	<5	40	<0.5	<2	6.46	<0.5	45	118	52	7.82
387160		0.42	9		<0.5	2.33	<5	30	<0.5	<2	2.55	<0.5	24	134	16	3.51
387161		0,52	<5		<0.5	6.22	<5	350	<0.5	<2	1.58	<0.5	35	28	14	6.12
387162		1.12	72		1.4	0.86	<5	20	<0.5	<2	2.60	0.7	37	26	756	11.45
387163		1,76	<5		<0.5	7.56	<5	190	<0.5	<2	1.42	<0.5	6	7	13	1.28
387201		1.46	94		7.4	8.00	<5	70	<0.5	<2	0.43	<0.5	50	16	3190	4.87
387202		0.73	67		0.7	4,59	<5	30	<0.5	<2	1.08	<0,5	6	9	99	1.13
387203		0.21	<5		<0.5	0.31	<5	10	<0.5	5	0.10	<0.5	1	6	26	1.06
387204		0.76	<5		<0.5	4.37	<5	80	<0.5	2	2.45	<0.5	9	9	25	3.21

ALS Cnemex EXCELLENCE IN ANALYTICAL CHEMISTRY

611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

CERTIFICATE OF ANALYSIS

Total # of payes : 3 (A - C) Date : 17-Jul-2003 Account: BM

TB03024292

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-1CP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 8 % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
385980		0.81	1.28	300	1	2.65	21	270	4	0.02	<5	71	0.15	32	<10	38
385981		0.10	0.05	105	1	0.03	8	60	19	0.81	<5	10	0.01	5	730	1050
385982		0.08	0.05	52	<1	0.01	4	50	3	0.09	<5	4	0,01	4	660	116
385983		0.07	0.03	80	<1	0.01	7	50	132	2.34	<5	6	<0.01	3	950	8340
385984		0.13	0.08	191	<1	0.01	48	20	22	9.92	<5	11	0.01	8	1190	>10000
385985		2.32	2.53	2000	2	0.19	32	250	910	1.63	<5	243	0.34	155	50	8840
385986		0.25	0.12	356	<1	0.02	15	100	5170	7.94	<5	21	0.03	10	260	>10000
385987		1.00	0.29	551	1	0.20	6	330	48	0.34	<5	68	0.10	13	20	595
385988		3.63	0.50	677	<1	0.47	5	520	29	0.02	<5	102	0.25	33	10	222
385989		1.42	0.46	284	1	3.12	3	280	7	0.01	<5	184	0.15	8	<10	112
385990		1.84	1.57	903	<1	2.65	6	1360	12	0.05	<5	470	0.35	115	10	149
385991		1.90	0.70	579	<1	2.10	11	790	20	0.10	<5	128	0.32	51	10	136
385992		0.80	0.69	793	3	1.13	29	410	5	1.64	<5	- 80	0.19	30	10	54
385993		0.15	0.10	60	<1	0.39	5	110	2	0.07	<5	9	0.05	9	10	21
385994		2.24	1.34	445	54	2.32	132	820	.8	0,53	<5	82	0,38	196	10	87
385995		0.01	>15	829	5	0.04	1365	40	6	0.06	<5	8	0.06	73	<10	55
385996		0.01	>15	891	6	0.01	1935	50	2	0.02	<5	3	0.06	67	10	63
385997		0.01	>15	725	5	0.01	1890	70	24	0.15	<5	6	0.05	48	<10	50
385998		0.01	>15	748	6	0.05	1515	80	8	0.08	<5	9	0.08	76	10	34
385999		<0.01	>15	819	5	<0.01	543	120	2	0.01	<5	5	0.14	97	20	623
386000		<0.01	>15	887	5	<0.01	1965	50	4	0.06	<5	1	0.02	28	10	62
387467		0.02	0.86	127	1	0.05	13	120	2	<0.01	<5	85	0.01	2	<10	3
387151		0,30	0.36	74	<1	0.63	12	220	<2	<0.01	<5	38	0.05	3	<10	21
387152		0.32	5.46	1435	4	1,54	138	160	3	0.08	<5	109	0.29	219	10	69
387153		1.46	1.52	400	<1	2.31	34	800	6	0.07	<5	146	0,32	69	10	45
387154		0.08	1.35	368	<1	0.22	42	50	<2	0.01	<5	19	0.05	50	<10	26
387001		3.62	0.57	371	13	0.33	167	570	388	1.46	<5	182	0.24	131	30	173
387155		1.68	0.78	519	<1	0.87	10	330	3	0.01	<5	15	0.18	33	10	32
387156		0.16	2.19	929	2	0.24	35	560	31	0.89	<5	3	0.09	30	10	182
387157		0.94	1.52	963	2	0.38	19	570	2	0.37	<5	61	0.23	37	10	32
387158		0.24	4.48	1495	3	2.10	100	190	4	0.03	<5	176	0.34	237	10	94
387159		0.19	4.35	1445	3	2.00	94	250	4	0.01	<5	160	0.32	230	10	84
387160		0.12	2.25	558	2	0.33	67	80	<2	0.01	<5	25	0.05	69	<10	32
387161		1.26	1.80	478	<1	2.00	24	580	2	0.01	<5	88	0.25	46	10	37
387162		0.13	2,16	1360	4	0,07	18	430	43	0.36	<5	15	0.06	28	10	37
387163		1.38	0.61	172	<1	3.31	5	330	3	<0.01	<5	180	0.12	12	<10	14
387201		1.31	1.68	321	1	4.85	49	790	5	0.43	<5	96	0.34	88	10	79
387202		0.43	0.15	111	<1	2.56	9	580	2	0.01	<5	33	0.18	29	<10	11
387203		0.06	0.09	44	<1	0.07	3	60	<2	0.01	<5	4	0.01	3	<10	7
387204		0.18	0.93	262	<1	2.26	92	420	<2	0.10	<5	118	0.24	198	10	23

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 D: P/..... DN C LOPI 'S LI D 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

Total # of pages : 3 (A - C) Date : 17-Jul-2003 Account: BM

CERTIFICATE OF ANALYSIS TB03024292

Sample Description	Method Analyte Units LOR	Ag-AA62 Ag ppm 1	Zn-AA62 Zn % 0.01										*	
385980 385981 385982 385983 385984			3.13											
385985 385986 385987 385988 385988 385989		118	8.81											
385990 385991 385992 385993 385994							,							
385995 385996 385997 385998 385998 385999														
386000 387467 387151 387152 387153				·····	· · · · · · · · · · · · · · · · · · ·		****				 			
387154 387001 387155 387156 387157			<u></u>	<u>т</u>		<u>, , , , , , , , , , , , , , , , , , , </u>		 	*** *****	·	 		<u></u>	
387158 387159 387160 387161 387162											 	<u> </u>		
387163 387201 387202 387203 387204		-	····, ··· ···								 			

)**#:**

387464

ALS CNEMEX EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

0.41

<5

<0.5

2.10

<5

212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 Total # of payes : 3 (A - C) Date : 17-Jul-2003 Account: BM

CERTIFICATE OF ANALYSIS TB03024292 WE1-21 Au-AA23 Au-GRA21 ME-ICP61 Method BI Ca Recvd Wt AL Ba Be Cd Co Cr Cu Analyte Au Au Ag As Fe % % % Units kg ppb ppm **Sample Description** LOR 0.02 5 0.05 0.5 0.01 5 10 0.5 2 0.01 0.5 1 1 1 0.01 387205 8 <5 370 <0.5 <2 5.54 < 0.5 52 1.06 < 0.5 10.10 9 165 4.02 387206 5 <0.5 <5 70 <0.5 2 2.49 <0.5 9 7 56 0.83 8.15 1.62 387468 0.71 <5 <0.5 0.14 <5 70 <0.5 <2 >25 <0.5 2 0.22 1 1 387451 <5 7.92 <5 770 <0.5 <2 3.87 <0.5 0.61 <0.5 25 37 4.83 115 387452 0.57 549 <0.5 3 4 4 <5 70 <0.5 <2 0.44 <0.5 6 7 29 0.97 387453 2.02 5.39 <5 180 < 0.5 <2 3.97 < 0.5 87 180 176 19 < 0.5 12.70 387454 0.60 <5 <0.5 1.76 <5 10 <0.5 <2 1.87 0.9 98 1225 50 6.53 387455 0.62 <5 <0.5 2.24 <5 10 < 0.5 <2 1.10 <0.5 121 1195 1015 5.92 387456 0.80 <5 <0.5 1.98 <5 <10 <0.5 <2 2.06 < 0.5 108 2110 24 6.71 387457 1.37 <5 <0.5 3.26 6 10 < 0.5 <2 6.18 < 0.5 84 1665 5 7.34 387458 7 <10 <2 0.35 0.7 81 1.33 <5 < 0.5 1.20 < 0.5 1425 5 5.37 387459 1.47 <5 <0.5 0.57 <5 <10 <0.5 <2 6.33 0.9 77 1205 3.85 4 387460 2.18 <5 <0.5 5.95 <5 60 <0.5 <2 11.30 0.7 47 609 6.71 4 387461 0.57 8 <0.5 1.68 9 <10 < 0.5 <2 4.41 2.2 81 1955 7 6.39 387002 3390 0.7 7.21 304 380 <0.5 <2 4.81 1.2 25 148 0.07 108 5.47 387462 0.43 23 <0.5 3.67 <5 240 <0.5 2 3.58 < 0.5 64 996 251 8.73 387463 0.35 9 <0.5 2.17 <5 100 <0.5 <2 0.98 <0.5 14 132 46 2.72

40

< 0.5

<2

8.40

< 0.5

48

654

27

4.30

#:

D:P. ON L LOP IS LI D 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

CERTIFICATE OF ANALYSIS

3 Total # of puges : 3 (A - C) Date : 17-Jul-2003 Account: BM

TB03024292

.

ALS Cnemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-1CP61 8 % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP81 Zn ppm 2
387205		1.17	1,18	516	2	2.76	359	800	9	0.26	<5	315	0.63	544	90	18
387206		1.24	0.58	214	<1	3.47	43	480	<2	0.01	<5	50	0.20	63	<10	12
387468		0.03	0.66	137	<1	0.09	2	130	3	<0.01	<5	87	0.01	2	<10	<2
387451		1.56	2.75	874	2	2.75	57	590	12	0.01	<5	360	0.23	105	10	55
387452		0.86	0.20	65	<1	1.52	8	260	<2	<0.01	<5	21	0.13	30	<10	7
387453		0.99	3.52	2070	4	0.89	148	480	18	6.36	<5	87	0.31	162	10	86
387454		0.03	>15	1085	7	0.07	1705	50	25	0.14	<5	8	0.07	69	10	112
387455		0.01	>15	889	6	0.04	1800	30	11	0.18	<5	9	0.05	75	10	26
387456		0.01	>15	730	6	0.06	1815	70	7	0.08	<5	12	0.10	80	10	41
387457		0.03	12.40	1530	5	0.25	793	60	2	0.01	<5	10	0.14	128	10	79
387458		<0.01	>15	628	7	0.01	2170	60	3	0.11	<5	2	0.06	70	<10	30
387459	1	0.01	>15	1150	6	0.07	1650	80	221	0.11	<5	16	0.03	34	<10	152
387460		0.19	6.35	1630	4	0.30	170	160	22	<0.01	<5	244	0.18	203	<10	84
387461		0.01	>15	907	10	0.05	1370	60	905	0.13	<5	48	0.07	81	10	390
387002	(1.30	2.22	1055	8	1.45	52	790	48	1.44	197	230	0.73	162	20	150
387462		0.87	6.61	1155	4	0.46	228	120	15	0.03	<5	66	0.16	142	<10	48
387463		0.51	1.60	526	1	0.16	49	40	17	0.04	<5	22	0.04	30	<10	75
387464	1	0.32	4.35	1890	2	0.54	374	300	2	0.02	<5	44	80.0	74	10	37

∍#:

ALS Criemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 P. ON L LOP IS L D 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

CERTIFICATE OF ANALYSIS TB03024292

Sample Description	Method Analyte Units LOR	Ag-AA62 Ag ppm 1	Zn-AA62 Zn % 0.01
387205 387206 387468 387451 387452			
387453 387454 387455 387456 387456 387457			
387458 387459 387460 387461 387002			
387462 387463 387464			
. <u></u>			

D: PANNON LAVALOPINA IS LINA AD 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

4: - A Total # of pages : 3 (A - C) Date : 24-Jul-2003 Account: BM

. . . .

P۳	ojeci	t : '	WR	L03	3-0()6	

and the second second				
CE	RTIFIC	ATE C	DF AN	VALYS

SIS TB03025341

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppb 5	Au-GRA21 Au ppm 0.05	Au-AA23 Au Check ppb 5	Au-AA23 Au Check ppb 5	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1
387164		0.11	6				<0.5	7,26	19	100	<0.5	<2	6.71	<0,5	43	283
387165		0.25	8				<0.5	7.98	8	70	<0.5	<2	7.12	<0.5	41	204
387166		0.18	6				<0,5	7.68	<5	80	0.7	<2	0.97	<0,5	4	76
387167		0.21	33				0.7	8.60	<5	270	0.5	<2	3.12	<0.5	52	150
387168		0.14	<5				<0.5	1.06	11	<10	<0.5	<2	1.58	0.5	106	3990
387408		0.26	9			-	<0.5	7.66	<5	270	0.6	<2	2.54	<0.5	9	80
387169		0.21	16				<0.5	6.70	5	490	0.9	3	1.86	<0.5	20	319
387170		0.32	<5				<0.5	8.44	<5	290	<0.5	<2	3.64	<0.5	10	42
387171		0.14	<5				<0.5	7.88	<5	570	1,1	<2	1.80	<0.5	4	38
387172		0.16	<5				<0.5	4.12	<5	100	<0.5	2	0.88	<0.5	2	97
387411		0.12	<5				<0,5	0.11	5	60	<0.5	<2	>25	<0.5	1	6
387173		0.20	<5				<0.5	8.13	5	360	0.7	<2	2.01	<0.5	4	52
387174		0.44	5				<0.5	7.54	12	60	<0.5	<2	6.56	<0.5	45	164
387175		0.14	<5				<0.5	2.58	<5	140	<0.5	<2	0.50	<0.5	2	170
387176		0.18	<5				<0.5	7.97	<5	80	<0.5	4	1.88	<0.5	6	76
387177		0.22	<5				<0.5	0.31	<5	10	<0.5	<2	1.80	<0.5	110	4230
387178		0.21	6				<0.5	0.70	<5	<10	<0.5	<2	1.06	<0.5	8	172
387179		0.35	7				<0.5	5.13	<5	270	<0.5	<2	3.02	<0.5	17	143
387180	}	0.27	<5				<0.5	6.71	<5	100	<0.5	4	2.79	<0.5	7	98
387412		<0.02	1935				<0.5	4.82	11	490	<0.5	<2	1.54	<0,5	31	1125
387181		0.24	15	· ·			<0.5	6.93	<5	250	<0.5	6	2.15	<0.5	10	93
387182		0.32	6				<0.5	2.07	<5	30	<0.5	<2	2.50	<0.5	13	140
387183]	0.31	19				<0.5	7.15	5	160	<0.5	7	6.58	、<0.5	41	157
387409		0.26	22				<0.5	8.01	5	200	<0.5	10	7.56	<0.5	45	161
387184		0.24	9				0.8	1.25	<5	40	<0.5	<2	0.42	0.8	88	156
387185		0.12	<5			12	<0.5	1.47	<5	80	<0.5	2	0.50	<0.5	3	176
387186		0.13	287		264	479	<0.5	4.85	<5	200	<0.5	3	1.76	<0.5	3	116
387187		0.43	103			94	<0.5	4.63	<5	500	<0.5	5	1.42	<0,5	7	58
387207	ļ	0.23	16				<0.5	4.75	<5	100	<0.5	3	5.20	<0.5	3	93
387208		0.20	<5				<0.5	0.20	<5	10	<0.5	<2	0.09	<0.5	1	168
387209		0.08	10				<0.5	0.84	<5	40	<0.5	<2	0.16	<0.5	1	190
387210	I	0.33	90				<0.5	0.06	<5	<10	<0.5	<2	0.07	<0.5	1	140
387413	1	<0.02	3120				0.8	7.12	331	340	<0.5	8	4.69	1.5	24	106
387211		0.38	19				<0.5	0.13	<5	10	<0.5	<2	1.23	<0.5	3	80
387401		0.26	<5				<0.5	1.17	7	10	<0.5	<2	1.80	<0.5	27	959
387402		0.30	11				2.8	8.09	<5	330	0.6	8	2.50	<0.5	6	40
387414		0.10	<5				<0.5	0.18	<5	60	<0.5	<2	>25	<0.5	1	15
387403		0.43	15				<0.5	6.24	<5	30	<0.5	<2	3.62	<0.5	9	34
387404		0.32	8				<0.5	7.31	6	20	<0.5	5	8.24	<0.5	43	210
387405]	0.13	26				<0.5	7.44	<5	330	0.7	2	1.48	<0.5	4	82

Phone: 604 984 0221 Fax: 604 984 0218

ALS Cnemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada

Comments: Highly mineralized samples may bias results for some elements. Sample 387186 exhibits Au nugget effect.

Т

ALS Cnemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 _ ∍ # : 3 Total # of pages : 3 (A - C) Date : 24-Jul-2003 Account: BM

Project : WRL03-006

CERTIFICATE OF ANALYSIS TB03025341

Sample Description	Method Analyte Units LOR	ME-ICP61 Cu ppm 1	ME-ICP61 F e % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1
387164		40	6,70	0.41	5.76	1280	3	1.14	208	100	3	0.06	<5	120	0.13	176
387165		13	6.23	0.38	4.63	1120	2	1.76	162	150	4	0.04	<5	144	0.16	177
387166		4	1.08	0.57	0.43	192	<1	5.08	15	160	2	<0.01	<5	73	0.13	15
387167		622	3.32	1.78	0.62	314	1	1.40	15	580	7	0.55	<5	211	0.25	51
387168		4	6.82	0.01	>15	1090	4	0.02	1325	30	3	0.01	<5	16	0.01	60
387408		10	2.34	1.81	1.02	291	4	1.34	37	400	4	0.03	<5	204	0.21	52
387169		23	2.48	1.63	2.70	335	2	1.88	196	260	10	0,09	<5	178	0.12	25
387170		11	3.31	1.47	1.03	545	1	1.77	13	900	7	0.06	<5	186	0.33	57
387171		5	1.40	1.48	0.37	186	1	3.24	7	290	10	0.01	<5	180	0.13	21
387172		4	1.04	0.49	0.28	152	<1	1.77	. 8	260	3	<0.01	<5	83	0.12	24
387411		54	0.16	0.03	0,70	120	<1	0.06	1	100	<2	<0,5	<5	87	0.01	2
387173		25	0.97	2.45	0.40	168	1	1.41	14	430	6	<0.01	<5	132	0.20	45
387174		73	6.75	0.25	4.29	1100	1	2.11	103	210	<2	0.02	<5	182	0.31	232
387175		5	1.27	0.72	0.18	113	2	0.64	11	120	2	<0.01	<5	44	0.07	20
387176		5 .	1.09	0.65	0.57	246	3	4.97	11	500	4	0,01	<5	150	0.17	42
387177		2	7.43	0.01	>15	1180	5	0.03	1515	40	8	<0.01	<5	12	0.01	46
387178		5	1.70	0.01	1.36	339	4	0.02	25	10	<2	0.03	<5	4	0.01	37
387179		90	2,39	1.50	2.21	369	2	1.21	194	480	<2	0.01	<5	100	0.10	106
387180		3	1.36	0.66	0.97	257	2	3.53	63	1080	<2	< 0.01	<5	146	0.27	84
387412		63	3.14	1.38	0.97	601	22	1.61	1400	410	32	0.03	<5	170	0.22	69
387181	(25	2.78	1.54	0.86	314	3	1.65	11	400	6	0.05	<5	175	0.19	35
387182		5	2.15	0.22	1.54	582	4	0.23	47	30	3	<0.01	<5	35	0.04	53
387183		69	5.99	0.63	4.14	1075	6	1.58	101	120	9	0,01	<5	122	0.13	157
387409		24	6.75	0.78	4.67	1225	5 5	1.72	105	180	8	0.03	<5 ~5	130	0.17	187
387184		182	3.39	0.36	0.34	170		0.20	101	180	31	1.58	<5	9	0.05	17
387185		15	1.46	0.34	0.23	114	3	0.48	9	100	3	0.03	<5	21	0.04	18
387186		81	2.26	0.99	0.34	346	3	1.14	6	290	4	0.05	<5	130	0.13	20
387187		92	2,02	1.50	0.42	434	.1	1.06	3	420	7	0.26	<5	155	0.10	25
387207	-	3	2.16	0.60	0.81	675	3	0.14	8	300	4	<0.01	<5	128	0.12	18
387208		3	0.68	0.04	0.01	39	1	0.07	4	50	<2	<0.01	<5	5	0.01	2
387209		8	0.89	0.16	0,06	64	3	0.40	5	50	6	0.01	<5	16	0.02	12
387210		11	0.65	0.01	0.03	106	2	0.02	8	30	2	0.02	<5	2	< 0.01	2
387413		154	5.54	1.28	2.24	1105	8	1.42	53	770	44	1.48	93	228	0.70	165
387211		12	12.25	0.02	1.41	7210	6	0.02	5	320	2	0.08	<5	10	< 0.01	4
387401		12	12.25	0.02	4.94	2740	5	0.03	456	130	2	0.11	<5	5	0.05	49
387402		36	2.21	2.26	0.79	538	2	2.83	11	520	1295	0.04	<5	173	0.18	33
387414		5	0.39	0.06	0.68	163	<1	0.09	3	130	5	0.01	<5	87	0.01	2
387403		116	2.44	0.11	0.98	457	1	2.50	9	760	8	0.02	<5	215	0.20	69
387404		21	6.63	0.18	5.03	1420	3	1.24	142	160	7	0.01	<5	122	0.18	178
387405		6	1.50	1.62	0.37	237	2	3.45	8	250	7	0.01	<5	188	0.13	20

Comments: Highly mineralized samples may blas results for some elements. Sample 387186 exhibits Au nugget effect.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 ____# #: ____ Total # of payes : 3 (A - C) Date : 24-Jul-2003 Account: BM

Project : WRL03-006

CERTIFICATE OF ANALYSIS TB03025341

Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2		
387164 387165 387166		10 10 10	57 55 10		
387167 387168		10 <10	37 64		
387408 387169 387170 387171 387172		10 10 10 10 <10	27 39 158 42 20		
387411 387173 387174 387175 387175 387176		10 10 10 <10 10	<2 6 43 6 17		<u></u> _
387177 387178 387179 387180 387412		<10 <10 40 10 10	74 13 17 20 38	· · ·	<u></u>
387181 387182 387183 387409 387184		10 <10 10 10 <10	34 51 78 67 78		<u>, , , , , , , , , , , , , , , , , , , </u>
387185 387186 387187 387207 387208		<10 <10 10 <10 <10	17 30 35 23 3		••••••••••••••••••••••••••••••••••••••
387209 387210 387413 387211 387201		<10 <10 10 <10 10	5 9 163 266 28		
387402 387414 387403 387404 387405		<10 <10 <10 10 10 10	33 <2 20 62 22		

Comments: Highly mineralized samples may bias results for some elements. Sample 387186 exhibits Au nugget effect.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

): PANIICON DEVELOF INEISTS LINII ED 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

rsye # : - - A Total # of pages : 3 (A - C) Date : 24-Jul-2003 Account: BM

Project : WRL03-006

CERTIFICATE OF ANALYSIS TB03025341

Meth Analy Unit Sample Description Lof	te Recvi	d Wt	Au-AA23 Au ppb 5	Au-GRA21 Au ppm 0.05	Au-AA23 Au Check ppb 5	Au-AA23 Au Check ppb 5	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bl ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1
387406	0.2	20	480				<0,5	6.39	<5	60	<0.5	5	7.10	<0.5	45	171
387407	0.1	3	8				<0.5	6.87	<5	150	<0.5	<2	1.84	<0.5	9	99
387469	0.1		223				<0.5	1.76	8	250	<0.5	<2	0.97	<0.5	6	162
387470	0.2		84				<0.5	7.33	6	860	<0.5	2	4.36	<0.5	43	. 246
387471	0.3	32	19				<0.5	7.75	5	1020	<0.5	2	4.66	<0.5	51	262
387472	0.1		19				<0.5	9.66	<5	2650	<0.5	2	0.84	<0,5	54	320
387473	0.1		23				<0.5	7.75	7	220	<0.5	<2	3.52	<0.5	46	120
387474	0.2		7				<0.5	7.15	<5	630	0.7	<2	1.19	<0.5	4	47
387415	0.1		<5				<0.5	0.19	<5	70	<0.5	<2	>25	<0.5	3	13
387475	0.1	5	15				<0.5	3.05	8	50	<0.5	<2	5.47	0.8	104	1745
387476	0.1		<5				<0.5	1.16	22	30	<0.5	<2	0.61	<0,5	86	1185
387477	0.2		10				<0.5	6.65	6	140	<0.5	5	6.45	0.7	50	27
387416	0.0		>10000	21.4			8.2	6.97	106	290	3,7	3	0.55	0.6	. 17	215
387478	0.1		296				<0.5	1.00	9	10	<0.5	<2	0.72	<0.5	105	1175
387479	0.1	6	8				<0.5	7.50	<5	90	<0.5	<2	6.59	<0.5	52	214
387480	0.2		34				<0.5	0.45	<5	10	<0.5	<2	0.67	<0.5	6	206
387481	0.1		12				<0.5	8.07	<5	-40	<0.5	5	7.27	<0.5	54	252
387410	0.1	4.	6				<0.5	1.08	7	10	<0.5	<2	0.82	<0.5	102	1070

Comments: Highly mineralized samples may bias results for some elements. Sample 387186 exhibits Au nugget effect.

N.P. ONI LOP **FS L** 611-675 W HASTINGS ST VANCOUVER BC V6B 1N2

Total # of puges: 3 (A - C) Date : 24-Jul-2003 Account: BM

0.20

0.24

0.25

0.14

0.01

0.19

0.04

0.57

0.26

0.05

0.56

0.02

0.54

0.05

Project : WRL03-006

208

215

110

6

3

925

1730

52

164

2340

148

48

146

2500

140

150

180

330

120

130

50

200

600

60

270

10

270

30

3

5

2

13

<2

<2

4

3

381

6

2

<2

<2

5

								CER	RTIFICA	TE OF A	NALYS	IS T	B03025	5341
Method	ME-ICP61	ME-ICP61	ME-ICP61	ME-1CP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-JCP61	ME-ICP61	ME-ICP61	ME-ICP61
Analyte	Cu	Fe	K	Mg	Mn	Mo	Na	NI	P	Pb	8	Sb	Sr	Ti
Units	ppm	%	%	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
LOR	1	0.01	0.01	0.01	5	1	0.01	1	10	2	0.01	5	1	0.01
	61	- 6.96	0.30	4.93	1335	3	1.39	135	140	6	0.26	<5	128	0.22
	55	3.62	0.84	0.74	489	1	2.67	24	630	5	0.04	<5	166	0.29
	5	1.48	0.42	0.62	319	2	0.85	22	370	<2	<0.01	<5	53	0.08
	43	6.52	1.59	3.20	1585	4	1.95	145	180	<2	0.01	<5	99	0.18

0.74

4.29

3.00

3.21

0.09

0.09

0.02

1.90

0.33

0.01

1.28

0.02

1.68

0.02

Comments: Highly mineralized samples may bias results	for some elements.	Sample 387186 exhibits Au nugget effect.
---	--------------------	--

Sample Description

387406

387407

387469

387470

387471

387472

387473

387474

387415

387475

387476

387477

387416

387478

387479

387480

387481

387410

ALS CHEMEX

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

2.31

1.08

0,45

1.79

0.05

0.04

0.02

0.39

3.57

0.02

0.16

0.01

0.11

0.01

3.10

2.05

3.32

0.35

1.08

9.75

>15

3.74

0.56

>15

4.29

0.55

3,35

>15

1815

1250

1640

492

147

1370

904

1460

380

728

1460

173

1830

752

3

2

2

1

<1

4

7

6

15

7

4

2

4

8

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

7.60

6.98

6.74

1.64

0.39

9.28

5,16

10.15

3.27

5.39

9.51

1.44

6.80

5.66

94

49

57

9

41

116

2

166

195

53

123

2

129

72

э#: ° 3

> ME-ICP61 . V ppm

> > 1

174

61

18

199

211

252

233

26

4

138

55

365

142

48

316

21

309

49

0.26

0.03

0.06

0.12

0.06

< 0.01

0.02

0.02

1.54

0.28

0.02

< 0.01

0.04

0.28

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

<5

110

102

82

186

77

6

5

217

188

12

240

5

91

12

Ð

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brocksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

 Y: P.
 ON L____LOP
 TS L____D

 611-675 W HASTINGS ST
 VANCOUVER BC V6B 1N2

___e # : ___ C Total # of puyes : 3 (A - C) Date : 24-Jul-2003 Account: BM

Project : WRL03-006

CERTIFICATE OF ANALYSIS TB03025341

Sample Description	Method Analyte Units LOR	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2								
387406 387407		10 10	66 43				-				
387469	1	<10	43 19								
387470		10	88								
387471		10	98				 				
387472		10	60 [°]								
387473 387474		10 10	84 30								
387415		<10	<2								
387475		10	93								
387476		10	86		 						
387477 387416		10 40	95 164								
387478		10	44								
387479		20	96								
387480		10	10	*** <u></u>				 		 	
387481 387410		10 <10	102 47								
307410		×10	47								
	ĺ										
,											
<u>,</u>											
			r								

Comments: Highly mineralized samples may bias results for some elements. Sample 387186 exhibits Au nugget effect.

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 D: PAON L LOP IS L D 615-800 W PENDER ST VANCOUVER BC V6C 2V6

es: 2 (A - B). Date: 28-Aug-2003 Account: BM

Project : WRL03-008

CERTIFICATE OF ANALYSIS TB03027475

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppb 5	ME-ICP61 Ag ppm 0.5	ME-1CP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP81 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-1CP61 Fe % 0.01	ME-ICP61 K % 0.01
387005		0.93	6	<0.5	0.80	<5	80	<0.5	<2	0.21	<0.5	1	11	9	1.50	0.22
387006		1.42	<5	<0.5	6.31	6	20	<0.5	4	8.55	<0.5	29	42	24	6.85	0.22
387007		2.04	<5	<0.5	0.73	<5	20	<0.5	<2	0.31	<0.5	· 1	13	6	1.79	0.11
387008		1.25	<5	<0.5	1.10	<5	60	<0.5	2	0.78	<0.5	7	68	22	2.62	0.27
387103		1.03	<5	<0.5	3.27	5	20	<0.5	<2	3.89	<0.5	84	1745	14	6.53	0.01
387104		1.20	61	<0.5	0.55	12	10	<0.5	3	1.40	<0.5	17	306	15	2.66	<0.01
387107		1.27	10	0.6	4.11	<5	120	<0.5	3	12.35	<0.5	62	2030	3	6.64	0.71
387196		1.15	<5	<0.5	8.74	<5	150	0.8	<2	1.13	<0.5	8	9	97	2.03	0.82
387197		0.98	19	<0.5	3.68	6	10	0.9	6	2.48	<0.5	4	28	34	17.60	0.03
387198		0.94	4570	0.6	1.32	<5	110	<0.5	9	0.06	<0.5	15	13	572	2.80	0.40
387199		1.44	<5	<0,5	9.71	10	500	1.1	<2	4.95	<0.5	18	82	32	5.97	1.64
387423		1.81	14	<0.5	1.22	<5	<10	<0.5	<2	0.06	<0.5	3	36	21	5.52	0.01
387424		1.19	11	0.9	2,46	<5	50	<0,5	2	1.28	1.5	81	38	174	10.35	0.21
387425		0.97	<5	0.5	6.50	<5	110	0.6	<2	3.84	<0.5	34	92	105	5.09	0.47
387426		1.84	<5	<0.5	0.26	5	<10	1.4	6	1.67	<0.5	6	25	18	>25	0.01
387427		1.68	<5	1.0	9.63	<5	750	0.7	3	7.11	<0.5	34	114	73	6.68	1.86
387428		0.73	2150	<0.5	1.76	<5	130	<0.5	3	0.11	<0.5	6	14	910	2.01	0.50
387429		0.07	1795													
387430		2.49	<5	<0.5	1.64	<5	10	1.1	<2	1.65	<0.5	8	28	37	7.87	0.03
387450		1.67	<5	0.7	0.15	<5	80	<0.5	5	>25.0	<0.5	1	1	3	0.34	0.04

Comments: ** CORRECTED COPY for sample descriptions on all samples **

ON I LOP TS L 615-800 W PENDER ST

ED

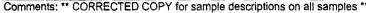
В Total # of +-- des : 2 (A - B) Date : 28-Aug-2003 Account: BM

....

Project : WRL03-008

VANCOUVER BC V6C 2V6

ີງ: P


......

CERTIFICATE OF ANALYSIS

S	TB	0302	27475	

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-JCP61 Na % 0.01	ME-ICP61 N} ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
387005		0,14	104	<1	0.10	6	50	<2	<0.01	<5	17	0.02	7	<10	14	
387006		2.29	1635	<1	0.65	51	180	2	<0.01	<5	60	0.22	146	<10	72	
387007		0.12	103	<1	0.23	4	110	<2	<0.01	<5	20	0.02	4	<10	9	
387008 387103		0.98	331 1070	1 1	0.06 <0.01	35 1335	100 70	<2 5	0.02 0.19	<5 <5	14 120	0.06	19 100	<10 <10	38 218	
387104		1.48	504	<1	<0.01	159	30	<2	0.21	<5	18	0.01	21	<10	15	
387107		6.51	1685	<1	0.07	594	50	4	0.09	<5	114	0.03	158	<10	106	
387196		0.30	181	<1	4.29	6	220	7	0.01	<5	178	0.15	9	<10	33	
387197		1.93	7300	2	0.04	11	500	<2	0.09	<5	11	0.19	31	<10	86	
387198		0.04	114	<1	0.40	20	50	2	1.37	<5	9	0.01	2	<10	3	
387199		2.27	678	<1	1.67	44	1380	7	0.30	<5	335	0.48	102	<10	56	
387423		0.46	631	7	0.01	7	80	<2	0.14	<5	1	0.09	44	<10	24	
387424		0.84	515	1	0.33	144	120	4	4.46	<5	46	0.09	61	<10	324	
387425		1,35	1100	<1	0.85	77	240	<2	1.20	<5	152	0,34	166	<10	152	
387426		1.76	1095	3	0.02	<1	1100	7	0.02	<5	9	0.01	1	<10	27	
387427		3.15	1095	<1	1.81	70	2090	3	0.23	<5	498	0.47	178	<10	92	
387428		0.05	54	<1	0.58	8	60	<2	0.52	<5	16	0.01	2	<10	4	
387429	[- ·					-					
387430 387450		1.12 0.94	1505 154	3 <1	0.0 6 0.06	7 3	430 100	<2 <2	0.02 <0.01	<5 <5	7 106	0.06 0.01	26 2	<10 10	60 2	
													_		_	
				. '												

ALS CHEMEX **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

.....

a#:

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 Project : WRL03-019

CERTIFICATE OF ANALYSIS TB03034463

Sample Description	Method Analyte Unite LOR	WEI-21 Røcvd Wt kg 0.02	Au-AA23 Au ppb 5	Au-AA23 Au Check ppb 5	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Ве ррт 0.5	ME-ICP61 Bi ppm 2	ME-1CP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
387117		0,51	6		<0.5	8.24	<5	290	0.7	<2	1.68	<0.5	9	57	16	2.81
387118		0.77	14		1.0	0.11	<5	10	<0.5	<2	0.19	<0.5	2	162	14	3.11
387119		1.07	5		<0.5	8,38	<5	210	1.0	<2	1.74	<0.5	7	40	23	2.63
387120		0.57	8		<0.5	3.45	<5	280	0.5	<2	0.59	<0.5	1	98	8	0.90
387121		0.70	357		6.0	6.82	· <5	790	0.6	11.	0.80	<0.5	7	64	491	3.55
387122		0.72	5		<0.5	2.07	<5	130	<0.5	<2	0.20	<0.5	- 1	112	7	0.94
387123		0.90	<5		<0.5	3.84	<5	130	0.7	<2	0.31	<0.5	1	81	3	0.59
387124		0.58	<5		<0.5	3.92	<5	20	1.1	<2	1.34	<0.5	1	88	33	5.42
387125		0.91	<5		<0.5	5.94	<5	460	0.7	<2	3.01	<0.5	4	57	3	2.23
387126		0.70	<5		<0.5	7.94	<5	290	0.9	<2	1.70	<0.5	3	32	5	2.42
387127		0.37	<5		<0.5	5.01	5	550	0.8	<2	1.22	<0.5	25	82	37	1.78
94581		0.05	1840		0.5	5.51	<5	520	0.9	<2	1.56	<0.5	32	910	65	3.27
387128		1.24	2370		<0.5	0.67	<5	10	<0.5	<2	1.38	<0.5	3	117	76	12.00
387129	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.98	17		<0.5	2.37 0.80	5 <5	80	< 0.5	<2	12.30 0.22	<0.5	81	3330	12	-5.33
387130		1.04	195		<0.5			40	<0.5	<2		<0.5	3	15	38	2.01
387131		0.65	6		<0.5	2.86	<5	10	0.5	<2	0.86	<0.5	6	68	25	22.7
387132		0.81	<5		<0.5	2.63	<5	90	0.5	<2	0.36	<0.5	1	11	3	1.74
387133		0.92	<5		<0.5	7.97	<5	210	1.3	<2	0.96	<0.5	3	7	2	2.12
387,134		1.90 1.62	<5 45		<0.5 <0.5	8.35 9.44	<5 <5	150 20	0,8 <0,5	<2 <2	3,33 8,92	<0.5 <0.5	13 48	33 182	8 54	3.66
387135												·				7.60
94582		1.41	<5		<0.5	0.11	9	50	<0.5	2	>25	<0.5	<1	2	3	0.18
387431		1.46	<5		<0.5	7.79	<5	530	0.6	<2	3.84	<0.5	13	26	235	5.13
387432	·	1.74	371		4.4	1.98	<5	160	<0.5	24	0.21	<0.5	47	26	2190	3.20
387433		8.63	24		0.6	5.68 6.77	<5 <5	450 370	0.9	2 <2	1.20 1.54	<0.5	29 5	22	978	3.25
387434		1.88	22		<0.5				1.2			<0.5		9	66	2.26
387435		3.77	745		1.9	4.39	<5	160	0.5	<2	4.00	<0.5	34	30	1710	4.86
387436		5.30	4590	4030	14.0	3.75	<5	140	<0.5	7	2.78	<0.5	35	30	3180	7.62
387438		1.00	7	50/0	<0.5	3.03	<5	40	<0.5	<2	3.91	<0.5	11	25	68	8,16
94583 94408		0.09 0.64	4990 13	5310	1.2 1.1	4.47 1.51	71 <5	_230 30	1.0 <0.5	<2 <2	2,10 5,18	<0.5 <0.5	12 246	114 35	79 364	15.95 >25
94409		1.09	<5	<u> </u>	0.6	8,96	<5	80	0.6	<2	10.20	<0.5	23	126	75	9.20
387496		2.09	<5		<0.5	0.89	<5	20	<0.5	<2	2.68	<0.5	107	1240	34	5.20 7.80
387497		1,63	<5		<0.5	7.24	<5	710	1.0	2	3.66	<0.5	10	30	16	3.33
387498		2.44	<5		<0.5	1.20	26	20	<0.5	<2	3.01	<0.5	94	2310	278	8.35
387499		1.93	<5		<0.5	0.04	6	10	<0.5	<2	20.8	<0.5	<1	10	6	1.41
387500		2.33	<5		<0.5	1.37	<5	50	<0.5	<2	0.58	<0.5	10	29	81	3.76
94351		2.13	<5		<0.5	8.98	<5	390	<0.5	<2	5.97	<0.5	46	247	72	6.33
94352		1.23	<5		<0.5	3.65	24	120	<0.5	<2	8.04	<0.5	55	1090	95	7.64
94584		1.12	<5		<0.5	0.07	12	40	<0.5	<2	>25,0	<0.5	<1	1	1	0.14

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 P. DNL_LOP ISL D 615-800 W PENDER ST VANCOUVER BC V6C 2V6

3 Total # of p. des: 2 (A - B) Date : 17-Sep-2003 Account: BM

Project : WRL03-019

CERTIFICATE OF ANALYSIS

TB03034463

387117	Units LOR	K % 0.01	Mg % 0.01	Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 8 % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
JULIT		1.25	0.73	663	<1	3.42	15	390	9	0.01	<5	227	0.23	54	10	86
387118		0.03	0.15	174	1	0.03	12	140	6	0.25	<5	3	<0.01	4	<10	16
387119		1.11	0.60	263	<1	3.57	7	460	13	0.05	<5	200	0.20	26	<10	27
387120		0.68	0.12	79	<1	0.99	8	70	5	0.01	<5	91	0.05	7	<10	7
387121		3.02	0.28	94	<1	0.66	5	360	6	0.72	<5	76	0.15	26	50	12
387122		0.68	0.14	78	2	0.19	9	180	2	0.01	<5	34	0.07	14	<10	6
387123		0.60	0.08	75	<1	1.83	8	120	4	<0.01	<5	74	0.03	4	<10	10
387124		0.30	0.87	2470	<1	0.84	3	380	12	0.10	<5	134	0.09	22	<10	48
387125		2.21	1.26	569	<1	0.21	16	600	7	<0.01	<5	194	0.16	24	<10	22
387126		1.37	0.42	699	<1	3.33	66	440	10	0.01	<5	204	0.19	22	<10	44
387127		1.65	0,50	188	<1	0.65	10	250	6	0.12	<5	112	0.09	16	<10	10
94581		1.42	1.04	621	22	1.61	1440	430	34	0.03	<5	198	0.23	76	<10	38
387128		0.03	1.20	2580	2	0.05	11	310	2	0.84	<5	14	0.05	11	<10	40
387129		0.45	7.70	1835	<1	0.02	807	100	4	0.08	<5	116	0.04	80	<10	117
387130		0.22	0.29	455	3	0.04	5	180	<2	0.13	<5	12	0.02	8	<10	12
387131		0.04	4.03	4590	<1	0.02	24	1040	11	0.10	<5	7	0.12	46	<10	146
387132		0.55	0.24	196	<1	0.80	3	200	6	0.01	<5	57	0.05	9	<10	20
387133		1.12	0.43	282	<1	3,60	3	340	13	<0.01 [/]	<5	226	0.16	22	<10	40
387134		1.14	1.06	712	<1	1.96	25	880	10	0.01	5	220	0.31	64	<10	47
387135		0.33	6.18	1540	<1	1.14	168	130	11	0.13	<5	107	0.21	228	140	72
94582		0:02	1.17	135	<1	0.05	6	80	· <2	<0.5	<5	105	<0.01	2	<10	3
387431		1.14	1.23	1225	<1	2.06	28	680	10	0.26	<5 <5	150	0.33	67	<10	69
387432		0.87	0.17	56	29	0.29	31	80	<2	2.27		11	0.04	30	<10	22
387433 387434		1.76 2.08	0.80 0.48	249 191	29 1	1.23	17 7	500 470	5 9	1.10 0.20	<5 <5	64 160	0.13 0.17	64 34	<10 <10	27 51
								····								
387435		1.40	2.26	906	1	0.35	46	120	9	0.64	<5	61	0.16	124	10	51
387436		1.06	2.53	851	300	0.31	39	120	3	0.61	<5	42	0.16	115	200	56
387438 94583		0.13 0.80	3.46 1.52	1805 624	3 <1	0.13 0.47	18 39	510 490	8 112	0.15 1.13	<5 <5	22 142	0.10 0.16	31 68	50 10	66
94408		0.80	0.48	1460	3	0.47	466	490 90	9	>10	<5	28	0.16	65	10	51 18
94409		0.20	1.65	3560	<1	1.89	52	510	6	1.28	<5	148	0.86	338	<10	104
387496		0.01	>15.0	1255	<1	0.02	1765	60	3	0.01	<5	6	0.09	68	<10	59
387497		2.03	1,19	488	<1	1,80	28	550	10	0.01	<5	439	0.15	71	<1.0	52
387498		0.01	>15.0	1595	<1	0.01	1495	100	4	0.37	<5	40	0.12	77	<10	79
387499		0.01	0.23	2250	<1	0.01	7	30	2	0.02	<5	142	<0.01	1	<10	15
387500		0.06	0.97	230	<1	0,32	9	150	3	0.49	<5	27	0,15	42	<10	20
94351	1	1.46	3.13	1290	<1	2.34	159	130	3	0.05	<5	143	0.21	241	10	69
94352		0.08	8,59	1625	<1	1.02	308	170	6	0.01	<5	124	0.37	209	<10	81
94584		0.01	0.93	124	<1	0.03	2	70	4	<0.01	<5	95	<0.01	2	<10	<2

∌#:

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 PANNON L. LOPININ S LINN D 615-800 W PENDER ST VANCOUVER BC V6C 2V6

سين#: ___A Total # of payes : 4 (A - C) Date : 28-Aug-2003 Account: BM

Project : WRL03-011

CERTIFICATE OF ANALYSIS TB03030294

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppb 5	Au-GRA21 Au ppm 0.05	Au-AA23 Au Check ppb 5	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1
387249		4.32	10			0.6	7.39	<5	160	0.7	<2	2.52	0.6	15	13	98
387250		2.80	<5			0.7	8.86	8	240	0.8	<2	4.07	0,5	21	14	73
387251		1.89	684			1.0	5.56	<5	160	0.9	<2	2.23	1.2	10	28	71
387252		2.39	202			0.7	6.87	5	180	1.0	<2	3.30	1.1	13	30	109
387253		3.17	330			<0.5	7.43	6	140	0.5	<2	4.14	<0.5	29	148	96
387254		2.97	5970			1.1	4.95	<5	130	0.7	2	2.09	7.7	17	25	195
387255		2.80	13			<0,5	7,96	<5	150	0.7	<2	3.39	<0.5	15	37	37
387256		4.29	12			<0.5	7.72	<5	140	0.7	<2	4.00	<0.5	11	36	40
387257		1.93	1405		1500	1.8	6.28	<5	160	0.9	3	3.15	4.6	16	36	75
387258		1.06	502		804	0.7	7.20	<5	260	0.9	<2	1.89	6.5	12	29	93
387351		1.90	46		41	<0.5	8.16	10	200	0,8	<2	2.96	0.7	19	29	57
387352		1.42	202			1.2	6.96	7	150	1.0	<2	5.86	3.1	24	62	205
387353		3.08	-59			<0.5	8.10	<5	120	0.6	<2	6.14	<0,5	45	86	137
387354		2.29	5			<0.5	5.07	<5	110	0.5	<2	1.83	<0.5	7	23	30
387355	· •	4.02	21			2.7	7.97	<5	170	0.8	5	4.78	1.7	20	40	72
387356		1.56	123			1.1	7.34	5	120	1.0	<2	6.52	<0.5	28	100	257
387357		3.22	11			1.0	7.99	8	170	0.8	<2	2.49	<0.5	28	12	186
387358		2.50	53			<0.5	7.05	<5	160	0.7	<2	3.91	<0.5	17	26	79
387359		1,96	107			0.5	7.69	<5	200	0.8	<2	3.71	0.5	16	25	80
387360		2.64	<5	_		<0.5	8.38	10	150	0.8	<2	2.85	<0.5	8	12	19
387361		0.88	8			0.6	6,12	5	80	0.6	<2	2.53	<0.5	10	23	90
387490		0.09	1835			0.5	5.33	9	470	0.8	<2	1.54	<0.5	30	885	63
387491		0.58	<5			<0.5	0.09	<5	30	<0.5	<2	>25.0	<0.5	<1	2	1
387259		1.50	<5			<0.5	8.29	<5	160	0.7	<2	3.69	<0.5	10	23	37
387260		1.51	585			0.5	7.76	<5	220	0.8	<2	3.20	4.1	17	45	75
387261		1.82	<5			<0.5	5.76	<5	30	<0.5	<2	3.92	<0.5	23	66	10
387262		1.42	25		•	<0.5	7.44	7	140	0.5	<2	2.79	<0.5	11	37	37
387263		1.48	56			<0.5	8.27	<5	240	0.8	<2	2.09	<0.5	13	23	10
387264		3.12	11			<0.5	6.82	<5	30	<0.5	<2	7.53	<0.5	51	611	28
387265		2.34	15			<0.5	6.51	<5	30	<0.5	<2	7.70	<0.5	40	98	92
387.266		1.39	<5			<0.5	8.39	<5	80	<0.5	<2	7.31	<0.5	43	128	22
387267		1.98	<5			<0.5	1.11	<5	10	<0.5	<2	1.09	<0.5	7	32	3
387268		0.56	<5			<0.5	0.59	<5	10	<0.5	<2	0.53	<0.5	4	15	3
387269		1.29	<5			<0.5	8.37	<5	90	<0.5	<2	7.93	<0.5	45	126	15
387270		1.56	<5			<0.5	9.29	14	450	1.0	<2	4.41	<0.5	19	19	28
387362		2.89	<5			<0.5	7.65	<5	170	0.7	<2	4.50	<0.5	· 17	32	20
387363		4.60	17			<0.5	8.22	<5	190	0,7	<2	3.15	<0.5	15	33	80
387364		2.36	56			0.5	6.81	<5	120	0.8	<2	5.32	1.1	19	42	130
387365		2.05	308			14.9	4.83	5	110	0.7	41	4.83	87.6	13	24	234
387366	·	3.11	214			<0.5	8.56	5	120	0.5	<2	6.26	0.5	39	122	. 74 .

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218
 D: P.
 ON I
 LOP
 IS L
 :D

 615-800 W PENDER ST
 VANCOUVER BC V6C 2V6

Total # of pryes: 4 (A - C) Date : 28-Aug-2003 Account: BM

Project : WRL03-011

CERTIFICATE OF ANALYSIS TB03030294

Sample Description	Method Analyte Units LOR	ME-ICP81 Zn ppm 2	Zn-AA62 Zn % 0.01									
387249 387250 387251 387252 387252 387253		135 112 165 216 69								,		
387254 387255 387256 387257 387257 387258		427 50 43 617 559										
387351 387352 387353 387354 387355		114 504 196 27 246				 				 		
387356 387357 387358 387359 387360		176 68 71 113 97			 <u></u>	 				 <u> </u>		
387361 387490 387491 387259 387260		105 37 <2 47 857	<u> </u>			 		<u>~~</u> 心			<u>.</u>	
387261 387262 387263 387264 387264 387265		50 36 20 83 86	<u></u>			 		<u>`````````````````````````````````````</u>	1,2,3,1,2,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,	 <u></u>	<u></u>	
387266 387267 387268 387269 387270		92 23 12 97 45			 		C	>		 		
387362 387363 387364 387365 387366		89 138 206 7170 123		,		 						

B#: C

Work Report Summary

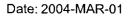
Tra	nsaction No:	: W0420.	00261		St	atus:	APP	ROVED			
Red	cording Date	: 2004-FE	EB-04		Work Done f	from:	2003	-JUN-01			
Ар	proval Date:	2004-M	AR-01			to:	2003	-SEP-15			
Clie	ent(s):										
-	108	575 B	IRON BAY RE	SOURCES	LIMITED		: 				.
	129	617 E	NGLISH, PEF	RY VERN							
c	vey Type(s):										
Jui	vey type(s).		ASSAY		GEOL		52M0	1SE2035 2	.27190	BALL	
<u>Wc</u>	ork Report De	etails:									
Cla	ıim#	Perform	Perform Approve	Applied	Applied Approve	٨٠٠	sign	Assign Approve	Reserve	Reserve Approve	Due Date
G	2020268	\$7,115	\$7,115	S0	•• \$0	A30	\$0	0	\$7,115	\$7,115	Due Duit
G	2020269	\$3,788	\$3,788	\$0 \$0	\$0		\$0	0	\$3,788	\$3,788	
G	2020270	\$4,613	\$4,613	\$0	\$0		\$0	0	\$4,613	\$4,613	
G	2020271	\$5,164	\$5,164	\$0	\$0		\$0	0	\$5,164	\$5,164	
G	2020272	\$2,545	\$2,545	\$0	\$0		\$0	0	\$2,545	\$2,545	
G	2020273	\$1,911	\$1,911	\$0	\$0		\$0	0	\$1,911	\$1,911	
G	2020274	\$4,019	\$4,019	\$0	\$0		\$0	0	\$4,019	\$4,019	
G	2020275	\$2,084	\$2,084	\$0	\$0		\$0	0	\$2,084	\$2,084	
G	2020276	\$3,113	\$3,113	\$0	\$0		\$0	0	\$3,113	\$3,113	
G	2020277	\$2,422	\$2,422	\$0	\$0		\$ 0	0	\$2,422	\$2,422	
G	2020278	\$1,557	\$1,557	\$0	\$0		\$0	0	\$1,557	\$1,557	
G	2020279	\$1,112	\$1,112	\$0	\$0		\$0	0	\$1,112	\$1,112	
G	2020280	\$3,090	\$3,090	\$0	\$0		\$ 0	0	\$3,090	\$3,090	
G	2020281	\$2,051	\$2,051	\$0	\$0		\$0	0	\$2,051	\$2,051	
G	2020282	\$2,422	\$2,422	\$0	\$0		\$0	0	\$2,422	\$2,422	
G	2020283	\$2,315	\$2,315	\$0	\$0		\$0	0	\$2,315	\$2,315	
G	2020284	\$2,776	\$2,776	\$0	\$0		\$0	0	\$2,776	\$2,776	
G	2020285	\$1,152	\$1,152	\$0	\$0		\$0	0	\$1,152	\$1,152	
G	2020286	\$2,074	\$2,074	\$0	\$0		\$0	0	\$2,074	\$2,074	
G	2020287	\$2,435	\$2,435	\$0	\$0		\$0	0	\$2,435	\$2,435	
	L 1184925	\$2,619	\$2,619	\$0	\$ 0		\$0	0	\$2,619		2005-FEB-17
	L 1239678	\$1,326	\$1,326	\$0	\$0		\$ 0	0	\$1,326		2004-JUL-25
KR	L 1239679	\$5,895	\$5,895	\$0	\$0		\$0	0	\$5,895	\$5,895	2004-JUL-25
		\$67,598	\$67,598	\$0	\$0		\$0	\$0	\$67,598	\$67,598	

External Credits:

Reserve:

\$67,598 Reserve of Work Report#: W0420.00261

\$67,598


\$0

598 Total Remaining

Status of claim is based on information currently on record.

900

Ministry of Northern Development and Mines Ministère du Développement du Nord et des Mines

TORONTO, ONTARIO

GEOSCIENCE ASSESSMENT OFFICE 933 RAMSEY LAKE ROAD, 6th FLOOR SUDBURY, ONTARIO P3E 6B5

Tel: (888) 415-9845 Fax:(877) 670-1555

Submission Number: 2.27190 Transaction Number(s): W0420.00261

Dear Sir or Madam

M5H 1J8

Subject: Approval of Assessment Work

BIRON BAY RESOURCES LIMITED

10TH FLOOR, 145 KING STREET

CANADA

We have approved your Assessment Work Submission with the above noted Transaction Number(s). The attached Work Report Summary indicates the results of the approval.

At the discretion of the Ministry, the assessment work performed on the mining lands noted in this work report may be subject to inspection and/or investigation at any time.

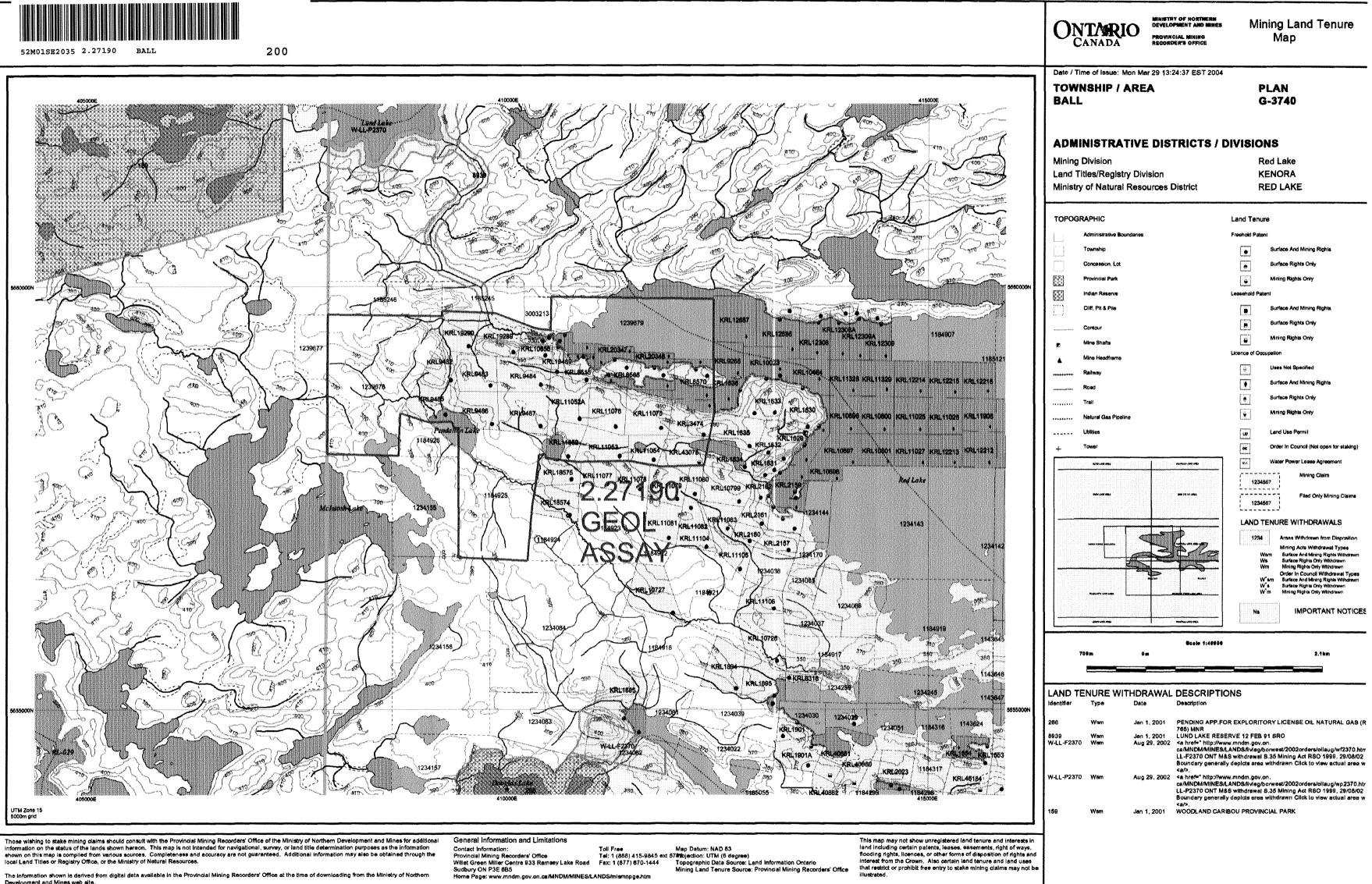
If you have any question regarding this correspondence, please contact STEVEN BENETEAU by email at steve.beneteau@ndm.gov.on.ca or by phone at (705) 670-5855.

Yours Sincerely,

Rom C Gashingh.

Ron C. Gashinski Senior Manager, Mining Lands Section

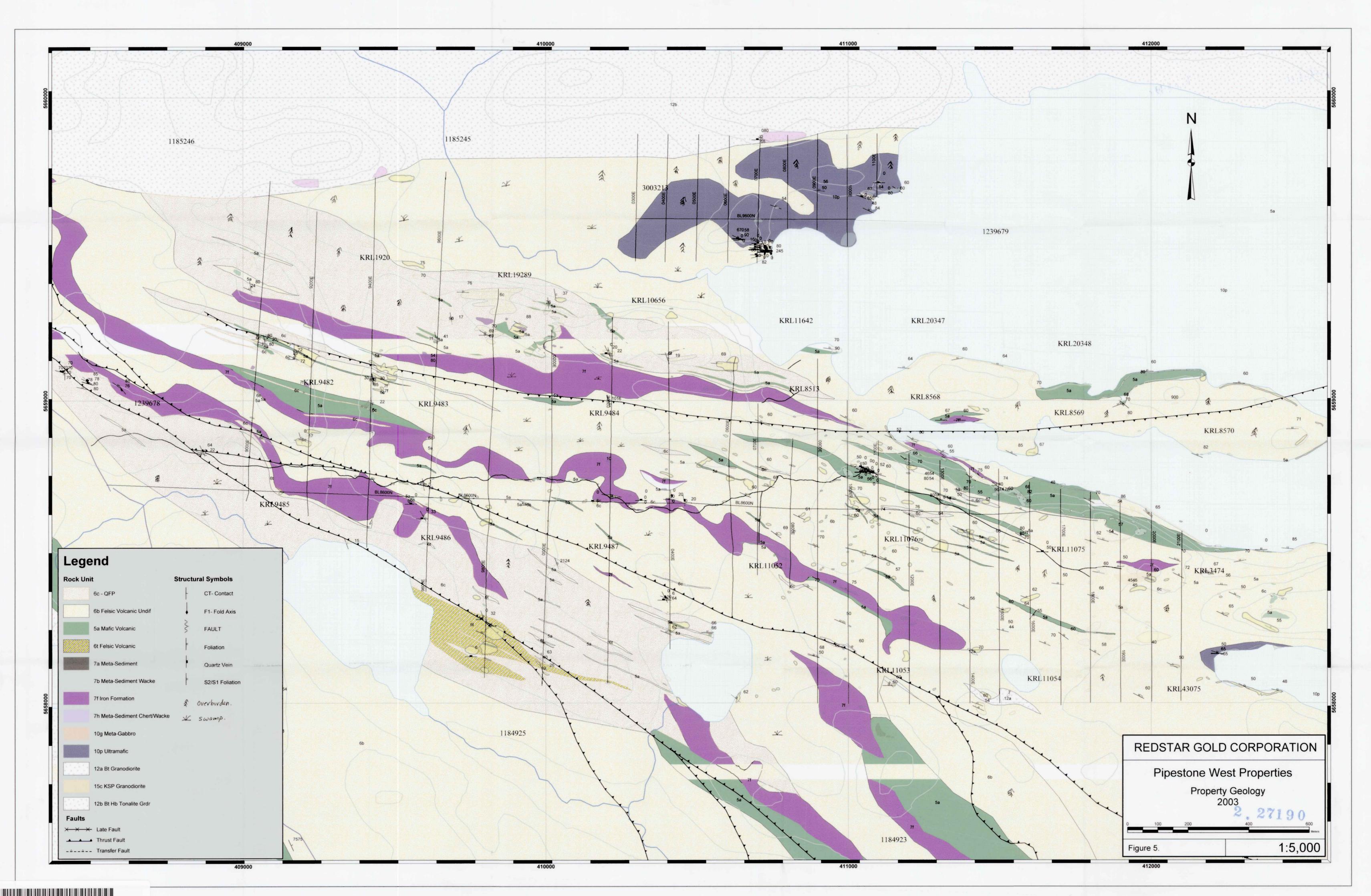
Cc: Resident Geologist


Biron Bay Resources Limited (Claim Holder)

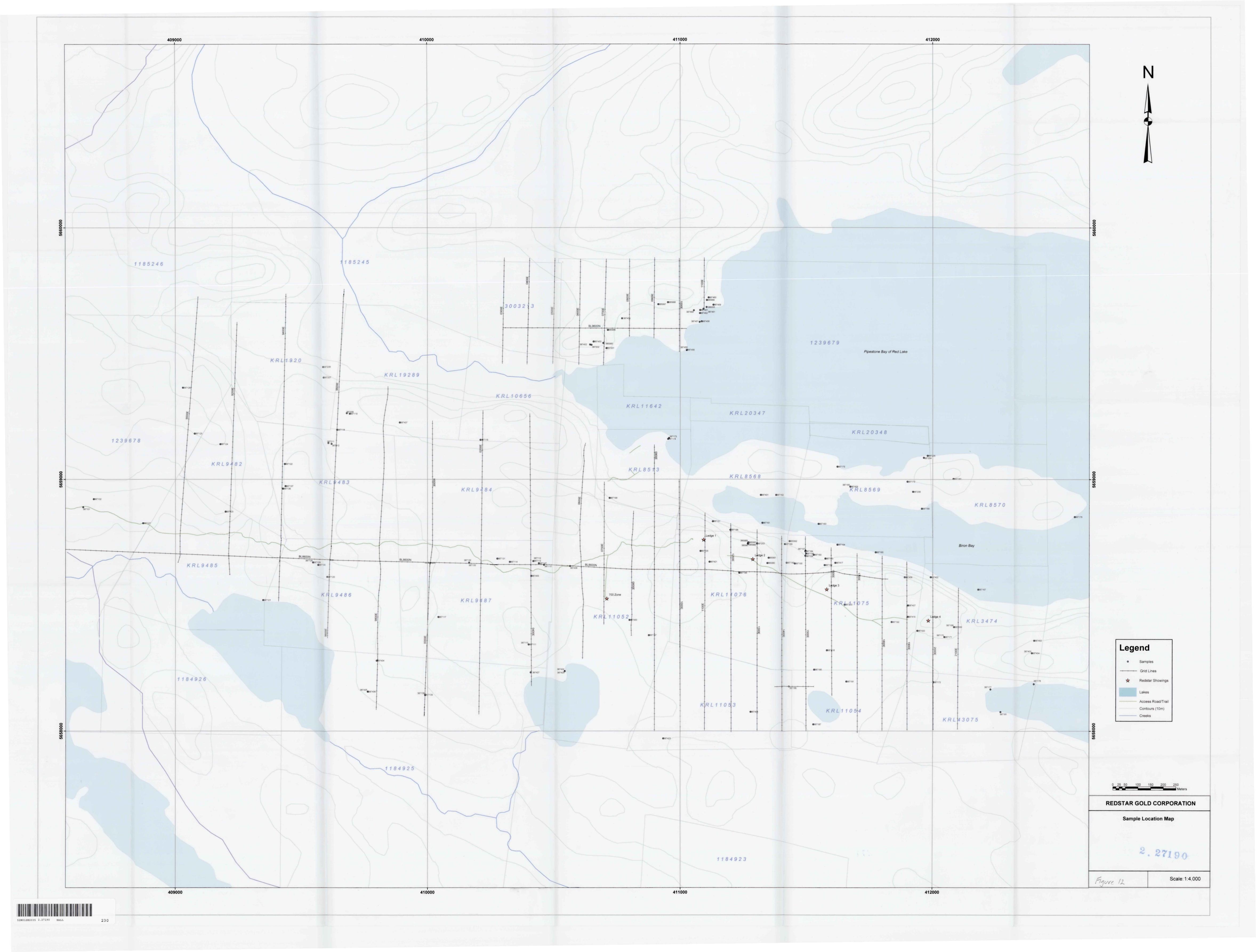
Perry Vern English (Claim Holder) Assessment File Library

Biron Bay Resources Limited (Assessment Office)

Redstar Gold Corp. (Agent)



The information shown is derived from digital data available in the Provincial Mining Recorders' Office at the time of downloading from the Ministry of Northem Development and Mines web site,



210

52M01SE2035 2.27190 BALL

220

