

DIAMOND DRILLING

52M01SW0015 41 BALL TWP

010

TOWNSHIP: BALL

REPORT No.: 41

WORK PERFORMED BY: Minorex Ltd.

CLAIM NO.	HOLE NO.	Footage	DATE	Note
KRL 502935	тв-81-9	425.0	Aug/81	(1)

NOTES: (1) #124-81

SOCIÉTÉ MINOREX LIMITÉE

(SUBSIDIAIRE DE LA SOCIÉTE ASBESTOS LIMITÉE)

THETFORD MINES, QUE. CANADA NORTH KRL 502933 KRL 502934 70' from claim post DDH bearing 205 degrees from post KRL 502935 KRL 502936

LOCATION MAP

R THE NAME OF 11244-02 CE

SEP 41981

718191101112111219141516

A.M.

.

4

Р.M

Scale : 1"=300'

Diamond Drill	Hole:	TB-81-9
Started	:	31 August 1981
Finished	:	3 September 1981
Dip	:	-45 degrees
Azimuth	:	225 degrees true
Depth	;	425 feet
Latitude	:	5 + 75 South
Departure	:	8 + 00 West
Drilled by	:	St. Lambert Diamond Drilling Ltd.
Logged by	;	Keith Peden, Minorex Limited

page 1

Sł

HOLE NO. TB - 81 - 9

FOOTAGE			SAMPLE				
FROM	TO	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL
0	12	CASING	1	1023		1	
12	18.3						1
		dark green, fine to medium grained, massive, anhedral					
		granular, quite hard but looks like andesite					
		no carbonate alteration, some leached vugs					
		minor fracturing @ 10 and 38 degrees to C/A					
		non magnetic					4
18.3	26.3	BANDED IRON FORMATION					
÷		beds of mt up to 5mm, 30% of rock .	2249	10py	24.4	24.5	0.1
		interbeds of sericitic & weakly chloritic felsic material					
		bedding @ 68 degrees to C/A					
		some contorted and kinked beds					
		small sections of sulphide facies(py) in a mafic matrix					
		from 24.1 - 24.6 and 26.0 - 26.3			1		
26.3	73.0	INTERMEDIATE TO MAFIC METAVOLCANICS					
		As Above	2250	1000	38.4	39.0	0.6
		some sections appear variolitic	~~) 0	L op o	5000	57.0	
		more chloritic alteration but still weak					
		up to 1% po over several cm as blebs and stringer/veinle	s				
		trace cp assoc. with po			la contra		_
		sulphides are assoc. with intense chlorite alteration		ļ	E T		IAXI
	•	trace py as dissems & without alteration					IVE
		no carbonate alteration, infrequent barren qtz blobs		į		SEP	4 1981
		large QV from 72.0 to 72.6 - no sulphides or alteration]	A.B (5.5	4	1
•						3 91101111	21120
				ļ		*	2
•	}				1		l

NAME OF PROPERTY TROUT BAY

HOLE NO. TB - 81 - 9 St

FOOTAGE				SAMPLE				
FROM	то	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	
73.0	73.8	IRON FORMATION	}	IDES	PROM		TOTAL	
		as above bedded @ 75 degrees to C/A	2251	1py	73.0	73.8	0.8	
		trace secondary pyrite veining, weak carbonate veining	-	10	, -			
		chlorite alteration in the andesite diminishes away from						
		the IF						
73.8	85.5	ANDESITE/GABBRO						
		similar to the above but possibly intrusive	2252	1po	84.0	84.3	0.3	
		cg near the centre and fining outwards		1cp				
	ļ	lower contact seem to truncate the bedding of the IF						
		local weak carbonate alteration						
85.5	85.5 87.8	IRON FORMATION						
	as above , bedded @ 75 degrees to the C/A with inter-							
		bedded chloritic material.						
87.8	105.1	INTERMEDIATE METAVOLCANICS	ļ					
		rock slowly takes on a more siliceous grey appearance						
		more in keeping with its hardness, cg to mg						
		becomes very chloritic near contact with IF.						
105.1	107.3	IRON FORMATION						
		as above		1				
107.3	120.0	INTERMEDIATE METAVOLCANICS				I	The s	
		as above but greener in colour		1		12:		ľ
120.0	154.0	IRON FORMATION						
		magnetite is only 20% of rock					EP 4	19
		lower part is quite distorted and interbedded felsic				191911	1111211	ł
		material is a yellow grey fibrous mineral with					k	T
		acicular crystals, bedding @ 64 degrees to C/A						
-		trace carbonate alteration, some cp fracture fillings			ļ		l	
	1	100 ± 0 1.760	й	1	 	1. 		ţ

Page 2

NAME OF PROPERTY TROUT BAY

HOLE NO. TB - 81 - 9

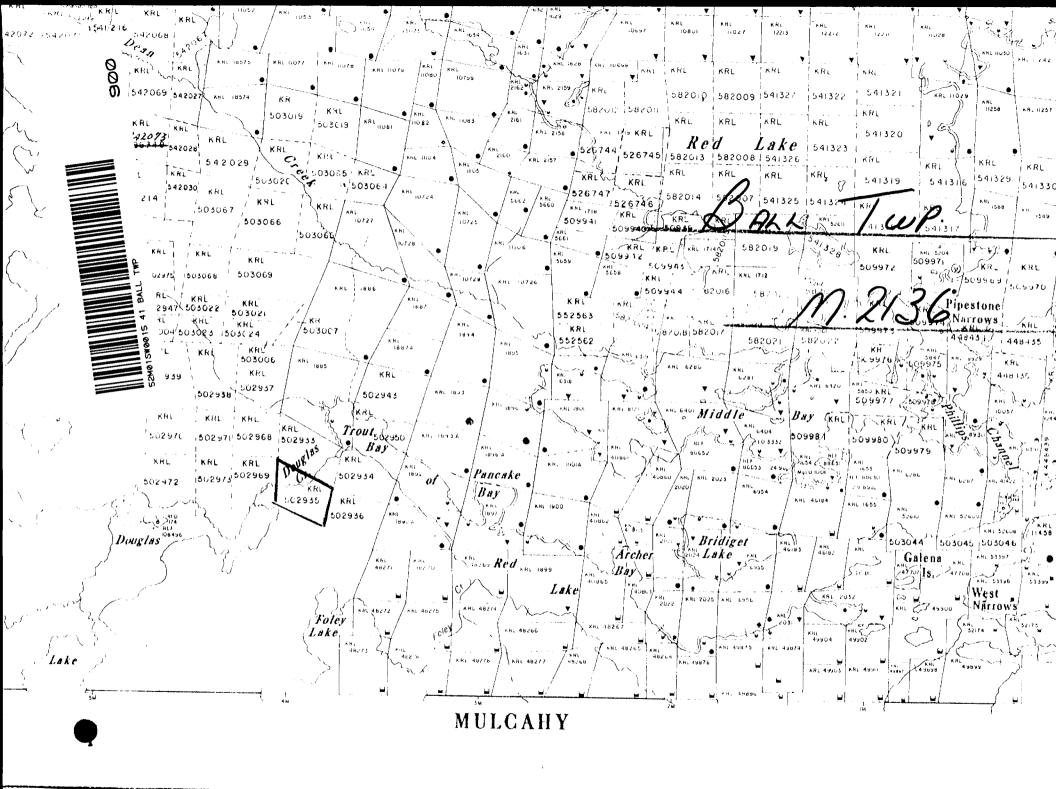
 Sł

FOOTAGE					SAMPLE			
FROM	то	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE TO	TOTAL	
		also po veining with assoc. clorite and qtz	2253		120.9			
		locally some garnetiferous zones, small QV with trace	2254		138.7			
		sulphides @ 138.7 - 139.3 considerable interbedded primary py, up to 5% locally	2255	5ру	145.4	145.6	0.2	
		changes from oxide facies to sulphide facies frequently?			1			
		up to 5% bedded py at lower contact-irregular& chloritic	2256	5ру	153.5	154.3	0.8	
154.0	176.1	PORPHYRITIC ANDESITE/GABBRO						
		grey, mg - cg, granular, massive, homogenous matrix with						
		up to 3% white subhedral plagioclase phenocrysts(less						
1	4	than 6mm) and up to 1% blue anhedral qtz phenocrysts						
		(less than 4 mm), no carbonate alteration, non magnetic						
	ļ	small qtz carbonate fracture fillings less than 1 / foot						
		small(less than 2 cm) qtz veins @ 164.3						
		167.0 169.0 - 2% py 173.1	2257	2ру	168.9	169.4	0.5	
176.1	200.0	INTERMEDIATE METAVOLCANICS						
		sharp upper contact @ 60 degrees to C/A						
		grey-green, mg, granular, massive, quite hard, pervasive						
		chlorite, quartz porphyritic as above but less than $\frac{1}{2}\%$						
		no carbonate alteration, non magnetic, trace py on some					D	
		fracture surfaces, gradational lower contact			1		K 173 1995 2005	
0.005	216.6	PORPHYRITIC ANDESITE/GABBRO				14		
		as previously described			1		SEP	
		small(1 cm) QV @ 212.1 and 213.2				л.м. 7181	9,10,11,12	
					[furner and	1	
•							A.	
					l		l	
	(1				1	ţ	

Page 3

Page 4

NAME OF PROPERTY TROUT BAY


HOLE NO. TB - 81 - 9 st

FOOTAGE					SAMPL	.Ε		
FROM	то	DESCRIPTION	NO.	% SUL PI		FOOTAGE		Į
216.6	318.9	ARGILLITE/SANDSTONE	ļ	IDES	FROM	<u> </u>	TOTAL	1
		black to grey to green						
		fg to vfg, beds up to 2 cm thick @ 75 to 85 degrees to						
		C/A, some chloritic beds, magnetite, carbonate alteratio	'n					
		235.6 - 238.7 is disrupted with some qtz veining up to 1	cm					
		chloritic and garnetiferous	2258	4py	235.6	238.7	3.1	
		up to 4% py overall as beds, stringers						
		blebs, veins & fracture fillings			1			
		8 cm barren QV @ 264.2	2259	-	263.9	264.7	1	
		zone of 8% qtz-fsp "augen" looking clasts elongate to	2261	5py	268.7	270.2	0.2	
		bedding, gradational contact into underlying unit from	2262	-	270.5	270.7	0.2	
		317.4 to 318.9	2264	1py	291.5 295.0 295.7	295.2	0.2	
318.9	366.3	INTERMEDIATE METAVOLCANICS						
		grey, mg, massive to weakly foliated						
		considerable fracturing & faulting(slickensides)						
		py, po and carbonate appear on fracture surfaces as						
		fillings, no carbonate alteration, non magnetic						
		moderately siliceous & has a cherty fracture, becoming						
		more chloritic past 345, fault breccia @ 364.3 - 364.6	2266 2267		364.3			
		trace py in fault and 3 small(3 cm) QV's below fault	6201	-	.9	1,202.4		
		with trace py also		ł			にじむむ	
		gradational contact from 365.3 to 366.3				A.N	SEP	.
6.3	405.0	GRAPHITIC ARGILLITE/SANDSTONE					910111	21
3		fg to vfg, grey to black, up to 1%py + po as beds,		1		Concession of the second se		F
		stringers & disseminations, no carbonate alteration						
• }		fault breccia from 385.0 to 385.3		1	379.6	ł		
		5 cm py veinlet@ 379.7. 7 cm py voinlet @ 393.2	<u>260</u>	LEnv	302 0	303 1	<u>i 0.8</u>	1.

NAME OF PROPERTY TROUT BAY

HOLE NO. TB - 81 - 9 St

OESCRIPTION Obscure contact with underlying unit <u>INTERMEDIATE TO MAFIC METAVOLCANICS</u> grey green, mg to cg, granular, massive, homogenous trace dissem interstitial po, weakly magnetic trace carbonate veining-less than 1 / foot, no carbonate alteration, lower contact is chloritic and disrupted	№. 2270	% SULPH	FROM 403.4	TO TO 404.1	TOTAL 0.7	
INTERMEDIATE TO MAFIC METAVOLCANICS grey green, mg to cg, granular, massive, homogenous trace dissem interstitial po, weakly magnetic trace carbonate veining-less than 1 / foot, no carbonate	2270		403.4	404.1	0.7	
INTERMEDIATE TO MAFIC METAVOLCANICS grey green, mg to cg, granular, massive, homogenous trace dissem interstitial po, weakly magnetic trace carbonate veining-less than 1 / foot, no carbonate					- 1	
grey green, mg to cg, granular, massive, homogenous trace dissem interstitial po, weakly magnetic trace carbonate veining-less than 1 / foot, no carbonate						
trace dissem interstitial po, weakly magnetic trace carbonate veining-less than 1 / foot, no carbonate				1		
trace carbonate veining-less than 1 / foot, no carbonate						
		1				1
	2271	200	420.0	421.0	1.0	
with fracturing, 2% po & trace cp over 15 cm		~po		1~1.0		
·						
15.0.11.						ł
Kuth Reden. Logged by K.Peden				M. SEP	4 198	Е Р.М. 141516
	ARGILLITE/SANDSTONE fg, grey, bedded @ 60 degrees to C/A, micaceous, nil carbonate alteration, no magnetite or sulphides trace chlorite alteration E.O.H.	ARGILLITE/SANDSTONE fg, grey, bedded @ 60 degrees to C/A, micaceous, nil carbonate alteration, no magnetite or sulphides trace chlorite alteration E.O.H.	ARGILLITE/SANDSTONE fg, grey, bedded @ 60 degrees to C/A, micaceous, nil carbonate alteration, no magnetite or sulphides trace chlorite alteration E.O.H.	ARGILLITE/SANDSTONE fg, grey, bedded @ 60 degrees to C/A, micaceous, nil carbonate alteration, no magnetite or sulphides trace chlorite alteration E.O.H. KAL Peden Logged by K.Peden	ARGILLITE/SANDSTONE fg, grey, bedded @ 60 degrees to C/A, micaceous, nil carbonate alteration, no magnetite or sulphides trace chlorite alteration E.O.H. <u>Kuth Leden</u> Logged by K.Peden	ARGILLITE/SANDSTONE fg, grey, bedded @ 60 degrees to C/A, micaceous, nil carbonate alteration, no magnetite or sulphides trace chlorite alteration E.O.H. Kuth Leden Logged by K.Peden

