

04NE0026 63.4868 BATEMAN

010

A REPORT ON 1986-87 OPERATIONS

ON THE McFINLEY RED LAKE PROPERTY,

BATEMAN TOWNSHIP, ONTARIO

APRIL 8, 1988

G.M. HOGG & ASSOCIATES LTD.

28 THOMPSON AVENUE,

TORONTO, ONTARIO M8Z 3T3

OMEP Designation No. OM86-1-P-200

TABLE OF CONTENTS

INTRODUCTION. 1 PROPERTY DESCRIPTION, ACCESS. 1 HISTORY OF PROJECT. 2 GENERAL GEOLOGY. 4 EXPLORATION OPERATIONS. 5 GENERAL COMMENTS. 5 UNDERGROUND OPERATIONS. 6 SURFACE DRILLING. 7 METALLURGICAL STUDIES. 8 RESULTS OF EXPLORATORY PROGRAM. 9 RESERVES. 10 PROGRAM COSTS-1986. 10 CONCLUSIONS. 11 CERTIFICATE OF QUALIFICATION. 13	•	Page No.
PROPERTY DESCRIPTION, ACCESS. 1 HISTORY OF PROJECT. 2 GENERAL GEOLOGY. 4 EXPLORATION OPERATIONS. 5 GENERAL COMMENTS. 5 UNDERGROUND OPERATIONS. 6 SURFACE DRILLING. 7 METALLURGICAL STUDIES. 8 RESULTS OF EXPLORATORY PROGRAM. 9 RESERVES. 10 PROGRAM COSTS-1986. 10 CONCLUSIONS. 11		
### HISTORY OF PROJECT	INTRODUCTION	1
GENERAL GEOLOGY 4 EXPLORATION OPERATIONS 5 GENERAL COMMENTS 5 UNDERGROUND OPERATIONS 6 SURFACE DRILLING 7 METALLURGICAL STUDIES 8 RESULTS OF EXPLORATORY PROGRAM 9 RESERVES 10 PROGRAM COSTS-1986 10 CONCLUSIONS 11	PROPERTY DESCRIPTION, ACCESS	1
EXPLORATION OPERATIONS	HISTORY OF PROJECT	2
GENERAL COMMENTS	GENERAL GEOLOGY	4
UNDERGROUND OPERATIONS	EXPLORATION OPERATIONS	5
SURFACE DRILLING	GENERAL COMMENTS	5
METALLURGICAL STUDIES	UNDERGROUND OPERATIONS	6
RESULTS OF EXPLORATORY PROGRAM	SURFACE DRILLING	7
RESERVES	METALLURGICAL STUDIES	8
PROGRAM COSTS-1986	RESULTS OF EXPLORATORY PROGRAM	9
CONCLUSIONS11	RESERVES	10
	PROGRAM COSTS-1986	10
CERTIFICATE OF QUALIFICATION	CONCLUSIONS	11
	CERTIFICATE OF QUALIFICATION	13

Figures & Plans

	Following Page
Figure 2	- Location & General geology Plan
Map No. 2 Map No. 3	- Surface & Drill Location Plan

Appendices

Appendix I - Diamond Drill Logs, Holes 86-1 to 86-17, Inclusive.

INTRODUCTION

This report on the evaluation of the McFinley Red Lake property in Bateman Township, Ontario, has been prepared by G.M. Hogg, P. Eng., at the request of Mr. W.W. Cummins, president of McFinley Red Lake Mines Limited (McFinley).

The report is prepared specifically for submission to the Ontario Ministry of Northern Development and Mines in respect to that program approved under the Ontario Mineral Exploration Program Act, 1980 (OMEP), Designation Number OM86-1-P-200, effective to December 31, 1986. Thus, while the actual program extended into 1987, all costs and much of the technical information reported herein are restricted to the 1986 portion of the program.

It will also be noted that of total program costs of \$ 2,764,703 during 1986, 85.7 percent was funded through flow-through share issue. The remaining 14.3 percent, or \$ 395,954, is applicable to the OMEP grant program.

Work on the McFinley property is largely contracted with management and supervision by the McFinley staff. The writer is indebted to Mr. J.F. Whitton, the project manager, and the staff for the supply of the necessary data for this study.

PROPERTY DESCRIPTION, ACCESS

The McFinley property consists of 30 patented and surveyed mining claims lying in the southwestern part of Bateman Township of the Red Lake district of Ontario (see Figure 1). It lies about 5 miles NNE of the Cochenour Townsite, and is easily accessible via an all-weather gravel road.

The property area is shown in greater detail in Figure 2, and includes most of the McFinley Peninsula as well as McFinley Island to the north. The Abino property of Goldquest Exploration Inc. lies immediately to the south. The McFinley shaft location is also shown in Figure 2, and it is in this vicinity that all drilling and underground exploration has been carried out during 1986 and 1987.

Currently installed at the mine site are a steel headframe, hoist, compressors and camp facilities. During 1987 the construction of a bulk sample plant was undertaken by McFinley, and it is largely complete at this time. Electric power is presently supplied by diesel generator, but an electric power line does extend to the Abino decline site to the south, and could be readily extended to the McFinley shaft site if necessary. Essentially all equipment and buildings on the property are owned by McFinley.

A vertical shaft to a depth of 428 feet exists on the property, and levels have been established at depths of 150, 275 and 400 feet. These levels have been extended a distance of approximately 1,600 feet south of the shaft, and a raise driven to surface for ventilation and safety purposes. Track equipment is used for mining purposes, and mine rock is currently hoisted in cars.

HISTORY OF PROJECT

Early work in the McFinley Peninsula area located gold, silver and base metal mineralization associated with cherty metasediments in what is now the shaft location, and on McFinley Island to the north. Sporadic drilling and trenching operations were carried on through the 1930's and 1940's, but it was not until 1955 that underground exploration was first undertaken.

At that time Little Long Lac interests opened the McFinley shaft to a depth of 428 feet, and carried out limited drifting and sampling on the 150' and 400' foot levels. The project was terminated in 1956, and the property returned to the owners.

McFinley interests carried out surface exploration during the late 1970's and early 1980's, defining and extending zones of gold mineralization. In August, 1984, under agreement with McFinley, Phoenix Gold Mines Ltd. proceeded with the construction of an access road, surface drilling, and the re-opening of the shaft. To the termination of the Phoenix program in April, 1985, approximately 34,000 feet of surface drilling, 6,000 feet of underground drilling and an additional 1,570 feet of drifting had been completed on the existing 150' and 400' levels.

With the completion of this program Phoenix was deemed to have earned a 50 percent interest in the property, and management of the project reverted to McFinley. Underground exploration was recommenced by McFinley during May, 1985, and by the end of February, 1986, an additional 3,727 feet of drifting and 23,300 feet of underground drilling had been completed on the two existing levels. In addition an extensive chip sampling program was carried out, and geological mapping and compilation were also completed.

During 1986 the purchase of the 50 percent interest held by Phoenix Gold Mines Ltd. was negotiated, and major financial backing was arranged through share purchase by Alexandra Mining Company (Bermuda) Limited. With this, as well as additional flow-through share funding and OMEP aid, a new program involving both surface drilling and bulk sampling was undertaken in late 1986. Through 1987 efforts have been mainly concentrated in the opening of sampling areas underground, and the construction of a sampling plant suitable for the efficient testing of 15,000 to 20,000 tons of material from several potential ore zones. At this time preparations for the

commencement of the bulk sample test are almost complete, and it will be started in the very near future.

GENERAL GEOLOGY

As illustrated in Figure 1, the McFinley property lies along a NNE-trending belt of intermixed metasediments, basaltic volcanics and ultramafic rocks. This belt is traceable in sinuous configuration through the Cochenour Willans (Wilanour) mine area to the south, and thence in an easterly direction into the Campbell and Dickenson mine areas. It thus forms a very important depositional locus for gold mineralization in the northern Red Lake area.

In the McFinley property area this heterogeneous, gold-bearing belt is composed mainly of interlayered cherty metasediments, mafic tuff and basaltic flows, all underlain by ultramafic talc-chlorite schist. These rocks dip to the northwest at 55° to 75°, and normally strike in a N 30° E direction.

As shown in Figure 2, which shows the general geology of the McFinley shaft area, the contact between the metasediment/volcanic complex and the underlying talc-chlorite schist is highly irregular to the north of the McFinley shaft. This major irregularity, which may be the result of folding, faulting or original depositional conditions, extends to depth on a plunge of approximately 60° SW. In detail numerous local irregularities caused by faulting and/or folding are noted through the area, these being most frequent and prominent in proximity to the talc-chlorite schist contact.

Gold occurrence in the McFinley shaft area is largely restricted to the cherty metasediments, which as a rock type is commonly anomalous in gold

in a geochemical range. Therein rather coarse native gold may occur which is often concentrated at the chert contacts or in minor contact-associated veining within the chert. Gold mineralization of this type is most prevalent in the "footwall cherts" (those closest to the talc schist contact), and appears to be concentrated in tabular lensitic pods along this locus. Where lying very close to the talc schist contact and within areas of irregularity such as that to the north of the shaft, the cherts are commonly brecciated and strongly veined. This give rise to gold zones of more complex configuration exemplified by the McFinley "C Zone".

Gold also occurs in sulphide-rich bands closely associated with pyrite, arsenopyrite, sphalerite, galena and silver. This type of occurrence is largely restricted to the remarkably continuous "D Zone" lying to the south of the shaft. This zone, varying from a few inches to a few feet in thickness, has been traced over the entire plane of the deposit area so far explored. It is in all probability a formational feature.

EXPLORATION OPERATIONS

GENERAL COMMENTS:

With the completion of financing and contractual arrangements the 1986-87 evaluation program at the McFinley property commenced in August, 1986. This included exploratory drifting with the installation of the new 275' level, raising, surface and underground drilling, sampling and metallurgical studies.

Concurrent with this exploratory work the design and construction of a bulk sample plant and the upgrading of camp facilities were also undertaken. These involve mainly capitallized expense, however, and are not relevant to this report.

As noted, the total exploratory program extended through 1987, but it is only the 1986 portion that is of consequence to this study. Accordingly, that part of each phase of exploratory operations completed during 1986 will be identified in the following descriptive sections.

UNDERGROUND OPERATIONS:

The underground work completed in the course of the 1986-87 program included the extension of the 150' and 400' levels to a point 1,600 feet south of the shaft, and the installation of the new 275' level with extensions to the north and south of the shaft. A raise was also completed from the 400' level to surface 1,600 feet south of the shaft, joined to each of the three levels. This raise was deemed necessary for ventilation and safety purposes and was installed in accordance with mining regulations. In addition openings into proposed bulk sample sites were driven, and a number of drill stations prepared.

The drifting, crosscutting and raising completed during the 1986-87 program are tabulated as follows:

·	Total (ft.)	1986 Portion(ft.)
Drifting, X-Cut, 150' level	600	400
Drifting, X-Cut, 275' level	3,800	1,119
Drifting, X-Cut, 400' level	1,590	430
Raising	840	440
Total Drifting, X-Cut Total Raising	5,990 840	1,949 440

Underground drilling and some sampling were also carried out during the course of this program. Drilling totalled approximately 10,500 feet, and

was completed mainly during 1987.

The extent of the underground workings existing at the McFinley property is illustrated on Maps 2, 3 and 4 (in pocket). These are essentially as completed to the end of 1987.

SURFACE DRILLING:

During November, 1986, a surface drilling program was initiated with the objectives of (1) defining and sampling the flat-lying "C Zone" at the approximate depth of 275 feet below surface, and (2) testing the depth potential of the "C Zone" environment to the south of the shaft. The program was continued into 1987, ultimately totalling 41,874 feet of drilling. However, only 17 holes totalling 8,219.2 feet were completed during 1986 and are of relevance to this report. They may be listed as follows:

SURFACE DRILLING SUMMARY - 1986

Hole No.	Location	Azimuth	Dip	Depth (ft.)
86-l	10300N , 10200E	145°	-55°	401.1
86-2	10300N , 10200E	145°	-45°	451.7
86-3	10300N , 10300E	145°	-50°	390.9
86-4	10300N , 10300E	145°	-80°	344.8
86-5	10225N , 10328E	145°	-70°	387.0
86-6	9305N 9480E	-	-90°	1,608.0
86-7	10225N , 10328E	145°	-60°	344.5
86-8	10225N , 10328E	145°	-43°	307.4
86-9	10225N , 10240E	145°	-68°	375.7
86-10	10150N , 10250E	145°	-65°	418.6
86-11	10150N , 10250E	145°	-75°	388.0
86-12	10150N , 10250E	145°	-55°	392.5
86-13	10150N . 10249E	145°	-50°	385.2
86-14	9300N , 9216E	145°	-89°	1,927.3 (1,2001/86)
86-15	10057N 9889E	145°	-55°	607.0
86-16	10055N , 10043E	145°	-70°	379.5
86-17	10055N , 10042E	145°	-85°	477.0 (100'/86)

TOTAL: 17 holes comprising 8,219.2 ft. (1986)

The location of these holes is shown on Map No. 1 (in pocket), and the logs are included with this report as Appendix I.

METALLURGICAL STUDIES:

Because of the erratic distibution of rather coarse native gold in the mineralized zones of the McFinley property significant discrepancies in assay results have been encountered in the various sampling programs carried out in the past. This problem is partially due to sampling difficulties, and partially due to analytical procedures. Unfortunately neither of these recognized deficiencies can be effectively overcome in the practical sense, though the application of a panel sampling system and the thorough pulverization and mixing of sample material prior to analysis appears to increase accuracy considerably.

A series of 16 composite samples from three mineralized areas were prepared during 1986, and sent to Lakefield Research for metallurgical testing. This study was undertaken to determine the metallurgical character of the mineralized material for application in the bulk sample plant design. In this respect it is indicated that over 90 percent recovery of the contained gold may be expected from the cherty gold-bearing material on gravity separation and cyanidization.

Interestingly, however, the recovered gold from these samples on metallurgical testing showed that the actual grade exceeded the grade level calculated from earlier sampling results by as much as 0.22 oz.Au/ton. This suggests that a calculated grade level of 0.20 oz.Au/ton for a given zone may in fact equate to an actual grade in the 0.40 oz.Au/ton range. This, of course, is the reason for the proposed bulk sample test.

RESULTS OF EXPLORATORY PROGRAM

In respect to underground operations the 1986-87 exploratory program in the McFinley shaft area was designed (1) to define and open mineralized ares for bulk sampling. (2) to install drill stations for definition of mineralized zones, and (3) to meet regulatory standards in areas of mine safety and ventilation for bulk sample extraction.

As a result of the program three mineralized chert zones on the 150' level, the irregular "C Zone on the 275' level, and a particularly persistent and well mineralized chert zone on the 400' level have been selected and accessed as sampling sites. It is planned to extract from 3,000 to 5,000 tons from each site for carefully controlled bulk sample testing.

A panel sampling technique has been developed for use in general mine sampling, and a multiple system of face, muck and car sampling devised for control during the bulk sampling operation. As previously described, metallurgical test work during the period has established the basic requirements and parameters for sample plant design.

Surface drilling during the latter part of 1986 provided the necessary data for precise definition of the relatively shallow "C Zone". This information has since been applied in the opening of this area as a bulk sample site. Also during the course of the surface drilling program hole 86-6 yielded a series of excellent intersections at depths of 1,000 to 1,300 feet to the south of the shaft (see Figure 3). This indicates that the mineralized systems currently being evaluated above the 400' level extend to at least these depths.

RESERVES

As described the mineralized zones of the McFinley shaft area are numerous and variable in type. Most are known on the basis of drill intersections, and their definition thus involves considerable projection and the noted reliance on questionable assay data.

The most knowledgeable estimate of reserves completed to date was that prepared by Mr. C. Edmunds during 1987. Mr. Edmunds was until recently the Chief Geologist of McFinley Red Lake Mines Limited. This in-place geologic reserve, estimated on a drill-indicated basis was 227,757 tons grading 0.22 oz.Au/ton, and includes a total of seven mineralized chert zones in the shaft vicinity to a depth of 425 feet below surface. This reserve estimate does not include the newly located chert zone on the 400' level which has been selected as a bulk sample site.

Also, this estimate does not include the sulphide-associated "D Zone" previously referred to as a potential ore type. A geologic reserve of at least 120,000 tons at indeterminate grade is estimated for this zone to a depth of 425 feet within the present mine area. Gold values ranging from 0.10 to 0.50 oz.Au/ton have been reported from samples of better mineralized material from this zone.

PROGRAM COSTS - 1986

As previously noted a total of \$ 395,954 which is eligible for inclusion under the OMEP grant program has been spent by McFinley in exploration on its Bateman Township property during 1986. In the financial records of the Company these expenditures are listed as follows:

Diamond Drilling\$	102,901	
Personnel Salaries & Wages	48,297	
Consulting Services	30,161	
Assaying	29,558	
Maps, Drafting, Compilation	30,587	
Direct Costs of Underground Drifting, and Crosscutting	146,031	
Indirect Costs of Underground Operations, Camp & Power	8,419	
Total Applicable Cost\$	395,954	

CONCLUSIONS

Exploratory operations on the McFinley Red Lake property during the 1986-87 period have resulted in the location and opening of several zones of mineralized and veined chert to a depth of 400 feet. These zones are strongly auriferous, but because of the erratic distribution of native gold have proven very difficult to sample effectively.

Five locations have been selected from which 15,000 to 20,000 tons of material will be extracted and tested in a bulk sampling operation over the next few months. Of particular importance, of course, will be the gold recoveries in the gravity circuit of the bulk sample plant. The program is expected to establish the mineable grade levels of these mineralized zones conclusively.

Surface drilling during late 1986 located several zones of significant gold values at depths of 1,000 to 1,300 feet below surface to the south

of the existing 428 foot shaft. This indicates that the mineralized systems currently being evaluated to depths of 400 feet in all probability extend to considerable depth on a southerly plunge.

Respectfully Submitted,

CERTIFICATE OF QUALIFICATION

I, Glen M. Hogg, of the City of Toronto, County of York, in the Province of Ontario, Canada, do hereby certify that:

- I am a Consulting Engineer, principal of the firm of G.M. Hogg & Associates Ltd., with an office located at 28 Thompson Avenue, Toronto, Ontario
- 2. I am a member of the Association of Professional Engineers of Ontario, and a registered Consulting Engineer with that organization.
- 3. I am a graduate of Queen's University of Kingston, Ontario, having received the degree of Master of Science in Geological Sciences in 1952. I have since practised professionally in the fields of mineral exploration and development.
- 4. I am familiar with the McFinley Red lake property, and have been associated with its development since 1983. I last visited the property in February, 1988.
- 5. I hold no direct interest in the McFinley Red Lake Mines Limited, nor in the Bateman Twonship property; nor do I expect to receive any.

Dated in Toronto, Ontario, this day of and, 1988

G.M. Hogg, BECK-M. HOGG

	FOO	FOOTAGE			1	HOLE NO.	SAMPLE	m		U I	ASS	ASSAYS		
	T ROM	10		DESCRIPTION	v O	% SULPH	FROM	FOOTAGE TO	TOTAL	31	7, 02	OZ/TON OZ	OZ/TON	
	139.5	142_8	CHERT UNIT (F	W.C.)	25836		137.5	139.5	2.0			Tru.	7	
	- 0	72.0		Convoluted layering-PyPoAspynb. Flat fractures (ie: low angle to C.A.(15°)) cross cut lithologic layering mineralized with Po. C.A. 72° (lithologic layering).	25572 25573		139.5 141.5	141.5 142.8	2.0 1.3			. 32		·
/	142.8	149.6	BIOTITIC GROUP		2557		3	3	<u>,</u>) 	_	
•			142.8-143.2 147.0-147.5 148.0-148.4	Amygdular contact with F.W.C. Quartz-Carbonate-Magnetite lense. (App. 1% Aspy.) Quartz-Carbonate Vein. Sph/Py/Po. Quartz-Carbonate-Chlorite Veins (2-3" thick)	255/4 25575		142.8 146.0	143.8 148.0	2.0			Tr.		
	149.6	162.4	ANDESITIC GROUP 153.0-153.2 154.8-154.9 160.5-160.7 160.9-161.3	Thin veinlet of Sph-Po-Py-Aspy. Thin veinlet of Sph-Po-Py-Aspy. Thin veinlet of Sph-Po-Py-Aspy. Thin diorite apophysis.	25576		152.5	153.5	1.0	···		Tr.		
	162.4	164.8	DIORITE DYKE	Thin veinlet of Quartz-Carbonate and CpyPy. on Contact.				,		_			· · · · · · · · · · · · · · · · · · ·	
	164.8	170.3	ANDESITIC GROUP 165.7-166.0 166.6-167.2	Unit contains 1-2% disseminatedPyPo. PyPo. veinlet. PyPo. in Quartz -Carbonate veinlet.	25577	·	165.7	167.7	2.0					·
	170.3	170.9	BIOTITIC GROUP		25837		168.9	170.9	2.0			Tr *		
	170.9	171.3	B-VEIN	Quartz-Arsenopyrite Vein.	25578		170.9	172.9	2.0	<u> </u>		.04	·	
	171.3	173.9	QUARTZ-FELDSPAR PORPHYRY Sericitic Sulphides throughou	bleaching and thin (1/4") Quartz veining. PyPoAspy. disseminated (3-5%)		<u>.</u>			· ·					
	173.9	180.4	BIOTITIC GROUP 174.0-174.4 175.1-175.3	Pyrite on Qtz. fractures to 177.1. Thin Quartz-Arsenopyrite Vein. B-Vein related- Spalerite-Pyrite-Arsenopyrite. Thin Quartz-Pyrite Vein.	255/9 25580		173.9	175.9	1.2					

NAME OF PROPERTY____ McFinley Red Lake Mines Limited

NAME OF	NAME OF PROPERTY MCFinley Red Lake Mines Limited
HOLE NO.	86-1 LENGTH 411.1'
LOCATION	McFinley Park
LATITUDE	10300 N DEPARTURE 10200 E
ELEVATION	ELEVATION 10,000.2 AZIMUTH 90° DIP -55
STARTED_	23, 1986 November 25, 1986
1	

GE	o TCJ	AZIMUTH FOOTAGE	7	ΌΤΑGE
27 '	52½°			
	48°			

HOLE NO.
86-1
SHEET NO.
1 of 6

Drilled by Morissette BQ Core

LOGGED BY F. C. Edmunds

F 0 0	TAGE				SAMP	LE			>	SSAY	Ŋ	
FROM	10		NO.	Sadi Ha ins	FROM	FOOT AGE TO	TOTAL	%	*	NO1/zo	оz/тон	
U.0	22.0	CASING								ny		
22.0	26.3	DIÚRITE DYKE										
26.3	30.2	CHERT UNIT										
). S		A. 70° PuPy.	25557 25558		26.3 28.3	28.3 30.2	2.0			2.T		
30.2	50.6	· woll foliated Amuschulan	2000		2003	20.6	1.9					
 .		Carbonate porphyroblasts; well tollated. Amygdular. 32.9-33.4 Quartz Carbonate lense- ie : not laminated; magnetite bearing.	25559		32.9	33.4	0.5			.02		
<u>, , ,</u>		arbonate lense. arb. Vein. arb. Vein.	25560		34.8	35.9				.02		
50.6	51.8	CHERT UNIT C.A. 69°.	25561		50.6	51.8	1.2			.02		
51.8	68.5	BIOTITIC UNIT Amygdular with conjugate shear foliations. 56.7-57.0 Ouartz-Carbonate Vein.										<u> </u>
		Magnetite rich piliow servage.										<u></u>
168 68.5	78.7	ANDESITIC GROUP App. 1% disseminated Pyrite 69'-72'. Sericitic alteration on fractures with C.A. 15° (72').	25834 25562 25835		76.1 78.1 80.7	78.1 79.4 82.7	2.0 2.0 2.0	·		.05 T	*(fo] *	*(fo]low up)
366-1 78.7	79.4	CHERT UNIT										
ONTO - 79.4	82.7	ANDESITIC GROUP Minor disseminated Po. (App. 1%)										
82.7	88.9		25563	·	82.7	85.0	2.3	<u> </u>		7.05		
GRIDGES	-	82.7-83.0 diss. Arsenopyrite on contacts.	25565		87.Ü	88.9	1.9			₹:		
ANG										-		

HOLE NO. __

	FOO	FOOTAGE		\rceil	İ	SAMPLE					ASSAYS		
	FROM	70	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	ş,ì	24	MO4 /20	0Z/TON	
	88.9	93.2	ANDESITIC GROUP			Į				,	Au		
	7,00	7.00	91.2-91.3 Thin Sphalerite-Quartz Vein.										
	93.2	96.1	BIOTITIC GROUP	25566		95.1	96.1	1.0			īr.		
	96.1	96.6	CHERT UNIT	25567		96.1	97.9	1.8			ī.		
	96.6	97.1	BIOTITIC GROUP										
	97.1	97.9	CHERT UNIT										
		×	Nb : Core Toss/ground C.A. 97.0. C.A75° (97.0)							·			
	97.9	104.4	i+o Dumbo	25568		97.9	98.9	1.0			₹.		
			tite and Arsenopyrite. Arsenopyrite forms disseminations 1"-2" thick which permeate the wall rock. Whole zone-2% diss. Pyrite/Aspy.	25569		102.0	104.0	2.0			.02		
	104.4	106.2	CHERT UNIT	25570		104.0	106.2	2.2			.01		
	106.2	111.0	BIOTITIC GROUP Well foliated.										
	111.0	121.0	ANDESITIC GROUP Gradational contact over 1.5'.										
	121.0	123.3	BIOTITIC GROUP Well developed conjugate shear foliation.				· 				<u> </u>		
	123.3	124.3	CHERT UNIT Poorly laminated with thin stringers of Sphalerite C.A. 128.3'. App. 1% AspyPy. C.A 70° (128.3')	25571		123.3	124.3	1.0			.7'	7	
•	124.3	129.0	ANDESITIC GROUP Much sericitic/epidote alteration (late fault related bleaching).				· · · · · · · · · · · · · · · · · · ·						
	129.0	139.5	BIOTITIC GROUP Sericitic alteration on fractures continuing. (8 ° to C.A.)	· · · · · · · · · · · · · · · · · · ·									
			_	·								·	

FORE

HOLE NO. 86-1 McFinley Red Lake Mines Limited

sheet No. 4 of 6

245.2 244.2 231.8 228.8 220.9 214.8 FROM 240.0 199.0 180.4 FOOTAGE 240.0 220.9 211.6 244.2 231.8 227.4 214.8 199.0 228.8 245.2 246.5 237.3 192.4 BIOTITIC GROUP BIOTITIC GROUP ANDESITIC GROUP BIOTITIC GROUP DIORITE DYKE 213.0-213.3 DIORITE DYKE BIOTITIC GROUP ANDESITIC GROUP DIORITE DYKE ANDESITIC GROUP ANDESITIC GROUP 218.4-ANDESITIC GROUP ANDESITIC GROUP 197.5-198.4 Highly sheared: well developed foliation.Amygdular. Pyrrhotite Veinlet. Fault zone bleaching from 244.8-245.0. Minor Quartz Cb. Veining. Well developed foliation. Easily recognizable chill margins.
Disseminated Py.-Cpy. throughout. (App. 1%) C.A. 65 Pillow selvages at 203.4',205.1',207.7',209.7'. tion. Well developed foliation. Amygdular. Two thin stringer zones in slightly bleached seccleavage. Amygdular. Pillow selvages 1" thick sulphide stringers of Py.-Po. Highly carbonated with well developed conjugate lower contact. Disseminated Pyrite (1%) 1"Py.-Po. stringer on Two intrusive phases evidenced by 4 chilled margins DESCRIPTION 25582 2558 ĕ 197.7 220.0 | 222.0 FROM SAMPLE 198.7 7 2.0 TOTAL ASSAYS MOT/20 ヹ. .02 OZ/TON

					Cyrio	n				10010
FOOTAGE	AGE	DESCRIPTION			U 7.81					1 >
FROM	70		NO.	SULPH,	FROM	FOOT AGE	TOTAL	'n	38	
246.5	248.1	BIOTITIC GROUP								
		Highly carbonated App. 20%. 248.5-248.7 Thin diorite apophysis. C.A80°.	· -							
248.1	250.9	ANDESITIC GROUP								
		Highly sheared and amygoular. 50% Biotite alteration.								
250.9	251.3	DIORITE DYKE								
251.3	322.0	BIOTITIC GROUP								
		Highly sneared and Quartz Veined.								
		fault zone bleach								
		26/.4-269.2 Quartz-Carbonate Vein.		<u></u>				-	.	
		Ground Core.			_					
		274.3-275.9 Quartz-Carbonate Vein.								
		:	25583	- ,	306.7	307.7	1.0			
		Very fine grained Aspy. Disseminated stringers con- tinue to 309.7'.	5584		307.7	309.7	•			
		ite (3.5%) on foliation planes.	5585		313.0	315.0	۰.			
			5587		318.0	320.0	2.0			
322.0	323.8	QUARTZ FELDSPAR PORPHYRY 1/4" Quartz phenocrysts. C.A85°.								
323.8	333.1	BIOTITIC GROUP 1-28 disseminated Purite throughout	5580		23.8	325 8	,		<u>-</u>	
			5590 5591		325.8	327.8				
		Quartz-Sulphide Vein- vein is crosscut by thin (1/4") stringers of Pyrite-Pyrrhotite-Arsenopyrite.29	5593 5594	. (4) (4) (330.8	333.2	22.2			
			_						·	

	r	
333.4 386.5	FROM	FOO.
386.5	70	FOOTAGE
BIOTITIC GROUP 339.1 341.0 342.5-342.7 343.7 345.5 352.4-354.4 381.6-383.9 TALC-CHLORITE- 397.0-398.0 411.1		.
Disseminated Pyrite present throughout top 3'. 1/4" thick sulphide stringer. 3" thick fault zone. Thin sulphide (PyPo.) stringer. Also at 343.2. 1" thick Qtz-Carbonate Veinlet. (Pyrite) Biotitic Group is mildly bleached (ie: tan colour) Thin bleached zone-possible porphyry. Fault Zone. CARBONATE UNIT 1/4' thick sulphide stringers surrounding a Quartz Carbonate Vein. Markers indicate 407.0' E.O.H Casing pulled. Hole not cemented.		DESCRIPTION
25595	NO.	
	IDES	
347.0	FROM	SAMPLE
349.0	TO	E
2.0	TOTAL	
	22	
	22	
Tr.	OZ/TON	ASSAYS
	OZ/TON	1 "

NAME OF PROPERTY____ McFinley Red Lake Mines Limited

HOLE NO. -

6 of 6

_ SHEET NO._

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. 86-2 LENGTH 451.7'
LOCATION McFinley Parking Lot C-Zone
LATITUDE 10300 N DEPARTURE 10200 E
ELEVATION 10,000.2' AZIMUTH 090 DIP -045°
STARTED NOVEMBER 25,1986 FINISHED NOVEMBER 27, 1986

	437 '	22'	FOOTAGE
	420	440	E DIP
		090	AZIMUTH
			AZIMUTH FOOTAGE
			DIP
			AZIMUTH

OLE +	
Š.	
86-2	
SHEET	
Ö	
_	

Drilled by Morissette BQ Core

LOGGED BY M.A. Lamoureux

	FOO	TAGE				SAMP	L E				ASSA	YS	
	FROM	то		NO. S	SULPH-	FROM	FOOT AGE	TOTAL	*	**	OZ/TON	OZ/TON	
	0.0	22.0	CASING								Au		
	21.0	26.2	DIORITE DYKE										
	26.2	29.9	CHERT UNIT										
 			Banded Qtz and Magnetite, also Pyrrhotite Magnetite. Pyrite , minor Sphalerite. Banding at 80° to C.A. Convoluted in places.	25596 25597		26.2 28.2	28.2 29.4	2.0 1.2			77.		
	29.9	35.3	BIOTITIC GROUP 31.3-31.6 Minor chert unit. 33.2-33.5 Minor chert unit.	25598 25599 25846	···	32.8					.02	+	
	35.2	36.2	QTZMAGNETITE LENS	14002		30.2	30.2	2.0				×	
	36.2	69.6	BIOTITIC GROUP 40.6-49.5 Qtz. veining. 50.8-51.3 Qtz. vein with Fuschite, Pyrite, Magnetite, Sphalerite Pyrrhotite.	25600		50.6	51.3	0.7			.02		
	69.6	76.6	ANDESITIC GROUP Some core missing.										
168	76.6	78.3	ed magnetite and Qtz. with minor Pyrite. 78° to	25601		76.6	78.3	1.7			.01		. <u> </u>
0 - 366-1			Pyrite also on fault plane app. 20° to C.A. 1.5 cm displacement.							-·			
RONT	78.3	80.9	ANDESITIC GROUP										
GRIDGL TO	80.9	86.1	QUARTZ FELDSPAR PORPYRY (CENTRAL PORPHYRY) 1% disseminated sulphides. Qtz. veining and more sulphides at contact (86.1)	25602 25603 25604		80.9 82.9 84.9	82.9 84.9 86.1	2.0 2.0 1.2			777		
LANG													

118.4 112.8 121.4 104.4 FROM 125.3 135.9 97.8 95.8 92.7 86.1 FOOTAGE 112.8 121.4 125.3 118.4 141.1 135.9 104.4 97.8 95.8 92.7 70 CHERI UNIT

Irregularly and poorly banded sulphides and Qtz.

Pyrite, Magnetite, Arsenopyrite to 107.4

107.4-112.8 Wide bands of fine grained Arsenopyrite (up to 3 cm wide)25609

Faults at 30° to C.A. are common with displacements up 25610 CHERT UNIT (FOOTWALL CHERT) ANDESITIC GROUP
120.3-121.4 Sericitic alteration. BIOTITIC GROUP 129.0-129.2 Diorite Dyke 55° to C.A. BIOTITIC GROUP CHERI UNIT ANDESITIC GROUP 123.7-125.2 Possible fault zone, much epidote.Fault at 124.8 BIOTITIC GROUP ANDESITIC GROUP 97.5-97.8 BIOTITIC GROUP Massive Pyrite. Some Magnetite, Pyrite in fine bands (75° to C.A.) Minor convoluted. Qtz.-Carbonate Vein with epidote alteration halo. Many carbonate veins at 90° to C.A. Bands of magnetite and Otz. At 75° to C.A. Alteration and sulphide bands 90° to C.A. to 1.5 cm. Sulphides on fault planes 1-2% disseminated pyrite.
Often in bands at 75° to C.A. Minor disseminated pyrite throughout Qtz. Vein // to C.A. (138.8) *V.G. at 140.0. Some fushsite-sulphide veins at 15° to C.A. Otz.-Carbonate Veins at 90° to C.A. 5 cm wide sulphide vein at 5°-10° to C.A. DESCRIPTION 2584 2561 2561 2561 2580° 2580° 25606 25841 25605 ĕ 114.3 116.3 135.9 137.9 139.9 141.1 102.4 104.4 106.4 97.8 FROM SAMPLE 137.9 139.9 141.1 116.3 118.3 104.4 106.6 108.4 110.4 112.8 100.4 143.1 FOOTAGE 95.8 97.8 70 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.4 2.0 2.0 1.2 2.6 TOTAL B > ASSAYS 0Z/TON 1r. .12 .42 .39 Au 77 28882 . 87 . 8 ۷.G. OZ/TOM

NAME OF PROPERTY____MCFinley Red Lake Mines Limited

SHEET NO. ________ 2 0

HOLE NO.

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. 86-2 SHEET NO. 3 Of 6

DESCRIPTION	DESCRIPTION	NO.	NO. % SULPH	NO. % SULPH, IDES FROM	NO. % SULPH FOO	SAMPLE NO. "SULPH FOOTAGE NO. IDES FROM TO	SAMPLE NO. % SULPH, FOOTAGE NO. 1DES FROM TO TOTAL % %	SAMPLE NO. % SULPH, FOOTAGE 10ES FROM TO TOTAL %
-Carbonate veins @ high angle to	-Carbonate veins @ high angle to	-Carbonate veins @ high angle to	-Carbonate veins @ high angle to C.A.	-Carbonate veins @ high angle to C.A.	-Carbonate veins @ high angle to C.A.	-Carbonate veins @ high angle to C.A.	-Carbonate veins @ high angle to C.A.	-Carbonate veins @ high angle to C.A.
veins @ high angle to	PCarbonate veins @ high angle toCarbonate veins @ high angle to pCarbonate veins @ high angle toCarbonate veins @ high angle to	veins @ high angle to C.A.	veins @ high angle to C.A. P.—Carbonate veins @ high angle to C.A. -Carbonate veins @ high angle to C.A. -Carbonate veins @ high angle to C.A. -Carbonate veins @ high angle to C.A.	veins @ high angle to C.A. P.—Carbonate veins @ high angle to C.A. -Carbonate veins @ high angle to C.A.	PCarbonate veins @ high angle to C.ACarbonate veins @ high angle to C.A.	PCarbonate veins @ high angle to C.ACarbonate veins @ high angle to C.A. PCarbonate veins @ high angle to C.ACarbonate veins @ high angle to C.ACarbonate veins @ high angle to C.A.		
veins @ high angle to veins @ high angle to	veins @ high angle to C.A. veins @ high angle to C.A.	veins @ high angle to C.A. veins @ high angle to C.A.	veins @ high angle to C.A. veins @ high angle to C.A.	veins @ high angle to C.A. veins @ high angle to C.A.	veins @ high angle to C.A. veins @ high angle to C.A.	veins @ high angle to C.A. No. [% SULPH] FOOTAGE FROM TO TOTAL Veins @ high angle to C.A.	veins @ high angle to C.A. NO. SULPM FOOTAGE 1DES FROM TO TOTAL % % 1DES PROM TO TOTAL % 1DES PROM	veins @ high angle to C.A. NO. SULPM FOOTAGE 1DES FROM TO TOTAL % % 1DES PROM TO TOTAL % 1DES PROM
angle to	angle to C.A. angle to C.A.	angle to C.A. angle to C.A.	angle to C.A. angle to C.A.	angle to C.A. angle to C.A.	angle to C.A. NO. TABLEM FOOTAGE TO T	angle to C.A. NO. % SULPH, FOOTAGE TO TOTAL TO TOTAL TO TOTAL TO TOTAL TO TOTAL TO TOTAL	angle to C.A. NO. % SULPH FOOTAGE IDES FROM TO TOTAL % angle to C.A.	angle to C.A. NO. NSULPH, FOOTAGE TO TOTAL % % angle to C.A.
		Z _O	NO. % SULPH	NO. % SULPH IDES FROM	NO. % SULPH FOOTAGE	NO. % SULPH, FOOTAGE 10ES FROM TO TOTAL	IDES FROM TO TOTAL %	NO. % SULPH FOOTAGE IDES FROM TO TOTAL % %
	Z		1DES SULPH	IDES FROM	IDES FROM TO	IDES FROM TO TOTAL	IDES FROM TO TOTAL % %	IDES FROM TO TOTAL % %

HOLE NO. _____86-2 NAME OF PROPERTY____ McEinley Red Lake Mines Limited SHEET NO. 4 Of 6

298.3 QUARTZ-MAGNET 302.3 ANDESITIC GRO 302.7 QUARTZ-CARBON 316.2 BIOTITIC GROU 305.7-306.0 307.1 312.2-316.2 QUARTZ-FELDSP 329.0 QUARTZ-FELDSP 323.4 331.4-331.7 332.2-332.4 333.4 333.4 333.4 336.6-340.8 343.1-350.4 366.4 ANDESITIC GROU 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO	FROM)OT AG	70 jii		DESCRIPTION	NO.		NO. % SULPH,	NO. 7 SULPH	NO. % SULPH FROM	SAMPLE NO. %SULPH FOOTAGE IDES FROM TO	SAMPLE NO. % SULPH, FOOTAGE IDES FROM TO TOTAL	NO. % SULPH FOOTAGE NO. 1DES FROM TO TOTAL %	SAMPLE NO. SULPH FOOTAGE NO. IDES FROM TO TOTAL % %
302.3 ANDESITIC GRO 302.7 QUARTZ-CARBON 316.2 BIOTITIC GROU 305.7-306.0 307.1 312.2-316.2 QUARTZ-FELDSP 323.4 331.4-331.7 332.2-332.4 333.4 333.4 333.4 336.6-340.8 343.1-350.4 366.4 ANDESITIC GROU 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO	297.8			QUARTZ-MAGNETITE VEIN 1" lqng stringer of	VEIN lqng stringer of coarse gold. Visible Gold.	60	Gold.	Gold.	Gold. 25619	Gold. 25619 297.8	Gold. 25619 297.8 298.3 0.	Gold. 25619 297.8 298.3 0.	Gold. 25619 297.8 298.3 0.5 A 9	Gold. 25619 297.8 298.3 0.5 A 96.16 V.G
302.7 QUARTZ-CARBON 316.2 BIOTITIC GROU 305.7-306.0 307.1 312.2-316.2 329.0 QUARTZ-FELDSP 323.4 BIOTITIC GROU 331.4-331.7 332.2-332.4 333.4 333.4 336.6-340.8 343.1-350.4 366.4 ANDESITIC GRO 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO	Š			ANDESITIC GROUP		25620	25620	25620 298.3		298.3 299.	0 298.3 299.3 1	0 298.3 299.3 1.0	0 298.3 299.3 1.0 A	0 298.3 299.3 1.0 A .26 * * * * * * * * * * * * * * * * * * *
316.2 BIOTITIC GROU 305.7-306.0 307.1 307.1 307.1 307.1 307.1 307.1 308.7-316.2 QUARTZ-FELDSP 323.4 331.4-331.7 332.2-332.4 333.4 336.6-340.8 343.1-350.4 354.5-355.6 356.0-359.2 366.4 ANDESITIC GRO 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO	302.3			QUARTZ-CARBONATE VEIN Coarse Pyrrhotite blebs.	lebs.	lebs. 26702			26702	26702 299.3 301.	26702 299.3 301.3 2.	26702 299.3 301.3 2.0	26702 299.3 301.3 2.0	2670Z 299.3 301.3 2.0 8 .16
329.0 QUARTZ-FELDSP 323.4 365.1 BIOTITIC GROU 331.4-331.7 332.2-332.4 333.4 333.4 336.6-340.8 343.1-350.4 356.0-359.2 366.4 ANDESITIC GRO 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO	302.7			UP QtzCarbonate Fault zone (2") Disseminated py 5-10%.	vein-barren.) /rite , pyrrhotite and arsenopyrite	en. rrhotite and	en. rrhotite and arsenopyrite	en. rrhotite and arsenopyrite	en. 25845 772 25621 310. 25622 314.	en. 25845 2582 310.2 312. 314.2 314. 25622 314.2 316.	en. 25845 310.2 312.2 2. rrhotite and arsenopyrite 25621 312.2 314.2 2. 316.2 2.	en. 25845 310.2 312.2 2. rrhotite and arsenopyrite 25621 312.2 314.2 2. 316.2 2.	en. 25845 310.2 312.2 2. rrhotite and arsenopyrite 25621 312.2 314.2 2. 316.2 2.	en. 25845 310.2 312.2 2.0 rrhotite and arsenopyrite 25621 314.2 316.2 2.0 25622 314.2 316.2 2.0
365.1 BIOTITIC GROU 331.4-331.7 332.2-332.4 333.4 333.4 336.6-340.8 343.1-350.4 356.0-359.2 366.4 ANDESITIC GRO 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO	316.2			0 0 0	(C-ZONE PORPHYRY) tized and silicified. nd core. Fault bounded lower contact.	d lower c	d lower contact.	d lower contact.	d lower contact. 25623 329.	d lower contact. 25623 329.0 330.	d lower contact. 25623 329.0 330.8 1.	d lower contact. 25623 329.0 330.8 1.	d lower contact. 25623 329.0 330.8 1.	d lower contact. 25623 329.0 330.8 1.8 332.8 2.0
336.6-340.8 343.1-350.4 343.1-350.4 354.5-355.6 356.0-359.2 366.4 ANDESITIC GRO 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO	329.0			UP Sulfide stringer Sulphide stringer	e. etion			25625 25626 25627 334.	25625 332.8 334. 25626 334.8 336.8	25625 332.8 334.8 25626 334.8 336.8 2.5627 336.8 338.8 2.5627	25625 332.8 334.8 25626 334.8 336.8 2.5627 336.8 338.8 2.5627	25625 332.8 334.8 25626 334.8 336.8 2.5627 336.8 338.8 2.5627	25625 332.8 334.8 25626 334.8 336.8 2.5627 336.8 338.8 2.5627	25625 25626 25626 334.8 336.8 338.8 2.0 25627 336.8 338.8 2.0
354.5-355.6 356.0-359.2 366.4 ANDESITIC GRO 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO				340.8 Siliceous zone. Well laminated -350.4 Siliceous zone	possible chert. up to 30% Aspy.			25628 338. 25629 340. 25630 342. 25654 344.	25628 338.8 340. 25629 340.8 342. 25630 342.8 344. 25654 344.8 346.	25628 338.8 340.8 2. 25629 340.8 342.8 2. 25630 342.8 344.8 2. 25654 344.8 2.	25628 338.8 340.8 2. 25629 340.8 342.8 2. 25630 342.8 344.8 2. 25654 344.8 2.	25628 338.8 340.8 2. 25629 340.8 342.8 2. 25630 342.8 344.8 2. 25654 344.8 2.	25628 338.8 340.8 2.0 25629 340.8 342.8 2.0 25630 342.8 344.8 2.0 25654 344.8 346.8 2.0	25628 338.8 340.8 2.0 25629 340.8 342.8 2.0 25630 342.8 344.8 2.0 25654 344.8 346.8 2.0
366.4 ANDESITIC GRO 366.1 371.5 SILICIFIED BI 373.6 ANDESITIC GRO				354.5-355.6 Fault zone-breccia. Epidote rich fluids. 356.0-359.2 Silicified zone. Pyrite present in strir stringers.	dote rich fluids. present in stringers and as	igers and	ngers and as	ngers and as	25631 346. 25632 348. 25772 350. 19ers and as 25073 354. 25633 356.	25637 346.8 348. 25632 348.8 350. 25772 350.7 352. 19ers and as 25073 354.0 356. 25633 356.0 358.	25631 346.8 348.8 2. 25632 348.8 350.7 1. 25772 350.7 352.7 2. 19ers and as 25073 350.0 358.0 2. 25633 356.0 358.0 2.	25631 346.8 348.8 2. 25632 348.8 350.7 1. 25772 350.7 352.7 2. 19ers and as 25073 350.0 358.0 2. 25633 356.0 358.0 2.	25631 346.8 348.8 2.0 25632 348.8 350.7 1.7 25772 350.7 352.7 2.0 19ers and as 25073 354.0 356.0 2.0 25633 356.0 358.0 2.0	25637 346.8 348.8 2.0 .16 25632 348.8 350.7 1.7 .23 25772 350.7 352.7 2.0 .01 19ers and as 25773 354.0 356.0 2.0 .01 25633 356.0 358.0 2.0 .28
371.5 SILICIFIED BI 373.6 ANDESITIC GRO	365.1			GRO	t (1/4" thick)			25639 25774 359.	25639 25774 359.2 361.	25634 25774 359.2 361.2 2.	25634 25774 359.2 361.2 2.	25634 25774 359.2 361.2 2.	25534 25774 359.2 361.2 2.	25639 25774 359.2 361.2 2.0
373.6 ANDESITIC GRO	366.4			ВІ	OTITE GROUP ? Unit highly fractured by thin chloritic veinlets.	tic vei	tic vei	tic vei	tic vei	tic vei	tic vei	tic vei	tic vei	tic vei
	371.5			GRO										

NAME OF PROPERTY__ 86-2 McFinley Red Lake Mines Limited SHEET NO. 5 of 6

HOLE NO.

RECORD

445.0 397.5 373.6 FROM 402.6 FOOTAGE 451.7 445.0 402.6 397.5 70 ANDESITIC GROUP BIOTITIC GROUP BIOTITIC GROUP 377.0 4" TALC-CHLORITE CARBONATE SCHIST UNIT 451.7 E.O.H. Casing pulled. 423.2-431.2 Sulphide veinlets-Pyrite-pyrrhotite. 436.8-438.0 Sulphide veining. Py.-Po.-Cpy. 443.0 3" zone of sulphide veinlets. 413.9-414.4 Quartz-Pyrite vein. 419.3-420.4 Sulphide veinlets-Pyrite-pyrrhotite. 408.9-409.9 Sulphide Zones (409.1 and 409.7) 2" thick Py.-Po. 387.2 Possible V.G. in thin (1/8) sulphide seam.
389.0 4" section of fine arsenopyrite.
389.5-390.5 Quartz vein-well mineralized with fine arsenopyrite.
392.0-393.0 Quartz-Chlorite vein. 409.0-411.0 Purple-green mottling of unit. Mildly silicified Minor sulphide stringer zones at 389.9 and 400.0. Alteration includes 3-5% disseminated Py.-Po.-Aspy. to FW side for 0.5'. 4" thick Quartz Carbonate vein. Sericitic alteration on DESCRIPTION 2563 2563 2563 2563 2563 2564 2564 2564 2564 2564 Ż Ģ .% SULPH 1DES 413.1 415.1 418.1 423.2 425.2 427.2 379. 381. 383. 388. FROM SAMPLE 429.2 431.2 438.6 420.9 425.2 427.2 379.7 381.7 383.7 385.7 386.7 389.5 390.5 391.5 FOOTAGE 70 TOTAL 22.00 3.0 2.0 2.0 1.0 1.0 2.0 2.0 **ASSAYS** OZ/TON 77.7777777 777777777 OZ/TON

NAME OF PROPERTY___ 86-2 McEinley Red Lake Mines Limited

SHEET NO. 6 of

HOLE NO. _

STARTED	ELEVATION	LATITUDE	LOCATION	HOLE NO.	NAME O
26, 1986 INISHED	N 10.006.7'	E 10300 E DEPARTURE 10300 N	NCFinley Parking Lot	S. 86-3 LENGTH 390.9'	NAME OF PROPERTY McFinley Red Lake Mines Limited

 AZIMUTH FOOTAGE DIP

HOLE NO.	
86-3)))
SHEET NO.	0
1 of 5	
	All of

REMARKS_

Drilled by Morissette BQ Core

LOGGED BY M.A. Lamoureaux

DESCRIPTION NO. SUPPLIES O CASING ANDESITIC GROUP 16.0-18.0 QtzCarbonate veining. Possible fault area. 7 CHERT UNIT 25878	DESCRIPTION NO. SULPH FROM PROMINES FROM PR	DESCRIPTION NO. SUPPH FROM FROM PILL FROM FROM FROM FROM FROM FROM FROM FROM
55.656 55.656	S A M P FROM 17.8 18.8 20.8	S A M P FROM 17.8 18.8 20.8
	FROM FROM 17.8 18.8 20.8	FROM FROM 17.8 18.8 20.8
	101AL 2.0 2.0 1.9	•
L E FOOTAGE TO TO 20.8 22.7	34 34	
TO TOTAL % 18.8 2.0 20.8 2.0 22.7 1.9	ASSA ASSA AU Au Tr. .06 Tr.	ASSA AU Au Tr06 Tr.

_									 					
133.1	124.4	119.8			95.8	89.1	84.5	83.4		75.9 79.0		61.1	FROM	FOOTAGE
138.7	133.1	124.4			119.8	95.8	89.1	84.5		79.0		75.9	то	AGE
BIOTITIC GROUP	DIORITE DYKE 126.5-127.3 132.0-132.8	ANDESITIC GROUP 121.4- 121.7-122.0 122.5-123.0	114.7-115.0 115.8-116.2	103.8 108.0-108.5 111.2	BIOTITIC GROUP 96.3-96.5	ANDESITIC GROUP 94.8	DIORITE DYKE	ANDESITIC GROUP	80.7- 83.0-83.6	ANDESITIC GROUP	74.0 74.5	BIOTITIC GROUP 63.6-65.3 73.2		
	Qtzcarb vein w/ sulphides in vugs. Qtzcarbonate vein.	p Qtzcarb vein. Amygdaloidal. Pillow selvage. Pillow selvage.	gouge to 112.0 Qtzcarb-fuchsite vein. Qtzcarb-fuchsite vein.	ein w/Py. and y veins with	Otzcarb veining at 70° to C.A.	P Many thin-qtzcarb veins at 70° to C.A. and at 85° to C.A. 1" wide qtzcarbonate vein.		P .	Feldspar phenocrysts. 1" wide diorite dyke. Sulphide vein (Po. and Py. and Aspy.) B Vein ?	YRY	<pre>1" qtzcarbonate vein. 1" sulphide vein (Py. and Po. convoluted)</pre>	<pre>continued Qtzcarbonate veins and sulphide.veins. Qtzcarbonate-sulphide veins.</pre>		DESCRIPTION
	 				·····	•			26202 25666		25665 26703	26201	NO.	
				<u> </u>					<u> </u>		<u> </u>		% SULPH	
	***************************************							03.0	81.0	-,-	73.2 74.6	71.2	PH, FROM	SAMPLE
		-						0.40	83.0	- · · · · · · · · · · · · · · · · · · ·	74.6 76.6	73.2	FOOTAGE TO .	ΓE
									2.0		1.2 2.0	2.0	TOTAL	
													\$2	
													%	
									. ₁₇		.12 Tr.	Tr.	0Z/TON	ASSAYS
			-,				_	,	+ *		*	*	OZ/TON	

HOLE NO. 86-3 NAME OF PROPERTY____ McFinley Red Lake Mines Limited

____ SHEET NO. ____ 2 of __ 5

NAME OF PROPERTY_____MCfinley Red Lake Mines

SHEET NO.

HOLE NO. L

222.6 245.5 216.6 | 219.0 | BIOTITIC GROUP 179.2 | 182.7 | DIORITE DYKE 159.9 | 176.2 | BIOTITIC GROUP 182.7 | 216.6 | ANDESITIC GROUP 176.2 | 179.2 | ANDESITIC GROUP FROM FOOTAGE 251.1 245.5 222.6 159.9 귱 ANDESITIC GROUP 246.5-246.8 ANDESITIC GROUP BIOTITIC GROUP ANDESITIC UNIT 217.2-217.5 230.8-231.3 202.0-210.2 203.2-205.0 201.7-202.1 148.4 241.0-244.1 236.9-237.5 150.8 148.7 188.2-189.1 147.2-147.6 167.3-170.9 167.3-166.3-167.0 163.0-165.7 Qtz.-carb vein. Large barren qtz.-carbonate vein and epidote : may be fault area. Qtz.-carbonate veins. Fault. Qtz.-carbonate veins. Silicified pod with Py. and Aspy. Many fault related fractures at 30° to C.A. with 2" wide qtz.-carbonate vein. Andesitic bit. Andesitic bit. Qtz.-carb vein at 65° to C.A. bleached halos about irregular veins. Qtz.-carbonate vein. bleached alteration halos. Fault zone. Qtz.-carbonate vein * V.G. in qtz. vein. Andesitic bit. Fault plane at 45° to C.A. Fault at 15° to C.A. w/noticeable displacement. Fault zone. Qtz.-carb vein at 65° to C.A. Fault zone. Defined by gtz: carbonate and epidote and Fault zone. DESCRIPTION 25676 25667 26058 2605 Ņ. 236.9 237.8 FROM SAMPLE 168.6 169.6 ಠ TOTAL ASSAY 02 TQ . 9

HOLE NO. 86-3 __ SHEET NO.__ 4 of 5

NAME OF PROPERTY___McFinley Red Lake Mines Limited____

								· · · · · · · · · · · · · · · · · · ·			. !
332.2	314.4	301.6		284.3	283.7	268.3		251.1	FROM	F00	
344.9	332.2	314.4		301.6	284.3	283.7		268.3	70	FOOTAGE	
ANDESITIC GROUP	BIOTITIC GROUP 320.6-322.0 Qtzcarb-epidote vein w/Py. and Po. 324.5 Fault at 25° to C.A. 325.6-328.6 Zone of qtzfuchsite carbonate veining with Po. and Py.	ANDESITIC GROUP 311.0 Fault zone. 320.6-322.0 Qtzcarb-epidote vein with Py. and Po.	290.3 Fault zone. 284.0 Fault zone. 294.2-294.8 Silcified pod w/Py. and chalcopyrite. 299.0-289.5 Silicified pod.	BIOTITIC GROUP 285.0-285.4 Fault Zone. 286.3-287.0 Qtzvein w/Py. 289.0-289.4 Fault area w/several bleached fractures at 20° to	QUARTZ FELDSPAR PORPHYRY Sliver between two faults.	BIOTITIC GROUP 273.2-273.8 Fault zone. 274.4-275.0 Demolished core. 275.0-276.1 Silicified and sulfidized pod. (C-Zone) 278.0 Fault area. 283.0 Fault area. 283.6 Fault (bleached area)	roken core bleached ge. c zone.	QUARTZ FELDSPAR PORPHYRY (C-ZONE PORPHYRY) 251.5-252.5 Sericitically altered contact zone.		DESCRIPTION	
	125681 25682 25683	25680	25890 25679 25891	25883 25678 25882		25880 25677 25881			NO.		
									% SULPH		
	325.6 327.6 329.6	320.6	293.2 294.2 294.8	285.2 286.3 287.0		274.0 275.0 276.1			FROM	SAMPLE	
	327.6 329.6 331.7	322.0	294.2 294.8 259.8	286.3 287.0 288.0		275.0 276.1 277.1			FOOTAGE	E	
	2.0 2.0 2.1	1.4	1.0 0.6	1:1 0.7 1.0		1.0	,		TOTAL		
									32		
									ðf.		
	333	₹	Tr21	.07 Tr.		Tr. Tr.		Au	OZ/TON	ASSAYS	
			* *	* *		* *			OZ/TON		

	353.8	344.9	FROM	
	390.9	353.8	FOOTAGE	
	TALC SCHIST 357.5-361.0	DYKE		
	Zone of silicification and sericitation. E.O.H.	Epidote and actinolite rich with banded and dissem. Cpy., Py., Po. and possible Aspy.	DESCRIPTION	
		25684	v o	1 =
·			% SULPH	HOLE NO.
		348.0	SAMPLE FROM	1 .
		350.2	FOOTAGE	
		2.2	TOTAL	
			22	_ SHE
			28	SHEET NO.
		Tr.	ASSAYS	5 of
			02/10#	5

NAME OF PROPERTY McFinley Red Lake Mines Limited

STARTED__ ELEVATION LATITUDE _ LOCATION HOLE NO. -NAME OF PROPERTY November 28,1986 FINISHED December 1, 1986 10,0006.1 10300 N McFinley Parking Lot McFinley Red Lake Mines Limited DEPARTURE 190 _ AZIMUTH _ 344.8 10300 E -80°

090 094	DIP AZIMUTH

REMARKS	HOLE NO.	
, B A	86-4	
fore	SHEET NO.	
	1 of 5	

Drilled by Morissette

LOGGED BY F.C. Edmunds

	- TORONTO		4		<u> </u>		2:		بـ		0	П	п	
		48.3 50 q	46.0		30.1		25.6	14.5	12.0		0.0	FROM	001	
	78.9	50.9	48.3		46.0		30.1	25.6	14.5		12.0	ТО	AGE	
77.0-77.9	54.7 56.7 BIOTITIC GROUP	BIOTITIC GROUP	RHYOLITE/SERICIT	44.6-45.1	BIOTITIC GROUP 40.4-43.6	27.0	CHERT UNIT	BIOTITIC GROUP 16.0-17.0	CHERT UNIT	10.4-11.2 11.2-12.0	CASING			
Biotite alteration confined to conjugate shear fractures. Fault zone alteration. Thin Cpy. stringers.	1" thick diorite apophysis. Flat fault zone 3".	Well developed spaced conjugate foliations.	RHYOLITE/SERICITIC ALTERATION ZONE Patches of blue grey to buff sericitic/feldspar. Arsenopyrite-quartz veinlets on lower contact (1/4" thick). C.A. 47°.	Diorite Dyke.	Arsenopyrite-quartz-pyrite-pyrrhotite vein system.	Magnetite-quartz laminated. 3° bull quartz-chloritic vein. C.A. 50° Lithologic layering.		Sericitic fault bleaching.	Magnetite-quartz laminated. C.A. is 30°.	Biotitic Group. Chert Unit-magnetite-quartz laminated.		-		
			25692	25691	5689	25687 25688		25693		25685 25686		NO. S		
												SUL PH		
			46.0	42.0	40.0	25.8 27.8		24.8		11.1 13.0		FROM	SAMP	
			48.0	44.0	42.0	27.8 30.3		25.8		13.0 14.5		FOOT AGE	LE	
			2.0	1.0	2.0	2.0		1.0		1.9		TOTAL		
								_				24		
												*	>	
			. .	٦.	1r.	Tr. 0	3	 궁		<u> </u>	Au	оz/том	SSA	
								-,				NOZ/TON	YS	
				-								-		
					··									Ĭ

NAME OF PROPERTY_____MCFinley Red Lake Mines Limited

SHEET NO. 2 Of 5

HOLE NO. 86-4

160.9 178.0 173.2 146.7 189.0 186.5 169.4 160.2 152.0 149.5 139.2 130.0 FROM FOOTAGE 173.2 149.5 144.1 195.5 178.0 169.4 152.0 189.0 186.5 160.2 139.2 70 ANDESITIC GROUP BIOTITIC GROUP BIOTITIC GROUP 146.0 BIOTITIC GROUP DIORITE DYKE ANDESITIC GROUP 154.0 BIOTITIC GROUP ANDESITIC GROUP ANDESITIC GROUP DIORITE DYKE ANDESITIC GROUP BIOTITIC GROUP 137.4-138.0 ANDESITIC GROUP 177.5 157.0 171.0 139.0-139.5 Highly sheared evidenced by thin dismembered quartz-carbonate veinlets along foliation planes.

Amygdaloidal. Amygdular. Highly sheared with uniform foliation development . Qtz-chlorite vein (4"). Thin slip planes: C.A. 20° (Reverse slip) Alteration (sericitic-epidote) effects app. 2.0' of core. Fault Zone. 4" of hyaloclastite "Flat" fault zone. Amygdular. Pillow selvages. shear foliation. Fault zone. Amygdular with pillow selvages. Thin 2" Q.C.V. Silicified zone with biotite defining conjugate Thin zone of fault zone alteration. C.A. 15° Very massive unit. Poorly developed conjugate foliation set. DESCRIPTION Ş O FROM SAMPLE 70 TOTAL OZ/TON ASSAYS æ NOT/10

NAME OF PROPERTY_____MCFinley Red Lake Mines Limited

86-4 SHEET NO. 3 Of 5

HOLE NO.

NAME OF PROPERTY McFinley Red Lake Mines Limited

HOLE NO. ________ SHEET NO. ______ 5

-	Tr. 103			1.3 2.0 2.0	289.0 291.0 293.0	288.7 289.0 291.0	1109	25809 25810 25811	BIOTITIC GROUP Highly sheared with abundant quartz-carbonate veins. Whole sequence contains disseminated pyrite and arsenopyrite.	296.0	286.8	28
									QUARTZ-FELDSPAR PORPHYRY (C-ZONE PORPHYRY) Zone highly fractured.	286.8	282.7	28
	.03 .02 Tr.			2.0 2.0 2.0 1.2	277.5 279.5 281.5 282.5	275.5 277.5 279.5 281.5	8765	25805 25806 25807 25808				
	Tr.				270.5	269.5	<u>0</u>	25804	259.5 Fault zone (1") C.A. 80° 269.0 Fault zone (0.5') 269.5-270.5 Disseminated pyrite-arsenopyrite zone. 273.5 Possible pillow selvage.			
·									BIOTITIC GROUP Highly sheared, amyodaloidal,	282.7	250.7	25
								 -	ANDESITIC GROUP Conjugate cleavage present. C.A. is 55° 243.0 Fault zone (1").	250.7	242.0	24
······································								···	BIOTITIC GROUP Highly sheared.	242.0	235.9	23
									QUARTZ-CARBONATE VEIN Colloform quartz growth; Thin chloritic-carbonate veinlets crosscut the vein structure. Void of sul- phides.	235.9	227.4	22
									210.6-211.3 Diorite Dykelet. 217.0-218.0 Diorite Dykelet. 222.2-223.7 Diorite Dyke.			
									ANDESITIC GROUP Well developed conjugate biotite foliations over entire length. Lower section is highly silicified. Amvadular	227.4	201.6 2	20
									DIORITE DYKE	201.6	198.7 2	19
	2								ANDESITIC GROUP Amygdaloidal.	198.7	195.5	19
02/10%	OZ/TON	*	25	TOTAL	70	FROM		Z		70	₽ P	FROM
	ASSAYS				FOOTAGE	SAMPLE	-z SULPH		DESCRIPTION	GE	FOOTAGE	
								1]

NAME OF PROPERTY McFinley Red Lake Mines Limited HOLE NO. 86-4 SHEET NO. 5 Of 5

286.8 296.0 298.6 328.0	FROM	FOO
296.0 298.6 328.0	70	FOOTAGE
BIOTITIC GROUP continued 291.0-291.5 Quartz-carbonate 294.9-245.6 Diorite Dyke. QUARTZ FELDSPAR PORPHXRY(C-ZONE) Contact well mine pyrite, pyrite an BIOTITIC GROUP Entire unit conta 303.0-304.0 Fault Zone Altera 305.1-307.0 Quartz Vein/Chert Tan bleached zone minor carbonate. with late faults. 316.7-317.1 Quartz Vein with 316.7-317.1 Highly silicified 340.6-341.0 Brown-cream quart 341.0-344.8 E.O.H. (measured) 337 Casing pulled. No		
vein with pyrite. ralized with disseminated arsenody pyrrhotite (10% sulphides) ins 2-5% PyAspyPo. tion-bleaching (sericitic-calcite) ?-1/16" fleck of V.G. at 306.7 :-sericitized and silicified with Distinct from alteration associated pyrite selvage. (minor talc and carbonate content) 1. C.A. 40°. 2. vein. eased. o cement.		DESCRIPTION
25812 25813 25814 25814 25816 25816 25817 25827 25827 25823 25823 25823 25823 25823 25825 25825 25825 25825	, NO	
တ ယူလူယူယူယူယူယူ ည ညည	IDES F	1
293.0 295.6 296.6 296.6 299.1 307.0 307.0 311.0 311.0 317.0 327.0	FROM	SAMPLE
294.9 296.6 298.6 298.6 302.0 307.0 311.0 318.0 328.0	10	E
2 1.00 2.00 2.00 2.00 2.00 2.00	TOTAL	
A .62	32	
Tr. 094: 02: 05: 05: 05: 05: 05: 05: 05: 05: 05: 05	0Ζ/ΤΟΝ	ASSAYS
* B	OZ/TON	S
* re-run V.G.	1	

HOLE NO. 86-5 LENGTH 387.0' LOCATION MCFINLEY PARKING LOT LATITUDE 10225 N DEPARTURE 10328 E ELEVATION 10003.25 AZIMUTH 138°-093° DIP -70° STARTED December 1, 1986 FINISHED December 2, 1986	NAME OF PROPERTY	PROPERTY McFinley Red ke Mines imited
McFinley F 10225 N 10003.25	HOLE NO.	6-5
10225 N 10003.25 December 1, 1986	LOCATION	McFinley Parking Lot
10003.25 December 1, 1986	LATITUDE	DEPARTURE
STARTED December 1, 1986 FINISHED December 2, 1986	ELEVATION	
	STARTED	STARTED December 1, 1986 FINISHED December 2, 1986

 FOOTAGE	alo	HTUMIZA	AZIMUTH FOOTAGE	DiP	HTUMEZA
 16'	67°	090			
 385'	65°	138			

HOLE	
ĕ	
86-5	
SHEET	
ě.	
1 of	

Drilled by Morissette BQ Core REMARKS

LOGGED BY M. A. Lamoureux

FOO	TAGE		·		SAMP	L W			A S	SAYS	
FROM	70		C 7 7 - C 2	NO. SULPH	FROM	FOOTAGE	TOTAL	94	% 02	OZ/TON OZ/TON	
0.0	16.0	CASING 12.5-12.8	Qtzsulphide rich area.							AU	
16.0	24.4	BIOTITIC GROUP 16.0 23.4	Bleached halo around joint. Bleached halo around joint.								
24.4	30.3	ANDESITIC GROUP 25.3-25.7 26.0-29.0	Bleached zone. Massive.						· · ·		
30.3	59.9	BIOTITIC GROUP 30.6 31.3-31.5 31.5-32.2	<pre>2" wide qtzsulphide vein w/Sphalerite, Po., Py. Garnet rich zone. Qtz. sulphide vein spaced bands of Po., Py. grade into a 1" band of Aspy. with disseminated Py. and finally into angular fragments. cf Aspy.</pre>				· · · · · · · · · · · · · · · · · · ·	 			
			to C.A. Many qtzcarbonate veins throughout this unit. a 40°-65° to C A	25826	30.6	32.8 43.1	2.2			.04	
66-1168		43.1-46.8	Sa	25827 25828 25829 25830	43.1 45.1 47.1	45.1 47.1 49.1 50.8	2.0 2.0 2.0			.06 -06 	
TORONTO 36		51.2-55.4 57.4-57.9	ith bleach- d pyrite. and Aspy.	25831 25832	52.0 57.2	53.0	1.0			.02	
LANGRIDGE 59.9	61.9	PORPHYRY	With moderate sericitic alteration and approx. 1% disseminated sulphides (also in qtz. veins).						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

HOLE NO. _ SHEET NO. 2 of 4

NAME OF PROPERTY

McFinley Red Lake Mines Limited

62.0 76.1 102.8 FROM 137.8 151.8 131.6 FOOTAGE 205.7 182.5 151.8 | BIOTITIC GROUP 149.2 137.8 131.6 123.3 76.1 62.0 102.8 10 DIORITE DYKE ANDESITIC GROUP BIOTITIC GROUP ANDESITIC GROUP ANDESITIC GROUP BIOTITIC GROUP DIORITE DYKE ANDESITIC GROUP ANDESITIC GROUP 64.4 67.0 71.5 173.6-174.0 174.6 81.7 83.0 83.4 91.0 BIOTITIC GROUP 62.7-63.6 DIORITE DYKE 187.2 193.8 194.5 153.6 172.0 74.4-75.9 Qtz.-carb vein @50° to C.A. Thin qtz.-pyrite vein.
1" wide qtz. vein. Fault. 2" wide qtz.-Py.-Po., sphal. 2" wide qtz. vein w/Py. and Po. Fault at 15° to C.A. 3" wide qtz. vein.
Area of disseminated and vein sulphides. Qtz.-carbonate vein. Qtz.-carbonate vein. Pillowed and vesicular Bull qtz. vein. Fault. Pillowed and amygdaloidal. and sphalerite. Qtz.-sulfide vein with massive Aspy. also Py., Cpy. Qtz.-vein. Qtz. vein. DESCRIPTION 26203 25833 26704 25839 Ş 60.7 62.7 63.7 74.4 FROM SAMPLE 62.7 63.7 65.7 75.9 5 TOTAL ASSAYS Tr. .20 Tr. OZ/TON .02 a OZ/TON

NAME OF PROPERTY__McFinley Red Lake Mines Limited Hole No. 86-5 SHEET NO. 3 Of 4

]	OLE M				SHEET NO:
	FOOT	AGE	DESCRIPTION			SAMPLE	_E		ASSAYS
2	FROM	70		v O	ี รู รูปLPH _เ	FROM	FOOTAGE	TOTAL	% % 0Z/TOM 0Z/TOM
<u></u>	182.5	205.7	ANDESITIC GROUP continued						Au
			.2 I						
21	205.7	213.8	y qt:						
<u> </u>			206.3-206.9 Biotitically altered. 211.4 Wavy qtzcarb sulfide vein @ 10° to C .A. Vesicular.						
~~~	213.8	230.6	ANDESITIC GROUP  219.6 Irregular wispy qtzcarb chlorite vein  221.3 Stockwork cf qtzcarb vein with haloes. (like 205.7						
	<u>-</u>		222.6 Qtzcarb vein. 227.0 Fault.						
2	230.6	251.9	BIOTITIC GROUP  235.0-237.1 Massive qtzcarb vein.  237.1-242.6 Intense qtzcarb veining.  242.6-243.4 Massive qtzcarb vein.  243.4-251.9 Intense qtzcarb veining.	25846		241.7	242.7	1.0	.01
2	251.9	261.8	QUARTZ FELDSPAR PORPHYRY (C-ZONE PORPHYRY) Sericitically altered.						
	261.8	365.5	BIOTITIC GROUP 261.8-262.5 Qtz. vein.						
<u> </u>			1010	25847 25848		263.0 265.3	265.3 267.3	2.3 2.0	Ţr.
<del></del>			265.2-270.0 Sulfides in qtz. veins in the biotitic and dissemin-	5853		269.3	259.3		Tr.
			pod tz.	25854		285.8	287.6	-1 -8	Tr.
				25750		325.6	328.0	2.4	.01

### AMOND DRIFT RECORD

HOLE NO. 86-5 SHEET NO._

NAME OF PROPERTY___

McFinley Red Lake Mines Limited

261.8 FROM 366.0 FOOTAGE 377.8 365.5 366.0| QUARTZ PORPHYRY 387.0 7 TALC SCHIST ANDESITIC GROUP 366.0-370.0 327.1-328.0 331.0-331.4 333.0-344.0 336.1-338.8 370.0-373.0 373.0-377.8 346.4 346.4-356.0 BIOTITIC GROUP 387.0 359.9-360.2 339.0-341.0 continued E.O.H. *Hole cemented. Qtz.-carb vein w/Py. and Po. 2" of broken and rubbley bleached core. Biotitic with bands of chloritic alteration and fuch-Much Aspy. also. Fault and shear at contact. Silicified area. Sheared zone with elongated biotitic inclusions talcose in places, some disseminated sulfides. Py. and Po. with qtz. veins and disseminated Qtz.-carb- vein with Py. and Po. Qtz.-carb-chlorite vein w/Py., and Po Fuchsite rich zone with Po. and Py. rich areas Shistose with elongated qtz. eyes. Sericitic alteration. (delineated by sampling.) DESCRIPTION 2576 25760 25759 2575 2575 2575 2575 2575 2575 2575 Ž O IDES 358.0 331.0 333.0 335.1 336.1 338.1 341.1 374.6 368.0 FROM SAMPLE 333.0 335.1 336.1 341.1 341.1 368.9 359.3 7 1.0 2.0 2.0 2.0 2.0 2.0 TOTAL ASSAYS OZ/TON 77722727 굿. .01 .01 OZ/TON

LATITUDE 9305 N LATITUDE 9305 N DEPARTURE 540 W (approx)

ELEVATION 9,999 ft (approx) AZIMUTH mine grid DIP -90°

STARTED DECEMber 2/86 FINISHED DEC 11/86 NAME OF PROPERTY McFinley Red Lake Mines Limited Holf No. 86-6 LENGTH 1608 ft LENGTH

		Fo	Footage 908' 1153'	Dip -87°	
FOOTAGE	PID	HTUMIZA	AZIMUTH FOOTAGE	ala	HTUMIZA
18'	-90°		1205	-84°	
288'	-8, <b>9°</b>		1390	-77°	
6281	-8459	ACID	14481	-77°	
642'	-84°	102	1585 '	-75°	
			1605	-76°	

1205' -84°			ğ
770 I TILLED DY MONTSSELLE		58	

)	Drilled by Morissette
-	BQ Core
-	te

<b>h</b> 5	0 <b> h</b> 4	<b>II</b> 3	112
1585'	1448'	1390'	1205'
-75°	-77°	-77°	-84°
LOGGED BY			
o ay Peter	6	RO fore	
ד D		30	5

LOGGED BY
₹
Peter
D
•
Fernberg

31 AM 1 E D			1000	-/0				
OOTAGE			SAMP	- E			>	SSAY
FROM TO		NO. SULPH	SH FROM	FOOT AGE	TOTAL	24	<b>%</b>	OZ/TON OZ/TON
	Two attempts were made to achieve a dip of 90°.						!	Au
	Collared on line 7 + 00 S							
<del></del>	Casing 12 ft., overburden 11.6 ft.	<del>,</del>					,	
<del>,</del> ,	Dip at 88.5°.		<u>-</u> -				_	
0.0   12.0	CASING	<u></u>			==-			
10.4   11.6	BOULDERS							
11.6   18.0	BIOTITIC GROUP							
<del></del>	Intensely carbonatized, sheared, Q.C. veins and veinlet are common, 1-2% dissem. Po. associated with Q.C.V., foliation 40° to C.A. Occassional pillow selvage.		<del></del>					
-	13.0-13.3 Broken and blocky core. 13.9-14.5 Q.C. vein 0.2 ft. wide with 1/4" wide semi-massive galena band. Vein 45° to C.A. From 11.9-12.2 multiple and convoluted Q.C. with wallrock xenoliths, with 10-15% massive galena.	· · · · · · · · · · · · · · · · · · ·						
	2% Po. galena, fine bands of ent to vein. 5% sulphide:	25745	13.8	15.4	1.6			.03
	Attempt B Collared 7 + 03 s (approx.) Casing 12 ft., overburden 10 ft. Cored 7 ft. from 11 to 18 ft.							······································
0.0 12.0	CASING							
10.0   11.0	BOULDERS				=			

NAME OF PROPERTY McFinley Red Lake Mines Limited & HOLE NO. 86-6 SHEET NO. 2 of 17

19.0 FROM FOOTAGE | 130.0 | DIORITE DYKE 88.5 19.0 12.5 18.0 114.5 | ANDESITIC GROUP 27.5-45.0 45.8 BIOTITIC GROUP ANDESITIC GROUP BIUTITIC GROUP OVERBURDEN Attempt C Dip 90°. 16.0-16.4 15.4-16.0 14.9-15.4 86.2-88.5 16.1-16.9 sparse Q.C. veinlets, 1% disseminated Po., Po. stringers, foliation 25° to C.A. Convoluted Q.C. veinlets minor wallrock xenoliths within Q.C., 5% galena. Rare Q.V. and Q.C. veinlets. Sparse Q.C. veining, pillow selvages common (marked by greater degree of chlorite, 1-2% disseminated Po., Minor to adjacent to vein zone. Frequent Q.C.V. (40° to C.A.)
Two Q.C.V. (0.7' and 0.2' wide, 30-40° to C.A.) 2% Po.-Sph. stringers. Q.C.V., 10% galena stringers and clots, 20% to C.A. Intensely carbonatized, occassional pillow selvage, frequent Q.C.V. (40° to C.A.) foliation 35° to C.A. Flow. Occassional amygdules, moderate carbonatization sulphides (Py.-Sph.-Po.) Q.C. vein: 1/4" associated with pillow selvage, 4% Moderately silicified?, foliation 30° to C.A. with coarse actinolite) Variably carbonatized. Q.C. and coarse hornblende/tourmaline, commonly 5% galena stringers at vein margins and in fractures, Contact 20° to C.A. 1% disseminated Py. hornblende/tourmaline , several 1% sulphides-commonly Coarser grained. Pillow interstices contain abundant Pillowed. fractures infilled with coarse biotite, minor Cpy. Intensely carbonatized. Occassional amygdules. DESCRIPTION 25746 Ņ 86.0 16.0 14.7 SAMPLE 87.0 17.0 16.2 FOOTAGE 1.0 1.5 **ASSAYS** 굿. OZ/TOM ₹ . 94 OZ/TON 굿. ₹.

### DIAMOND DRIFT RECORD

235.0 164.0 FROM 130.0 FOOTAGE 242.0 235.0 202.5 178.6 164.0 70 BIOTITIC GROUP 222.8-223.7 229.5-233.0 ANDESITIC GROUP 163.1-163.2 164.8-165.0 150.4-150.9 153.7-155.7 193.2-193.4 193.8-196.0 BIOTITIC GROUP ANDESITIC GROUP ANDESITIC GROUP BIOTITIC GROUP 237.7-238.0 212.0-213.2 220.2-220.5 180.5-181.0 Q.C.V., accessory fuchsite (?) Carbonatized. occ. pillow selvages. Biotitic alteration along foliation (35° to C.A.) and halo's sulphide stringers and larger Q.C.V.
Pillow selvage with 2% Py. stringers.
Well sheared pillow breccia (?), 3% Po.-Py. plus Coarser-grained sparse Q.C. veinlets. Less than 1% disseminated sulphides. Foliation 30° to C.A. Poorly developed areas of biotitic alteration. Couple of pillow selvages. 1-2% associated Po Q.C.V., possible associated pillow selvage. Biotitic alteration, foliation 35° 2-4% Po. stringer patchy bleaching, well sheared, multiple Q.C. veinlets and quartz (blue-grey) veinlet 25749 Quartz vein accessory carbonate silica bands. Q.C.V.-85° to C.A., minor convoluted light barren Frequent Q.C.V.-larger Q.C.V. sulphide barren, small veinlets many contain 1% Po. Trend 40-50° to C.A. Rare Q.C. veinlets. intensely carbonatized. minor Cpy. Quartz vein, 30° to C.A. Two Po. stringers, disseminated Po. Overall 1% sul-Quartz vein accessory carbonate number of Q.C.V., occasional anygdules. Carbonatized, bleached areas, well sheared, moderate Carbonatized. Sparse Q.C.V. Biotitic alteration along foliation (30° to C.A.) Intensely carbonatized, sheared, convoluted Q.C.V DESCRIPTION ĕ FROM SAMPLE 5 TOTAL ASSAYS OZ/TON 굿. OZ/TON

NAME OF PROPERTY 86-6 McFinley Red Lake Mines Limited

SHEET NO._ 3 of 17

HOLE NO.

NAME OF PROPERTY____MCFinley Red Lake Mines Limited

SHEET NO.

4 0†

HOLE NO.

262.4 257.0 248.0 242.0 FROM FOOTAGE 323.3 257.0 272.0 248.0 262.4 265.2 7 ANDESITIC GROUP DIORITE DYKE ANDESITIC GROUP DIORITE DYKE DIORITE DYKE ANDESITIC GROUP 293.0 279.0 248.5-249.0 Two Q.C.V., 1-2% Po 265.2-266.4 NOTE: 314.2-317.2 314.9-329.2 272.8-275.0 270.6-272.0 264.8-265.2 309.7-312.2 305.2-318.5 303.9-305.2 Aphanetic , pillow selvages.
Fault zone?, bleached, blocky and broken core,gouge. Fine-grained rare Q.C.V. occ. pillow selvages (bleached 35° to C.A.), accessory actinolite variably intense carbonatization, cemented gouge, actinolite pseudomorphed by clays. Small fault plane at 30° Fault zone , bleaching, blocky and broken core Fault zone? blocky and broken core, bleached Fault zone; recemented gouge, intensely carbonatized 1% accessory sulphides, 25°? to C.A. Aphanitic-very fine grined, tourmaline commonly in-Quartz vein, accessory carbonate, glassy translucent-25768 white quartz, 2% tourmaline, less 1% Py.-Po., 15° to 2% Po.-Py. stringers
Narrow fault , 15° to C.A., infilled with Py.
Narrow fault , 5° to C.A. carbonatized. to C.A. Q.C.-Tourmaline Zone (see below for details) Well sheared, pillow selvage, 2-3% Po.-Py. Contact 20° to C.A. Carbonatized. 1% disseminated Py. 314.1-314.9 : Low angle to C.A. Q.C.V. 1-2% clotty ures within tourmaline) numerous wallrock xenoliths 3% tourmaline, 1-2% Py. (Py. remobilized into fract-Contact 40° to C.A. , 1% disseminated Py., carbonat -15° to C.A. fills fractures with accessory Py.-Po. Non- carbona-DESCRIPTION 25770 25769 Ņ 303.7 316.1 314.1 FROM SAMPLE 317.1 305.3 1.0 TOTAL ASSAYS OZ/TOM ₹. ۲. Au **₹**. OZ/TON

NAME OF PROPERTY____MCFinley Red Lake Mines Limited

HOLE NO. 86-6

SHEET NO. 5 of 17

			7	אַטרה אַט.				NHEET NO.	-
FOO	FOOTAGE				SAMPLE	Е		ASSAYS	
FROM	70		o O	SULPH	FROM	FOOTAGE TO	TOTAL	% % 0Z/TON 0Z/TON	]
272.0	323:3	ANDESITIC GROUP continued						Au	
2/2.0	323.3	319.4 Fault; narrow, 40° to C.A.  322.1-322.7 Multiple quartz and Q.C. vein, convoluted, 20% massive							
		tourmaline, 2% Py. carbonatized.  324.5-329.2 Q.C. Tourmaline several Q.C.V. (30-40°to C.A., 1/2-1" wide) with accessory tourmaline (5-40%) and accompanying minor sulphides.  323.0-323.3 - Fault Zone?							· · · · · · · · · · · · · · · · · · ·
323.3	325.4	DIORITE DYKE							
325.4	445.0	ANDESITIC FROUP						-	
		Commonly pillowed (Q.C., minor PoPy., accessory tourmaline) Minor (less 1 foot wide) areas of carbonatization. Very-fine to fin-grained, sparse Q.C.							
		350.3- Fault, 50°? to C.A.  379.7-390.8 Massive coarser-grained actinolite.  383.2-383.4 : Semi-massive band, dominantly Po.,	·						
		390.8-445.0 Pillowed marked by very chloritic/biotitic selvages with amygdules, sulphides and tourmaline.	_	_	_	<del>.</del>			
		403.8-404.2 Q.CSulphide vein; 40° to C.A., 15% Sph., 10% galend	25771		403.5	404.5	1.0	Tr.	
<del></del>		sively flattened (fabric 30°							
	-	414.0-414.3 Q.C.V., stylolitic grey quartz lamella. 424.0-445.0 Biotitic alteration along foliation. Carbonatized.							
445.0	460.0								
		446.4-446.9 Q.CSulphide Vein; 30° to C.A., 30% semi-massive 25	25779		446.3	447.3	1.0	.01	
	-								
460.0	471.4	+	}	·			<b>,</b>	2	
		seminat- forma- semi-	25/80		459.8	401.6	۰.۵	.01	

#### DIAMOND DRIFT RECORD

NAME OF PROPERTY__ McFinley Red Lake Mines Limited 6 of 17

SHEET NO._

HOLE NO.

476.8 478.6 472.7 509.0 493.2 471.4 | 472.7 FROM FOOTAGE 493.2 476.8 513.2 509.0 485.4 482.2 471.4 ಕ BIOTITIC GROUP BIOTITIC GROUP 472.0 ARGILLITE GROUP BIOTITIC GROUP DIORITE DYKE ARGILLITE GROUP DIORITE DYKE ARGILLITE GROUP 478.8 511.6-512.4 461.7-463.0 460.0-468.5 ARGILLITE GROUP continued 508.4-509.0 471.1-471.8 488.4-490.3 486.5-488.4 Carbonatized. Sulphide rich; 30%. Blue-grey quartz veins, 1/4" wide. Carbonatized, banding 40° to C.A. Sulphide rich zone; soft sediment deformation app. ed wallrock fragments.
Sulphides; app. 15% (mainly Py.), carbonatized. Sulphide zone; finely banded, and 5% Py.-Po, Q.C.V. Sulphide rich zone, 15% Po., 3% Sph-Py. Quartz veining, 2% Py. sericitic alteration sections. Sheared. Carbonatized. Frequemt Q.C.V. (50° to C.A.) Foliation 30° to C.A. Occassional andesitic group 50% Po., Py. banded and semi-massive continuing round-Quartz Vein ; 1/2" wide, blue grey 2% galena, 45° to Sheared. fuchsite (or green carbonate). Fragmental appearance grey argillite bands, intensely carbonatized, minor Chert? interband, 1/4" wide (fabric 75° to C.A.) 5% Po., Carbonatized. Contact at 35° to C.A., chilled , carbonatized. Contact 30° to C.A., minor disseminated Py., carbonaredominantly grey Arenities with occassional black-DESCRIPTION 25788 25795 25796 25797 25782 25783 25784 25789 25789 ĕ IDES 485.3 486.8 488.4 490.4 509.0 511.0 465. 463. 461.6 FROM SAMPLE 511.0 512.8 465.1 467.1 469.1 471.3 486. 488. 490. 492. 463. ಠ 2.0 2.0 2.0 2.0 1.6 2.0 2.0 TOTAL ASSAYS OZ/TON .03 Tr. .04 T 22 .05 Tr. Tr. OZ/TON

F00	OOTAGE				SAMPLE	,E				ASSAYS		
FROM	70	CECCATTICA	NO.	% SULPH	FROM	FOOTAGE	TOTAL	31	,4	OZ/TON	02/TON	
513.2	537.0	ROUP								Au		
			26230 25900 26231		532.7 534.7 536.8	534.7 536.8 538.8	2.0			Tr. .07	* *	
537.0	810.7	ANDESITIC GROUP -ACTINOLITE UNIT  Coarser grained than previous Andesitic Group rock,  massive, sparse Q.C.V occ. minor tourmaline.										
		632.7-633.5 Q.C.V., 1/2" wide, 20° to C.A., 5% Po. minor Cpy., and Sph.	25901	,	632.5	633.5	1.0			Tr.		
		636.2-637.0 Coarsely crystalline calcite vein, 55° to C.A. 655.5-669.0 Variably carbonatized 697.0-753.2 Patchy carbonatization. 702.1 Q.C. Tourmaline Vein; 1" wide, 70° to C.A., 60%										
		-715.5										
		718.4 Fault zone; 15 to C.A. 718.4-727.0 Finer-grained. 727.0-760.5 Euhedral-subhedral feldspars common.										
		752.6-753.2 Mafic dyke? v.f.g., 35° to C.A. 753.2-795.5 Well sheared, biotitic alteration along foliation (25° to C.A.) intensely carbonatized.										
	-	dyke?, Very fine grained, 1% Po., dark sulfide Vein, 1" wide, 25° to C.A. Semi	25902		766.4	767.4	1.0			Tr.		
		773.2 Visible Gold* Coarse V.G. app. 20 flecks, occurs as	25903	< >	770.7	772.7	2.0		>	.05	14 26	<del></del>
		two "bands" bounded by "diffuse" Q.C. veinlets. /200 +~ C ^		۷.6.	112.1	//3./	1.0		^	11.20	14.20	

F00	FOOTAGE	distant to the contract of the				SAMPLE	E .				ASSAYS		
FROM	10			NO.	% SULPH _I	FROM	FOOTAGE	TOTAL	%	74	OZ/TOM	NO1/20	
527.0	810.7	ANDESITIC GRO		26232 25905		768.7 773.7	770.7 775.7	2.0			.01 Tr.	*	
		795.0-810.7	Finer-grained actinolite. Patchy carbonatization and biotitic alteration along foliation (40° to C.A.)	23903		//3./	````	Ç					
		805.8											
810.7	814.0	BIOTITIC GROUP	UP Carbonatized, frequent Q.C. veinlets.										
814.0	818.0	CHERT GROUP 814.0-815.4	banded sediments, biotitic alteration, carbon-	25906		813.9	815.9	2.0			Tr.		
		815.4-816.9	te to grey, laminated, interbands of dark gre	) F007		015 0	010	ა ა					
<u>-</u>	· <del>-</del>	816.9-818.0	Same as 814.0-815.4.	23307		010.9	0.	7.7			=		
818.0	819.5	BIOTITIC GROUP	UP Carbonatized.	,	,								
819.5	825.6	ANDESITIC GROUP I	OUP Infrequent Q.C.V.										
825.6	829.7	CHERT GROUP 825.6-826.4 826.4-826.8 826.8-827.6	-Quartz vein-Q.C. ic band; fine-sized tabular fragments. z Vein?/chert?, PoPy. stringers infill fract-	25908 25909		825.6 827.6	827.6 829.7	2.0			īr.		
	W -	827.6-829.7	Chert; interband white-grey-dark green silica and Polemet; bands, 25° to C.A. fault, boudinaging of chert.  10% sulphides.										
829.7	833.0	BIOTITIC GROUP	UP Carbonatized. Gradational lower boundary. Well sheared . (fabric 45° to C.A.)										
833.0	960.4	ANDESITIC GR											
		833.5-838.5	assoc. with Q.C.V. liation 40° to C.A.) fine-grain										
·		838.5-855.5	Medium grained , carbonatized. Chlorite and Actinolite										
-		855.5-912.3	Fine-grained, variable carbonatization.					·					

McFinley Red Lake Mines Limited

__ SHEET NO. __ 8 Of 17

HOLE NO. 86-6 __ SHEET NO._____9 of 17

NAME OF PROPERTY....

McFinley Red Lake Mines Limited

<u></u>					φ	ω	<u></u>	
1030.0	1028.1	997.0	991.0	975.0	960.4	833.0	FROM	FOOTAGE
1032.3	1030.0	1028.1	997.0	991.0	975.0	960.4	70	AGE
BIOTITIC GROUP Carbonatized. 1030.4-1031.0 3% Po. minor Cpy.	CHERT GROUP Grey chert band, 2% Po. minor Cpy.	ANDESITIC GROUP Pillowed (well sheared) carbonatized. app. 1% Po. Biotitic alteration along foliation (35° to C.A.) 998.2-998.8 Q.Cmagnetite lense.	BIOTITIC GROUP Carbonatized 985.0-997.0 Q.C. vein/Q.C. magnetite lense.	ANDESTITE GROUP  Carbonatized, occassional amygdules, chlorite "alter- ation" spots, 1% Po. disseminated, frequent Q.C.V.  983.7-984.3 Q.C.V.; 45° to C.A. minor PO.  985.3-988.2 Q.Cchlorite-magnetite lense; 30% magnetite, 2-4% Po.  990.7-991.0 Q.Cchlorite-magnetite lense.	Multiple Q.C.V., 1% Py.  Medium-grained- coarser actinolite, chlorite rich rare Q.C.V.  Fine-grained, frequent multiple Q.C.V. zones.  Interbanded cherts and chloritic silt. Banded Po. (20.25%) and app. 5% Aspy. Semi-massive Po. stringers, minor Cpy.? Py.  Banding 20° to C.A. Garnet-chloritic "alteration" spots.  Visible Gold - coarse clot, associated with crosscutting Quartz-Carbonate Veinlet. (55° to C.A.)  Magnetite rich.	liation 50° to C.A.) in; 15-20% POPyCpySphGal .A.		
25923	25922	25921		.25919 25920	26233 25911 25912 25914 25916 25916 25916	25910	Ž O	
					v.e		% SULPH	
1030.1	1028.0	996.3		985.1 986.6	958.2 960.2 962.2 964.2 966.2 968.2 970.2 973.2	905.6	FROM	SAMPLE
1031.1	1030.1	998.3		986.6 998.2	960.2 962.2 964.2 966.2 968.2 970.2 972.2 973.2	906.6	FOOTAGE TO	,m
1.0	2.1	2.0			2.0 2.0 2.0 2.0 2.0 2.0	1.0	TOTAL	
							78	
					⊅		25	
.02	ī.	ī.		77	Tr. 05	.02	0Z/TON	ASSAYS
					9.80		OZ/TON	
					<b>c</b> o			

-

1069.8 1076.7 1103.5 1110.6 1062.5 1061.3 1062.5 1040.8 1076.7| 1086.0| 1032.3 1090.9| 1103.5 1064.1|1069.8| DIORITE DYKE FROM 1086.0| 1090.9 FOOTAGE 1061.3 1064.1 1040.8 70 ANDESITIC GROUP BIOTITIC GROUP BIOTITE GROUP CHERT GROUP DIORITE DYKE BIOTITE GROUP ANDESITIC GROUP DIORITE DYKE QUARTZ VEIN 1040.8 1086.0-1088.0 1088.0-1090.4 1051-1052.2 1078.4-1078.8 1076.0-1076.7 1069.8-1071.1 1074.8 1094.0-1090.9 1071.1-1076.0 1058.6-1059.0 Well sheared, 1% disseminated Po. Q.C.V. 1% Po. Chert-laminated siliceous (45° to C.A.) Po. bands. Chert, poorly banded up to 50% magnetite, 5% Po. str-25927 ingers and blebs, crosscut by two quartz veins-1/4" 25928 Andesitic. Carbonatized. po. stringers common. Well sheared (fabric 30° to C.A.) contact carbonatized. Minor fault. Bleached halo. White quartz and chlorite, minor sulphides, content Blocky and broken core, set. 50% core loss. Q.C.-Magnetite , 3% Po. Amygdaloidal (fine-sized), carbonatized. Well sheared Chert? interband; 20° to C.A. partially laminated Contact 30° to C.A. Po. stringer. Po. stringers. quartz, Po. 80° to C.A. Contents 60° to C.A. Country rock contact marked by Upper chill margin (30° to C.A.), gradational lower Carbonatized. Patches of biotitic alteration. Occassional Q.C.V. Carbonatized. 1" wide. DESCRIPTION 25925 25929 25930 25924 Ş IDE'S 1070.1 1072.1 1072.1 1074.1 1088.0 1090.0 1050.9 1052.1 FROM SAMPLE 2.0 2.0 1.9 TOTAL ď .02 7777 ፰. NOT/TON **ASSAYS** P OZ/TON

NAME OF PROPERTY McFinley Red Lake Mines Limited

SHEET NO. 10 OF

HOLE NO.

86-6

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. 86-6 SHEET NO. 11 of 17

1159.5	1151.0	1132.3	1126.7	1112.6	1110.6	FROM	FOO
1159.5 1169.4	1159.5	1132.3 1140.0 1140.0 1151.0	1126.7 1128.7 1128.7 1132.3	1126.7	1112.6	10	FOOTAGE
CHERT GROUP  Well banded and laminated (30° to C.A.) magnetite rich, Po. laminella and massive Po. stringers.  Occasional cross-cutting quartz vein.  1168.5-1168.7 Quartz vein.  1169.0-1169.4 Banded sediment.  ANDESITIC GROUP  Carbonatized, infrequent Q.C.V.  Biotitic alteration along shear fractures.  1188.5 Possible pillow selvages.		BIOTITIC GROUP  Carbonatized, frequence 1132.3-1140.0 Amygdaloidal. 1136.7-1136.8 Q.V., 65° to C.A. ANDESITIC GROUP	BIOTITIC GROUP Carbonatized.  CHERT GROUP 1128.7-1132.0 (35° to C.A.) Po. along bands in cross-fractures mgt. 5-10%, minor Cpy. 1132.0-1132.3 Banded sediments.	Banded UP Minor ! group. Sparse	CHERT GROUP 1110.6-1112.0 Chert, well laminated, 5% Po.	CESCRITION	
26234 25934 25935 25936 25937 25937 26236			25932 25933		25931	NO.	
				· · · · · · · · · · · · · · · · · · ·		% SULPH	
1157.3 1159.3 1161.3 1163.3 1165.3 1167.3 1169.3			1128.6 1130.6		1110.5	FROM	SAMPLE
3 1159.3 3 1163.3 3 1165.3 3 1165.3 1167.3 1171.3		<del></del>	5 1130.0		1111.5	FOOTAGE TO	FE
222222	·		1.8		5 1.0	TOTAL	
		<del></del>			:	**	
						32	
.24 .06 Tr. .03 .13	·	·	.02		Au Tr.	07/10#	ASSAYS
* *						0Z/TON	

29.

1196.4 | 1204.0 | ANDESITIC GROUP 1192.9 1196.4 1213.8 1226.8 1232.0 CHERT UNIT 1210.5| 1213.8 1206.4 1207.1 FROM 1207.1 1210.5 1204.0 1206.4 1232.0 FOOTAGE 1226.8 1238.3 1234.7 1239.6 70 BIOTITIC GROUP CHERT UNIT QUARTZ PORPHYRY DYKE ANDESITIC GROUP BIOTITIC GROUP BIOTITIC GROUP CHERT UNIT QUARTZ FELDSPAR PORPHYRY DYKE BIOTITIC GROUP 1213.0-1213.4 1234.5-1234.7 1232.0-1234.5 Magnetite-silica bands (30° to C.A.) Chloritic volcanic raft?, garnet spots. 5% disseminated Po. Sulphide Vein-80% Po. and accessory Py. and galena Q.C. matrix, 50° to C.A. Patchy biotitic alteration. Well sheared Q.C. veining Magnetite (30%)-silica bands (40° to C.A.) Convoluted25941 and sheared. Up to 25% Po.-Py. laminella and semi- 25942 massive bands and in cross-fractures. Patchy carbonatization, sparse Q.C.V.. Minor dissem. Py. well sheared areas (fabric 30° to C.A.) Magnetite-silica bands (30° to C.A.)3% Po. lamella. 25946 and in cross fractures. Minor Q.C. veinlets at margins. Occasional Q.C.V. Contact 30° to C.A. Chill margin. Rounded quartz phenocrysts (2-3mm). Subhedral feldspar phenocrysts. Patchy carbonatization, occassional Q.C.V. Carbonatized. tion. Couple cross-cutting quartz veins (less than Foliation 45° to C.A. Orangey-tan sericitic altera-Fine-grained. Sericitic alteration. Contact 40° to C.A. Foliated mafics (25° to C.A.) massive bands and in cross-fractures. 1-2% disseminated Py.-Po. and occassional stringers. DESCRIPTION 2594 25944 25939 25940 Ş 1226.9 1228. 1228.1 1230. 1238.2|1239.7 1234.2 1235 1210.2 | 1211.5 1211.5 | 1213.0 1232.1 FROM 1234. 1.5 1.2 2.0 2.0 1.0 2.1 TOTAL 02/TON ASSAYS ₹ .02 · U3 .03 Au 77 OZ/TON

NAME OF PROPERTY______MCFinley Red Lake Mines Limited

-6. SHEET NO. 12 Of

HOLE NO.

1314.3 1321.5 1313.1 1314.3 1269.7 1313.1 1242.0 FROM 1245.6 1239.6 1249. FOOTAGE 1245. 1249. 1242.0 1269.7 7 ANDESITIC GROUP At 1268.3-1268.5-Q.C.V.-Sph.-Po.-Py., vein 30° to C.A FELDSPAR PORPHYRY BIOTITIC GROUP ANDESITIC GROUP ANDESITIC GROUP CHERT UNIT DIORITE DYKE 1239.8 1319.1 1242.0-1242.4 1287.7-1279.5 1286.5-1302.3 1245.6-1247.0 1242.4-1244.6 1244.6-1245.6 1256.0-1266.4 1254.3-1255.6 1267.8-1269.0 Andesitic/Porphyry chill margin? Q.C.V. zone, o.a. less than 3% sulphides. Magnetite-silica bands, (35° to C.A.) Po. bands 20% Po.-Py. Carbonatized. Sparse Q.C.V.-Biotitic alteration along foliation (45° to C.A.) Sheared. Q.N. abd Q.C.V., 2% Py. Andesitic to biotitic area, bleaching variably Q.C.V. zone, minor to 2% Py. 1-2% Po.Magnetite clot at 1245.8. Semi-massive Py.-Po. stringers plus minor Sph.: 1" Diorite Dyke. carbonatized, convoluted Q.C.V. Carbonatized. Bleached areas. Well sheared. Biotitic alteration along foliation. eral veinlets. Minor sericitic alteration. Fine-grained chill margins. Contact 30° to C.A. Same as 1269.7-1313.1. Possible pillow selvages Contact 50° to C.A.. Carbonatized. Carbonatized. Well sheared (fabric 50° to C.A.) Two semi-massive Py.-Sph. veins, 1/4" wide and sev-DESCRIPTION 25949 25948 26237 25947 , O DES 1243.0 1245.2 1240.0 1242.0 1242.0 1243.0 1267.6 1269. FROM SAMPLE ΤO 1.5 TOTAL ASSAYS .01 .19 OZ/TON . S ..<del>.</del> Au OZ/TON

McFinley Red Lake Mines Limited

NAME OF PROPERTY

HOLE NO.

86-6

SHEET NO. 13 of 17

HOLE NO. 86-6 SHEET NO. 14 Of 17

NAME OF PROPERTY___

McFinley Red Lake Mines Limited

						1413.5 1414.3 DIORITE? DYKE Fine-grained carbonatized.	114.3 DI	3.5	141;
		•.				1408.5 1413.5 BIOTITIC GROUP  Well laminated (shearing) fabric 45° to C.A. Carbonatized. Numerous Q.C.V. Minor sulphides.	113.5 BIO	8.5 14	1408
	·			T-1-1-1-1-1-1		1402.0-1407.2 Bleached, carbonatized. 1407.2-1408.5 Fault; 10°? to C.A. rehealed breccia and gouge plus multiple fracturing sericitic halo.	140		
					<del></del>	1396.4-1397.2 Convoluted Q.C.V. 1397.2-1402.0 Fault Zone; multiple random fracturing, silidified	133		
	<del></del>					ANDESITIC GROUP  Biotitic alteration along foliation (40° to C.A.) Frequent to occasional Q.C.V.  1394.8-1395.2 Fault; rehealed gouge and breccia, blocky and broken	1408.5 AI		1394.8
-						BIOTITIC GROUP  Very similar to 1353.6-1388.2 ft: convoluted Q.C.V.zone.	1394.8 B		1390.5
						DIORITE DYKE Fine-grained. Contact 45° to C.A.		1388.8 1390.5	1388
<b>.</b>	n	2.0	1388.6	1386.6	76	titic alteration halo-possible stretched pillow selvages Prevalent biotitic alteration 1372.0-1387.0 ft. Patchy carbonatization.	<del></del>		
<u>ت</u>		2.0	1378.6	1376.6	75	9			
<b>.</b> 7.7		2.0	1370.1 1376.6	1368.1 1374.6	73	1332.0-1344.5 Non-carbonatized. 1344.5-1348.0 Biotitic alteration prevalent. 1353.6-1388.8 Numerous Q.C. veining- boudinaged to ptygmatic, hook- 25973	1323		
						# 22 22	1388.8 At		1322.0
					_	DIORITE DYKE  Contact 45° to C.A.	1322.0 DI		1321.5
Au							-		
OZ/TON OZ/TON	<i>2</i> 2	TOTAL	FOOTAGE TO	FROM	). % SULPH	NO	70	2	FROM
ASSAYS			Е	SAMPL		DESCRIPTION	m	FOOTAGE	- I

NAME OF PROPERTY_____MCFinley Red Lake Mines Limited

HOLE NO. 86-6 SHEET NO. 15 of 17

TOOL   TO   TO   DESCRIPTION											
TO DESCRIPTION DESCRIPTION TO SAMPLE ASSAYS  1413.5 GO.C.V. with Tuchsite. 1414.5 GO.C.V. with Tuchsite. 1415.6 HAID.5 Fault toone; rehealed breccia and gouge with Q.C.V. 1415.6 HAID.5 Fault toone; rehealed breccia and gouge with Q.C.V. 1420.6-1421.6 Fault toone. 1422.0-1421.6 Fault toone. 1423.0-1423.6 Fault toone. 1424.7 DIGRITE DWE Carbonatized. 1% Py. disseminated. 1424.7 DIGRITE DWE Carbonatized. 1% Py. disseminated. 1425.0-1423.6 Fault toone. 1425.0-1423.6 Fault toone. 1425.0-1423.6 Fault toone. 1426.0-1423.7 DIGRITE DWE District lack of deformation. Minor biotitic alteration bands along foliation (55° to C.A.) 1426.0-1423.6 Fault toone; Q.C.V. will handred (20° to C.A.) 1427.0-1423.6 Fault toone. 1428.7 HAID.6 Fault toone. 1428.7 HAID.6 Fault toone. 1428.8 HAID.7 HAID.	1487.5			1443.7	1436.0		1423.6			FROM	F00
SAMPLE   ASSAYLE				1466.8		1436.0	1428.2		1423.6	10	<b>FAGE</b>
SAMPLE ASSAYS  TOTAGE 10ES 1416.0 1418.6 2.0 1418.6 1420.4 1.8 1418.6 1420.4 1.8 1418.6 1420.4 1.8 1418.6 1420.4 1.8 1418.6 1420.4 1.8 1503.5 1505.0 1.5 1505.0 1506.2 1.2  Tr.	Massive, homogenous, foliation (48° to C.A.)  Carbonatized. Rare Q.C.V.  Q.CTourmaline and Chlorite Vein Zone Distinctive purple hue to quartz, tourmaline rosettes and acicular plus amorphous infilling of fractures. (3-5% tourmaline) Widths vary 0.3-2.5 ft., 55° to C.A.	Hollation 50° to C.A.  1469.0-1475.4 Frequent Q.C.V. and blue-green alteration bands.  1472.5-1473.6 Q.Cchlorite vein, 70° to C.A.  1476.0-1479.0 Andesitic group.  1480.9-1481.3 Q.C.V.; 50° to C.A., 5-10% sulphides (PoCpy)  1483.3 Minor fault; 60° to C.A.  1484.8 Minor fault; 65° to C.A.	alteration bands along foliation (55° to C.A.) 1443.7-1445.0 Fault zone; Q.C.V. well sheared (20° to C.A.) 1445.0-1445.9 Q.Cchlorite vein, 50° to C.A. BIOTITIC GROUP	ANDESITIC GROUP  Very fine-grained. Rare Q.C.V.	Carbonatized	GROUP Rare Q.C.V.	henocrysts citic alter ontact 40°		GRO		DESCRIPTION
SAMPLE  POOTAGE  PROM  TO  TO  TO  TO  TO  TO  TO  TO  TO	26163 26164	26162			25979			25977 25978		N O	
FOOTAGE TO TOTAL TO T	 									IDES	
FOOTAGE TO TOTAL TO T	1503.5 1505.0	1480.6		1111	1444 9			1416.0 1418.6		FROM	SAMP
TOTAL % % 02770M AU 2.0 1.01 1.8 1r. 1.0 .02 1.0 1r. 1.1.0 1r. 1.2 1r.	 1505.0									FOOT AGE	E
* 02/10* Au										П	
ASSAYS  0Z/TOM AU  .01 Tr.  .02 .02 .07										28	
	 	<u>.</u>						<b>=</b> :		_	ASS
/TON	 	01		· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·			Au	├	AYS
	·					<u>.</u>				/TON	

1567.0 | 1569.7 1557.2 | 1566.3 | TALC SCHIST UNIT 1549.8 | 1557.2 | ANDESITIC GROUP 1530.6 1548.7 1522.8 | 1530.6 | DIORITE DYKE 1487.5 1522.8 1548.7 1549.8 1566.3|1567.0| DIORITE DYKE FROM FOOTAGE DIORITE DYKE ANDESITIC GROUP TALC-SCHIST UNIT Same as 1530.6-1549.8. 1553.7-1557.2 "Talc-chlorite-Schist"-well sheared, multiple Q.C. 1545.0-1545.3 Q.C.-chlorite vein. 1547.6-1547.8 Q.C.-chlorite vein. 1517.3-1518.1 Quartz vein; translucent white, glassy, xenoliths. 1519.8-1522.8 Sheared , Q.C. veining, intensely carbonatized.

Biotitic alteration. 1540.0-1543.9 Q.C.-Chlorite Vein Zone; numerous veins (0.2-1.0 ft, 1534.0-1535.5 Q.C.-tourmaline-chloritic alteration zone, possible 1925.0 ANDESITIC GROUP continued 1557.2-1564.5 Frequent Q.C.V. wide), 50° to C.A., crosscut by quartz veins, wall rock Contact 35° to C.A. Fault; 25° to C.A. veinlets, bleached, progressively becomes talcose Contact 20° to C.A. alteration. xenoliths and bands (may contain 1% Po.) minor sericiti vein, blotchy bleaching; olive-green waxy alteration Medium-grained in areas. Well sheared (fabric 40° to C.A.) Intensely carbonatize green, soft, sericitic? Altered rock (1512.7-1513.6 ft.)-waxy luster, olive Bleached and carbonatized andesitic host DESCRIPTION 26165 ĕ 1540.9 1542.9 FROM SAMPLE 3 2.0 TOTAL ASSAYS OZ/TOM 긓. a OZ/TOM

NAME OF PROPERTY MCFinley Red Lake Mines Limited

__ SHEET NO. 16 OF 17

HOLE NO.

HOLE NO. 86-6 ___ SHEET NO. ___17 of 17

NAME OF PROPERTY McFinley Red Lake Mines Limited

1569.7 1580.5 1581.6 1583.5		FROM	FOO
1569.7   1580.5   1581.6   1581.6   1583.5   1608.0		70	FOOTAGE
		•	
DIORITE DYKE Contact 45° to C.A.  TALC SCHIST Occasional Q.C.V. Note: All of Talc Schist from 1557,2 ft. 1587.1-1587.7 Diorite Dyke.  1608.0  E.O.H. Hole Cemented.			
57,2 ft. is magnetic.		•	
	_	····	
	1	Z 0	
	S	% SULPH	
	TROM	FROM	SAMPLE
	ē	FOOTAGE	,m
	20.25	71	
		38 8	
		32	
	Au	0Z/TOM	ASSAYS
	+	M OZ/TOM	'S
<del></del>	+	DM.	
			1

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. 86-7 LENGTH 344.5'
LOCATION Mine Site Parking Lot
LATITUDE 10225 N DEPARTURE 10328 E
ELEVATION 10,003,25' AZIMUTH 090 DIP -60°
STARTED December 3, 1986 FINISHED December 4, 1986

	347'	21	FOOTAGE
	-58°	-59°	DIP
	-58° 144°		AZIMUTH
			AZIMUTH FOOTAGE
			did
			HTUMIZA

BQ Core	Drilled by Morissette	HOLE NO. 86-7 SHEET NO. 1 Of 4
---------	-----------------------	--------------------------------

_													
	F 0 0	TAGE				SAMP	LE				ASSA	YS	
	FROM	Т0	0	s on	SJUL H4 JUS	FROM	FOOT AGE	TOTAL	24	94	OZ/TON	OZ/TON	
	0.0	14.0	CASING								Au		
	14.0	15.1	BIOTITIC GROUP Thin 1/4 quartz carbonate veinlets on foliation planes. C.A. at 70°.										
	15.1	24.4	ANDESITIC GROUP 21.0-23.0 Well developed biotitic conjugate cleavage.							<u> </u>			
	24.4	36.7	BIOTITIC GROUP  Well foliated with patchy carbonatization.  27.8-28.6 Qtzsulphide vein pyrite-pyrrhotite. Also at 35.8-36.0	258 <b>49</b> 25850 25851		26.8 27.8	27.8 28.8	11.0			77.7		
	36.7	42.6	y dominated by fine acicular arsenopyrite ine a layering in the rock unit. Approximately e sulphides are pyrite-pyrrhotite. Minor chal-	25855 25856 25857			36.0 38.7 40.7	2.0		<del></del>	.01		
	42.6		40.0 Crosscutting quartz vein. BIOTITIC GROUP	25859 25863		42.7 44.7	44.7 46.7	2.00			.T.		••••••••••••••••••••••••••••••••••••
B	0.2	<u>.</u>	sseminated PyAspy. on foliation planes. Sericitic teration at 43.4 and 50.5. artz-sulphide vein (B-Vein), Chalcopyrite-sphalerite d pyrite.	2586C 25861 26208		48.5 50.5	50.5 51.5 52.5	2.0 1.0			Tr. 31	*	·
O — 366-1168	51.5	52.5	QUARTZ FELDSPAR PORPHYRY/RHYOLITE  1/4"feldspar phenocrysts. Sphalerite stringer on lower  contact.							<u> </u>			
- TORONTO	52.5	66.0	BIOTITIC GROUP  Carbonated with a uniform foliation development C.A62°  54.2-54.5 Quartz-Arsenopyrite vein with minor sphalerite. (B-Vn)	25862		54.0	55.0	·. 0	<u>.</u>		.02		
LANGRIDO	66.0	70.8	DIORITE DYKE  Difficult to pin point upper contact. Contains quartz  phenocrysts accompanied by app. 1% dissem. Py.		·								

:													
F00	FOOTAGE	DESCRIPTION			SAMPLE	ΥE				A	ASSAYS		
FROM	10		NO.	% SULPH	FROM	FOOTAGE TO	GE TOTAL	AL	%	**	02/TON	OZ/TON	
70.8	72.0	FAULT ZONE  Tan brecciated zone. (1.2' of gouge)									Au		
72.0	75.0	at											
75.0	89.8	ANDESITIC GROUP  Well developed biotitic spaced foliation (conjugate sets.) Minor amygdules app. 88'.  Possible 6" section of hyaloclastite at 79'.	26248		87.8	89.8	2.0		····		₹		
89.8	93.3	BIOTITIC GROUP  Amygdular with sulphide stringers at 92.8'.											
93.3	96.0	ANDESITIC GROUP Amygdular.											
96.0	100.6	FAULT ZONE											
<u>_</u>		96.9 Galena-Py. stringer (1/2") offset by fault. Sericitic alteration throughout section.					<u>-</u>						
100.6	106.5	ANDESITIC GROUP Pillow selvage at 105.0'.					<del>.</del>						
106.5	115.7	DIORITE DYKE 107.0' Quartz-chlorite vein (app. 1% Py.)							·				····
115.7	146.7	ANDESITIC GROUP Well developed pillow sequence. Sulphide stringers at 133.5, 143.8 and 145.8.				······································		·					
146.7	148.5	BIOTITIC GROUP Amygdaloidal , well foliated.					·	, .**. <u>.</u>					
148.5	193.9-	ANDESITIC GROUP  Well developed pillows throughout. Amygdaloidal.						· · · ·					·
		151.3-152.2 Diorite Dyke C.A. 57°. 171.5-171.8 Pisolitic tuff/hyaloclastite unit-1/8" rounded										<del></del>	
		Nb-Diorite Unit fragments which have concentric colour variations. Fragments are dark grey composed of quartz. Similar texture to 'Bird's Eve'Marker.								·			
		-175.2					<u>.</u>		····				
-		173.0 To your territorite fermion (bleaching on late fractures)				-	_						

												m l		
278.7		251.8 278.7	250.3	249.2	233.4	217.0	207.9	204.8	199.8	193.9	148.5	FROM	FOOTAGE	
285.0	,	278.7	251.8	250.3	249.2	233.4	217.0	207.9	204.8	199.8	193.9	70	AGE	1
ANDESITIC GROUP  An irregular mottling is present. Colour alternates  from a reddish-brown to green.	251.8-254.2 Several quartz stringers cross zone. 254.4-255.1 Sericitic alteration with thin qtzsulphide veins. 260.9-262.0 Quartz-pyrite vein-possible chert. 262.0-263.9 Sericitic alteration. 263.3 Fault Zone . C.A. 30°. 273.1-273.5 Quartz vein.	sheared containing disseminated garnets and	QUARTZ VEIN/CHERT UNIT  Mineralized with pyrite (10%), pyrrhotite (5%), arsen-25764 opyrite (5%) and chalcopyrite. Garnetiferous.	QUARTZ-CARBONATE VEIN	QUARTZ-FELDSPAR PORPHYRY (C-ZONE PORPHYRY)  1/4" Glassy quartz phenocrysts.	BIOTITIC GROUP Highly sheared evidenced by the amount of folded qtz carbonate veinlets. Minor andesitic at 220.9 to 223.5	ANDESTIC GROUP  Biotite conjugate shear cleavage present.  209.3 Pillow selvage/amygdules. C.A. 65°.	mygdaloidal; thin sulphide stringer at 206.3. Qtz-yPo. vein 207.2-207.9.	ANDESITIC GROUP Amygdaloidal.	BIOTITIC GROUP 194.5-196.5 Minor disseminated pyrrhotite. 199.7-199.9 Fault zone. Gouge present.	ANDESITIC GROUP continued 187.8-189.6 Sericitic and calcite.		DESCRIPTION	
25864	26209	25766	25764 25765					25763		25762		N O		
	· · · · · · · · · · · · · · · · · · ·		·									% SULPH		İ
273.0	262.5	25 <b>4.</b> 3	250.6 252.6					207.0		194.5		FROM	SAMPLE	
274.5	264.5	256.3	252.6 253.6					208.0		196.5	,	FOOTAGE	m	
·5		2.0	2.0			- <del></del>		1.0		2.0		TOTAL		
												÷2		
												22		11111
.01	.02	OF.	.01					.01		Tr.	Au	0Z/TON	ASSAYS	
	*											OZ/TON		
										<del></del> _				1

1

NAME OF PROPERTY McFinley Red Lake Mines Limited

HOLE NO. ____86-7

SHEET NO. 4 Of 4

0 313.5 5 336.7 7 344.5	FOOTAGE FROM TO	1
	TO GE	ł
BIOTITIC GROUP 292.3 294.8-295.3 294.8-295.3 295.3-304.2 302.9-304.2 306.6-309.5 306.6-309.5 310.5 317.0 ANDESITIC GROUP 317.0 331.5-333.0 CH 334.4-335.4 QH TALC-CHLORITE SO CC 344.5 EE		
Fault zone 2".  Quartz sulphide vein (pyrite) Sericitic alteration of biotitic, accompanied by biotitic and also By disseminated pyrite, (5-15%) Semi-massive pyrite and arsenopyrite. Quartz vein with disseminated PyAspy. (5-10%) Totally silicified metavolcanic. Porcelanous texture, white. Sericitic-pyrite alteration. 1" thick quartz sulphide vein. Quartz-chlorite vein with minor alteration. Quartz-chlorite vein with pyrrhotite. Chlorite schist with PyPo. stringers quartz chlorite vein with pyrrhotite. SCHIST Minor carbonatization. C.A. 45° E.O.H. Marker: 347'. Casing pulled and hole cemented. E.O.H. Marker: 347'.	DESCRIPTION	
25865 io- 25866 25867 25869 re, 25871 25873 25874 25875 25877 25877 25877 25877	Z O	
77 75 77 77 77 77 77 77 77 77 77 77 77 7	38	
294.5 295.5 297.0 303.0 301.0 311.0 331.5 334.4	$\Pi$	
295.5 297.0 301.0 306.6 312.6 313.0 335.4	ISI T	
1. 1. 1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7	
	29	1
Tr. 17. 18. 1. 18. 18. 18. 18. 18. 18. 18. 18.	ASSAYS	
	S 02/10N	

STARTED __ ELEVATION HOLE NO. 86-8 LATITUDE LOCATION HOLE NO. -December 4/86 FINISHED_ 10, 003.25 10225 N McFinley-Parki ng Lot McFinley Red Lake Mines Limited __ DEPARTURE _ _ AZIMUTH _ 144.:099° December 5, 1986 10328 E DIP 43°

				43°	304'
			090	43°	23'
HTUMIZA	DIP	FOOTAGE	AZIMUTH FOOTAGE	dia	FOOTAGE

HOLE NO. __86-8__ SHEET NO. _1 0f_2

REMARKS .....

Drilled by Morissette D.D.
BQ Core
LOGGED BY M. Lamoureux

) )	,				:	•						_
3	A 6 10		m S		SAM	E			` <b>&gt;</b>	SSAY	S	
FROM	то			NO. SULP	FROM	FOOT AGE	TOTAL	<b>34</b>	24	Q Z	OZ/TON	
0.0	22.4	CASING								Au		
22.4	25.1	ANDESITIC GROUP				· · · · · · · · · · · · · · · · · · ·						
25.1	32.1	BIOTITIC GROUP	snhalerite	26212 2588 <i>4</i>	26.0 27 0	27.0 27.8	•		_	01	*	
3	26 1		e vein w/PyPo. Aspy. and sphalerice.	26213	27.8	28.8				.01 B	*	
36.	39.		d to moderately well banded. Py., Po. ve in places) sphalerite. 2° to C.A.	25885 25886 25887 25888	32.1 34.1 38.1	34.1 36.1 39.1	2.0 2.0 2.0 1.0			.02 .05 Tr.	<u> </u>	
39.1	49.7	BIOTITIC GROUP 41.8-42.1 42.4-43.8	zone. zone associated with fault move- 0 5-10° to C.A	2588d	45 <b>4</b>	45.4	<u> </u>	<u>.</u>		3 		
		48.7-49.7				-					<u>:</u>	
49.7	52.5	QUARTZ FELDSPAR 51.5-52.1	) Qtz. vein with Py.,sphal and massive Aspy.	25892 25893 25894	48.7 49.7 51.7	49.7 51.7 52.5	1.0 2.0 0.8			Tr. .22	<del></del>	
52.5	63.2	BIOTITIC GROUP 52.7-56.6	Zone of bleached irregular fractures.									
63.2	68.9	DIORITE DYKE		·								
68.9	103.3	ANDESITIC GROUP 76.0-78.3	Qtzveining; pillowed.	·			·				<del></del>	
103.3	111.6	DIORITE DYKE			•							
111.6	178.4	ANDESITIC GROUP 146.4-146.7 169.8-170.3	Qtzcarb epidote vein.								·	
		174.3-175.1	Zone of bleached fractures, fault breccia at 174.4 and 175.1.				·					
	FROM 0.0 22.4 25.1 39.1 39.1 39.1 103.3 111.6	- 6 ω	22.4 CASING 25.1 ANDESITIC GROU 32.1 BIOTITIC GROU 27.0-27.8 39.1 CHERT UNIT 49.7 BIOTITIC GROU 41.8-42.1 42.4-43.8 48.7-49.7 QUARTZ FELDSP 52.5 QUARTZ FELDSP 51.5-52.1 63.2 BIOTITIC GROU 52.7-56.6 68.9 DIORITE DYKE 103.3 ANDESITIC GRO 76.0-78.3 3 111.6 DIORITE DYKE 6 178.4 ANDESITIC GRO 146.4-146.7 169.8-170.3 174.3-175.1	22.4 CASING 25.1 ANDESITIC GROUP 32.1 BIOTITIC GROUP 32.1 CHERT UNIT (FOOTWALL CHERT) 39.1 CHERT UNIT (FOOTWALL CHERT)  49.7 BIOTITIC GROUP 41.8-42.1 Bleached fracture zone. 42.4-43.8 Bleached fracture zone associated with fault movement along planes @ 5-10° to C.A. 48.7-49.7 QUARTZ FELDSPAR PORPHYRY 51.5-52.1 (B-Vein) Qtz. vein with Py., sphal and massive Aspy. 63.2 BIOTITIC GROUP 52.7-56.6 DIORITE DYKE 103.3 DIORITE DYKE 103.3 DIORITE GROUP 104.4-146.7 Mafic dyke. 6 178.4 ANDESITIC GROUP Qtzcarb epidote vein. 105.8-170.3 Jone of bleached fractures, fault breccia at 174.4 and 175.1.	22.4 CASING 25.1 ANDESITIC GROUP 32.1 BIOTITIC GROUP 32.1 CHERT UNIT (FOOTWALL CHERT) 39.1 CHERT UNIT (FOOTWALL CHERT) 49.7 BIOTITIC GROUP 41.8-42.1 Bleached fracture zone. 42.4-43.8 Bleached fracture zone associated with fault movelant along planes @ 5-10° to C.A. 48.7-49.7 Qtzvein w/Py. 52.5-52.1 (B-Vein) Qtz. vein with Py., sphal and massive Aspy (B-Vein) Qtz. vein with Py., sphal and massive Aspy 25889 63.2 BIOTITIC GROUP 52.7-56.6 Zone of bleached irregular fractures. 6178.4 ANDESITIC GROUP 103.3 ANDESITIC GROUP 104.8-175.1 Zone of bleached fractures, fault breccia at 174.4 and 175.1.	22.4 CASING 22.4 CASING 25.1 ANDESITIC GROUP 32.1 BIOTITIC GROUP 32.1 CHERT UNIT (FOOTWALL CHERT) Poorly banded to moderately well banded. Py., Po. Aspy. (massive in places) sphalerite. 25.886 Aspy. (massive in places) sphalerite. 25.886 Aspy. (massive in places) sphalerite. 25.886 32. Aspy. (massive in places) sphalerite. 25.886 34. 49.7 BIOTITIC GROUP 41.8-42.1 42.4-43.8 Bleached fracture zone. 42.4-43.8 Bleached fracture zone associated with fault move- dtzvein w/Py. 48.7-49.7 Qtzvein w/Py. 52.5 QUARTZ FELDSPAR PORPHYRY (B-Vein) Qtz. vein with Py., sphal and massive Aspy. 25.887 36.3 CANDESITIC GROUP 103.3 CANDESITIC GROUP 103.3 TANDESITIC GROUP 104.6-446.7 Mafic dyke. 105.1. Mafic dyke. 106.178.4 ANDESITIC GROUP 107carb epidote vein. 108.3 TANDESITIC GROUP 108.4 TANDESITIC GROUP 108.4 TANDESITIC GROUP 108.4 TANDESITIC GROUP 108.4 TANDESITIC GROUP 108.4 TANDESITIC GROUP 108.5 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.7 TANDESITIC GROUP 108.6 TANDESITIC GROUP 108.7 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.6 TANDESITIC GROUP 109.	CASING 22.4 CASING 25.1 ANDESITIC GROUP 32.1 BIOTITIC GROUP 32.1 CHERT UNIT (FOOTWALL CHERT) 39.1 CHERT UNIT (FOOTWALL CHERT) 49.7 BIOTITIC GROUP 41.8-42.1 Banding at 82° to C.A.  49.7 BIOTITIC GROUP 42.4-43.8 ment along planes @ 5-10° to C.A.  52.5 QUARTZ FELDSPAR PORPHYRY 52.7-56.6 Zone of bleached irregular fractures. 68.9 DIORITE DYKE 103.3 ANDESITIC GROUP 105.8-170.3 Mafic dyke. 169.8-170.3 Mafic dyke. 169.8-170.3 Zone of bleached fractures, fault breccia at 174.4  174.3-175.1 and 175.1.	TO DESCRIPTION NO. SMEET FROM TO SMEET TO NO. SMEET FROM TO SMEET TO NO. SMEET TO NO. SMEET TO NO. SMEET TO SMEET TO SMEET TO NO. SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO SMEET TO	TO    CASING   TO    Color	TO	TO DESCRIPTION NO. SERVE TOTAL SE STOTAGE  22.4 CASING 25.1 ANDESITIC GROUP 32.1 BIOTITIC GROUP 32.1 CHERT UNIT (FOOTMALL CHERT) 49.7 BIOTITIC GROUP 49.7 BIOTITIC GROUP 49.7 BIOTITIC GROUP 52.5 QUARTZ FELOSPAR PORPHYR 52.5 QUARTZ FELOSPAR PORPHYR 52.7-56.6 BIOTITIC GROUP 52.7-56.6 BIOTITIC GROUP 6178.4 ANDESITIC GROUP 6178.4 ANDESITIC GROUP 6178.4 ANDESITIC GROUP 6178.4 ANDESITIC GROUP 76.0-78.3 3111.6 GROUP 76.0-78.3 The factures, fault breccia at 174.4 Server and 175.1. And 175.1.	

		<del></del>	<del></del>		<del></del>	· · · · · · · · · · · · · · · · · · ·			٦ .
300.3	280.0	•		239.6	229.3	193.7	178.4 180.5	FOOT AGE	
307.4	300.3			280.0	239.6	229.3	180.5 193.7	AGE TO	
TALC SCHIST 307.4	ANDESITIC GROUP 283.6 287.5-287.9	265.0-265.8 269.3-269.6 273.5-274.3 274.7-279.2	251.4 252.2-252.6 253.6-254.0 255.3 262.6-263.5	BIOTITIC GROUP 239.6-241.0 247.4-251.5 247.4-248.9	QUARTZ FELDSPAR 236.1-236.2 1 237.6-237.7 1	BIOTITIC GROUP 195.5-198.2 208.5-209.2 225.8-229.0	DIORITE DYKE ANDESITIC GROUP		
E.O.H. Hole cemented. Casing pulled.	P Fault. Qtzsulfide vein transitional contact with talc- schist.	Bleached grey area. Bleached light green area. Bleached green grey area. Area marked by many bleached fractures. Sulfidized in places.	Qtzcarb-sulphide pod. Qtzcarb-sulphide pod. Bleached grey area. Fault. Bleached-light green area.		R PORPHYRY Sericitic alteration. Mafic dyke. Mafic dyke.	Blebs of fine grained pyrite. Qtzcarb-sulphide vein. Much qtzcarb veining.	P Biotitic mixed in.	DESCRIPTION	
		2579	25792 26218 25793 25793 26219	2579	2620	25789 26215 25790		z o	
			100 tan	<u> </u>	450	<u> </u>		3 SULPH	HOLEN
		276.9	249.3 251.5 252.2 253.7	243.5	210.2	196.5 207.5 208.5		FROM	o O
<del></del>		279.0	251 252 253 253	245.		198.2 208.5 209.2	·	FOOTAGE	86-8
		2.1	7 1.5	٥		1.7		)E TOTAL	
							·	24	SHE
								31	SHEET NO.
		<b>ਜ</b> .	.07	. T				OZ/TOM	2 of
	. —		* * :	*	·	* *		OZ/TON	2

NAME OF PROPERTY____ McFinley Red Lake Mines Limited

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. McFinleY Parking Lot
LOCATION MCFinleY Parking Lot
LATITUDE 10225 N DEPARTURE 10240 E
ELEVATION 999.6 AZIMUTH 090 DIP -68°
STARTED December 5,1986 FINISHED December 7, 1986

FOOTAGE	OIP	AZIMUTH FOOTAGE	FOOTAGE	DIP	HTUMIZA
12 '	68°	090			
147 '	68°	090			
376'	66°	090			

OLE NO.
86-9
SHEET
S
1 ef

Drilled by Morissette
BQ Core.

LOGGED BY F.C. Edmunds

FOOTA	6 E		7 7 7 7 7		SA	P L E			>	SSAYS	
FROM	то		U E 3 C R I F I I O N	NO. SUL	SUL PH FROM	FOOTAGE TO	TOTAL	78	*	OZ/TON OZ	OZ/TON
0.0	12.0	CASING			, .					Au	
12.0 2	21.6	BIOTITIC GROUP									<del></del>
<del>,</del>		14.0'	Highly carbonated with well developed fabric. 3" Fault Zone.								
21.6 2	22.9	CHERT UNIT									
			nated mineralized with pyrrhotite and	25895	21.6	22.9	1.3			.03	
		22.7	1" thick chlorite-garnet layer.								_
22.9   20	26.0	BIOTITIC GROUP			•						
<u> </u>		25.5	2" chert or sticitied tense. 1/2" hyaloclastite layer with quartz vein.	25896	26.0	27.5	1.5			<u>.</u>	
26.0 2	27.5	CHERT UNIT									
			Poorly laminated. Void of sulphides.								
27.5 4	47.0	BIOTITIC GROUP	•								<del></del>
		31 2-31 1	Highly carbonated. C.A. is /5".								
		34.3-35.0	nse. minor PoPy.	25897	34.5	35.5	1.0				
A7 0	<u></u>	CHEDT HALT		25898	38.5	39.5	1.0			₹ 	
			Thinly laminated with stringers of PyPo. C.A. is 65°.	26212 25899	45.0 47.0	47.0 48.0	2.0 1.0			⊋ .  *	
48.0 49	49.7	BIOTITIC GROUP		26211	48.0	50.0	2.0			* *	
			Highly carbonated unit.	<u></u>							
49.7 5	57.8	ANDESITIC GROUP									
		52.6	Fault zone. 4"								
		54.0 57.5	Deformed Q.C.V.; 2" stringer of pyrite.		<u>-</u>						<u> </u>

NAME OF PROPERTY__McFinley Red Lake Mines limited
HOLE NO. ___86-9 SHEET NO. __2 of 5

FOOTAGE	AGE					SAMPLE	E				ASSAYS	İ
FROM	70		CEUCKITICON	Z 0	% SULPH	FROM	FOOT AGE	TOTAL	*4	38	0Z/TON	OZ/TOM
57.8	60.7	QUARTZ/FELDSPAR PORPHYRY	PHYRY Very fine grained. Many qtz. veins.				,				A	i
60.7	62.7	ANDESITIC GROUP	Biotite rich near porphyry.									
62.7	64.2	CHERT UNIT	26 - 17:			3	1	>				
			Thinly laminated. Alternate layers of silicamt.; pyrite-pyrrhotite stringers with minor (app. 1%) arsenopyrite. Many crosscutting PyPo. veins present. Chlorite-garnet layers also. C.A. is 55°.	26001		62.7	64.7	2.0		·	<b>.</b>	
64.2	74.8	ANDESITIC GROUP										
			Faults at 66' and 68'. Well developed conjugate shear cleavage defined by biotite partings.									
74.8	111.6	BIOTITIC GROUP										
		77.0	Highly carbonated.  4" Fault zone.									
		78.3-81.0 79.5	tions.(3-5%)	26002 26003		78.0 80.0	81.0	2.0			22	
		80.0-81.0		26004		83.0	85.0	2.0			T :	
		84.0	Mineralization: arsenopyrite/pyrite/pyrrhotite.  4" zone with quartz-aspypy. veinlets. Veins parallel foliation.									
		90.2-91.9	Sericitic Alteration Zone-irregular patches of tan sericite which permeates rock from fract -		<del></del>							
		94.7 97.5	lerite stringer (1/8"). fault related bleaching.	26005		110.6	111.6	1.0			<u> </u>	
		99.5 100.0-101.0	Andesitic section.									
111.6	118.2	CHERT UNIT (FWC)	Well laminated mineralized by PvPoSph. and	2600 <b>6</b> 26007		11.6 13.2	113.2 115.2	2.4			<del>-</del>	
· .			magnetite. Crosscut by several quartz-carbonate26008 veinlets. "Flat" Po. filled fractures 115.0-116.26009	26008 26009		115.2 116.2	116.2 117.2	1.0			3.7.7	
		113.4-113.6	and convoluted layering. Many chlorite-garnet layers. Minor Aspy. C.A. is 40° Diorite Dyke. "Flat" fractures C.A. is 35°.	26010 26205		17.2 18.2	118.2 119.9	1.0			.08	

1

TOOTAGE   TOOTAGE   TOOTAGE   TOOTAGE	į							;																			
138.0 BIOTITIC GROUP    138.0 BIOTITIC GROUP   Well developed fabric.   19.9-120.9   QtzmtPoSph. lense (not laminated)   121.4   QtzmtPoSph. lense (not laminated)   26011   121.4   QtzmtPoSph. lense (not laminated)   26012   123.3-124.3   Qtzchlorite vein.   23.3-124.3   Qtzchlorite vein.   24.1   25.3-135.9   Qtzchlorite vein.   25.1   25.2   25.3-135.9   Qtzchlorite vein.   26012   26013   25.2-135.9   Qtzchlorite stringer.   26013   25.2-135.9   Qtzchlorite stringer.   26013   25.2-135.9   Qtzchlorite do pyrite and quartz pyrite stringer.   26013   25.2-135.4   Qtzchlorite do pyrite and quartz pyrite stringer.   26013   25.2-135.4   Qtzchlorite do pyrite   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26012   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   26014   26013   2		F001	AGE		DESCRIPTION	4	PH PH	מאחר בי	FOOTAGE	"			7.00 A 1.00	## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC GROUP ## BIOTITIC		FROM	10			┞-	П	Ц.	70	Цì	TOTAL	П	TOTAL % % 0
Mell developed fabric. 19.9-120.9 QtzmtPoSph. lense (not laminated) 12.4 PoPy. infilled extension fracture C.A. is 5°. 123.3-124.3 Qtz. chlorite vein. 125.5 4" quartz vein. C.A. is 30° 127.5 132.5-135.9 disseminated pyrite and quartz pyrite stringer. 132.5-135.9 lorite poke. 132.5-135.9 Sericitic Alteration. 135.1-136.2 Diorite Apophysis. 136.2-136.4 and chalcopyrite. 136.2-136.4 BVein-4" sphalerite, rounded Aspy., quartz and chalcopyrite. 142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 155.2 ANDESITIC GROUP 157.2 Hyaloclastite 'Dykelets'-146.5-146.8,147.0-147.3. 159.1 BIOTITIC GROUP 159.2 Hyaloclastite around pillow margin.(interstice) 159.3 Hyaloclastite around pillow margin.(interstice) 168.7 Fault gouge (3"). 168.6 Hyaloclastite. 170.9 BIOTITIC GROUP 176.5 ANDESITIC GROUP 176.5 ANDESITIC GROUP 176.5 Fault Zone. 177.0 Fault Gouge(0.8') 183.0 Hyaloclastite.		118.2	138.0	BIOTITIC GROUP			<del></del> .			:	•		Au														
121.4.3 Qtz.chlorite verin. C.A. is 5°. 123.3-124.3 Qtz.chlorite verin. C.A. is 30° 132.5-135.9 disseminated pyrite and quartz pyrite stringer. 132.5-135.9 disseminated pyrite and quartz pyrite stringer. 132.5-135.9 disseminated pyrite and quartz pyrite stringer. 132.5-135.9 disseminated pyrite and quartz pyrite stringers. 26013 134.4-134.9 Diorite Dyke. 135.9-136.1 Sericitic Alteration. 136.1-136.2 Diorite Apophysis. 136.2-136.4 and chalcopyrite. 136.2-136.4 and chalcopyrite. 136.2-136.4 and chalcopyrite. 142.1 RHYOLITE/QUARTZ PORPHYRY 142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 144.0 DIORITE DYKE 1/4" Phenocrysts of quartz-carbonated. 155.2 ANDESITIC GROUP 155.2 ANDESITIC GROUP 157.2 ANDESITIC GROUP 157.2 ANDESITIC GROUP 157.2 ANDESITIC GROUP 176.5 Hyaloclastite around pillow margin.(interstice) 159.1 Fault gouge (3"). 160.5 ANDESITIC GROUP 176.5 Hyaloclastite. 176.5 Fault Gouge(0.8') 177.0 Fault Gouge(0.8') 183.0 Hyaloclastite. 177.1 Fault Gouge(0.8') 183.0 Hyaloclastite.				119_9_120_9	(not laminated)	6011		19.9	~	120.9	0.9 1.0																
123.3-124.3  4" quartz vein. C.A. is 30° 122.5  122.5  122.8  123.5-135.9  26012  26013  26014  134.4-134.9  136.4-136.1  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  136.2-136.4  142.6  142.1  142.6  142.1  142.6  143.0  142.1  142.6  143.0  142.1  143.0  143.1  143.0  144.1  144.1  145.1  145.2  146.6-146.8,147.0-147.3.  147.0  147.3  148.1  149.1  149.1  149.1  149.1  149.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  140.1  14	,			121.4	C.A. is 5°.																						
122.5 172" sphalerite stringer. 132.5 172" sphalerite stringer. 132.5-135.9 26012 134.4-134.9 134.4-134.9 135.9-136.1 136.1-136.2 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 142.6 143.9 142.6 142.6 142.6 142.6 142.6 142.6 143.6 143.6 143.6 143.6 144.1 144.1 145.6 146.8 147.0-147.3 147.0-147.3 147.0-147.3 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.3 147.0 147.0 147.3 147.0 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.3 147.0 147.0 147.3 147.0 147.0 147.3 147.0 147.0 147.3 147.0 147.0 147.3 147.0 147.0 147.3 147.0 147.0 147.3 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 147.0 14				123.3-124.3																							
132.5 132.9 disseminated pyrite and quartz pyrite stringer.  (3-5%) 134.4-134.9 biorite Dyke. 135.9-136.1 Sericitic Alteration. 136.1-136.2 Brointe Apophysis. 136.2-136.4 and chalcopyrite. 142.1 RHYOLITE/QUARTZ PORPHYRY 5% coarse disseminated pyrite (euhedral) C.A. is 50°. 142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 5146.0 DIORITE DYKE 1/4" Phenocrysts of quartz-carbonated. 155.2 ANDESITIC GROUP 157.2 hyaloclastite (2") 158.8 Hyaloclastite (2") 159.1 BIOTITIC GROUP 168.7 169.6-170.2 Fault Gouge(0.8') 183.0 Hyaloclastite. 177.0 Fault Guage(0.8')				122.5		<u> </u>		: 	,	<u>.                                    </u>																	
132.5-135.9  (3-5x) (3-5x) (3-5x) (3-5x) (3-5x) (34.4-134.9 (35-7)36.1 (35.9-136.1 (36.1-136.2 (36.1-136.2 (36.1-136.2 (36.1-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-136.4 (36.2-1				132.5	inger.	6012		31.9	7	134.4	1.4 2.5		2.5														
134.4-134.9 135.9-136.1 136.1-136.2 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 136.2-136.4 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.6 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1 142.1				132.5-135.9	<pre>inated pyrite and quartz pyrite stringers</pre>	6012 2		3 <u>/</u> 0	<u>2</u>	<u>,,</u>			<u>э</u>														
Sericitic Alteration. 135.9-136.1 136.1-136.2 136.1-136.2 136.2-136.4  B-Vein- 4" sphalerite, rounded Aspy., quartz and chalcopyrite.  142.1 RHYOLITE/QUARTZ PORPHYRY 5% coarse disseminated pyrite (euhedral) C.A. is 50°.  142.6 BIOTITIC GROUP  142.6 BIOTITIC GROUP  155.2 ANDESITIC GROUP  157.2 159.1 167.2 ANDESITIC GROUP  168.7 169.6-170.2 206.5 ANDESITIC GROUP  176.6 177.0 183.0 Hyaloclastite 4" of hyaloclastite. Fault Gouge(0.8') Hyaloclastite. Fault Gouge(0.8') Hyaloclastite.			·	134.4-134.9	Dyke.	6014		41.0	7 5	142.0	2.0 1.0																
136.1-136.2  136.2-136.4  B-Vein- 4" sphalerite, rounded Aspy and chalcopyrite.  142.1  142.1  142.6  BIOTITIC GROUP  142.6  BIOTITIC GROUP  155.2  ANDESITIC GROUP  157.2  158.8  159.1  167.2  ANDESITIC GROUP  100.9  BIOTITIC GROUP  170.9  BIOTITIC GROUP  170.2  ANDESITIC GROUP  170.5  ANDESITIC GROUP  170.6  170.7  169.6-170.2  ANDESITIC GROUP  177.0  183.0  Hyaloclastite.  Fault Gouge(0.8')  Hyaloclastite.  Fault Gouge(0.8')  Hyaloclastite.				135.9-136.1																							
and chalcopyrite.  142.1 RHYOLITE/QUARTZ PORPHYRY 5% coarse disseminated pyrite (euher C.A. is 50°.  142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 142.6 BIOTITIC GROUP 155.2 ANDESITIC GROUP 155.2 ANDESITIC GROUP 157.2 Hyaloclastite (2") 158.8 Fault gouge (3").  167.2 ANDESITIC GROUP 168.7 Quartz vein 4". 169.6-170.2 Fault Zone. 177.0 Hyaloclastite. 177.0 Hyaloclastite. 177.0 Hyaloclastite. 177.0 Hyaloclastite.			•	136.1-136.2 136.2-136.4	rounded Aspy.,																						
D 142.1 RHYOLITE/QUARTZ PORPHYRY  5% coarse disseminated pyrite (euher C.A. is 50°.  1 142.6 BIOTITIC GROUP  5 146.0 DIORITE DYKE  1/4" Phenocrysts of quartz-carbonaty  155.2 ANDESITIC GROUP  2 159.1 BIOTITIC GROUP  157.2 Hyaloclastite (2")  158.8 Hyaloclastite around pillow margin.  167.2 ANDESITIC GROUP  168.7  169.6-170.2 Fault Zone.  206.5 ANDESITIC GROUP  176.5  177.0 Hyaloclastite.  177.0 Hyaloclastite.  178.5 Fault Gouge (0.8')  183.0 Hyaloclastite.					;																						
C.A. is 50°.  1 142.6 BIOTITIC GROUP 5 146.0 DIORITE DYKE 1/4" Phenocrysts of quartz-carbonate 155.2 ANDESITIC GROUP 2 159.1 BIOTITIC GROUP 157.2 Hyaloclastite (2") 158.8 Fault gouge (3"). 167.2 ANDESITIC GROUP 168.7 Group 168.7 Quartz vein 4". 169.6-170.2 Fault Group Guartie. 177.0 Hyaloclastite. 177.0 Hyaloclastite. 178.0 Hyaloclastite.		138.0	142.1		HYRY 5% coarse disseminated pyrite (euhedral)	·	·····																				
1 142.6 BIOTITIC GROUP 5 146.0 DIORITE DYKE 1/4" Phenocrysts of quartz-carbonat. 155.2 ANDESITIC GROUP 2 159.1 BIOTITIC GROUP 158.8 159.1 Hyaloclastite (2") 158.8 159.1 Fault gouge (3"). 167.2 ANDESITIC GROUP 168.7 Quartz vein 4". 169.6-170.2 Fault Zone. 206.5 ANDESITIC GROUP 177.0 Hyaloclastite. 177.0 Hyaloclastite. 178.5 Fault Group 179.6 Hyaloclastite. 179.6 Hyaloclastite. 179.7 Hyaloclastite.					C.A. 1s 50°.		,																				
146.0 DIORITE DYKE  1/4" Phenocrysts of quartz-carbonate  155.2 ANDESITIC GROUP  2 159.1 BIOTITIC GROUP  2 159.1 BIOTITIC GROUP  157.2 Hyaloclastite (2")  158.8 Hyaloclastite around pillow margin.  167.2 ANDESITIC GROUP  170.9 BIOTITIC GROUP  168.7 169.6-170.2  206.5 ANDESITIC GROUP  176.5 176.5 Fault Zone.  206.5 Hyaloclastite.  177.0 Hyaloclastite.  178.1 Group  179.1 Group  179.2 Hyaloclastite.  179.3 Hyaloclastite.		142.1	142.6	BIOTITIC GROUP		<del>-</del>																					
Discrite 'Dykelets'-146.6-146.8,147.0  159.1 BIOTITIC GROUP  Amygdular, well foliated. Hyaloclastite (2") Hyaloclastite around pillow margin. Fault gouge (3").  167.2 ANDESITIC GROUP Uniformly textured. Fine grained. 170.9 BIOTITIC GROUP 168.7 169.6-170.2 206.5 ANDESITIC GROUP 206.5 ANDESITIC GROUP 176.5 177.0 Hyaloclastite. Fault Gouge(0.8') Hyaloclastite.		142.6	146.0	DIORITE DYKE	1/4" Phenocrysts of quartz-carbonated.						_																
Diorite 'Dykelets'-146.6-146.8,147.0  159.1 BIOTITIC GROUP  Amygdular, well foliated. Hyaloclastite (2") 158.8 Hyaloclastite around pillow margin. Fault gouge (3").  167.2 ANDESITIC GROUP 170.9 BIOTITIC GROUP 168.7 Quartz vein 4". 169.6-170.2 Fault Zone.  206.5 ANDESITIC GROUP 176.5 Fault Gouge(0.8') 183.0 Hyaloclastite.		1 1 2	1EE 3		· .								<b>-</b>														
2 159.1 BIOTITIC GROUP  Amygdular, well foliated. Hyaloclastite (2") 158.8 159.1 Hyaloclastite around pillow margin. 167.2 ANDESITIC GROUP 170.9 BIOTITIC GROUP 168.7 169.6-170.2 Fault Zone. 206.5 ANDESITIC GROUP 177.0 183.0 Hyaloclastite.		146.0	155.2		Diorite 'Dykelets'-146.6-146.8,147.0-147.3.						· · · · · ·																
157.2 158.8 158.8 159.1 167.2 ANDESITIC GROUP 170.9 168.7 169.6-170.2 ANDESITIC GROUP 177.0 177.0 183.0 Hyaloclastite (2") Hyaloclastite around pillow margin. Fault gouge (3"). Hyaloclastite. Hyaloclastite. Hyaloclastite. Hyaloclastite.		155.2	159.1		Amyodular well foliated																						
158.8 159.1 167.2 ANDESITIC GROUP 170.9 BIOTITIC GROUP 168.7 169.6-170.2 206.5 ANDESITIC GROUP 177.0 183.0 Hyaloclastite. Hyaloclastite. Fault Gouge (3"). Hyaloclastite.				157.2																							
167.2 ANDESITIC GROUP  170.9 BIOTITIC GROUP 168.7 169.6-170.2 Fault Zone. 206.5 ANDESITIC GROUP 176.5 177.0 Hyaloclastite. Hyaloclastite.		-		159.1	gouge (3").						······································																
170.9 BIOTITIC GROUP 168.7 169.6-170.2 206.5 ANDESITIC GROUP 176.5 177.0 183.0 Pault Zone. 4" of hyaloclastite. Fault Gouge(0.8') Hyaloclastite.		159.1	167.2		Fine																						
206.5 ANDESITIC GROUP 176.5 177.0 183.0		167.2	170.9	BIOTITIC GROUP																							
206.5 ANDESITIC GROUP 176.5 177.0 183.0				169.6-170.2	Fault Zone.																						
		170.9	206.5	ANDESITIC GROUP	4" of hyaloclastite.																						
				177.0 183.0	Fault Gouge(0.8') Hyaloclastite.								· · · · · · · · · · · · · · · · · · ·														

FORM 2

j

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. 86-9 SHEET NO. 4 of 5

	·		<del></del>			· · · · · ·							$\overline{}$	
		263.6		254.3	253.5		<del></del>	213.4	206.5	-/0.9	70 0	FROM	FOOTAGE	
	·	320.5		263.6	254.3		·	253.5	213.4	2.00.5	2006	10	AGE	
292.0 293.0 294.8-295.2 296.1-296.4	280.0-280.3 284.0-284.3 284.5-287.4 287.4-288.1	BIOTITIC GROUP 267.4-270.5 275.5-276.7	255.4-256.8 262.4	ANDESITIC GROUP	SERICITIC ALTERATION	239.1-242.4 242.4 245.0-253.5	223.2-225/8 236.8-237.1	ANDESITIC GROUP	DIORITE DYKE	182.0-183.0 195.0-198.7 202.5				
hide vein. ne, 6" thick. PyPoAspy pyrrhotite. with PyPo.	eminations in	Amygdaloidal with well developed foliation. Highly sheared. Q.C.Vvoid of sulphides. 1 Aspy. grain. O.C.V. Minor Py. on contact. O.C.V. as above.	Amygdular. Mineralized with pyrite-pyrrhotite and Aspy. Sulphide stringer (1/8") PyPo.		N Mineralized with disseminated Py. (3-5%)	Diorite Dyke. Thin sulphides (Py.) stringer. Well developed conjugate shear fabric.	Diorite Dyke. Diorite Dyke-Marker Dyke. Described in 86-7 as Pisolitic Tuff.	Amygdaloidal with well developed pillow struct- ures. Thin sulphide stringers (app. 2") 221'		Q.C.V.'s with minor Po. Pillow margins, amygdules. Thin (1/2") zone of Py. stringers.			DECORPTION	
26017 /26018 /26019 /26020			26250	26249	26015							NO.		
											,	% SULPH		
291.8 293.8 295.8 295.8 297.8			256.9	254.3	•							FROM	SAMPLE	
293.8 295.8 297.8 298.8			257.9									FOOTAGE	E	
2.0 2.0 2.0 1.0		***	1.0	1 - C	1.0							TOTAL		
												%		
												%		:
7777	-		.02	.02	3.7	-			,		Au	OZ/TOM	ASSAYS	
								<u> </u>				0Z/TON		
						· · · · · · · · · · · · · · · · · · ·								

			··						
	364.9	357.4			320.5 322.0		263.6	FROM	F00
	375.7	364.9			322.0 357.4		320.5	70	FOOTAGE
	TALC-CHLORITE SCHIST 367.0-368.2 374.0-375.7 357.7	CHLORITE-ACTINOLITE SCHIST	335.0 341.0 349.0 355.6 355.9 355.9		QUARTZ-FELDSPAR BIOTITIC GROUP	317.0	BIOTITIC GROUP 297.7 298.0-298.8 298.8-320.5		
	Quartz Vein-creamy brown colour. Quartz-Chlorite vein. E.O.H. Casing pulled. Hole cemented.	SCHIST	silicified section. sericitized zone. sericitized zone. sseminated pyrite over 3". seminated pyrite vein. galena-sphalerite vein. galena-sphalerite vein. zchlorite vein zone.	alized with pyrite.  e)   Minor (1%)	PORPHYRY (C-ZONE PORPHYRY)	ied by ubiquitous pyrite-pyrrhotite. (3-5%) Garnets at 306.5 (2" section) 2" wide. Fault Zone.	•		DESCRIPTION
			26029 26044 26030 26031	26026 26027 26028	26025	26024	26021 26022	Z O	
			ယ ယ ယ ယ	ωωω		ω υ	υ ω <i>Ν</i>	10ES	
			341.0 349.0 353.8 355.3	329.5 333.2 335.0	319.5	306.0	298.8 300.8	FROM	SAMPL
			342.0 350.5 355.3 357.3	331.5 334.2 337.0	320.5	307.0	300.8 302.8	TO	E
			1.5 1.5 2.0	2.0 1.0 2.0	1.0	1.0	2.0	TOTAL	
								29	
								24	
			Tr.	Tr.	<u>.</u>		₹ <del>₹</del> ₹	NO1/20	ASSAYS
								OZ/TON	
					-				
<del></del>									

NAME OF PROPERTY_____MCFinley Red Lake Mines Limited

___ SHEET NO. ___ 5 Of 5

HOLE NO. 86-9

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. 86-10 LENGTH 418.6

LOCATION 10150 N DEPARTURE 10249.8 E
ELEVATION December 7, 1986 FINISHED December 8, 1986

FOOTAGE	OIP	HTUMIZA	AZIMUTH FOOTAGE	DIP	HTUMIZA
14'	-66°				
410'	-63°				

HOLE NO.	
86-10	
SHEET NO.	
. 1 of 4	

In the second

Drilled by Morissette B.Q. Core

REMARKS

OGGED
ΥB
M Lamoureux

٦ ]	007	AGE				SAMP	LE			>	SSAY	18	
<b>_</b>	FROM	10	C	NO.	Hď.∭S	58024	FOOTAGE		<b>34</b> 9	**	QZ/TON	OZ/TON	
	0.0	14.0	CASING								Au		
	14.0	15.6	FELDSPAR PORPHYRY (CENTRAL PORPHYRY) Silicified and sericitized.										
	15.6	24.1	ANDESITIC GROUP 21.1 Qtzcarb vein. @ 20° to C.A.	26032		24.1	25.6	<del>.</del> 5		-	.01		<del></del>
2	24.1	25.6	CHERT UNIT					-					
			Fine grained disseminated Py., coarser on foliation planes. App. 2% medium grained Aspy.  Banding at 55° to C.A.										
22	25.6	33.4	BIOTITIC GROUP 26.9-27.3 Qtz. vein.					·					<del></del> -
<u>ω</u>	33.4	35.1	CHERT UNIT  3-5% very fine grained pyrite.	26033		33.4	35.1	0.7			Tr.	· <del></del>	
ယ္	35.1	50.6	BIOTITIC GROUP 48.2-48.6 Qtzcarb epidote vein w/app. 1% sulfides 48.6-50.6 Sericitic alteration.										<del>.</del>
-1168 50.6		53.1	CHERT UNIT  Crosscut by later qtz. veining.  10-15% disseminated Py. and Po. throughout. Some med- ium grained Aspy.	26050		50.6	53.1	2.5	·		.02	_	
<u>0 – 366</u> 57		70.8	BIOTITIC GROUP 64.7-65.6 Qtz. sulfide vein. PySphal-may be a chert unit.	26200 26034	•••	62.7 64.7	64.7 65.8	2.0		_	.07	*	
PRONT	70.8	73.0	ANDESITIC GROUP	26235		65.8	65.1 	<u>ک۔،</u> ش			285	*	
	73.0	73.7	DIORITE DYKE	26136		69.1	71.1	2.0			.01		···
	73.7	75.4	ANDESITIC GROUP	06127		75 3	77 2	ა >			<b>;</b> '		
ANGRI	75.4	77.3	BIOTITIC GROUP	-010/				7.0					

HOLE NO. ______________________________SHEET NO. ______________________________

McFinley Red Lake Mines Limited

NAME OF PROPERTY_

206.6 202.4 249.3 164.8 142.8 130.2 248.3 234.6 193.0 155.4 136.7 128.4 FROM 83.8 77.3 FOOTAGE 206.6 253.2 250.5 249.3 248.3 237.6 234.6 209.1 202.4 193.0 164.8 155.4 142.8 136.7 130.2 128.4 83.8 7 BIOTITIC GROUP 85.0-85.3 Qtz 90.7-97.6 Zono 94.1-94.8 Mass ANDESITC GROUP 175.5 Fau BIOTITIC GROUP 218.9 ANDESITIC GROUP DIORITE DYKE BIOTITIC GROUP ANDESITIC GROUP 125.0 2" CHERT UNIT BIOTITIC GROUP ANDESITIC GROUP DIORITE DYKE BIOTITIC GROUP DIORITE DYKE ANDESITIC GROUP DIORITE DYKE ANDESITIC GROUP ANDESITIC GROUP ANDESITIC GROUP 102.4-102.9 B-Vn. Py., Po. and massive Aspy. Pillowed. 2" wide qtz. epidote vein. Fault zone 1" wide (epidote) Pillowed. Qtz. vein w/Py. and Sphal.
Zone of increased qtz.-carb veining and sulphides. Pillowed. Massive Sphal. and Aspy. Silicified , pillowed.

4" wide qtz. chlorite vein. Sphal.,Py.,Po. DESCRIPTION 2603 2603 2620 2620 2620 2604 2604 2604 2613 2613 2613 2613 Ş % SULPH 96.3 97.6 101.3 102.4 92.7 90.7 SAMPLE 94.0 95.0 96.3 97.6 99.6 102.4 102.9 79.3 81.3 83.8 85.8 90.7 92.7 FOOTAGE 70 2.0 2.0 2.0 1.3 1.3 TOTAL % .04 17.20 17.20 17.20 ASSAY5 .03 .04 .02 OZ/TON OZ/TON * * *

NAME OF PROPERTY_____MCFinley Red Lake HOLE NO. 86-10_____ SHEET NO.

חד	FOOTAGE	E	DESCRIPTION			SAMPL	m			
FROM		70		Ş O	.% SULPH	H _I FROM	FOOTAGE	TOTAL	**	ي. المعتار الم
25:	253.2 257.6	7.6	BIOTITIC GROUP  Vesicular. Otz. carb veins.							
25;	257.6 289.1	.1	ANDESITIC GROUP 266.0 1" wide qtzcarb veins. Vesicular. 274.0-247.3 Fault and related bleached fracture zone.						-	
289.1	9.1 289.4	.4	DIORITE DYKE						•	و کرناوی
289	289.4 298.0		ANDESITIC GROUP  Vesicular. Alternating with small biotitic sections.							شسمعدر
298	298.0 319.5	.5	BIOTITIC GROUP							
			300.7-301.1 Qtzcarb epidote vein. 304.9-307.9 Qtzcarb vein. 307.9-319.5 Extensive qtz. veining and silicification. 207.9-319.5 Sulphide rich in sampled areas.	26045 26046 26047		307.8 309.8 312.6	309.8 311.8	222		
				26048 26049 26049	_ + +	314.6	316.6			
319	319.5 326.9		QUARTZ-FELDSPAR PORPHYRY Sericitic alteration.							
32(	326.9 332.6		BIOTITIC GROUP 326.9-3:1.4 Zones of faults and bleached fault related fractures. Faults at 327.4, 328.6'. 331.4-331.9 Qtz. vein w/fragmental qtz.megacrysts.							
332	332.6 334.8		QUARTZ FELDSPAR PORPHYRY Sericitically altered.							
332	334.8 352.3	ω	. in foliation parallel to sub-	6051		334.8	336.8	2.0		
			., Po. and Aspy. in bands at 68°	26053		337.9	339.9	2.0		
	<del></del>		300.77370.00	26054		341.2	342.1	0.9		
352	352.3 356.2	2	ANDESITIC GROUP							
356	356.2 411.2	-2	BIOTITIC GROUP 376.3-376.6 Silicified pod. 378.4-380.4 Qtzepidote veins and silcification w/Py and Po.	26206 26055		376.4 378.4	378.4 380.4	2.0 2.0		

NAME OF PROPERTY MCFinley Red Lake Mines Limited

	411.2	376.2	FROM	FOC	
	418.6	411.2	10	FOOTAGE	
	E SCHIST Casing pulled. Hole	BIOTITIC GROUP continued  381.0-381.7 Broken core.  383.2 Qtzepidote vein.  383.8-384.3 Silicified pod w/Po. and Py.  385.7-386.2 Qtzepidote vein.			
		26207	z O		Ī
			% SULPH		HOLE NO.
		380.4	FROM	SAMPLE	
		382.4	FOOTAGE	m	86-10
		2.0	TOTAL		0
			3 ^g		HS _
			ją.		SHEET NO.
		.01	οz/το <b>»</b> Au	ASSAYS	4 of
		*	OZ/TON	5	4
			-		

STARTED _	ELEVATION	LATITUDE	OCATION	HOLE NO	NAME OF
December 9, 1986 FINISHED		10150 N	McFinley Parking Lot	86-11	PROPERTY _
1986	<b>\</b>	0	Parkin	-	Mcfinle
INISHED	AZIMUTH	DEPARTURE 102	g Lot	LENGTH 388.0'	y Red Lake
December 1		10249.8 E		.0'	McFinley Red Lake Mines Limited
	_ 75°				

AZIMUTH FOOTAGE DIP

I	
HOLE	
ᇤ	
471	
ð	
Ö	
ıω	
86-11	
11	
1-	
1-	
i i	
1	
<u>'</u> .	
Ϋ́	
SHEET	
iή	
•	
z	
Š	
٠.	
1-	
lo	
1	
I _	
4	

Drilled by Morissette BQ Core

L
LOGGED
ΥВ
F.C. Edmunds

F 0 0	TAGE			SA	Z V	LE			>	SSAY	S
II BOK	15	C P W C Z - T - C Z	NO S	2	_	FOOTAGE		*	_		17 /TOW
3	į			- S301.	FROM	10	TOTAL	94	*	NO1 /20	OZ/ TON
0.0	12.0	CASING								Au	
12.0	16.0	FELDSPAR PORPHYRY		<del></del>							
		well developed tollation; 3% disseminated coarse euhedral pyrite. Unit crosscut by quartz carbonate veins which have a potassic alteration selvage(1/4") C.A. is 50°.	se nate (1/4").								
16.0	27.0										
		Massive , uniform, fine-grained.  21.0-22.0 Quartz-carbonate veins in brittle fractures. Wait of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of	Wall	<del></del>							<del></del>
27.0	39.5	BIOTITIC GROUP		<u>.</u>							
		27.6 3" Q.C.V.									
39.5	41.6	CHERT UNIT Well laminated. Mineralization: PyPomt. Ch	Chloritic 26059	<u>.</u>	38.55 	39.5	1.0			or.	<u> </u>
<u></u>	26 7	3		4	1.6	42.6	1.0			Tr.	<del></del>
÷.	50./	ביור פאטטר						<del></del>	<u> </u>		··
		53.U U.L.V.	26062	<u> </u>	56.6	57.5	0.9			Tr.	<u> </u>
56.7	57.5		•					,			
TO 366-1		Quartz Magnetite Vein ? Rock unit is poorly law in the quartz rich zones. Mineralized by thin of PyPoAspy.	laminated in stringers								
57.5	89.7	BIOTITIC GROUP  Well foliated, highly sheared (deformed gtzch	veine)							· · · · · · · · · · · · · · · · · · ·	
		64.2-66.0 Amygdular. Q.C.V. parallel to C.A. (10°)		70.0		71.0	1.0			.09	*
LANGI		ization and fine arsenopyritezation.	26065 26252	73.0		74.0	1.0			.18	•

				<u>9</u>	æ	<b>5</b> 1	п	
151.4 157.4	140.0	122.5 125.6		98.1	89.7	57.5	FROM	FOOTAGE
157.4 170.7	151.4	125.6 140.0		122.5	98.1	89.7	10	AGE
nated.	139.2-139.5 Thin qtzcb vein with pyrite.  ANDESITIC GROUP  Dominantly andesitic with minor biotitic intercalations.	uniform structureless section. daloidal with well developed conjugate shear cleav- eminated PyPoAspy. associated with quartz vein-	ones of arsenopyrite. Very fine grained. ribution. Associated with abundant quariz- eining.	Amygdular - highly deformed.  Amygdular - highly deformed.  98.6-99.1 Diorite Dyke.  100.1-102.6 QtzPySph. stringers (3) 1/4" thick.  106.5-107.5 QtzPySph. stringers.  108.8-109.4 Qtz-PyPoAspySphCpy. vein. (B-Vein related)  111.3-113.3 B-Vein. Concentrated stringers of PyPoCpyAspy. and sphalerite.	CHERT UNIT (FWC)  Well laminated C.A. is 41°. Comprised mostly of steel- grey quartz laminations (85%), chlorite-actinolite lamellae and sulphide layers (PyPoAspy).  94.0  Q.C.V. with coarse Py.  94.5  Convoluted layering.	BIOTITIC GROUP continued 77.2 1/4" thick sphalerite -pyrite veinlet. C.A.52° 78.6 1/8" thick sphalerite-pyrite-chalopyrite Vn. 77.0-88.0 Well developed conjugate shear cleavage over whole zone. Mild carbonatization.		
26083	26081	26079 26080	26076	26072 26073 26074 26075 26077 26077	26068 26069 26070 26071	26206 26066 26067	Z O	
·				·		·	% SULPH,	
165.2	139.0	134.4 135.4	116.0	100.1 106.5 107.5 109.5 113.5	91.0 93.0 95.0 97.0	72.0 88.7 89.7	FROM	SAMPLE
166.0	140.0	135.4 137.4	118.5	102.6 107.5 109.5 111.5 114.5 113.5	93.0 95.0 97.0 98.1	73.0 89.7 91.0	FOOTAGE TO	E
0.8	1.0	1.0	2.5	2.5 2.0 2.0 2.0	2.0 2.0 1.1		TOTAL	
							98	
							<b>37</b>	
<u>.</u>	.T	.T.T	Tr.	.101	.01 Tr.	Au Tr. 102	0Z/TOM	ASSAYS
						*	OZ/TON	

NAME OF PROPERTY McFinley Red Lake Mines Limited HOLE NO. 86-11

HOLE NO. _

__ SHEET NO.__

#### DRIFL RECORD

210.0 FROM FOOTAGE 215.3 210.0 194.0 | ANDESITIC GROUP BIOTITIC GROUP BIOTITIC GROUP BIOTITIC GROUP ANDESITIC GROUP 175.6 Well foliated.
2" Qtz.cb vein. Py.-Po.-Sph. Biotite partings form conjugate cleavage surfaces. Pillow selvages Hyaloclastite lenses (2") Amygdular, highly sheared. DESCRIPTION 2608; ö HOLE NO. NAME OF PROPERTY_ IDES 175.0 FROM SAMPLE 176.0 McFinley Red Lake Mines Limited TOTAL SHEET NO. OZ/TON A ₹. OZ/TOM

215.3 330.4 | 337.0 | QUARTZ FELDSPAR PORPHYRY (C-ZONE) 330.4 BIOTITIC GROUP 250.1 ANDESITIC GROUP DIORITE DYKE 293.7-294.7 DIORITE DYKE Amygdular with well developed pillow margins. 246.8-297.3 Diorite Marker. 274.0-282.0 Silicified Biotitic. Steel grey. Very hard unit. 286.5-287.0 Brecciated section-chloritic matrix siliceous fragments. 1-2% diss. Py. Q.C.V. throughout. NB Veins are undeformed 224.2-226.0 Wall rock inclusion? Xenolith? Disseminated pyrite in 297.0-299.8 Quartz Carbonate Vein-minor sulphides. 265.4-268.2 DIORITE DYKE 258.7-261.6 Andesitic Group-pillowed. Well developed folation. Amygdaloidal Disseminated Py.-Po.-Aspy. throughout the following sections: 303.0-304.0, 307.1-309.1, 310.4-311.9, 317.5-Highly sheared. Well developed fabric (conjugate set) Amygdular. Quartz Carbonate Vein 301.1-302.2, 315.0, 323.1-323.8, 326.0. From 300.0 to 330.4 whole section highly sheared. 324.9-330.3. 2608 2614 2608 2608 2608 2608 2609 2609 2609 26142 315.5 224.2 310.4 317.5 319.5 322.1 295.0 297.0 298.0 303.0 307.1 298.0 300.0 226.0 317.5 326.9 311.9 319.5 322.1 323.1 304.0 309.1 .09 .01 .02 .03 .03 .03 .03 ₹

337.0 381.3 FROM FOOTAGE 340.0 388.0 381.3 5 388.0 364.5-365.0 Quartz vein with sulphidized wallrock. 377.7-378.2 Talc-Chlorite Schist. Contact mineralized Ga-Sph. 349.0-351.2 Disseminated sulphides Py.-Po.-Aspy. and silicification. 358.0-360.0 355.0-360.0 351.2-353.0 346.0-348.0 Sericitic alteration and silicfication. 380.0-381.3 Lt. brown quartz vein. 341.6-342.0 Quartz carbonate vein . BIOTITIC GROUP TALC-CHLORITE SCHIST Zone of alteration where biotite selvages occur on the Sericitized Zone. Sericitized zone with disseminated sulphides. 6" Fault zone. Entire unit is highly sheared and permeated by deformed End of Hole. Hole Cemented Casing Pulled Fault gouge (1/2) quartz carbonate veinlets. Quartz Vein with minor sulphide stringers. DESCRIPTION 26156 26157 26158 26159 26160 26161 <u> 2</u>6143 26095 26096 26097 26098 26098 26100 6094 Ņ, 10ES 326.9 328.3 339.5 341.0 376.7 378.2 348.9 350.3 351.3 355.0 374.7 364.2 357.0 358.5 363.2 FROM SAMPLE 377. 379. 376. 358. 395. 364. 365. 328.3 330.3 341.0 342.6 350.3 351.3 357.0 5 Tr. .29 ASSAYS MOT/ZO OZ/TON

NAME OF PROPERTY_

HOLE NO.

86 - 11

McFinley Red Lake Mines Limited

SHEET NO.

4 of 4

NAME OF	NAME OF PROPERTY	McF	inley Red l	McFinley Red Lake Mines Limited	ited	
HOLE NO.	86-12		LENGTH_	392.5'		
LOCATION	McFinl	McFinley Parking Lot	ng Lot			
LATITUDE	10150 N		DEPARTURE	E 10249.8 F	F	
ELEVATION			AZIMUTH (	090 (grid) our		-55°
STARTED_	December 1	2, 1986	FINISHED_	STARTED December 12, 1986 FINISHED December 13, 1986	1986	

FOOTAGE DIP  14 -58°  392.51 -57°	1 1 1	AZIMUTH FOOTAGE 093 138	FOOTAGE	DIP	AZIMUTH
392.5	-57°	138			

Ę.	
0 100	
HOLE NO. 86-12	
SHEET	
Š	
<u>Lof3</u>	

Drilled by Morissette BQ Core. REMARKS

LOGGED BY_ M. Lamoureux

FROM TO   TO   TO   TO   TO   TO   TO   TO
A O E   A O E S C R I F T I O N   A O S   A O E S C R I F T I O N
SAMPLE   ASSAN   SAMPLE   ASSAN   AS
SAMPLE
FROM TO TOTAL % 20/TON  PROM TO TOTAL % % 02/TON  Au  21.3 22.4 1.1  29.3 30.6 1.3  29.3 30.6 1.3  29.4 5 44.5 2.0  44.5 46.5 2.0  44.5 46.5 2.0  44.5 46.5 2.0  46.5 48.0 1.5  48.0 49.1 1.1  60.6 62.6 2.0  60.6 62.6 2.0  60.7 0.0 73.0 2.0  73.0 75.0 2.0  .01
FROM TO TOTAL % % 02/TON AU  21.3 22.4 1.1
TOTAL
ASSA AZ/TON AU  AU  AU  AU  AU  AU  AU  AU  AU  AU
ASSA 202/TON Au  .01 .04 .25 .01 Tr18 .01 .03
ASSAY OZ/TON Au  .01 .04 .25 .01 .18 .01 .03
02/TON AU AU 1704 .25 .01 .18 .01 .01

HOLE NO. __ 86-12 ____ SHEET NO. 2 Of 3

NAME OF PROPERTY MCFinley Red Lake Mines Limited

FC	FOOTAGE	DESCRIPTION			SAMPLE	m				ASSAYS		
FROM	10		NO.	\$ SULPH	FROM	FOOTAGE	TOTAL	32	*	0Z/TON	NOT/ZO	
			0665		75.0	76.2	1.2			.02		
76.2	81.2	ANDESITIC GROUP 78.6-79.6 Biotitic section. 79.1 Qtzsphalerite vein.										
81.2	95.6	ROUP  Frequent qtzcarb. veining. Some sulphide veins.  Otz _Pv _Po _Snhal vein	25991 25992		8 <b>4.</b> 0	86.0	2.0			0		
			25992 25993 25994		86.0 90.0	90.0 91.0	1.0			.02		
95.6	97.5	QTZFELDSPAR PORPHYRY										
97.5	106.4	BIOTITIC GROUP										
106.4	126.4	ANDESITIC GROUP 120.0-121.0 Biotitic bit.										
126.4	132.0	DIORITE DYKE					-					
132.0	174.4	ANDESITIC GROUP Amygdoloidal in places. 169.2-170.6 Biotitic bit.		٠.,								
174.4	183.3	DIORITE DYKE							<u> </u>			
183.3	218.7	ANDESITIC GROUP  Pillowed.  199.0 Qtzcarb. vein. 2" wide.  Numerous chlorite-carbonate veins.										<del></del>
218.7	226.2	BIOTITIC GROUP 244.3 Qtz-carbepidote-sulfide vein @ 70° to C.A. Qtzcarb. veins to 225.3.				· · · · · · · · · · · · · · · · · · ·						
226.2	226.5	DIORITE MARKER										
226.5	229.3	BIOTITIC GROUP 228.8 QtzPoVein-1/2" wide.			· · · · · · · · · · · · · · · · · · ·							
229.3	241.8	ANDESITIC GROUP										
241.8	244.4	DIORITE DYKE										<del></del>
244.4	246.4	ANDESITIC GROUP										·•···
246.4	256.3	BIOTITIC GROUP	25995		246.5	247.6	1.1			.01		

	<i>,</i> 												
	384.2	356.0	342.6			319.2	3∪4.0	299.3	256.3		246.4	FROM	F00
	392.5	384.3	356.0			342.6	319.2	304.0	299.3		256.3	70	FOOTAGE
392.5 E.O.H. Casing Pulled. Hole Cemented.	375.3-375.8 Silcified pod w/Py. and Po. 378.6-384.3 Extensive fuchsite alteration. TALC SCHIST	ded on both contacts	ANDESITIC GROUP 351.0-351.2 Medium grained chloritie-actinolite carbonate "vein"-no apparent chilled margins contact at 65° to C.A.	338.0 2½" wide qtz. sulfide vein.	ein. arnet porphyroblasts. ed area. ating biotitic and andesitic with fuchsite altera-	BIOTITIC GROUP  Frequent Qtzsulfide veining, veins at 75° to C.A. to  322 2'	QUARTZ FELDSPAR PORPHYRY  Sericitic alteration.  316.0-319.2 Phenocrysts have disappeared.	BIOTITIC GROUP 300.1-304.0 Frequent Q.C.V. 302.3-303.0 Q.C.V.	ANDESITIC GROUP 279.2 Fault. 279.6-280.0 Many qtzcarb veins @ 70° to C.A.	252.4-252.8 Fault zone.  Samples- 996 & 997- minor Py., Po. and Aspy.  254.8-255.3 Fault zone.	BIOTITIC GROUP continued		DESCRIPTION
		26147 26221 26222 26223 26223		26220	25999 26214 26146	25998				25996 25997		z Ģ	
												IDES	
		365.0 367.0 372.0 372.3 377.0		337.3	321.2 323.2 324.0	319.2				248.5 250.5	) ) 1	FROM	SAMPLE
		367.0 368.3 374.0 374.0 376.6		338.3	323.2 324.0 326.0	321.2	<u> </u>			252.3	) ;	10	LE
		2.0 2.0 1.7 1.6		1.0	2.0 0.8 2.0	2.0				1.8		TOTAL	
												22	
												24	
· · · · · · · · · · · · · · · · · · ·		T. 27.67.		.04	.07 .24 Tr.	.02				.01	3 A	OZ/TON	ASSAYS
		*			*							OZ/TON	

HOLE NO. 86-12 McFinley Red Lake Mines Limited

SHEET NO. 3 of 3

NAME OF	NAME OF PROPERTY McFinley Red Lake Mines Limited
HOL F NO.	-98
LOCATION	McFinley Parking Lot
LATITUDE	10150 N DEPARTURE 10249 E
ELEVATION	
STARTED	December 12, 1986

FOOTAGE	ala	AZIMUTH FOOTAGE	FOOTAGE	OIP	HTUMIZA
16'	51½°	093			
384 '	49°	138°			•

Ď.
Š.
86-13
SHEET
Š.
1
of

Drilled by Morissette BQ Core.

REMARKS_

LOGGED BY M. Lamoureux

	FOO.	TAGE				SAMP	LE			>	SSAYS	3
<del></del>	FROM	01	- C Z	N 0 .	Sagi Francis	FROM	FOOTAGE	TOTAL	94	34	OZ/TON O	OZ/TON
	0.0	16.0	CASING								Au	
	16.0	20.1	ANDESITIC GROUP Infrequent Q.C.V.									
	20.1	21.0	CHERT UNIT  Banding at 65° to C.A.	26225		20.1	21.0	0.9			<u>ਤ</u>	<del>-</del>
	21.0	28.6	BIOTITIC GROUP 25.5 2½" wide Q.C.V.									
<del></del>	28.6	29.2	CHERT UNIT Po. and Py.	26208 26226		26.6 28.6	28.6 29.2	2.0			Tr.	*
	29.2	41.3	BIOTITIC GROUP	2620/		29.2	31.2	2.0				
	41.3	42.0	CHERT UNIT	26227		41.3	43.3	2.0			.02	
	42.0	42.2	BIOTITIC GROUP	26228		43.3	45.3	2.0			.01	
	42.2	42.6	CHERT UNIT	26229		45.3	47.4	2.1	-		.02	
	42.6	43.2	BIOTITIC GROUP Slight sericitic alteration.									
66-1168	43.2	47.4	CHERT UNIT  Cut by later qtz. veins and chloritic alteration poorly banded in these places!  Minor disseminated sulfides.									
NTO - 3	47.4	51.0	BIOTITIC GROUP 49.7-51.0 Qtz. vein.									
TORC	51.0	54.6	ANDESITIC GROUP	<del>-</del>								
	54.6	55.2	DIORITE DYKE				•					
IGRIDG	55.2	55.7	ANDESITIC GROUP									
LAN												

## DIAMOND DRIFT RECORD

HOLE NO. 86-13 NAME OF PROPERTY_ McFinley Red Lake Mines Limited 2 of 4

SHEET NO.

133.2 135.2 128.8 123.3 103.0 77.9 65.4 55.7 FROM 92.1 72.2 71.0 FOOTAGE 72.2 65.4 92.1 77.9 71.0 170.4 135.2 133.2 128.8 123.3 103.0 93.5 70 ANDESITIC GROUP 72.2-72.5 Qtz. 73.8-74.2 Much DIORITE DYKE 170.4-171.8 Qtz. veining. 80.9-81.3 82.7 83.2-83.5 86.7-87.0 89.1-89.4 FELDSPAR PORPHYRY CHERT UNIT (FOOTWALL CHERT)

Py., Po. minor Aspy., and V.G.

V.G. @ 70.0' in a qtz. cross fracture.

@ 75° to C.A. ANDESITIC GROUP 149.0 Qtz. 56.0 57.0 BIOTITIC GROUP BIOTITIC GROUP BIOTITIC GROUP 80.5 1" BIOTITIC GROUP BIOTITIC GROUP ANDESITIC GROUP DIORITE DYKE ANDESITIC GROUP 60.8-62.2 99.1-99.7 Frequent Qtz. veining. Qtz.-sulfide vein.
Much fine qtz. veining
73.7- 1/2" wide sphal vein. Bleached fault zone, 2" wide. Qtz.-sulfide veining with. Cpy, Py. Po More B Vn. coarse grained Aspy. and Py. More B-Vn. 4" wide bleached zone w/2mm wide qtz. veins @ 30°to C.A. Conjugate shear fabric. Sericitic alteration. B Vn.-massive Aspy., Py., and Shal. Lots of garnets. 1" wide qtz. vein. 1" wide qtz. sphal vein. vein. DESCRIPTION 26708 26244 26244 26245 26246 26246 26752 2614 2623 2614 2615 2623 2624 Ž O 81.3 83.2 84.3 86.3 56.8 58.8 60.8 62.5 64.5 67.4 72.2 72.8 FROM SAMPLE 83.2 84.3 86.3 87.8 89.8 58.8 60.8 62.5 63.5 67.4 72.8 74.8 69.4 70 1.9 2.0 2.0 2.0 2.0 1.7 1.0 2.0 2.0 2.0 2.0 2.0 TOTAL V.G. .06 .28 .07 .08 .08 **ASSAYS** Tr. 12 OZ/TON .02 Tr. 7r. Au 2.08 OZ/TON * W

HOLE NO.

86-13

__ SHEET NO.__

3 of 4

NAME OF PROPERTY....

McFinley Red Lake Mines Limited

							_		<i></i>										,	
336.1	315.0	302.4	301.4	284.3	284.0	276.5	266.7	261.0	251.7	243.5	243.1	242.9	241.3	229.1	228.6	218.6	215.5	177.5	FROM	F00
346.1	336.1	315.0	302.4	301.4	284.3	284.0	276.5	266.7	261.0	251.7	243.5	243.1	242.9	241.3	229.1	228.6	218.6	215.5	70	FOOTAGE
ANDESITIC GROUP	BIOTITIC GROUP 315.0-320.0 Frequent Qtz. veining. 320.7-372.4 Silicified pod.	QUARTZ FELDSPAR PORPHYRY (C ZONE PORPHYRY)	BIOTITIC GROUP	ANDESITIC GROUP	DIORITE DYKE	ANDESITIC GROUP	BIOTITIC GROUP	ANDESITIC GROUP Foliation at 63° to C.A.	BIOTITIC GROUP 252.4-252.5 Qtz. sulfide vein. 253.1-255.5 Fault zone. With many bleached fractures. Faults at 253.2-253.6 and 254.6	ANDESITIC GROUP Foliation at 75° to C.A.	DIORITE DYKE	ANDESIITC GROUP	DIORITE DYKE	ANDESITIC GREOUP Well developed pillow selvages.	DIORITE MARKER DYKE	ANDESITIC GROUP Well developed pillow margins.	BIOTITIC GROUP	ANDESITIC GROUP 186.7-187.9 Frequent qtz. veining. 198.0-198.2 Qtz. vein.		DESCRIPTION
26154	26253 26255	26152							26254										Z O	
	. (4) (4) (4								<b>D</b>										10ES	
331.5	9.7.								252.4		_								FROM	SAMPLE
333.5	320./ 322.4 331.5	3							254.4										70 AGE	m
2.0	• • •	) )							2.0										TOTAL	
			_			_				•									28	
												_				· ·			32	
īr.	.11	3							.02									à	0Z/TON	ASSAYS
	×	+																	OZ/TOM	

HOLE NO. _ NAME OF PROPERTY___ 86-13 __ SHEET NO. ___ 4 Of 4

McFinley Red Lake Mines Limited

		,		
373.0	346.1	FROM	FOO	
385.2	373.0	70	FOOTAGE	
TALC SCHIST	BIOTITIC GROUP 357.3-360.7 Silicified pod. Few sulphides. 362.2-364.4 Fault zone- many bleached fractures. Fault at 363.7. 367.2-370.4 Fault zone. Faults at 368.7 and 369.6.		DESCRIPTION	
0.00	26256 26257 26258	v o		
		1DES		חטרב אט.
000.0	337.3 359.3	FROM	SAMPLE	
0	355.3 360.7	TO	Ē	
	2.0 1.4	TOTAL		
		92		- אובנו
		32		E NO.
	Tr. A	0Z/TON	ASSAYS	
		OZ/TOM		

STARTED	ELEVATION	LATITUDE	LOC ATION	HOLE NO.	Z X M
ED	TON	Ö	Ö	0	9
	9981	9300 N		86-14	NAME OF PROPERTY
December 12, 1986 FINISHED	HTUMIZA_	DEPARTUR		LENGTH	McFinley Rec
January 14, 1987	Vertical	DEPARTURE 9216 E			McFinley Red Lake Mines Limited
, 1987	ם קום				imited
	ુ89°				

	FOOTAGE
	DIP
	AZIMUTH
	AZIMUTH FOOTAGE
	DIP
	AZIMUTH

REMARKS B.Q.	HOLE NO. 86-14
B.Q. Core	SHEET NO. 1 Of 13

LOGGED BY P. A. Fernberg

Drilled by Morissette

	FOO.	TAGE	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			SAMP	PLE			A S	SAYS	
	FROM	10		NO.	HA MS	FROM	FOOTAGE TO	TOTAL	24	<b>34</b>	OZ/TON OZ/TON	l
·····	0.ũ	7.5	OVERBURDEN								Au	
	0.0	10.0	CASING									
	7.5	42.0	BIOTITIC GROUP									
			Well sheared (fabric 30°) carbonatized, frequent to							· ·		
				<u>·</u>								
										<del></del>		
			; 60° to C.A. , 3% PoPy. in cross-fractures.	26166		22.4	23.4	1.0			Tr.	
	42.0	47.5	Ϋ́ ·									
			Contact 25° to C.A. Carbonatized.  Quartz phenocrysts- 2mm.									
	47.5	59.0	BIOTITIC GROUP									
		-										
			57.7-58.4 Rehealed fault.									
	59.0	84.9	ANDESITIC GROUP									
366-1168			Sheared (tolition 40° to C.A.) occasional Q.C.V. occasional amygdule area (less 2 ft. long), patchy carbonatization.									
TO -	84.9	106.1										
TORON			25% Quartz phenocrysts-rounded, 1-2mm, translucent,							<del>-</del>		
OGE6 ~			92.5-93.9 Blocky and broken core.					<u> </u>				
ANGRI			U Hematite staining prevelant.	26167	··	101.7	102.7	1.0	-		.01	
L			=======================================				l					

HOLE NO. SHEET NO. 2 of 13

NAME OF PROPERTY_

McFinley Red Lake Mines Limited

_										
	FOOTAGE	AGE	DECORPTION			SAMPLE	Ī		ASSAYS	
	FROM	10		NO.	SULPH,	FROM	FOOTAGE	TOTAL	MO1/20 % %	OZ/TON
	106 1	112 h	RIOTITIC GROUP _		·				Au	
			Amygdaloidal. Carbonatized. Occasional Q.C.V. Sheared. 108.1-109.4 2% Py. stringers, minor faulting.							
	112.6	113.4	CHERT UNIT  Banded (20° to C.A.), PyPo. stringers plus Sph. 2	26168		112.4	113.6	1.2	.02	
	113.4	127.6	ANDESITIC GROUP  Very fine grained. Sparse Q.C.V.  120.4-127.5 Area of small faults, 30-75° to C.A.							
	127.5	147.9	BIOTITIC GROUP Carbonatized. Occasional Q.C.V. Foliation 30° to C.A.		<u></u>					
<del></del>				26169		133.4	135.4	2.0	Īr.	
	147.9	159.2	DIORITE DYKE Porphyritic Contact 35° to C.A. Quartz phenocrysts. 147.9-148.9 Multiple fault? fracturing, minor silicification?							
	159.2	172.6	BIOTITIC GROUP Carbonatized. Infrequent Q.C.V. 160.4-161.0 Q.C.V. crosscut by quartz veining.							
	172.6	203.2	ANDESITIC GROUP Carbonatized. Biotitic alteration common along foliation (30° to C.A.) Sparse Q.C.V. Minor disseminated Py. 174 7-177 5 Well sheared		·					<del> </del>
	_									
	203.2	212.8	DIORITE DYKE  Contact 40° to C.A., marked by bleaching and carbonatiz- ation due to faulting at contact.							
	212.8	236.4	ANDESITIC GROUP 212.8-215.1 Biotitic alteration, amygdaloidal, sheared, 3% Po.+Py. 215.1-236.4 Very fine grained, homogenous, sparse Q.C.V., carbona- tized, several massive PoPytourmaline stringers (1/8' 60° to C.A.) biotitic alteration along foliation(40° to		<del></del>					

HOLE NO. 86-14 NAME OF PROPERTY McFinley Red Lake Mines Limited __ SHEET NO.____ 3 OF 13

				-	ר ר				STEEL NO.	
	F00	FOOTAGE				SAMPLE	m		ASSAYS	
	FROM	01	מהטכת זה הבינה של היים היים היים היים היים היים היים היי	v O	₹ SULPH	FROM	FOOTAGE TO	TOTAL	% % OZ/TOM OZ/TON	
	226 /	3 53 5	RIOTITIC GROUP						Au	
	230.4	203.5	Carbonatized, sheared (35° to C.A.) frequent Q.C.V.  amygdaloidal, contacted and flattened pillow selvages,							
			.V.:20° to C.A., 1-2% Py. in cross-fractures. .V.:20° to C.A., 1-2% Py. in cross-fractures. rtz-Sulphide Vein ; ½" wide, 45° to C.A., SphGal	26170		250.1	251.1	1.0	.03	
<u> </u>			262.0-262.4 Q.C.veining and 3% SphPo-Py. stringers. 263.2-263.5 Fault zone, recemented gouge and breccia, blocky broken core.							
	263.5	268.3	DIORITE DYKE Upper and lower contacts obscured by faulting.	26171		261.9	262.9	1.0	.03	
	268.3	275.6	ANDESITIC GROUP Carbonatized. Occasional Q.C.V., folation 35°.							
	275.6	285.8	BIOTITIC GROUP Carbonatized. Occasional Q.C.V.	26172 26173		275.7 277.0	277.0 278.0	1.3 0.3	.01	
			Lithological I PoPy. lamel Q.C.V., 3% Spi	•						
			283.9-284.5 Q.Cchlorite vein:; 45° to C.A., 1-2% PoPyCpy. as blebs and small stringers.							
	285.8	371.0	ANDESITIC GROUP  Carbonatized. infrequent Q.C.V., biotitic alteration along foliation (25-30° to C.A.) occasional Po. stringers 302.0-371.0 Pillow selvages, associated PyPo.+ Cpy.		•					
	371.0	380.8	BIOTITIC GROUP Carbonatized							
· · · · · · · · · · · · · · · · · · ·	380.8	419.0	ANDESITIC GROUP Pillowed. Carbonatized. Selvages marked by chlorite, actinolite, Po.blebs and stringers. Biotitic alteration along folation (35° to C.A.), infrequent Q.C.V. sheared.	<del></del> ,						
	419.0	433.0	BIOTITIC GROUP Carbonatized. pillowed selvages less distinct, sparse Q.C.V., sheared, minor disseminated sulphides.							

HOLE NO. 86-14 SHEET NO. 4 Of 13

McFinley Red Lake Mines Limited

							-	
699.5 702.2	689.5	628.0	614.0		433.0	419.0	FROM	FOOTAGE
702.2 786.0	699.5	689.5	628.0		614.0	433.0	70	AGE
DIORITE DYKE  Contact 40° to C.A.  ANDESITIC GROUP  Pillowed. Carbonatized, sparse Q.C.V. 1-2% Po. + Py.  along selvages. 1-2 ft. zones of biotitic group.  705.8-710.0 Coarse amygdules, infill with sulphides.  709.5-725.7 Massive.	636.2-637.4 Q.C. Vein, 20° to C.A., 2% Po. 640.3-640.8 Quartz vein; minor PoPy. 640.7-641.8 Well sheared, foliation at 55° to CA 665.6-671.4 Several quartz-chlorite to Q.Cchlorite veins. 683.5-684.0 Diorite dyke. BIOTITIC GROUP Pillowed. Carbonatized, sparse Q.C.V. Foliation 45° to C.A.	ANDESITIC GROUP  Pillow selvages common, carbonatized, sparse Q.C.V.  minor areas of biotitic alteration.  634 4-635 0 Duarty vein 20° to C.A.	BIOTITIC GROUP  Carbonatized, sparse Q.C.V., occasional amygdules. 627.5-628.0 Q.C.V; 1" semi-massive band Sph-gal., 60° to C.A.	506.5-553.2 Tourmaline-bearing zone; Pillowed selvages contain up to 20%, large, tourmaline rosettes with accessory Po-Py., plus tourmaline along fractures. Infrequent Q.C.V.  Andesite is aphanitic to very fine grained.	ANDESITIC GROUP Carbonatized, sheared, occasional Q.C.V., biotitic alteration along foliation. eration along foliation. 433.0-476.0 Pillowed, well-flattened (fabric 40°) 494.0-506.5 Pillowed, selvages marked by chlorite-actinolite, Po.	BIOTITIC GROUP continued 423.2-433.5 Q.Cchlorite vein. 426.8-427.2 Q.C. vein. 428.8-431.5 Andesitic, less sheared.		DESCRIPTION
.,	26175		26174				z o	
							IDES	
	636.0		627.5				FROM	SAMPLE
	637.5		628.5				FOOTAGE	E
			1.0				TOTAL	
							**	
							×	
			.ਜੋ 			Au	OZ/TOM	ASSAYS
	· · · · · · · · · · · · · · · · · · ·	·					OZ/TON	
	0 24	. '						

McFinley Red Lake Mines Limited

HOLE NO. NAME OF PROPERTY____ 86-14 ___ SHEET NO. 5 OF 13

868.0	865.0	851.5	847.7	809.8			786.0	702.2		FROM	FOO
887.4	868.0	865.0	851.5	847.7			809.8	786.0		10	FOOTAGE
ANDESITIC GROUP Carbonatized, rare Q.C.V., occasional biotitic alteration along goliation (30°) 868.0-873.0 Pillow selvages. BIOTITIC GROUP Carbonatized. 892.8-894.4 Well sheared (fabric 25° to C.A.)	DIORITE DYKE  Contact 30° to C.A.	ANDESITIC GROUP  Similar to 309.8-347.7  851.5-855.5 Interflow breccia? foliation 50° to C.A.	DIORITE DYKE Contact 45° to C.A.	847.7 ANDESITIC GROUP  Massive homogenous, carbonatized, sparse Q.C.V, very fine grained predominantly. Occasional areas (1-3 ft) of biotitic group.  836.4-837.1 Q.Cchlorite vein, accessory tourmaline, 5° to C.A.	804.8-809.8 Pillow breccia, 1-2% disseminated Po., carbonate-chlorite cement.	800.5-800.8 Chert fragments, laminated. 800.8-802.7 Sulphide Zone- 40% sulphides, SphPoGal., banded . 26177	BIOTITIC GROUP  Pillowed (well flattened, 30° to C.A.) coarse amygdules, occasional Q.C.V. PoPy. associated with selvages.	ANDESITIC GROUP continued 729.0-757.0 5-10% Po. within pillow selvages. 729.0-757.0 5-10% Po. within pillow selvages. 759.3-760.6 Biotitic alteration-10% Po. + Py., sheared (50° to C.A.) 2764.5-764.8 Interpillow sediments-banded 30° to C.A. 756.6-778.7 Carbonatized, bleached.			DESCRIPTION
					26179 26180	6177 6178		26176		NO. 7.5	
	<u>.                                    </u>									% SULPH,	
				<del> </del>	815.6 808.0	800.7 801.7	,	759.3		FROM	SAMPLE
				···	807.6 809.8	801.7 802.7		760.8		TO	m
					2.0	1.0		1.5		TOTAL	
						. <del>.</del>				%	
										%	
						.04		.01	Au	OZ/TON	ASSAYS
										OZ/TON	

932.5 927.0 986.0 FROM FOOTAGE 932.5 | 986.0 | DIORITE DYKE 927.0 982.0 941.2 ANDESITIC GROUP ANDESITIC GROUP DIORITE DYKE BIOTITIC GROUP 944.0-944.2 3% Py. along minor fault fractures. 954.3-955.3 Minor fault, less than 5° to C.A., slight right hand 916.0-920.7 Medium-grained-actinolite. 963.0-965.0 Alteration Zone - intensely sericitic alteration, bio-titic alteration along foliation, minor folding minor Q.C.V. Py.-Po. plus minor Sph., from 963.0-964.4 ft. 956.5-957.4 Silicification. 958.6-960.0 Q.C.-Green carbonate vein, 35° to C.A. sheared and bio-927.0-930.0 Possible area of inter flow breccia. 929.0-932.0 Intensely carbonatized, foliation 40° to C.A. 922.0-927.0 Possible areas of interflow breccia. 897.4-902.7 Several pillow selvages. ANDESITIC GROUP 965.0-982.0 Fine-medium grained, occaaional Q.C.V., sheared (folia-tion 40° to C.A.) 894.4-897.4 Chlorite rich. ANDESITIC GROUP Minor fault; 50° to C.A. Actinolite. Fine to medium grained, moderate amount of actinolite, slight foliation (40° to C.A.) occasional Q.C.V. (1/2"-1/32")Rare Q.C.V. Carbonatized. Non-carbonatized. Carbonatized, rare Q.C.V. displacement. disseminated Py., sparse Q.C.V. Biotitic alteration along foliation (40° to C.A.), minor titic alteration halo. DESCRIPTION 2618 ĕ 962.9 FROM SAMPLE 965.0 TOTAL ASSAYS 02/TOM .01 a OZ/TON

NAME OF PROPERTY MCFinley Red Lake Mines Limited

SHEET NO. _____ 6 Of 13

HOLE NO.

86-14

HOLE NO. 86-14 NAME OF PROPERTY____ McFinley Red Lake Mines Limited

FOOTAGE FROM TO 986.0 1157
1157.4 1295.
·
1295.5 1299.8
-

1388.0 1327.0 1342.0 1383.1 1381.3 1312.5 1384.311385.1 1342.0 | 1381.3 | ANDESITIC GROUP FROM FOOTAGE 1398.6 1384.3 1383.1 1327.0 70 TALC -SCHIST UNIT ANDESITIC CHERT GROUP ANDESITIC GROUP CHERT GROUP ANDESITIC GROUP ANDESITIC GROUP 1315.8-1316.2 Q.C.V.; 1% Cpy-Sph along contact and fractures. 1321.0-1327.0 Intensely sheared, chloritic and minot talc, fabric 40° to C.A. Upper contact marked by 2" pink calcite 1372.0-1375.0 Coarser-grained; biotitic alteration along foliation (55° to C.A.) Gradational contact. 1342.0-1372.0 Talc content progressively decreases down measure. 1314.8-1315.8 Porphyritic (feldspar) 1314.6-1314.8 Minor mafic dyke (diorite?) Fine-medium grained, 20% carse actinolite, moderate moderate degree of biotitic alteration. Q.V. 1386.2 - 1388.0 Chert of ironstone, minor Cpy. associated with ½" wide Minor disseminated Py. actinolite indicate foliation (40° to C.A.) infrequen Gradational contact. Blue-black solour, accessory and Progressively talcose towards bottom of measure. vein (40° to C.A.) and sulphides along foliation. veinlets follow along and are offset by laminations. Dark gray, laminated (20°) to C.A. silica. Minor Q.C. Actinolitic Unit Dark grey, laminated (30° to C.A.) silica. 5" bands Distinct contacts, minor Cpy. in fractures. carbonate veinlets, coarse-grained, talcose. Well sheared (50° to C.A.) minor biotitic alteration DESCRIPTION 27637 27639 P7640 7638 Ņ, 1386.3 |1388.3 | 2.0 1384.3 |1386.3 | 2.0 1383.1 |1384.3| 1.2 1381.1 SAMPLE 1383. TOTAL ASSAYS Au OZ/TON 국. ₹. ₹. ₹. OZ/TON

NAME OF PROPERTY MCFinley Red Lake Mines Limited

SHEET NO.

HOLE NO.

NAME OF PROPERTY McFinley Red Lake Mines Limited Hole No. 86-14 SHEET NO. 9 of 13

FOOTAGE	AGE				SAMPLE	_				ASSAYS		
FROM	70	DESCRIPTION	Ņ,	SULPH,	FROM	FOOTAGE	TOTAL	38	22	NOT/ZO	OZ/TON	}
1398.6	1398.6 1473.0	dark gray ironstone and silica (banding 30° to minor Py./Po. in fractures and along ironstone	26182 26183 26184			1400.4 1402.4 1404.4	2.0		·	TTT [®]		
		possible rehealed fault , minor Po. laminated (30° to C.A.) silica and iron- ssional chloritic-garnet and actinolite in-	26186 26187		1406.4	1408.4	2.0			Tr.		
		1409.0-1417.6 Similar to 1404.7-1409.0', 1-3% Py. and dominantly Po 26188 laminella, dissemination and blebs, and cross fracture26189 Cpy cross-stringer at 1412.1 ft.  1417.6-1419.5 Predominantly silica, occassional ironstone bands. 26190 1419.5-1422.7 Finely banded meta sediment (chloritic)  Minor grit-sized chert fragmental layers. 26193 1422.7-1424.1 Silica band, semi-massive Py. stringers 1424.1-1432.0 Interbanded biotitic altered meta sediment(?) and Q.C.	26188 26189 26190 26191 26191 26192 26193		1410.4 1411.9 1413.4 1415.4 1417.4 1417.4 1419.4	1411.9 1413.4 1415.4 1417.4 1417.4 1419.4 1421.4	1.5 2.0 2.0 2.0			.02 Tr. 17.		
		1432.0-1443.0 "Bird's Eye" Marker Unit  Pisolitic Tuff (?), 1/16-1/8" accretionary nodules in a quartz-carbonate-chlorite matrix, biotitic partings, occassional garnetiferous bands, minor Po., occassional cross-cutting quartz, narrow veins.  1441.0-1443.0 : convoluted, increased quartz-chloritic alterations and veining 1-2% Po.									· · · · · · · · · · · · · · · · · · ·	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0', occasional silica bands y altered metasediment hert lamellae , 2% Po. lame	26194 26195		1448.7 1452.2	1450.7 1454.2	2.0			.01 .01		
		1460.7-1463.5 Banded ironstone and chert (60° to C.A.),3% Py. stringers.  1463.5-1473.0 Same as 1447.5-1460.7. Lower contact marked by laminated chert band.	26196 26197		1460.6 1462.6	1462.6 1463.6	2.0 1.0		· · · · · · · · · · · · · · · · · · ·	.01		
1473.0	1473.0 1495.0	ANDESITIC GROUP Massive and homogenous, biotitic alteration developed along moderate-strong foliation (35° to C.A.) plus		· 								
		biotitic speckling, rare Q.C.V, minor Py. disseminated 1482.3 Qtz. vein, 2" wide,45° to C.A., 1-2% Po plus accessory	•							_		

NAME OF PROPERTY_______86-14 HOLE NO. __ _ SHEET NO.__ 10 of 13

McFinley Red Lake Mines Limited

	FOOTAGE	AGE				SAMPLE	m				ASSAYS		
	FROM	ō	DESCRIPTION	ŏ	% SULPH	FROM	FOOTAGE TO	ETOTAL	<b>3</b> 9	32	M01/20	0Z/TOM	
	1495.0	1499.2	DIORITE DYKE Contact 40° to C.A.							:	Au		
	1499.2	1499.2 1540.0											
			Occassional biotitic alteration along foliation (55° to C.A.) occassional patchy biotitic alterated zones,										
			1526.0-1540.0 Actinolitic Unit  Coarse actinolitic needles (5-10%) gradational decre-26198	6198 6199		1539.6 1541.6	1541.6 1543.6	2.0			₹₹ 		
							ō					<del></del> -	
			PoCpy., accessory Sph. stringers.	,									
	1540.0	1540.0 1545.3	BIOTITIC GROUP 1540.0-1543.0 Multiple 0Cchlorite veining, convoluted sheared										
	1545.3	1559.7		57.00		15 6	10 40	3		•	₹		
			lae:, banding 25° to C.A., minor Po./Py/	26501		1545.6	1547.4	م <del></del> د			27	<del></del>	
			1547.5-1548.4 Qcbt-chlorite (actinolite) vein; 30° to C.A. 2% Po. 2007.5-1548.4 Qcbt-chlorite (actinolite) vein; 30° to C.A. 2% Po. 2007.5-1548.4 Qcbt-chlorite (actinolite) vein; 30° to C.A. 2% Po. 2007.5-1548.4 Qcbt-chlorite	26503		1548.4	1550.				.05		
			epidote.	6504		1550.4	1552.				28		
			•	26506		1554.4	1556.				3.7.5	<del></del>	
			d clots. Occassional garnetiferous lamellae urrences of chlorite-epidote(?) /sulphide	26507 26508		1556.4 1558.4	1558.4 1559.6	4 2.0 6 1.2			₹'	- <del></del>	
			specking. Increased sulphides at ; 1549.0-1549.6/1551.8-1553.0						-			<del></del>	
			<pre>(Cpy) Occasional narrow cross-cutting quartz veins. At 1552.3-1555.0 : well laminated. 1559.5-1559.7 Andesitic group.</pre>										
	1559.7	1567.6								-			
			1563.0-1563.3 Minor matic dyke and quartz veining.										
	1567.6	1590.5	MELANUERATIC FELDSPAR-QUARIZ PORPHTRY DYKE  Medium grained Feldspar and pink-white Quartz pheno- crysts (2-4mm) 15% phenocrysts, 3% coarse biotite.in										
ı			1									<del></del>	······································

## DIAMOND DRIFT RECORD

1627.8 1626.4 1627.8 FROM 1616.6| 1618.9 1594.1 1616.6 1618.9 1644.5 FOOTAGE 1622.0 1594.1 1644.5 1626.4 1590.5 MELANOGRATIC FELDSPAR-QUARTZ PORPHYRY DYKE continued 1650.0 70 MELANOCRATIC FELDSPAR-QUARTZ PORPHYRY DYKE

Same as 1567.6-1590.5. Strong foliation 30° DIORITE DYKE CHERT GROUP BIOTITIC GROUP BIOTITIC GROUP QUARTZ PORPHYRY ANDESITIC GROUP FAULT ZONE 1645.0-1647.5 Silica cement fault gouge and breccia. 1627.8-1636.8 Elongated and disrupted pillow selvages-accompanied by quartz/chert interlayers, biotitic alteration along26510 1623.1-1623.4 Q.C.V. and chert band (laminated 35° to C.A.) 3% Po. 1647.5-1650.0 Multiple narrow faults and bleaching. Note: host; biotitic group, brown-vitreous "sericitic" alteration 1639.6-1640.0 Minor faulting. 1636.8-1637.2 Chert (?); poorly laminated, wispy, 2% sulphides bands. 1624.5-1624.7 Chert band, laminated, chloritic layers,2% Py. & Po 1613.3-1614.2 Quartz-calcite vein; coarse biotite minor Py. at edges 1640.0-1642.4 Quartz-magnetite pods;two, seperated by 0.5' andesiti Minor diorite dyke at; 1610.2-1610.7. Minor Diorite dykes at; 1564.0-1564.3. Py. cubes, cross-cut by diorite dykes. group, minor Py-Po narrow stringers. Py and very fine-grained Aspy, crosscutting qtz. vein Partially banded (40° to C.A.) 5-10% semi-massive Po. 26509 C.A.), orange hue. Finer-grained at contacts. Contact 45°. foliation (40° to C.A.) common. Fine-grained stretched phenocrysts, (foliation 35° DESCRIPTION to C.A. to ĕ 1639.9 1641.2 1636.6 1626.3 FROM SAMPLE 1641. 1637.6 1.0 TOTAL A ASSAYS OZ/TON .07 .02 .02 OZ/TON

NAME OF PROPERTY_ McFinley Red Lake Mines Limited

86-14

SHEET NO. 11 of

1681.6 FROM 1650.0 1663.5 FOOTAGE 1841.5 1678.3 1681.6 70 BIOTITIC GROUP ANDESITIC GROUP Biotitic alteration along foliation (50° to C.A.) 1684.6-1685.3 Q.C.-chlorite vein, 40° to C.A. 1693.0-1695.7 Fault zone; associated Q.C.-chlorite veining, carbon-ANDESITIC GROUP 1738.2-1738.4 1712.6-1712.4 1735.0-1735.4 1714.5-1745.9 QUARTZ-PORPHYRY 1761.0-1821.2 1751.5-1761.0 1738.4-1753.5 1714.1-1714.5 1695.7-1704.5 1660.9-1663.5 Q.C.-chlorite veining (60° to C.A.) and cross-cutting 1663.5-1674.0 Less than 1% Py. blebs and disseminated, occassional 1677.1-1678.3 Quartz vein; brecciated and rehealed, 2% Py/Po along 655.4-1657.1 Several barren white quartz veins, minor faulting. along fractures. earance, minor bleaching in areas. Highly sericitic, lower contact (40° to C.A.) marked by quartz veinlet and narrow semi-massive sphalerite and Po. Multiple Q.C.V., biotitic alteration along foliation  $(45^{\circ} \text{ to C.A.})$ Quartz veining, 1-2% Py.-Po. disseminations. Chert band; laminated (30° to C.A.), 2-3% Py. lamingenous. Rehealed and silicified fault breccia, silicification Q.C.-chlorite vein; minor Po. silicified wallrock late stage (occ. ptgymatic) quartz veinlets. Intense multiple Q.C.V. (50° to C.A.)-"ribboned" app-V (1_2 per ft) several 4_6" 0.C.-chlorite veins. ations and orthogonal (to lamellae) cross fractures Infrequent Q.C.V., more chloritic, massive and homo-Q.C.-chlorite veins. Numerous fracturing (carbonate infilled) orientations atized gouge, minor silicification. Several narrow faults. biotitic altered mafic minerals. Well-foliated (35° to C.A.), coarser chloritized/ Possible deformed pillow selvages. DESCRIPTION 26513 26514 26515 ĕ HOLE NO. -14 IDES 1660.8 1662.2 1662.2 1663.7 1737.8 1738.8 1677.0 1678.4 FROM SAMPLE FOOTAGE 70 TOTAL OZ/TON **ASSAYS** ₹. 굿. 77 æ OZ/TON

NAME OF PROPERTY___ McFinley Red Lake Mines Limited

12 of 13

SHEET NO.

									<b></b>		_	
	••• [/]	1904.6	1882.2	1866.4	1860.0	1845.4	1841.5		1681.6		FROM	FOG
		1927.3	1904.6	1882.2	1866.4	1860.0	1845.4		1841.5		70	FOOTAGE
93 203 353 463 613 723 723 1173 1174 1174 11853	FOOTAGE	TALC SCHIST	DIORITE DYKE	TALC SCHIST	"GABBRO"	ANDESITIC GROUP	DIORITE DYKE	1821.2-1822.7 1822.7-1833.3	.5 ANDESITIC GROUP 1786.0-1786.6 F 1817.2-1818.8 R		1	
-89° -89° -87° -85° -80° -80° -76°	TROPARI TESTS DIP	E.O.H. at 1927.3 ft. Hole		Magnetic, frequent Q.C.V.	Coarse-grained, chloritc ssively talcose and magn	ccassional Q.C.V., aults, gradational		Q.C. veining. Q.Cchlorite Predominantly appearance.	OUP continued 6 Fault?; silicified. 8 Rehealed fault (0.4' long)		DESCRIPTION	
035° 074° 086° 086° 090° 092° 088° 350°? 358°	AZIMUTH (TRUE)	e cemented.		•	chloritc, serpentine?, becomes progreand magnetic.	moderate bleaching along narrow into lower unit.		vein. coarser, porphyritic (feldspars) in	g) and accompanying pinkish		2	
											z o	
										1000	SULPH	
 •		<del></del>								7		SAMPLE
										l	FOOTAGE	٦٤
									<u>- I</u>	1	3074	
											.,	
				,					Š	Au	02 70#	ASSAYS
		<del></del>		·							02 TON	3
												·
										_		

NAME OF PROPERTY__MCFinley Red Lake Mines Limited____ 86-14

HOLE NO.

SHEET NO. 13 of 13

STARTED	ELEVATION	LATITUDE	LOCATION	HOLE NO.	Z A M
ED	LON	ÖE.	Ö j	Z O	Q F
ŀ	9986.4	10056.9	McFinley Peninsula	86-15	NAME OF PROPERTY
14/86			Penin		
December 14/86 FINISHED	AZIMUTH 090	DEPARTURE	sula	LENGTH	McFinley
December 1//86	_	9888.9 E		607.0'	McFinley Red Lake Mines Limited
	-55°				nited

FOOTAGE	DIP	HTUMIZA	AZIMUTH FOOTAGE	aid	HTUMIZA
52'	-55°				
607 '	-56°	005			

DE NO.
86-15
SHEET
Š.
1 of

REMARKS

Drilled by Morissette BQ Core. LOGGED BY M. Lamoureux

FOOTAG	E	n n o		SAMPLE			ASSAYS	
FROM TO			Hajins on	FROM T	FOOTAGE TO TOTAL	ж	% OZ/TON OZ/TON	¥
0.0 52.0	0 CASING						Au	
52.0 11	112.0 ANDESITIC GR	GROUP					-	
		Very fine grained massive, dark green.						
	87.6-88.3	Rose coloured qtz. veins, with minor sulphides and tou				-		
	88 7 80 /							
		que) serios mentos parpinaco ana						
	92.5-92.7	Rose coloured qtz. veins, with minor sulphides and tou-						
	95.4-95.9	Rose coloured qtz. veins, with minor sulphides and tou						
	103.6-112.0	Andesite becomes <u>fine</u> grained and has a light green bleached appearance.		_				.,
112.0 11	115.5 DIORITE DYKE					-		
115.5 12	129.3 ANDESITIC GROUP							
		defo		<del></del>		-		
		the vicinity of contacts (with Diorite) and around						
		faults. Chlorite and calcite rich.						
	•	Faults @ 116.7 @ 50° to C.A.					·	· · · · · ·
	125.2-125.7	Faults @ 119.2 @ 20° to C.A. Qtz. carbonate tourmaline vein.						
	128.4 122.0-129.3	Fault @ 50° to C.A.  Many irregularly orientated carbonate veins.		······································				
129.3  13	137.3 CHERT UNIT							
		Well developed banding in places.  Many PyPo. filled fractures at irregular orientation 26260 however most are at ann. 10° to C.A. Some of these are beset		129.3 131 131.3 133	22.0		7. Tr.	
		however mos	it are at app. 10° to C.A. Some of these are		133.3	133.3   135.3   2	133.3   135.3   2	133.3   135.3   2.0

NAME OF PROPERTY McFinley Red Lake Mines Limited

	3			Į	HOLE NO.	o. 86-15			SHE	SHEET NO.	2 0	of 7	
	FOOTAGE	GE				SAMPLE	'n				ASSAYS		
FROM	ž	70	CECCAITICA	v O	% SULPH,	FROM	FOOTAGE	TOTAL	'n	38	NOT/IOM	NOT/ZO	
12	129.3	137.3	CHERT UNIT continued 133.2-134.1 Regular banding disrupted by qtz. veining.	26262		135.3	137.3	2.0			Αŭ Tr.		
<u> </u>	137.3	139.1	aloes.	26264 26265 26265 26266		139.3 141.3 143.3	141.3 141.3 143.3 144.2	2.0			2777	<del></del>	
	139.1	147.5	ARGILLITE UNIT 139.9 Fault breccia. 139.9-141.6 Otzchlorite-epidote veining.										
			139.9-141.6 Qtzchlorite-epidote veining. 140.7-140.9 Wavy banding defined by brown biotite? rich bands 140.7 Inclusion of biotitic rock in above qtz. vein- 3" long. 140.7 Refolded qtz. veins-often rootless. 144.3 Refolded disrupted veins of sulphides. 145.7-146.0 Blebs and disrupted veins of sulphides. 146.4 Very irregular fault that follows the length of the core										
			to 149.0. Mineralized by pyrite in places.  147.3 Fault gouge with fragments aslarge as 3 cm healed by cal-										
14	147.5	153.1	BIOTITIC GROUP 149.3 Fault gouge. 150.0 1/2" wide qtz. vein @ 10° to C.A.									<del>-</del>	
15	153.1	154.4	unded (by pressure solution) chert frag- illite matrix. Also present are bandings	26267 26268		153.1 155.1	155.1 157.1	22.0			Tr.		
			or qcz. veins.  154.4-154.8 Qtz. carbonate tourmaline vein @ 90° to C.A. cut by later extensional qtz. veins \( \begin{align*} \text{to foliation (foliation} \) @ 75% C.A.) these qtz. veins are confined to this unit.	26270		159.1 161.1	161.1	2.0			.01		
15	154.4	163.3	ARGILLITE UNIT  Very well laminated qtz. vein. \( \) to laminations are pty-  amatic and shortened by as much as 50%.										
· · · · · · · · · · · · · · · · · · ·			Sulphides when present are restricted to bands // to laminations or disseminated in crosscutting qtz. veins.  Some areas are massive.  163.0-163.3 Interlayer of chert.									<del></del>	
163.	3	169.3	BIOTITIC GROUP Frequent Q.C.V. at 70° to C.A.										

177.6 240.6 237.1 187.4 180.3 169.3 273.2 257.8 255.4 FROM FOOTAGE 275.1 240.6 183.3 177.6 180.3 273.2 257.8 255.4 BIOTITIC GROUP Medium grained. Frequent Q.C.V. ANDESITIC GROUP ANDESIITC GROUP ANDESITIC GROUP BIOTITIC GROUP DIORITE DYKE BIOTITIC GROUP 213.5-213.6 Fault gouge and bleached zone with carbonate and epidote 215.7-216.2 Rose qtz.-carb-tourmaline vein. ANDESITIC GROUP ANDESITIC GROUP CHERT UNIT 221.7-221.9 Qtz.-carb. vein with the qtz. in the middle. 217.7-218.7 Convoluted and deformed qtz. carb epidote vein. 205.7-206.1 Rose qtz.-carb-tourmaline vein.Medium grained w/visible 227.8 4" wide rose qtz. carb. epidote vein. 231.4-237.1 Frequent qtz. carb epidote veining. 255.4-255.6 Magnetite chert- no visible sulfides. 263.4-264.0 Q.C.V. 255.9-256.3 Massive Po.-possible sedimentary origin. 255.6-255.9 Biotitic. 195.6-195.7 Rose qtz.-carb-tourmaline vein. 256.3-257.8 Magnetite chert with irregular rare blebs of Po. 196.0-196.7 Rose qtz.-carb-tourmaline vein. 194.9-195.2 Rose qtz.- carb-tourmaline vein. Frequent Q.C.V.-chlorite veining. actinolite laths. Massive fine grained bleached to grey green. Frequent qtz.-carb.-chlorite veining. Medium grained with visible laths of actinolite. This area is much lighter green and in some places DESCRIPTION 2627 2627 Ş FROM SAMPLE 257.4 258.1 7 TOTAL a ASSAYS 0Z/TOM 7.7 OZ/TOM

NAME OF PROPERTY McFinley Red Lake Mines Limited

HOLE NO.

86-15

SHEET NO.

3 of 7

NAME OF PROPERTY___ McFinley Red Lake Mines Limited

SHEET NO. 4 Of 7

HOLE NO.

86-15

SHEET NO.__

HOLE NO. 86-15 ____ SHEET NO._____5 Of 7____

NAME OF PROPERTY_

McFinley Red Lake Mines Limited

FOOTAGE	AGE				SAMPLE	m				ASSAYS		
FROM	10		NO.	% SULPH	FROM	FOOTAGE TO	TOTAL	9	*	02/10#	OZ/TON	
348.9	353.7	CHERT UNIT Banding destroyed by later veining. 348.9-349.4 Same laminations preserved here 2% (Po. and Py.)	26279 26280 26281		349.9 350.9 352.9	350.9 352.9 353.7				. T. G.		
353.7	357.4	ix.4% Po.	26282		353.7	354.9				<b>.</b>		
357.4	363.3	DIORITE DYKE 360.9 Qtzchlorite vein.								<u> </u>		
363.3	396.1	ANDESITIC GROUP  Fine to medium grained dark green massive, infrequent qtz.  carb and qtz. chlorite epidote veins.										
396.1	399.4	BIOTITIC GROUP 397.1-397.8 Silicified pod with finely disseminated and coarse blebs of pyrite and Po. (5-10%)										
399.4	412.7	r bio- lue	26709 26283		397.4 399.4	399.4	2.0 1.5			Tr.	*	
		grey. 399.4-400.9 Coarse grained Aspy. & Py. in a qtz. vein (some tourma- line also) grading to fine grained irregular pyrite hands.							<del>- , </del>			
		ed zone, characterized by many small irregularly ated rootless carbonate veins, large (up to 3 cm) d to elongated fragments of qtz. which may be from or cherts and silicified "healed" zones.	26284		400.9	402.9	2.0			.04		
-		n one	26285 26286		402.9 404.7	404.7 406.3	1.6	-	· · · · · · ·	.02		
		Very fine grained Py. and Aspy. is generally present	26288			410.3	2.0			.03		
		nds and as irregular blebs. d Py. and Aspy. throughout and concentrated:as regular blebs in a bleached volcanic like ma-	26289		410.3	412.7	2.4			.01		
		407.4-408.0 Brecciated area. 408.4-408.8 Brecciated area. 406.3-412.7 More sulfide rich-(up to 20% Py., Po.)										

415.4 412.7 428.9 437.1 462.8 443.3 FROM 500.8 503.7 446.7 496.4 500.8 FOOTAGE 446.7 443.3 439.5 415.4 462.8 437.1 428.9 496.4 434.1 70 BIOTITIC GROUP ANDESITIC GROUP DIORITE DYKE ANDESITIC GROUP SULFIDE RICH SILICIFIED ZONE DIORITE DYKE Carbonated with well developed chill margins. BIOTITIC GROUP SILICIFIED SULFIDE RICH ZONE BIOTITIC GROUP Amygdaloidal. ANDESITIC GROUP FELDSPAR PORPHYRY (FOOTWALL PORPHYRY) 479.6-483.1 Biotitic Group. 481.5-482.5 Disseminated Py.-Po. within Biotitic Group. 470.0-472.0 Test sample of unit. (1-2% Aspy) 442.6 Like 439.5-443.3 458.0-459.3 Q.C.V. with disseminated pyrite. Py. 92- as above but has some massive Aspy. 93- blue grey to brown andesite w/less than Variolitic. Many qtz. veins (ptygmatic) and rootless. Fault gouge @ app. 40° to C.A. Sample # 94- more highly deformed w/massive Aspy. and disseminated blebs of Py. and Po. sulfides. 1-25% Py. and Po. and some massive Aspy. 96- brecciated grading into bleached andesite 1-2% Py. 95- as in #90-91. Highly silicified and brecciated. Amygdaloidal. Sample # 90-91 bleached and silicified andesite w/3-5% Less than 1% Aspy. on thin (1/16') Q.C.V's and disseminated within the unit. DESCRIPTION 1% visible 2610 26100 26299 26710 26297 26298 26290 26291 26292 26293 26294 26296 ŏ 481.5 470.0 458.0 459.3 434.1 435.6 419.4 415.4 417.4 421.4 423.8 425.8 427.8 456.0 458.0 FROM SAMPLE 472.0 482.5 435.6 437.1 OOTAGE 419.4 421.4 423.8 425.8 427.8 ಠ 2.0 2.0 0.00 1.0 <u>۔</u> س TOTAL ASSAYS 0Z/T0M A 7.2 .03 .03 .03 .03 ₹. .04 Tr. OZ/TOM

NAME OF PROPERTY McFinley Red Lake Mines Limited

SHEET NO.

6 of 7

86-15

NAME OF PROPERTY McFinley Red Lake Mines Limited

HOLE NO. 86-15 SHEET NO. 7 Of 7

				į	j				1 37 CE - NO.	
	F00	FOOTAGE	DECORPTION			SAMPLE	E.		ASSAYS	
	FROM	10		v O	י SULPH	FROM	FOOT AGE	10141	x % 07/TOM 07/TOM	
	503 7	518 0	RIOTITIC GROUP						Au	
	503./	510.0	510.3-513.7 Disseminated PyPo. associated with sericitization of the mafic volcanics. C.A.= 63° 513.7 2" Fault Zone. C.A. 51°. 518.0 2" Fault Zone. C.A. 75°.	26102 26103		510.3 512.3	512.3 513.7	2.0	.04	
	518.0	524.8	ANDESITIC GROUP Highly sheared (ie good foliation development) C.A.=30°							
	524.8	531.4	DIORITE DYKE 529.0 Later Dyke.							
	531.4	552.7	ANDESITIC GROUP  Amygdular with abundant deformed Q.C.V's C.A.=65° for the foliation.							
			543.0 3" Fault Zone. C.A. 45°. 547.5 ½" Fault Zone. C.A. 18°. 551.7 ½" Fault Zone. C.A. 50°.							
	552.7	564.6	BIOTITIC GROUP  Amygdaloidal.  558.7-562.0 Sericitic alteration with 3-5% disseminated: PyPo.  559.7-561.0 Quartz Vein.	26104 26105		558.7 559.7	559.7 561.0	1.0	 O.	
	564.6	571.0	QUARTZ FELDSPAR PORPHYRY  C.A. at contact is 47°.  Possibly the gouge zone at contact is the Shaft Fault.	26107		575.0	576.0	1.0	.01	
	571.0	587.3	ALTERED BIOTITIC GROUP Highly sheared and faulted. 571.0-573.0 Quartz Vein.	<u></u>						
			with sulphide selvages for 2-3". ault related fractures at 576.5-577.0, 578.0 581.5. stringer. nated PyPo.	26108 26109 26110		582.0 583.6	583.0 585.0	1.0 1.4 2.0	Tr.	
,	587.3	608.6	TALC CHLORITE SCHIST  C.A.= 60° 587.6 2' Ground core. 606.2-606.9 Diorite Dyke. 608.6 End of hole. Casing pulled, hole cemented:							

STARTED_ ELEVATION LATITUDE . LOCATION HOLE NO. -HOLE NO. 86-16 December 17, 1986 PINISHED December 18, 1986 10055 N McFinley Peninsula 9985 _ LENGTH __ __ DEPARTURE McFinley Red Lake MInes Limited 379.5 100429 E 090 -70°

	<u>.</u>		<b>ק</b>	)
7	377	22'	FOOTAGE	
690	69°	-72½	DIP	
00/	001	090	AZIMUTH FOOTAGE	
			F00TAGE	
			PIP	
			HTUMIZA	

HOLE X
3
86-16
SHEET
Ņ
1 of

LOGGED BY F.C. Edmunds

Drilled by Morisette BQ Core

REMARKS.

FOO	TAGE		3 F 6 C 8 - C 2		SAMP	F			<b>&gt;</b>	SSAY	S	
FROM	70			NO. SÚ	SUL PH FROM	FOOTAGE TO	TOTAL	24	**	OZ/TON O	OZ/TON	
0.0	18.0	OVERBURDEN								Au		
18.0	129.0	ANDESITIC GROUP	OUP OUR OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT									
	_		Medium grained uniform without much fabric or flow									
		18.7-19.0	Quartz tourmaline vein.		_					<u> </u>		
		20.3	Sulphide stringer (PoPy.) (1/8")									-
		23.6-24.0		26111	23.0	24.0	1.0			.02		
		46.0	3" Calcite vein with 1% Po.								·····.	
		56.9-56.9	riner grained section. DIORITE DYKE-coarse euhedral hornblende/pyroxenes.							·		
		62.6-63.8	Tourmaline									
		73.0	shear C.A.= 30°									_
		76.2-79.0	Qtz. (amethyst)-tourmaline vein. Pegmatitic.									<del></del> -
		101.0-108.0	Minor talc development within the Andesitc. Gradational	_	-							
		129.0-129.3	<pre>contacts. Ouartz-Carbonate Chlorite Vein.</pre>		-							
129.0	130.0	BIOTITIC GROUP	JP .								_	
			Increasingly carbonated.									
130.0	141.7	CHERT UNIT	•	· —	130.0	132.0	2.0			01		
			<del>-</del>	26113 26114	132.0	134.0	2.0			9.7		
			unit.	26115 26116	136.0	138.0	» » • •			7.7		
		140.0-141.7	Quartz-magnetite section void of laminations.	=	140.0	142.0	2.0			05		
141.7	209.6	BIOTITIC GROUP		26/11	142.0	144.0	2.0			-	* 	
											<del></del>	
		150.2-150.8	Silicitied section.								··	
		158.0-158.5 170.0-172.1	Broken core-tault zone. Silicified section.									

LANGRIDGES

PRONTO - 366-1168

FROM 141.7	<del></del>	6
		<del></del>
209.6 214.8		214.8 QUARTZ-CARBO 217.3 CHERT UNIT 214.8-215.5
217.3		222.0 ANDESITIC
222.0		225.7 BIOTITIC GRO 222.0-223.0 223.0-224.0 225.0-225.7
225.7		230.0 FELDSPAR PORPHYRY (CENTRAL PORPHYRY)  2-3% Coarse disseminated  veinlets, later qc. vein  Porphyritic phase may be  lower contact of unit.
230.0	-	235.3 BIOTITIC
235.3 237.8		237.8 ANDESITIC 244.3 DIORITE D
244.3		248.2
248.2	8.2 260.7	20 7

NAME OF PROPERTY___ McFinley Red Lake Mines Limited

SHEET NO. 2 Of

E00.	FOOTAGE				SAMPLE	M				ASSAYS		
FROM	10	CRUCKIT TON	v O	% SULPH	FROM	FOOTAGE TO	TOTAL	38	32	0Z/TON	OZ/TON	
260.7	262.2	CHERT UNIT Magnetite dominated; weakly laminated, minor PoPy.	26123 26124		260.7 262.8	262.2 264.3	1.5			Au .01 Tr.		
262.2	262.8 264.2	BIOTITIC GROUP  CHERT UNIT  Magnetite dominated with minor PyPo. C.A.=38°.										
264.2	286.5	Deformed Q.C.V.'s, well foliated.	26125		286.5	288.0	<b>1.</b> 5		-	.04		
		onate veining and alteed (sericitic-carbonate) Slickensides. led. Mineralization thin (1") deformed Q	26127		282.5	283.5	1.0			.04		
286.5	311.0	ILPHIDE ZONE Top 10' possible chert unit but lacks well developed layering. 30-40% PoMt.; minor Cpy. Biotitic Unit-unmineralized. Biotitic Unit-unmineralized.	26126 26128		288.0 290.0	290.0 292.0	2.0			.o1		
		Biotitic Unit-unmineralized. Quartz-carbonate-arsenopyrite vein (B-VeinStyle) Quartz-carbonate-arsenopyrite vein (B-Vein Style) 4". Disseminated Py-Aspy (not pervasive) 3-5%. Arsenopyrite (4"0 at 310'.	26129 26130 26131 26132 26133		292.0 303.0 304.0 306.0	294.0 304.0 306.0 308.0	2.0 1.0 2.0 2.0			.03 .03 .03		
311.0	315.7	BIOTITIC GROUP  Minor sulphides (314.0').										
315.7	318.5	FELDSPAR PORPHYRY 1-2% Euhedral Py.							-			
318.5	324.7	ANDESITIC GROUP  Very fine grained, massive unit.							<del></del>			
324.7	327.7	BIOTITIC GROUP Well developed fabric. Q.C.V. with Po. on upper contact (3").		·								
327.7	329.3	ANDESITIC GROUP										

NAME OF PROPERTY____ McFinley Red Lake Mines Limited SHEET NO. 3 Of 4

HOLE NO.

	<del> </del>		·		, — —		1
375.3	366.8	346.9	336.6	329.3	FROM	F00	
379.5	375.3	366.8	346.9	336.6	70	FOOTAGE	
BIOTITIC GROUP  Amygdaloidal with abundant early quartz carbonate veins.  379.5 E.O.H. Casing Pulled. Hole Cemented.	ANDESITIC GROUP  Highly silicified 372.0-375.0'.  375.0' Late fault. C.A.=5°.	BIOTITIC GROUP  Well developed fabric. Carbonated. C.A.=57°  347.7-348.4 Q.C.V. with accompanying sericitic alteration. Coarse  Po. blebs. 360.2-363.0 Andesitic section.	ANDESITIC GROUP Silicified over much of its length. Abundant quartz-cb. veining.	DIORITE DYKE Quartz porphyritic.		DESCRIPTION	
		26134 26135	<u></u>		Z O		ē Ē
					% SULPH		HOLE NO.
		347.5 351.0			FROM	SAMPLE	
- <del></del>		348.5 352.0	····		FOOTAGE	LE	86-16
		5 1.0			101AL		
<del></del>	· · · · · · · · · · · · · · · · · · ·				22		
	<del></del>	<del></del>	<del></del>	<del>.</del>	32		SHEET NO.
	<del></del>	.01			0Z/TON	ASSAYS	
		.,,		· · · · · · · · · · · · · · · · · · ·	<del> </del>	SAN	4 of 4
			<del></del>		OZ/TON		
<del> </del>			· · · · · ·				

McFinley Red Lake Mines Limited

NAME OF PROPERTY McFinley Red Lake Mines Limited
HOLE NO. McFinley Peninsula
LOCATION 10055.0 /2045/0/PDEPARTURE 10042.9 E /2042.9
ELEVATION 9985 435 AZIMUTH 090 DIP _85
STARTED December 18/86 FINISHED January 6, 1987

FOOTAGE	<b>GIO</b>	HLNWIZV	AZIMUTH FOOTAGE	DIP	HLNWIZY
93'	-85°	135			
					•
473	-84°	90			

HOLE NO.
86-17 меет
ET NO.
o. 1 of 5

LOGGED BY A.R. Durrant

Drilled by Morissette BQ Core.

REMARKS

LANGRIDGI	TORONTO - 366-116											
			96.6	94.9					17.8	0.0	FROM	FOOT
			174.0	96.6					94.9	17.8	10	AGE
	120.2-125.9 125.9-132.3 132.3-174.0	105.9-107.6 107.6-120.2	ANDESITIC GROUP 96.6-105.9	DIORITE	47.0-94.9	34.5-47.0	17.8-22.6 22.6-25.8		ANDESITIC GROUP	OVERBURDEN		
	Ingers. Less (weak) biotite alteration. Abundant qtz-carbonate veins, trace Py. Massive and homogenous, several fractured qtz. veins filled with qtz. calcite and epidote were sampled.	ation parallel lenses and bands. Only weak foliation, biotite clots. Strongly foliated and biotite altered with moderate qtzcalcite lenses pods and irregular str-	Fine grained, moderate biotite alterations foli-	Medium grained, salt and pepper appearance with well developed abrupt chill margins.	Medium to coarse grained, massive-no foliation with pyroxene and amphibole grains.	Fine to medium grained, massive. Foliation oncreases from weak to strong by midinterval with mod. biotite alteration. Foliation weak hy 47 0	Fine grained, homogenous.  Coarse grained with amphibole laths.	Alteration consists of only weak, generally fracture filling calcification.			6	
26305 tr 26713	26300 tr 26301 tr 26302 tr 26303 59					<del></del>					NO. SÚ	
	<u> </u>	·		<del> </del>	· · ·		_	_			SULPH F	S
166.0 141.6											FROM	A M.P
167.0 143.6	127.0 128.9 132.3 141.6					_					FOOTAGE TO	L E
1.0 2.0	11.00										TOTAL	
											86	
											**	<b>A</b>
Tr.	1.02		-							Au	OZ/TON	SSAY
*											OZ/TON	S
												-

179.4 268.2 174.0 284.4 280.9 FROM FOOTAGE 282.7 280.9 284.4 268.2 179.4 291.9 70 ANDESITIC GROUP CHERT GROUP CHERT GROUP 209.0-212.3 215.0-226.5 247.3-250.9 256.3-256.5 ANDESITIC GROUP ANDESITIC GROUP FELDSPAR PORPHYRY (CENTRAL PORPHYRY) 242.4-243.0 193.5-194.5 182.9-183.6 sediment, homogenous. filled hairline fractures. 215.0-216.1 has a 6" wide milky qtz. vein at 30° td26311 Porphyritic with diffuse feldspar phenos (2-3mm). Bleached moderately silicified with numerous qtz-As above, no sulphides observed. Cherty interflow sediment, slightly fractured with 26309 tr Pol minor Fe carbonate (mainly as stringers). flow sediment. Strong pervasive calcification and magnetite and garnet-chlorite/biotite horizons. fracturing. Laminated chert-magnetite B.I.F., very local micro-26314 fracturing. A 2" wide qtz. vn @ 40° to C.A. 1% Cpy., Tr. Po. Flow breccia/hyaloclastite Amygdaloidal, hairline to ½" wide fractures random Thin stringers of Po. occur parallel to bedding (45° to C.A.) and in qtz. filled narrow crosscutt-Chert laminations 1-2" thick seperated by layers Fractured Fe-carb vein (40° to C.A.; 5" wide) fil Non to weakly foliated, possibly a fine clastic Feldspar phenos-max. s⊕ze 1/4". 223.5-226.6 fracture oblique to C.A. features observed Few hairline calcite-filled fractures, no primary led with glassy qtz. iated with fractures and wallrock inclusions. to the C.A. with 1-2% Aspy. and ½% Py. both assocly oriented, local flow breccia and cherty intering fractures. DESCRIPTION 26307app 2% 26308app 2% 2631 26313 26715 26306 5%Po 26312 none 26319 tr Po| 193.5 ö aspy 1% Py 1%Cpy 256.0 1-2% 215.2 1DES 242.0 178.0 179.4 174.0 288.9 176.0 182.7 280.5 FROM SAMPLE 284.5 286.5 216.2 282.5 178.0 179.4 181.4 257.0 194.5 290.9 243.0 183.7 176.0 ᅙ 2.0 2.0 1.0 1.0 1.0 1.0 TOTAL 7.0 × Tr. 示. .05 Tr. 7.87 . 9 .04 Ŧ. .04 **ASSAYS** Au OZ/TOM OZ/TON

289.5-291.9

Strongly bleached and silic. with qtz. stringers ,

NAME OF PROPERTY McFinley Red Lake Mines Limited

SHEET NO. 2 OF

HOLE NO.

#### DIA MOND DRIFT RECORD

318.9 353.5 337.0 330.0 328.3 321.0 300.6 358.3 291.9 297.7 FROM FOOTAGE 300.6 | CHERT GROUP 297.7 353.5 337.0 318.9 | BIOTITIC GROUP 363.1 330.0 CHERT GROUP 328.3 | DIORITE 321.0 CHERT GROUP 358.3 70 BIOTITIC GROUP ANDESITIC GROUP BIOTITIC GROUP 355.5-355.8 356.5-358.3 CHERT GROUP BIOTITIC GROUP 343.5-345.5 Well developed chill margins, coarse grained through mid-interval. Lean B.I.F. fractured and silicified with milky qtz. (max. 3/4" stringer width) 2% Aspy, 1% Po., Tr.- ½% Cpy. cation. 3-4% Po.-disseminated and as bedding parall 26319 -el bands and 2-3% Py. occurring as above. 26320 qtz.-carb veins, homogenous. Conjugate hairline fracturing, slight bleaching and 26322trAspy 343.5 silicification with two 1" wide milky qtz. stringers Amygdules present altered andesitic rock, strong pervasive calcification. B.I.F. moderate hairline fracturing 2% Po., ½% Py., Tr. Cpy. Bull qtz. vein. 3% fine grained disseminated Py. "Disseminate Zone" Relatively homogenous, amygdules persent-andesitic cleavage". Fine grained, massive, homogenous. Local "diamond Lean B.I.F. with very little fracturing or silicifi 26717 Amygdules observed-altered andesite. Few narrow Amygdules present-altered andesitic rock. DESCRIPTION 26323tr Po 26324 3% Py 26718 26316 26317 26318 Ž O 5-6% 318.9 5-6% 319.9 2-3 (DES 326.3 328.3 330.3 316.9 355.0 356.0 356.5 358.5 297.6 FROM SAMPLE 86-17 318.9 319.9 321.0 298.6 299.6 300.6 328.3 330.3 332.3 345.5 2.0 1.0 1.0 2.0 TOTAL Au ASSAYS .03 20 20 0Z/TOM .04 .04 7.87 OZ/TON

NAME OF PROPERTY. McFinley Red Lake Mines Limited 3 of 5

SHEET NO.

HOLE NO.

FOOTAGE	AGE				SAMPLE	E				ASSAYS	
FROM	70		DESCRIPTION	NO. % SULPH	FROM	FOOT AGE	101VF	24	<b>34</b>	0Z/TON	OZ/TON
										A	
358.3	363.1	CHERT UNIT(continued)	rous, randomly oriented hairline fractures. Po.	26325 2%Po.	358.5	360.5	2.0			.03	
			and Py. occur as heavily disseminated bands, wisps and to a lesser degree as fracture fillings.	26326 5% 26327 2%	360.5 362.5	362.5 363.5	2.0 1.0			<b>7 7</b>	
363.1	365.1	BIOTITIC GROUP	Amygdules present- an altered andesitic rock.	26720	363.1	365.1	2.0				*
365.1	374.1	SILICEOUS SULPHI	SULPHIDE ZONE Cherty appearance but lacks bedding, garnets in lo-								
		365.1-365.9	herty fragments, 10	26328	365.1	366.0	0.9			.05	
		365.9-36/.0	l% Aspy	6329	365.9	367.0	•			.02	
		367.0-369.0 369.0-371.0	20-40% mag. y. 20-40% mag.	6330 6331	367.0 369.0	369.0 371.0	2.0				
		371.0-373.0 373.0-374.1		26332	371.0	373.0				.05	· 
374.1	383.9	BIOTITIC GROUP 381.3-382.6	A 6" wide qtz. vein, similar to "B" Vein, 50% coa- 2 rse Aspy., 10% Sph., 3-5% Cpy., 1% Gal.	26334 26722	380.6	382.6	2.0			'₹ <del>`</del>	<b>*</b> *
383.9	404.9	ANDESITIC GROUP	Relatively massive and homogenous, few hairline fractures and amygdules. Lower boundary arbitrary.	6/23	382.6	384.6	0.5				×
404.9	416.4	BIOTITIC GROUP	Amygdules present, relatively few hairline fractures homogenous.				***************************************				
416.4	421.9	ANDESITIC GROUP	Amygdules, few hairline fractures, moderate calcite and slight biotite alteration.								
421.9	427.5	FELDSPAR PORPHYRY				_					
427.5	436.3	DIORITE	Medium grained, moderate foliation, homogenous.								<u>-</u>
436.3	468.6	ANDESITIC GROUP	Strong foliation @ 50° to C.A. moderate to strong pervasive and fracture filling calcification,	26724 26335 ½%	459.5 461.5	461.5 462.5	2.0			Tr.	*

NAME OF PROPERTY___ McFinley Red Lake Mines Limited

<del></del>				,		
	471.7	468.6		FROM	FOOTAGE	
	477.0	471.7		70	AGE	
477.0	ANDESITIC GROUP	DIORITE				
slight fracture filling and pervasive calcification End of hole. Casing pulled, hole cemented.	Massive, amvqdaloidal, moder	Well developed chill margins, medium grained, and pepper appearance.				
pervasive calcification hole cemented.	rately silicified.	salt				
		26726		NO.		I
		··		יא SULPH _ا		HOLE NO.
		464.5	- 1	FROM	SAMP	
		465.5		FOOTAGE	H.	86-17
		1.0		TOTAL		:
				'n	i	HS
·				*		SHEET NO.
		īr.	Au	OZ/TON	ASSAYS	5
		*		OZ/TON	G,	of 5

NAME OF PROPERTY___ McFinley Red Lake Mines Limited





G.M. HOGG & ASSOCIATES LTD.



OM HOOD I ASSOCIMES LTD.





082-98 WO. 8984.89 9900 9800 U-122 9700 9700 SECTION 10150N(±12,51) 220



