010

BLUESTACK RESOUKCES LIMILED

 RED LAKE PROJECTREPORT ON TRENCHING PROGRAM - SEPTEMBER - NOVEMBER, 1981. Claim Nos. 2206 and 2208, McDonough Township, Red Lake Ontario.
i. INTRODUCTION:

This report deals with three trenches excavated on claims No. 2206 and 2208 in McDonough Township, Red Lake Ontario. The work was carried out in the period September to November 1981. The claims are patented and held by Luxor Red Lake Gold Mines Ltd. (T.S.E.). The work has been carried out by Bluestack Resources Limited of Toronto, Ontario as part of an option agreement with Luxor.

The claims are located close to the south-east shoreline of Slate Bay on Red Lake, approximately halfway along the peninsula dividing Slate and Goldseeker Bays. Access may be obtained by boat, or aircraft in summer, on foot or by snowmachine in winter.
2. TRENCH - LOCATIONS:

The trenches were located on the following premises.
Previous diamond core drilling in the area indicated potentially economic silver occurrences [See Appendix $1 \& F i g .1]$.

Early work in the area has indicated a possible relationship between iron formation and silver values. The Bluestack E.M. and magnetometer surveys of March-April 1981 recorded anomalous values running through the proposed target area. [Fig.2.).

Some doubt had arisen with respect to silver assays recorded by Luxor in earlier work. Since the area has received considerable attention throughout the exploration history of the property, it had become apparent that little further progress could be made on the basis of previous results unless a satisfactory answer to the silver question was obtained.
3. TRENCHING:

The trenching operation may be considered under two headings.

3.1. Overburden Removal

Overburden removal was carried out using a portable high pressure fire pump as a cutting and washing tool. A Wajax MK III fire pump and ancillaires was borrowed from the local M.N.R. Forestry department. This pump is capable of a nozzle pressure of up to 270 lbs . per square inch over horizontal distances of $2,000 \mathrm{ft}$. The maximum range over level ground is about 7,000 ft. but pressure drops off quite considerably. Using a splitter on the hose line and two nozzles the trenching proceeded quickly. An initial cut of about 1 ft . depth was used to expose roots etc. which were then removed by hand. A second cut was made down to a maximum of about 4-5 ft. In areas of poor drainage a large capacity sludge pump was used. It was found that silt, sand and fine gravel could be kept in suspension long enough for the sludge pump to lift them from the trench. Removal of the larger cobbles and final finishing on the floor of the trench was done by pick and shovel. [Plates $1 \& 2]$.

3.2. Sampling

The sampling method proposed called for a continuous channel sample across the strike of the country rock exposed in the floor of the trench. A gasoline powered rock saw (Stihl Model 350) was used to cut two parallel grooves approximately $l^{\prime \prime}$ deep and 1.5" apart along the exposed rock surface. The ridge left between the two grooves was then carefully removed using a hammer and blunt chisel. The sample lengths were restricted to geologically distinct units, or approximately 5^{\prime} lengths, whichever is the lesser. Two types of blades were used in the rock saw. The first type was the standard epoxy resin carbide impregnated cut-off wheel. This was found to be expensive and relatively time consuming. The second type of blade was a diamond impregnated model produced by J. K. Smit of Toronto.

Although the diamond blade requires the added inconvenience of a constant water flow the speed of cutting and the extended life makes it extremely cost effective. [Plate $3 \& 4]$.

Explosives were used in Trench 2 only. It was decided that the extra time taken to remove debris and the poor condition of the remaining rock for cutting made blasting undesirable.
4. RESULTS:
4.1. Geology

The lithologies exposed by the trenching appear to be a banded iron (magnetite) formation in a waterlain intermediate tuffaceous sequence. Brecciation and dynamothermal alteration have produced complex changes to the basic sequence. The dominant type of alteration appears to be relatively localized at the northern end of the trenched area. Epidotisation, chloritisation and the extensive growth of garnets strongly suggests the presence of a channelway for hydrothermal solutions [Plates 5 \& 6]. This point is reinforced by the alumina enrichment (as evidenced by the garnets) and local carbonitizationseen in the alteration zones. Blocks of magnetite up to $1^{\prime \prime}$ across occurring in the most altered zones suggests remobilization but it is more likely that brecciation of the iron formation is responsible [Plate 7]. The close association of iron formation and alteration zone may be coincidental or may be a function of the relative incompetence of the formation allowing easier brecciation and subsequent alteration by hydrothermal fluids. Drilling in the area (D.D.H. 62-5) suggests a steep dip to the alteration zone. Further work in the area should assist in clarification. A more detailed note on the geology of each trench is included with the assay results.

Abstract

4.2 Assays

The values obtained from assaying are currently under consideration, however one feature worthy of note is the coincidence between Ag, Au and Cu values and the alteration zones [See Figures 3 - 8 incl.] particularly those containing garnets. These zones will be further investigated in future.

5. CONCLUSIONS \& RECOMMENDATIONS:

5.1. Conclusions

The trenching program has achieved the objectives laid out at the commencement of the operation. The disputed $A g$ values have been confirmed and consequently enhance earlier work in the area.

The geological information obtained will greatly assist future mapping and trenching.

A direct link between iron formation and precious metal values has not been established. Since large anomalies of probable iron formation origin are known from the magnetometer survey a method of selection of prime targets must be evolved. The possible coincidence of carbonatization and metal values may allow geochemical filtering of areas so that those with high Ca Mg concentrations can be assigned priority. The dearth of carbonates in the project area may allow this selection method to work well.

The E.M. anomaly can be explained by the metal content (particularly Cu and Fe) noted in the trenches. The occurrence of E.M. anomalies without coincident magnetic anomalies may indicate significant concentrations of non ferrous mineralization.

5.2. Recommendations

Trenches 2 and 3 will be extended. Trench 3 to the north and trench 2 to the north and south.

The magnetic low area to the N.E. of the trenched area will be investigated to ascertain whether the alteration zone continues in that direction. It does not appear on the coastal exposure S.W. of the trenched area.

Respectfully submitted,

JFW/v
John F. Whitton.
January 18, 1982.
Toronto, Ontario

PLATE 'I'

Bush clearing prior to opening trench.

PLATE 'II'
Overburden
removal using power hose.

PLATE 'VI'

Alteration zone showing
magnetite fragments (up to 12"
across) in an Epidotic-
Garnetiferous matrix. (camera
lens cap $2^{\prime \prime}$ in diameter).
Trench No. 3
PLATE 'V'

Alteration zone showing EpidoticGarnetiferous matrix with small clasts of magnetite (camera lens cap $2^{\prime \prime}$ in diameter).

Trench No. 1

PLATE 'VII'
Iron Formation Breccia showing large angular blocks of magnetite in an epidotic matrix. Note large "vein" of epidote in upper half of picture (camera lens cap $2^{\prime \prime}$ in diameter). Trench No. 3.

BLUESTACK ${ }^{\text {FIGURE }}{ }^{3}$ RESOURCES LIMITED.

				Formation.						
Sample No.	From To	Length.	Delails	Formation.	Aus.or,1on)	Ag.10:/10n)	Cu. $\%$)	Pb.1\%)	Zn. $\%$)	W. \%
8126	0-5	5^{1}	Garnetiferous epidotic with blebs of nagnetite py.	Alteration zone	. 006	. 35	. 10	Trace	Trace	Nil
8127	5-10	5,	As above	as above	. 002	Tr.	. 07	Nil	Tr.	
8128	10-15	5^{\prime}	As above	as above	. 001	. 11	. 07	Nil	Tr.	
8129	15-21	6^{\prime}	As above (with cpy)	as above	. 005	. 22	. 22	Nil	. 01	
8130	21.0-24. 6	$3.6{ }^{\prime}$	As above	as above	.001	Tr.	. 05	Tr.	. 01	
8131	24.6-26.8	2.41	Dark grey-green siliceol unit with cream-buff quartzitic (?) veining dyke ?	s Dyke ?	Nil	Tr.	. 01	Tr.	Tr.	
8132	26.8-28.6	$1.8{ }^{\prime}$	Dark green dense unit. Strongly py. c. 8% visual \& some cpy.	- Dyke	. 003	Tr.	. 08	Tr	. 02	
8133	28.6-35.0	$6.4{ }^{\prime}$	Weathered sheared ? dart grey-green material Actinolite crystals	Weathered zone (possibl shear)	Nil	Tr .	Tr .	Nil	. 01	
8134	35.0-37.5	2.51	Light to medium green poorly bedded intermediate Luffs. Flame structures indicate younging to north.	Intermediate	Nil	Nil	Nil	. 01	Tr .	
8135	37.5-42.5	5'	Intermediate tuffs. Anastromitic network of epidote veins with occasional pink feldspa rims. Sedimentary features giving youngin to North.	Intermediate tuff	N 11	Nil	N 11	Tr.	. 01	
8136	42.5-46.9	4.4'	As above	Intermediate tuff	Nil	Nil	Nil	Nil	. 01	
8137	46.9-53.5	6.61	As above(with conglomer band - elongate quartzi cobbles structural imbrication? well defined bedding, youngi North	$\int_{\text {ig }}^{\text {itic }}$	Nil	Nil	Nil	NII	. 01	
$\begin{aligned} & 8138 \\ & \text { (sampl } \end{aligned}$	$\left\|\begin{array}{c} 53.5-57 \\ \text { on } 80^{\circ} \end{array}\right\|$	$\text { ace })^{3.5^{\prime}}$	Weathered gray black leached unit py.	Shear	. 002	Tr.	. 04	Tr.	. 01	
8139 .	57-62	$5{ }^{\prime}$	Green chloritic eptdoti unit, moderate py.	$\begin{aligned} & \text { "Chiorite" } \\ & \text { Unit } \end{aligned}$. 003	Tr .	. 05	Nil	. 01	

eigure 4. BLUESTACK RESOURCES LIMITED.				Project: red lake		Trench No. 2		LOCATION. Dafe : Sept.-Nov. 1981 Twp. McDonough Claim No(s). 2206 ine		
	Footogo		Geological				ASS			
Sample No.	From To	Len	Details	Formation.	Au.(oz/10n)	Ag. $(02 / 100)$	Cu.(\%)	Pb. $\%$ \%	Zn. 1%	
8150	0-3.5	$3.5{ }^{\prime}$	Garnetiferous epidotic unit with sub angular cobbles of magnetite Py As Py (7)	Alteration zone	. 088	2.15	. 47	Nil	. 01	
8151	3.5-5.7	2.21	As above (addition of CaCO_{3})	Alteration Zone	. 004	Tr.	. 08	Tr.	. 01	
8152	5.7-6.6	. ${ }^{\prime}$	"Rotten" epidote garnet magnetite unjt. short sample section taken to avold error	Alteration zone	. 004	Tr.	. 08	Nil	. 01	
8153	$6.6-11.9$	5.31	Epidotic unit with sub-angular cobbles of magnetite garnets infrequent, common CaCo	Alteration zone	. 003	. 17	. 10	. 01	Nil	\therefore
8154	11.9-14.9	3.0	As above	Alteration zone	. 005	Tr.	. 12	. 02	Tr.	
8155	14.9-20.2	5.31	Magnetite with epidotic chloritic interstitial filling, Cpy, Py, As Py	Iron Formation Bx ?	. 010	. 28	. 51	Nil	. 01	
8156	20.2-21.4	1.21	Magnetitic zone, Cpy \& Py.	Iron formation	. 006	1.00	. 75	Nil	Tr.	
8157	21.4-27.0	$5.6{ }^{\prime}$	Magnetitic unit, chlori with green tuffaceous material, Cpy?	ic Iron Formation	. 019	. 73	. 87	Ni1	. 02	
8158	27.0-31.3	4.31	Magnetitjc unit, starts to get progressively mot oxidized \& rotten from 29°	Iron formation e oxldized zone	. 012	. 43	. 32	Tr.	. 01	
8159	31.3-33.3	2.0^{\prime}	Weathered heavily oxidit unit, massive Py over last $6^{\prime \prime}$	ed oxidized zone	. 066	1.57	1.90	Tr.	. 01	
8160	33.3-38.1	$4.8{ }^{\prime}$	0xidized rotten unit. Occasional Py.	Oxidized zone	. 024	. 76	. 10	Trace	Tr .	
8161	38.1-44.0	$5.9{ }^{\prime}$	Magnetitic chloritic un massive magnetite in sho sections, rare CaCO_{3} crystals. Cpy, Py.	$\left\lvert\, \begin{array}{ll} \mathrm{t} & \text { Iron } \\ \text { rit } & \text { Formation } \\ \text { Bx } \end{array}\right.$. 031	1.06	. 82	Tr.	. 01	

$\text { BLUESTACCK }{ }^{\text {FIGIRERE }} \text { RESOURCES LIMITED. }$				Project: red lake		Trench No. 3		LOCATION. Twp. McDonough			
	Foolage		Geological				ASSA				
Somple No.	From To	Length.	Delails	Formation. A	Au. $102 / 100$)	Ag.(02/10n)	Cu. (\%)	Pb.1\%)	Zn.1\%!	W. (\%)	
8101	0-5	5^{\prime}	Altered section with gatne G inclusions of magneti in an epidotic ground mass. subsidiary chlori malachite, py \& cpy.	nets e Alteration zone ization	. 005	. 96	. 75	Nil	. 01	. 004	-
8102	5-10	5^{\prime}	As above	Alteration zone	. 009	3.58	. 87	Trace	Tr	. 024	
8103	10-15	5^{1}	As above	as above	. 003	0.29	. 17	Nil	. 01		
8104	15-20	$5{ }^{1}$	As above (sub-angular magnetite blocks up to $6^{\prime \prime} \times 12^{\prime \prime} 3^{\prime \prime}$ quartz velh at 191)	Alteration zone	. 001	Nil	. 01	Nil	. 01		
8105	20-25	51	As above	as above	N11	N 11	Tr.	Nil	Tr.		
8106	25-30	5^{\prime}	AS above	as above	Tr.	Tr.	. 03	Nil	Tr.		
8107	30-35	5^{\prime}	As above	as above	. 002	Tr.	. 03	Tr.	Tr.		
8108	35-40	51	As above	as above	. 002	Tr.	. 05	Nil	Tr.		
8109	40-45	5^{\prime}	As above	as above	Nil	Nil	. 01	Nil	Tr.		
8110	45-50	$5{ }^{\prime}$	as above	as above	Tr.	Tr.	. 03	Nil	Tr .		
8111	50-55'	$5{ }^{\prime}$	as above	as above	Nil	Tr.	. 06	Tr.	Tr .		
8112	55-61.6	$6.6{ }^{\prime}$	as above.	as above	Nil	N11	. 02	Nil	Tr .		
8113	61.6-63.3	1.7	Epidote (Pistacite) chlorjte, sharp contacts	Alteration zone	Tr.	Nil	. 03	Tr.	Tr .		
8114	63.3-67.3	4^{1}	Massive magnetite with garnetiferous epidotic veins (?) Cpy.	Bx Iron formation	n . 006	. 62	. 71	Tr.	. 01		
8115	67.3-69.5	2.21	Garnetiferous epidotic with subsidiary magneti "cobbles"	$e^{\text {Hx Iron Formatidn }}$	n . 003	Tr.	. 07	Nil	Tr.		
8116	69.5-74.5	$5{ }^{\prime}$	$6^{\prime \prime}$ wide shear zone foll by somewhat oxidized weathered zone with magnetile, Py, Po, Cpy?	$\begin{aligned} & \text { pwed Bx } \\ & \text { Iron formation } \end{aligned}$. 004	. 28	. 07	Tr.	. 01		
8117	74.5-78.3	$3.8{ }^{\prime}$	Locally massive magnet with garnetiferous, epidotic stringers Cpy, Py, Po?	$\begin{array}{ll}\text { ern } & \text { Bx } \\ \text { Irormation }\end{array}$. 007	. 44	. 39	Nil	. 01		

BLUESTACK RESOURCES LIMITED.

\section*{Project : red lake \quad| Trench (Page 2) |
| :---: |}

-2006Rらつトに
PRCEIIE

LITHOLOGY．

$$
\begin{array}{lll}
\text { A:terotion zone. } & \text { Oyks? Nesiner } \\
\text { zone. }
\end{array}
$$

FIGURE 6

bluestack resources limited

Red Lake Project，Trenching programme． TRENCH No．l．

BLUESTACK RESOURCES LIMITED

Red Lake Project, Trenching programme.
TRENCH No. 2.

CLAIM No(s). 2206. McDonough Twp., District of Patricia.
SCALE $1=120 \quad\left(1^{\prime \prime}=10^{\prime}\right)$

FIGURE 8.
BLUESTACK RESOURCES LIMITED
Red Lake Project, Trenching programme.
TRENCH No. 3.
CLAIM No(s). 2208. Mc Donough Twp., District of Patricia. SCALE 1:120 (1" = $\left.10^{\prime}\right)$

$X-24 y$ HESAY LAJZi
 コニウン LESL！うTマEミT• ンク
 52N04NWOQ18 63．3989 MCDONOUGH TWP

900 PみこVた 4 10－445－5755

TFLEX UO－956947
CERTIFICATE UF ANALYSIS

ATTN：J．M．PATTERSOM
500 UN！VERSITY AVE．，دUJTE 810，
TJOOYTC，JNTARIO
MjG：V7．
CUSTJMEQ VE。 35

JATE SUBMITTLZ 24－NOV－31

ジロご T ！3634
25F．FiLE $3402-$ C2

53 2OCKS
NEマE AVALYミミつ AS FOLLJWS：

	Deple F－nrios	こ2／TJN	Cut	2N\％	A G GI／TJN	W03 \％	Pe\％
	2101 0－5－5	0.035	O．？	U．01	0.70	TRACE	NIL
	3：0？5－10－54	－．บn9	2.37	TKACE	3.53	0.02	TPACE
	$510^{2} 10-15=51$	）． 023	0.17	0.01	$0 \cdot 29$	－－	NIL
	$310415-20+51$	$\because .001$	3.21	0.01	NIL	－－	NIL
	$310520-25 \quad 5$	VIL	TRACE	TRACE	ivil	－－	vil
	－115 $25-30=51$	「※AEE	0.03	TRACE	TRACE	－－	vil
	± 107 3 $=35=51$	0.032	0.03	TミACE	TRACE	－－	T2ACE
	3102 35－4c＝51	0.052	0.05	TRAEE	TRACE	－－	$\because 1 \mathrm{~L}$
\cdots	$010940-45=51$	川l	0.21	TRACE	MIL	－－	ivll
4	$311045-50=5$	TRAこ	0.03	T2AEE	TRACE	－－	NIL
t	$311: \quad 50-55=51$	$\because I L$	0.00	TRACE	TPACE	－－	irace
	$311255-61.6=6.6 \text {. }$	NIL	0.02	TRACE	NIL	－－	$\triangle I L$
	－3113 61．6－63．3＝ 1.77^{\prime}	TスAC	0.03	TRACE	NIL	－－	¡PACE
）	－3114 $63.3-67.3=4$	0.000	0.71	0.01	0.62	－－	$12 \Delta C=$
J	$1!1567.3-69.5=2.2^{\prime}$	0.053	0.07	TRACE	TRACE	－－	NIL
3	$011569.5-74=5$	0.004	0.07	0.01	0.26	－－	iqムCE
	$311774.5-78.3=3.8^{1}$	0.027.	0.39	0.01	0.44	－－	AIL
－ 2	$8112^{2} 78.3-83.5=5^{-1}$	0.004	2.35	0.01	0.10	－－	NIL
6	$311783.3 \cdot 88.3=5$	0.001	0.04	TRACE	NIL	－－	1RACE
	$3120 \quad \overline{3} 8.3-44.0=5.7^{\prime}$	TRAEE	0.02	TRACE	NIL	－－	0.01
1	3121 44．0－46．5 $=2.51$	v1L	PRACE	TRACE	N1L	－－	NIL
	E12？46．5－97．7＝1．2＇	0.002	0.06	0.01	TRAC	－－	T2ACE
	12：47．7－106．9＝ $4.2{ }^{\prime}$	0.001	0.01	0.01	NIL	－－	TP．LC＝
	$0120 \quad 0-5=51$	0.025	3.10	TRACE	0.35	NIL	1Rん6＝
	cli？5－10 $=5$	c． 022	0.07	TRACE	trace	－－	N1L
	－125 10－15．5．	し．031	3.07	TRACE	3.11	－－	N1i
	$412 \% / 5-21=6$＇	0．325	0.22	0.01	0.22	－－	N！
	$\therefore 133$ 21－24．t $=3.6^{\prime}$	0.001	2． 35	0.01	trace	－－	T24C
	$813124.6-\alpha 6.8=2.4{ }^{\prime}$	$N I L$	0.01	TRALE	TRACE	－－	IRACE
	E132 $24.8-28.6=1.81$	0.053	0.00	0.02	TRACE	－－	TRACE
\cdots	$313328.6 \cdot 35.0=6.4^{\prime}$	AIL	TRACE	0.01	TRACE	－－	N！L
	$315435 . c-37.5=2.5^{1}$	NIL	NIL	0.01	NIL	－－	iRACE
	$013537.5-42.5=5$	NIL	NIL	$0 \cdot 01$	NIL	－－	IRACE
0	0136 t2．0－46．7 $=4.4$	IIL	NIL	0.01	NIL	－－	AIL
2	$313746.9-53.5=6.6$	$\because 1 \mathrm{~L}$	NIL	0.01	$N!L$	－－	N1L
4	$13253.5-57.0=5.5$	$0.0 .22$	0.04	$u \cdot 01$	$T R \angle C E$	－－	$T R \Delta C_{E}$
	$813257-62=5$	0.003	0.05	0.01	TRACE	－－	$\mathrm{A}_{1} \mathrm{~L}$
	$014262-66.7=4.7^{\prime}$	0.017	0.17	0.01	0.20	－－	ivIL
1	$=1+1 \quad 66.7-11.5 \times 8$	0.204	0.14	0.01	0.11	－－	$\text { ivI } i$
	$314271.5-71.3=5.8$	$0.0\rangle 3$	0.29	0.01	0.10	－－	TRACE
	$31+377.3-80.8 \cdot 3.51$	0.022	0.17	0.01	0.10	－－	MIL
	$=153 \quad c-3.5 \quad 3.5$	0.086	10.47	0.01	2．15	－－	VIL
	$B 15!3.5-5.7=2.2^{\prime}$	0.074	0.00	0.01	TRACE	－－	$12 a C E$
	$51525.7 \cdot 6.6=0.9^{\prime}$	0.094	0.05	0.01	TRACE	－－	vil
	$51536.6-11.9=5.3$	0.033	0.10	0.01	0.17	－－	M1L
$i \sqrt{2}$	$3: 54 \quad 11.9-14.9=3$	0.005	0.12	0.02	TRACE	－－	TPACE
$\frac{1}{4}$	3！j5 14．9－du．2＝5．3＇	0.010	0.31	D．01	0.28	－－	NIL
a	$j 15020.2 \cdot 21.4=1.2^{\prime}$	0.005	0.75	T2AこE	1.00	－－	$\therefore 1 \mathrm{~L}$
	$315-21.4-27 \quad 5.6$	0.319	0.77	0.02	0.73	－－	$\therefore 1 \mathrm{l}$
0	$3: 55 \quad 27-31.3=4.3^{\prime}$	0.012	0.32	0.01	0.43	－－	12ACE
3	5：57 31．3－33．3： 2	0.050	1.70	13．01	1.57	－－	IRACE
	E16：33．3－38．1 $=4.85$	0.324	0.10	TRACE	0.76	－－	TRACE
$>$	510］， $38.1-44.0=5.4^{\circ}$	0.1331	0． 32	0.01	1.06	－－	TRACE

LEGEivD
KEY TO SYMEJLS

```
    -1 - 10% PLUS
    * - 5-15% %L - 0.05-0.5%
    N - 1-10% T - j.01-3.1%
!H- -.5-5% FT - 0.0!% OR LESS
    ND - NDT DETECTED
```

: \because こNSITIVITY
(LIMIT JF DETCCIILN)
1 - 0.0005-0.001\%
2-0.001-0.055\%
$3-0.005-0.01 \%$
4-0.01-0.05:
$5-0.05-0.0 \%$

NGTE: UETTER SENSITIV!T!:S こAN 3E OSTAINED WITH SOECIAL TEEHNIJUES, $I=$ ANO WHEN REWIIPE?

$$
\begin{aligned}
& \text { Y-RAY ムSラAY LAPJPATJRISS LIMITED } \\
& 1395 \text { LESLIE STEEET, こONMILLS. JNTARIU M33 3J4 } \\
& \text { PHOV=41ن-45-5755 TELEX 05-905747 } \\
& \text { GERTIFICATE DF divALYJIJ }
\end{aligned}
$$

LEGEND

KEY TO SYMZJLS

$$
\begin{aligned}
& 4-10 \% \text { PLUS } L-0.1-1 \% \\
& v_{H}-5-15 \% \quad T_{L}-3.35-3.5 \% \\
& M-1-10 \% \quad T-2.01-3.1 \% \\
& \text { : } 4 \text { - } 3.5-5 \% \text { FT - } 0.01 \% \text { OR LESS } \\
& \text { NO - VTT JETEZTE? }
\end{aligned}
$$

HSENSITIVIT； （LJMI UF DET＝CTIJN）

1 －0．0005－0．001\％
2－0．001－0．005\％
$3-0.005-0.01 \%$
$4-0.01-0.05 \%$
$5-0.05-0.1 \%$

UOTE：SETTED SEVSITIVITIES こAN 3E UBTAINEO WITH SPECIAL TECHNIWUES，

LEGEND

KEY. TO SYMSJLS

$$
\begin{gathered}
H-10 \% \text { PLUS } \\
4 H-5-15 \% \\
M-1-10 \% \\
M-3.5-5 \%
\end{gathered}
$$

*SENSITIVITY
(LIMIT UF DETECIICN)
1 - 0.0005-0.001\%
$2-0.001-0.005 \%$
$3-0.005-0.01 \%$
4-0.01-0.05\%
$5-0.05-0.1 \%$

YOTE: BETTER SENDITIVIT!ES こAN BE OBTAINES WITY SPECIAL TECHNIGUES, IF AND WHEN REIUIPED.
$O M 81-1-C-11$
THIS SUBMITTAL CONSISTED OF VARIOUS REPORTS, SOME OF WHICH HAVE BEEN CULLED FROM. This file. The culled material had been PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED (N THESE SERIES):

Report on the EM and MAG Surveys \rightarrow EM: Toronto file ${ }^{\#} 2.4703$ (Oct. /81) MAG: Toronto file 2.4246

