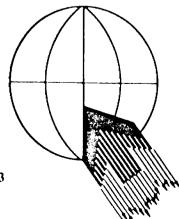


52N09SW0007 2.4100 CASUMMIT LAKE

RECEIVED


۰.

AHG 2 8 1981

MINING LANDS SECTION

2.4/00

AIRBORNE ELECTROMAGNETIC SURVEY NORANDA EXPLORATION LTD. CASUMMIT LAKE AREA, ONTARIO PROJECT #23009 APRIL, 1981

urveys Limited, 6380 Viscount Road, Mississauga, Ontario LAV 1H3

ŧ.

INTRODUCTION

٠.

This report contains an interpretation of the results of an airborne electromagnetic survey flown in the Birch Lake Area, Northwestern Ontario on February 15, 1981. In the report is a brief description of the survey procedures followed by recommendations for ground follow-up.

A total of 483 line kilometres were flown by Questor Surveys Limited using a specially modified Shorts Skyvan C-FQSL. Dryden, Ontario was used as an operating base.

The area outline is shown on a 1:250,000 map at the end of this report. This is part of National Topographic Series sheet number 52N.

The personnel on the aircraft were as follows:

Pilot	Don Reynolds
Navigator	Ralph Webster
Operator	Bill Hutchinson
Engineer	Pat Melen
Crew Manager	Ken Cuomo

MAP COMPILATION

The base maps are uncontrolled mosaics constructed from 1:69,600 N.A.P.L. photographs. The mosaics were reproduced at a scale of 1:25,000 on stable transparent film from which white prints can be made.

Flightpath recovery was accomplished by comparison of the 35mm continuous strip film with the mosaic in order to locate the fiducial points. These points are approximately 1370 metres apart.

- 1 -

SURVEY PROCEDURE

•

Terrain clearance was maintained as close to 122 metres as possible, with the E.M. Bird at approximately 45 metres above the ground. A normal S-pattern flight path using a tight turn was used. The equipment operator logged the flight details and monitored the instruments.

A line spacing of 300 metres was used.

INTERPRETATION AND RECOMMENDATIONS GENERAL

The survey area lies 109 kilometres northeast of Red Lake, and is within the area covered by the Ontario Geological Survey's 1:253,440 and 1:126,720 Geological Compilation Series (Maps 2175 and P. 406 respectively). The survey consists of two blocks which overlap in the area of Casummit Lake. Both blocks are contained on the Geological Survey of Canada's Aeromagnetic Series sheets 52(8)N and 88(4)G.

The bedrock, in the area flown, is Archean in age and part of the Birch-Uchi Lakes metavolcanic - metasedimentary belt. The major lithologies of the area are as follows:

(1) A sequence of mafic metavolcanics which include massive and pillow lavas, agglomerates and their metamorphic equivalents. Within this sequence are minor intercalations of oxide, silicate and sulphide facies of iron formation.

(2) A lens of felsic to intermediate metavolcanics and, associated chert horizons, which lies northwest of Birch Lake.

- 2 -

(3) Various isolated lenses and pods of metasediments, which appear to overlie the metavolcanics.

(4) Felsic intrusives and undifferentiated granitic rocks.

The geological structure of the area is complex especially in the region of Casummit Lake. Here a synclinal axis is truncated by a granitic intrusive in the vicinity of three lithological contacts.

The major fault: zones in Block B, which to some degree have been interpreted from magnetics, were placed on the interpretation map sheet for reference purposes. Minor shear zones associated with the faults, inferred from INPUT data, have not been plotted since this would be highly subjective and could prove misleading.

The magnetic contour map of the survey area is complicated owing to the presence of iron formation. The relief of magnetic intensity is very high which tends to distort and mask out the more subtle geologic features. The absolute total magnetic field measurements range from 60,540 gammas to more than 69,000 gammas.

The aeromagnetic map show faults as linear zones of lower magnetic intensity or horizontal displacement. The roughly circular areas of low to medium magnetic intensity correspond to granitic rocks. The belts of higher magnetic intensity in proximity to these lows represent boundaries of metavolcanics and metasedimentary units. Short linear magnetic features of highest magnetic intensity are possibly due to iron formation. These features occur throughout the metavolcanics near the contacts with the metasediments. An example of this would be the magnetic high on line 20200N in fid 117. Using these criterions it can be seen that magnetics define some

- 3 -

boundaries which do not always agree with mapped lithological units.

Several areas on both blocks have been outlined and assigned a number for reference purposes. Those anomalies plotted, which have not been assigned a number, are probably due to magnetite, graphite (especially near shear zones wherever an associated magnetic peak is absent) pyrite or lake bottom sediments and are believed to be of no economic significance.

ZONE 1

Zone 1 consists of several conductors lying near major lithological contacts. Conductor A lies just beyond the edge of the survey and as a result is only picked up on several of the survey lines which extend furthest north. It demonstrates a conductivity - thickness varying between 2-14 siemens and appears to dip to the north. The magnetic contour map does not cover this area but there is an indication that the contact between the metavolcanics and metasediments lies in this area.

Conductor B extends over six lines to the edge of the block. The apparent conductivity - thickness ranges from 25 siemens to 4 siemens in the east. Using a vertical half plane model, a depth in the order of 18 metres was derived. A curved magnetic trend in this vicinity may indicate the contact between the metavolcanic and metasediments. The conductor follows this magnetic trend and may also be related to this contact.

4 -

Conductor C represents two parallel zones, in the range of 1-2 siemens. Anomaly shape would indicate that these conductors are deeper than those adjacent to them. The geology is predominately mafic metavolcanics which are in proximity to a felsic intrusive. Zone 1 is given a medium priority status and should be examined at intercepts A, B and C, line 10360S.

ZONE 2

Zone 2 is marked by aweak, east-west striking conductor which dips to the south at a shallow angle, and demonstrates a conductivity - thickness of 1 siemen. The conductor extends over four lines and is located on the flank of a magnetic high which may be due to iron formation. A small magnetic shoulder, of 20 gammas, also occurs on the flank of this magnetic trend and appears to be related to the conductor. The geology is uncertain as the conductor lies in water, however, it is in the immediate vicinity of a contact between metasediments and metavolcanics. A sulphide showing in this general location may be related to a facies of the above-mentioned iron formation. This zone should be considered a medium priority follow-up target.

ZONE 3

Zone 3 is marked by a major six line conductor flanked to the north by a weaker two line conductor. The major conductor strikes east-west, dips to the north at approximately 50° and has a conductivity - thickness in the order of 10 siemens. A major fault trending roughly parallel with this zone is indicated by both the magnetics and geology. For this reason the zone is

- 5 -

believed to be fault related and should be examined at intercept B line 10210N. This zone is recommended on a medium priority level.

ZONE 4

Zone 4 has provided several weak INPUT responses which trend roughly east-west and are of short strikelength. The one channel responses in this zone lie over lakes and are probably due to lake bottom sediments. The other conductors lie in mafic metavolcanics with the anomalies on lines 10090N and 10010S near a contact with a granitic body. This is a low priority area for further examination.

ZONE 5

Zone 5 is located along a linear magnetic low which is associated with a fault zone. Some of the INPUT responses are broad indicating the conductoraxis is intersecting the flight lines at an oblique angle. Most of the responses in this zone are weak with conductivity - thicknesses ranging from 2-5 siemens however, a strong 6 channel response is located at intercept A line 10060S which shows a conductivity - thickness of 23 siemens. The geological environment and geophysical responses possibly indicate the presence of graphite but due to the gold showings related to this fault system and strong 6 channel response zone 5 should be given a medium priority follow-up status.

- 6 -

ZONE 6

Zone 6 is marked by an abrupt change in the magnetic trend from northeast to south by southwest. Conductor A appears to follow this change in strike. This is evident from the much stronger INPUT response (intercepts A and B line 19020E) on an easterly flown line. The double peak, which this response shows, indicates that Conductor A is dipping to the west at approximately 70° and a derived depth, using a vertical half plane model, is in • the order of 31 metres. The conductor is located on the flank of a magnetic high and is associated with a fault zone. This zone is considered a high priority target for follow-up work because of the favourable structural location and associated gold showing.

BLOCK B

This block lies immediately east of Block A. The geology is similar to that of Block A with the exception of a lens of felsic - intermediate volcanics which exist in Block B north of Birch Lake.

ZONE 7

Zone 7 contains several conductors which strike northwest. Conductor A extends across the entire length of the block and demonstrates a conductivity - thickness varying from 1-38 siemens. The dip is variable along strike but is in the order of 40° northeast. This trend appears to line up with Conductor B of Zone 1 and may be part of the same geological feature. A linear, northwest trending magnetic high which is probably related to the volcanic -

- 7 --

granite contact coincides with the conductor.

Conductor B appears to be a separate conductor which is located on the flank of a strong magnetic high. This magnetic body distorts the linear magnetic trend assocaited with volcanicgranite contact, near intercepts A and C lines 20100N and 20110S respectively. The conductivity - thickness of the conductor is 19 siemens. This coupled with the strong magnetic response suggests pyrrhotite mineralization as part of a sulphide facies of iron formation.

Conductor C is a weak conductor of short strike length which lies within the metavolcanics. The conductor is of some interest due to the association with a major lithological contact and possible iron formation.

Conductor D strikes northwest across 6 survey lines and appears to closely parallel Conductor A. The strongest anomaly is at intercept B line 20210S where the INPUT response displays a conductivity - thickness of 17 siemens. In this location there is a possible shearing or folding of both conductors A and D. Zone 7 may be regarded as a high priority target at intercepts B and C line 20110S and intercepts A and B line 20210S.

ZONE 8

Zone 8 consists of a single conductor of moderately short strike length which dips to the north at approximately 45⁰. The zone lies in mafic metavolcanics and has no distinct magnetic

- 8 -

association. The strongest anomaly in this zone is a 6 channel response with a conductivity - thickness of 10 siemens. This response lines up with a possible shear break affecting conductors A and D in zone 7. This zone should be regarded as a low priority follow-up target.

ZONE 9

٩.

Zone 9 has revealed a short weak conductor which strikes northwest. The geology consists of mafic metavolcanics and there is no distinct related magnetic response. This zone is given a medium priority follow-up status.

ZONE 10

Zone 10 is marked by a single weak conductor which is located on the flank of a small magnetic high. The INPUT responses are sharp indicating a conductor close to surface. An outcropping of iron formation as well as two gold showings are located in the immediate vicinity of these anomalies. The favourable geological setting rank this as a high priority target.

ZONE 11

Zone 11 displays a single 5 channel response with a conductivity - thickness of 12 siemens. The anomaly lies on the flank of a strong magnetic high which is probably due to the presence of iron formation. The isolated nature of this anomaly indicates it should be examined as a high priority follow-up target.

ZONE 12

Zone 12 displays the same conductor as in zone 2. This conductor appears weaker in zone 12 due to the different orientation of the flight lines.

ZONE 13

Zone 13 provides a short weak conductor which corresponds with a one channel anomaly at intercept E line 10360S. The conductor appears to be close to an apparent metasediment-metavolcanic contact and lies on the flank of the same magnetic trend as the old Argosy Gold Mine. The zone is given a high priority follow-up status though the area should be checked out on the ground to determine whether the responses are due to cultural effects.

ZONE 14

Zone 14 lies to the north of zone 7 and is represented by a short conductor which increases in conductivity - thickness towards the northwest. The maximum conductivity - thickness attained is 11 siemens. This response lies at the peak of a small magnetic high adjacent to a contact between metasediments and granitic rocks. The zone is given a medium priority follow-up status. During the survey, flight lines were flown in alternate directions in order to facilitate interpretation of dipping conductors. Double peaks occur on up-dip flight lines. The degree of dip is estimated from the ratio of channel 2 amplitude of the first and second anomaly on up-dip flights.

Conductor axes plotted on the maps should be used as a guide only. Ground geophysical surveys are needed to accurately locate them.

QUESTOR SURVEYS LIMITED

iceny/

Ken Cuomo, Geologist.

•

The aircraft is equipped with a Mark VI INPUT (R) airborne E.M. system and Sonotek P.M.H. 5010 Proton Magnetometer. Radar altimeters are used for vertical control. The outputs of these instruments together with fiducial timing marks are recorded by means of galvanometer type recorders using light sensitive paper. Thirty-five millimeter continuous strip cameras are used to record the actual flight path.

(I) BARRINGER/QUESTOR MARK VI INPUT (R) SYSTEM

The Induced Pulse Transient (INPUT) system is particularly well suited to the problems of overburden penetration. Currents are induced into the ground by means of a pulsed primary electromagnetic field which is generated in a transmitting loop around the aircraft. By using half sine wave current pulses and a loop of large turns-area, the high output power needed for deep penetration is achieved.

The induced current in a conductor produces a secondary electromagnetic field which is detected and measured after the termination of each primary pulse. Detection is accomplished by means of a receiving coil towed behind the aircraft on four hundred feet of cable, and the received signal is processed and recorded by equipment in the aircraft. Since the measurements are in the time domain rather than the frequency domain common to continuous wave systems, interference effects of the primary transmitted field are eliminated. The secondary field is in the form of a decaying voltage transient originating in time at the termination of the transmitted pulse. The amplitude of the transient is, of course, proportional to the amount of current induced into the conductor and, in turn, this current is proportional to the dimensions, the conductivity and the depth beneath the aircraft.

The rate of decay of the transient is inversely proportional to conductivity. By sampling the decay curve at six different time intervals, and recording the amplitude of each sample, an estimate of the relative conductivity can be obtained. By this means, it is possible to discriminate between the effects due to conductive near-surface materials such as swamps and lake bottom silts, and those due to genuine bedrock sources. The transients due to strong conductors such as sulphides exhibit long decay curves and are therefore commonly recorded on all six channels. Sheet-like surface materials, on the other hand, have short decay curves and will normally only show a response in the first two or three channels.

(ii)

The samples, or gates, are positioned at 310, 490, 760, 1120, 1570 and 2110 micro-seconds after the cessation of the pulse. The widths of the gates are 180, 180, 360, 360, 540, and 540 micro-seconds respectively.

For homogeneous conditions, the transient decay will be exponential and the time constant of decay is equal to the time difference at two successive sampling points divided by the log ratio of the amplitudes at these points.

(11) SONOTEK P.M.H. 5010 PROTON MAGNETOMETER

The magnetometers which measure the total magnetic field have a sensitivity of 1 gamma and a range from 20,000 gammas to 100,000 gammas.

Because of the high intensity field produced by the INPUT transmitter, the magnetometer results are recorded on a timesharing basis. The magnetometer head is energized while the transmitter is on, but the read-out is obtained during a short period when the transmitter is off. Using this technique, the head is energized for 0.83 seconds while the precession frequency is being recorded and converted to gammas. Thus a magnetic reading is taken every 1.13 second.

For this survey, a lag factor has been applied to the data. Magnetic data recorded on the analogue records at fiducial 10.00 for example would be plotted at fiducial 9.95 on the mosaics.

DATA PRESENTATION

The symbols used to designate the anomalies are shown in the legend on each map sheet, and the anomalies on each line are lettered in alphabetical order in the direction of flight. Their locations are plotted with reference to the fiducial numbers on the analog record.

A sample record is included to indicate the method used for correcting the position of the E.M. Bird and to identify the parameters that are recorded.

All the anomaly locations, magnetic correlations, conductivity-thickness values and the amplitudes of channel number 2 are listed on the data sheets accompanying the final maps.

GENERAL INTERPRETATION

The INPUT system will respond to conductive overburden and near-surface horizontal conducting layers in addition to bedrock conductors. Differentiation is based on the rate of transient decay, magnetic correlation and the anomaly shape together with the conductor pattern and topography.

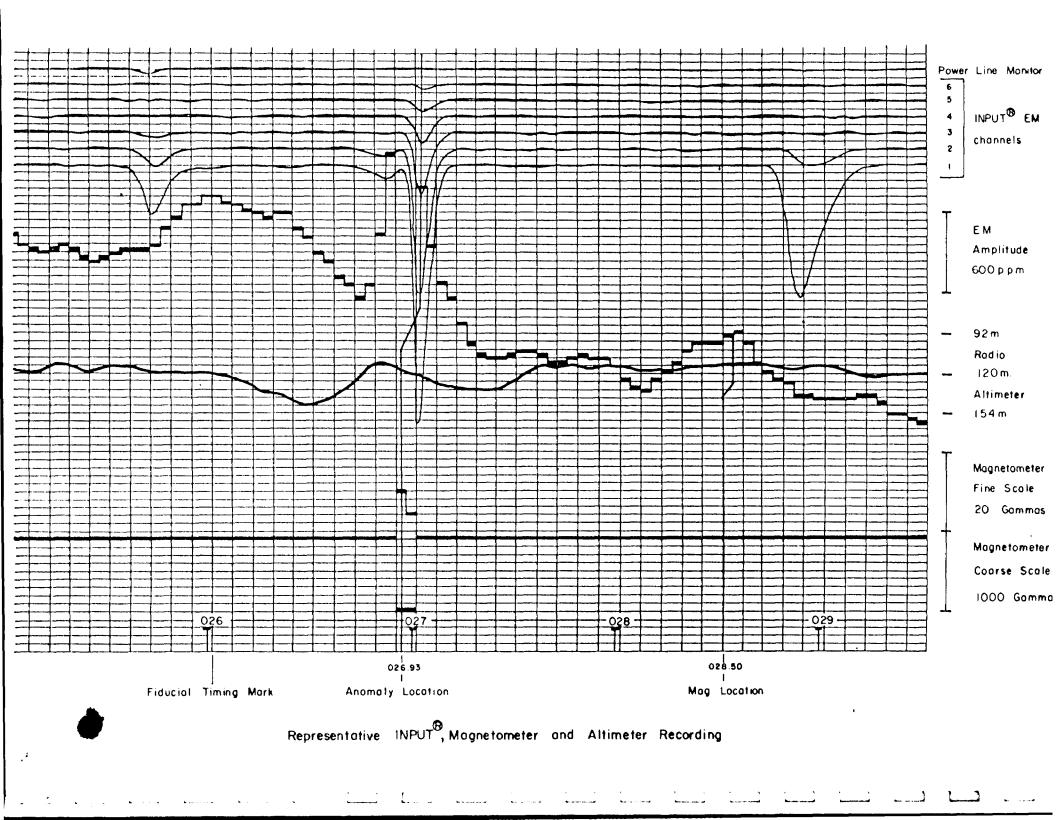
Power lines sometimes produce spurious anomalies but these can be identified by reference to the monitor channel.

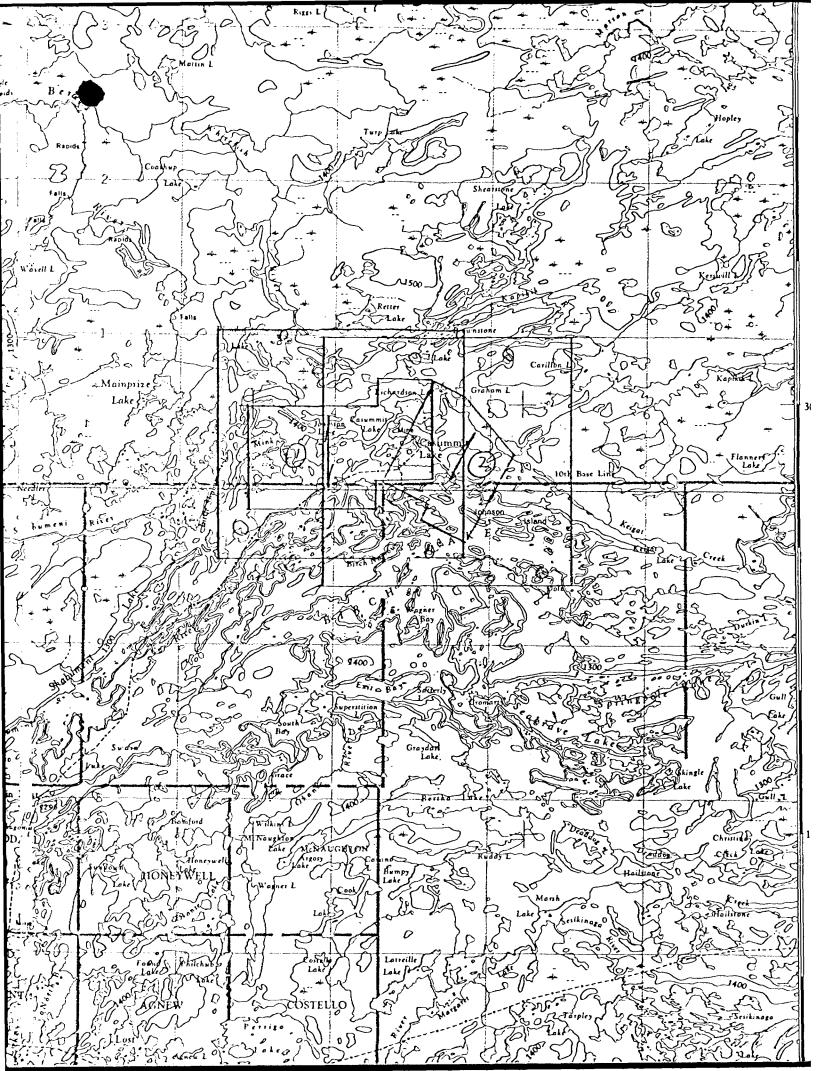
(iv)

Railroad and pipeline responses are recognized by studying the film strips.

Graphite or carbonaceous material exhibits a wide range of conductivity. When long conductors without magnetic correlation are located on or parallel to known faults or photographic linears, graphite is most likely the cause.

Contact zones can often be predicted when anomaly trends coincide with the lines of maximum gradient along a flanking magnetic anomaly. It is unfortunate that graphite can also occur as relatively short conductors and produce attractive looking anomalies. With no other information than the airborne results, these must be examined on the ground.


Serpentinized peridotites often produce anomalies with a character that is fairly easy to recognize. The conductivity which is probably caused in part by magnetite, is fairly low so that the anomalies often have fairly large response on channel #1; they decay rapidly, and they have strong magnetic correlation. INPUT E.M. anomalies over massive magnetites show a relationship to the total Fe content. Below 25 - 30%, very little or no response at all is obtained, but as the percentage increases the anomalies become quite strong with a characteristic rate of decay which is usually greater than that produced by massive sulphides.


(v)

Commercial sulphide ore bodies are rare, and those that respond to airborne survey methods usually have medium to high conductivity. Limited lateral dimensions are to be expected and many have magnetic correlation caused by magnetite or pyrrhotite. Provided that the ore bodies do not occur within formational conductive zones as mentioned above, the anomalies caused by them will usually be recognized on an E.M. map as priority targets.

٠.

ţ

· · · · · · · · · · · · · · · · · · ·					23009 (1)	
	FID	CHS	CH1.AMP-	-CH2+AMF-			
10010A	517,200	1	60		NC	517.25	135
10010B	518,425	1	60		NC	518.30	795
100100	518,850 -				NC	·····	
100101	519,450	2		49	NC		
10020A	509,575	1	50		NC	509.70	360
10020B	510.110	2	33		NC		
10040A	497.625	3		74	5		
10050A	492.400	2		41	NC	492,55	158
10050B	494,100	2			NC	493,80	148
-100500	497.375 -			45	NC		
-10060A	485,500	6					
100706	484+975	4		78			
-1-0080A				129			<u> </u>
10080B	474,800	2		35	NC		
10090A	471.600	2		30	NC	471.90	7
10090AX	473.220	1		50	NC		
-1-0090B		3		79	3	473.65	
10100A	462,900	1	63		NC	463,10	5
10100B			• • • • • • • • • • • • • • • • • • •	45	NC:		
-101104							
10110B	462,050	2			NC NC	459.30	77
n an se ga ga se se se		4		UT	136,		
10120A	452,500	2		30	NC	452.70	458
10120B	454.350	2		37	NC	454.10	243
	454+650			80	5	-454.50-	
-10130A		···				448-30-	200
-101-40A	440,750	1					
10140B	441.275	1	38		NC		
101400	443.900	1	44		NC	443,90	120

•••••••••••••••••••••••••••••••••••••••					23009 (2)	
FINAL							
ANOMAL Y	FII	CHS	CH1.AMP	CH2+AMP	-SIEMENS-	MAG	VAL
10150B	437,750	1			NC	437.60	22:
						<u></u>	
10160A	432.100	2		30	NC	432+15	58
10180A	418,675	1	31		NC	1 00.	
-104808	419,025	1				419.25	
-10190A	416.375	····· · · · · · · · · · · · · · · · ·				A. A. 2010	
10190B	416.700	1	50	30		416,25 417,10	
10000	AA'2 000						
10200A 10200B	407.900 408.175	2 4		60 105	NC 10	407+45 408+20	159 14:
en e a como o	• • • • •						
10210A -1-0210B	405,300	2		31 631	NC 	405.10	31/ 12 :
		U		001	ن ۲	400+30	م الله ال
10220A			·		8	397.05	14
105508	397,500	5		384	13	397,50	11
10230A	394.800	2		30	NC	394.70	1:
10261A	535,575	2		34	NC	535.80	11-
10340A	319,150	3		178	1	319.30	
10340B 10340G	319,600 	2		72	NC	 .	
100100		1.			NC		54
10360A	306+225-	5		261			
10360B 10360C	306,375 306,800	4 6		117 339	14 35	306.35 306.55	6(
10360B 10360E		6 1	47		33 NC	310,30	583
		-				010+00	
10370A 10370B	303,425	2		57	NC	303.30	95
10370B	303+700 	2 		54 114	NC 1	- 305.45	
1038 0A 10380B	293+625 294+050	б З				_	
103800	294,350	3		122	1	294.25	973

ŧ

t

(

1

ſ

ţ

{

1

1.

1.

Ľ

					23009 (3)	
FINAL	F 3.10	CHS	CH1.AMP	CH2+AMP	SIEMENS		VALUE
103800	294+675	2		63	NC	294+90	98
10380E	2964525.~				<u> </u>	296+80	
10390A	291,100	. 2					
10390B	291.475	3		72	1	291.20	20
103900	292.925	3		94	1	292.50	200
-1-039010					NC	2072 • 30	200
10390E	293,400	5		419	4	293+30	1397
··· • · · · · ·	· · · · · · · · · · · · · · · · · · ·						
10400A	281,075	5		355	17		
10400B	282.075	2		77	NC	282.10	1705
-104000							
10400D	284.075	3		136	1		
10400E	284,500	1	23		NC	284+45	125
10410A	279,700	3		80	1	279.85	1307
104108	280+325						
10410C	280,650	2		42	NC		war til war
19020A	520,650			005	r		
19020B	520,825	4 6		205 696	5 17	520,50 521,20	$\frac{1205}{694}$
190201	527+050	2	an a	52	 אכ	526+65	763
•							· · · · · · · · · · · · · · · · · · ·
20010A	246+925	2		82	NC	****	
-2001-08	247325	2			NC NC	247.35	
<u></u>	ድኑ ል የምር በግር ምር እ	~		,		M. 4 100 190 191	
20020A	- 243+550				NC	243.35	
20020B	243,725	2	· ·	63	NC		an a 11. an
20020C -20020D	244+975 	2		47 	NC	245,15	2488
-20030A	233+825			68	l	233.70	1878
20030B	235+600	3		124	1	235,65	317
200300	236+825	2		62	NC	236.70	80
20040A	228,900	2		39	NC	228,55	592
-20040B		2				229.65	
200400	230.275	2		52	NC	230.05	12
200400	231,550	3		137	3	231,50	2774
-20040E					<u>11</u>	-231.95	2317
900E24	040 TOP	-			-	سويند بر در در	من ومن المر
-20050A	219+325	- 5			5	219.35	1979
20050B	220.075	5		354	6	-	
200500	220,250	4		173	2	220.20	2025

1

ł

1.

1.

1.

ن ا

···· ··· ·				23009	(4)	
FINAL ANDMALY	F11	сня	CH1.AMP CH2.AMP-	SIEMENS-		VALU
200501	221,500	2	45	NC	221,20	234
· · · · · · · · · · · · · · · · · · ·	en e					204
20060A	217,500	6	341			
50020B	218,150	2 ~~		14 NC	217,25	761
20070A						
20070B	206+675	6	387	i i		
200700	206,800	5	390	8	206.75	620
00000						
20080A	203,425	6	939	19	203.40	1117
200808		2	42	<u>N</u> C		
04404						
20090A 20090AX	-192+475	2	41	NC		
	193.000	6	450	7	172.+00	<i>2</i> .0
20090B	193.175	6	1007	22	193.15	3081
20100A	189,900	6	263	39		
20100B	190.050	6	556	38	 190.00	8021
20110A	179,875	6	. 327	05		
-20110B				25		
201100	180,150	6	374			8642-
201100	181.700	2	30	17 NC	180,50	325
20120A	175.400	2	30	NC	175.35	
-20120B		2			175+35 	36
201200	177,100	6	474	16	177.10	3606
	• • • • • • • • • • • • • •					
20130A 20130B	165.000	2	38	NC		
201300	165,175 165,400	4	103	9		
201300	166,000		232	3	165.30	3739
	2001000	æ.	30	NC	166.25	405
20140A	159,800	·····-	· · · · ·			
201408	161.875	2 3	30	NC	159.85	2394
201400			63	4	161.70	105
20140D	162,375	4				139-
		-1	112	1	162.30	645
20151A	268,600	2	·····			
20151B	268,975	3	69	ИС		
201516	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		91 	1	268,95	626
20151CX	269.26	2	45	NC NC		
20151D	271.950	2	45	NC	271.70	1715
20160A	146.100	3				
20160AX	198.28	3 2	30 90	1	146.15	1051
20160B		6	476	NC 		لــووهــــ

ť

ŗ

t

. í

11

l

H - 300 500 575 100 400 725 225 925 075 125 300 550 775 100 750 750 700 750 700 750 700 750 700 70	CHS -4 -6 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	CH1.AMP	90 300 75 30 30 30 30 30 30 131 25 65 30 30 30 30 30 30 30 30 30 30	-SIEMENS 	MAG 137.45 140.10 140.55 132.45 134.50 	
500 575 100 400 725 225 925 075 125 300 550 550 275 100 550 700			300 75 30 30 30 30 30 131 25 65 30 30 36 30	11 29 NC NC 21 7 1 1 NC 2 1 1	140.10 140.55 132.45 134.50 - - 124.85 -	757 465 897 1608
500 575 100 400 725 225 925 075 125 300 550 550 275 100 550 700			300 75 30 30 30 30 30 131 25 65 30 30 36 30	11 29 NC NC 21 7 1 1 NC 2 1 1	140.10 140.55 132.45 134.50 - - 124.85 -	757 465 897 1608
575 100 400 725 225 925 075 125 300 550 300 275 100 550 700	6 2 5 3 4 2 3 3 3 3 2 3 3 2 3 3 3 2 3 3 3		75 	29 NC NC 21 7 1 1 NC 2 1 1	140.10 140.55 132.45 134.50 - - 124.85 -	757 465 897 1608
100 400 725 225 925 075 125 300 550 550 775 100 550 700	2 2 5 3 4 2 3 2 3 3 3 2 3 3 2 3 3 2 3 3 3		30 30 30 30 30 30 131 25 65 30 30 36 30	NC NC 21 	140.55	465 897 1608
400 725 225 925 075 125 300 550 550 275 100 550 700	2 5 3 4 2 3 2 3 3 3 2 3 3 2 3 3 2 3 3 3 3		30 30 30 30 131 25 65 30 30 30 30 30	NC 21 7 1 NC 2 NC 1 1 1	140.55	465 897 1608
225 925 075 125 300 550 075 300 975 100 550 700	5 3 4 2 3 2 3 3 3 2 3 3 2 3 3 3 3		30 30 131 25 65 30 30 36 30	21 7 1 NC 2 NC 1 1	134.50	897 1606
225 925 075 125 300 550 075 300 975 100 550 700	5 3 4 2 3 2 3 3 3 2 3 3 2 3 3 3 3		30 30 131 25 65 30 30 36 30	21 7 1 NC 2 NC 1 1	134.50	1608
925 075 125 300 550 075 300 975 100 550 700	3 4 2 3 2 3 3 3 2 4 3 3		30 30 131 25 65 30 30 36 30	21 7 1 NC 2 NC 1 1	134.50	1608
075 125 300 550 575 300 975 100 550 700	4 2 3 2 3 3 3 2 4 3		30 131 25 65 30 30 36 30		124.85	
125 300 550 075 300 275 100 550 700	2 3 3 3 3 2 4 3		131 25 65 30 30 36 30	1 NC 2 NC 1 1		1288
300 550 575 300 975 100 550 700	3 2 3 3 2 4 3		65 	2 NC 1 1		1288
300 550 575 300 975 100 550 700	3 2 3 3 2 4 3		65 	2 NC 1 1		1288
550 575 300 975 100 550 700	2 3 3 2 6 3		30 30 36 30	2 NC 1 1		1288
075 300 975 100 550 700	3 3 2 6 3		30 36 30	1 1		1288
300 975 100 550 700	3 2 5 3		36 30	1 1		1288
975 100 550 700	2 6 3		30	- 		
100 550 700	6 3			NC	110 00	
100 550 700	6 3			NC	110 00	
550 700	3				TTO + 7 Å	347
700			670	10	Here	
	6		51 301	1 10	121.35 121.65	1319 453
51717	3		60	2		
175	5		222			<i></i>
650	- <u>б</u>			13	46,55	991
880	3		679 50	17 7	46+95	
·50					<u> </u>	- 6400
.00	4					1107
500	6		285	15	44,25	1008
	3		64	5		
25	- 3			5	32.75	1723
E 2)						
75	2				27.65	1762 1549
			00	no	00+10	T 0.42
50	2		52	NC		
	250 00 500 25 50 75	250 - 5 5	250 5 00 4 500 6 50 3 50 2 75 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1

1.

Ι.

Ĺ

1

,

ł

í

OFFICE USE ONLY

Ministry of Natura

GEOPHYSICAL – GEOLOGIC/ TECHNICAL DATA

900

list

insufficient, attach

ğ

2N095W0007 2.4100 CASUMMIT LAKE

AUG 2 8 19 INING LANDS TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC. Type of Survey(s) AIRBORNE MAGNETIC Township or Area Casummit (M. 2695) & Brownstone (M2149 MINING CLAIMS TRAVERSED Claim Holder(s) Noranda Exploration Co., Ltd. and List numerically Terry Byberg Survey Company Questor Surveys Limited AS PER ATTACHED (prefix) (r (number) Author of Report Ken Cuomo SCHEDULES 609,611,622 Address of Author 6380 Viscount Road, Mississauga, Ontario and 634 <u>A.N.P</u>..... Covering Dates of Survey February 15-April, 1981 (linecutting to office) KRL 540752 Total Miles of Line Cut_ KRL 540753 SPECIAL PROVISIONS KRL 540754 DAYS **CREDITS REQUESTED** per claim Geophysical KRL 540756 -Electromagnetic_ ENTER 40 days (includes KRL 540757 -Magnetometer__ line cutting) for first survey. -Radiometric_ KRL 540758 ENTER 20 days for each -Other_ KRL 540760 additional survey using Geological_ same grid. KRL 540761 Geochemical. AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer 40 Electromagnetic Radiometric (enter days per claim) DATE: August 24/81 SIGNATURE: Author of Report or Agent 8,329' Res. Geol. _____ Qualifications _ **Previous Surveys** Claim Holder File No. Туре Date TOTAL CLAIMS____ 245

GEOPHYSICAL TECHNICAL DATA

Ģ	ROUND SURVEYS - If more than one survey, sp	becify data for each type of survey								
	Sumber of Stations									
	Station interval	• •								
	Profile scale									
C	Contour interval	······································								
	Instrument									
TIC	Accuracy – Scale constant									
MAGNETIC	Diurnal correction method									
MAC	Base Station check-in interval (hours)									
F-4	Base Station location and value									
	· · · · · · · · · · · · · · · · · · ·									
TIC	Instrument									
NE	Coil configuration									
IAG	Coil separation									
Ő	Accuracy									
CTH	Method:	□ Shoot back □ In line	Parallel line							
ELECTROMAGNETIC	Frequency	(specify V.L.F. station)	·····							
	Parameters measured		te brade to a second on the state of the second of the sec							
	Instrument									
Ы	Scale constant									
	Corrections made									
<u>GRAVIT</u>	·	······································								
6	Base station value and location									
	Elevation accuracy		·							
	Instrument									
	Method 🔲 Time Domain	Frequency Domain								
	Parameters – On time	Frequency								
ΤY	- Off time	Range								
IVI	— Delay time									
ISI	Integration time									
RESISTIVITY	Power									
1	Electrode array									
	Electrode spacing									
	Type of electrode									

INDUCED POLARIZATION

SELF POTENTIAL

Instrument	Range
Survey Method	
RADIOMETRIC	
Instrument	
Values measured	
Energy windows (le	evels)
Height of instrumer	ntBackground Count
Size of detector	
Overburden	(type, depth – include outcrop map)
	(type, depin – include outcrop map)
OTHERS (SEISMIC	C, DRILL WELL LOGGING ETC.)
Type of survey	
Instrument	
Accuracy	
Parameters measure	ed
Additional informa	tion (for understanding results)
•	
AIRBORNE SURV	EYS
Type of survey(s)_	Airborne Magnetic Survey
Instrument(s)	Sonotek P.M.H. 5010 Proton Magnetometer
Accuracy	(specify for each type of survey)
Aircraft used	(specify for each type of survey) Shorts Skyvan C-FQSL
Sensor altitude	122 meters
	ht path recovery method <u>1:25,000</u> uncontrolled mosaics;
	35 mm continuous strip film

Aircraft altitude <u>122 meters</u> Line Spacing <u>300 meters</u>

Miles flown over total area 483 km Over claims only

GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken_____

			······				
T-t-1 Nous have of Complete	1						
Total Number of Samples	11111111111111	AL METHOD	<u>95</u>				
Type of Sample(Nature of Material)	Values expressed in:	per cent p. p. m.					
Average Sample Weight		p. p. h. p. p. b.					
Method of Collection	Cu, Pb, Zn, Ni, Co,	Ag, Mo,	As,-(circle)				
Soil Horizon Sampled	Others	· · · · · · · · · · · · · · · · · · ·					
Horizon Development	Field Analysis (<u> </u>	tests)				
Sample Depth	Extraction Method						
Terrain	Analytical Method						
	Reagents Used						
Drainage Development	Field Laboratory Analysis						
Estimated Range of Overburden Thickness	No. (tests)				
	Extraction Method						
	Reagents Used						
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing)	Commercial Laboratory (tests				
Mesh size of fraction used for analysis	Name of Laboratory						
wesh size of fraction used for analysis	Extraction Method						
	Analytical Method						
	Reagents Used		4107-1117-7-1-1				
General	General						
		<u></u> _					

4 i j

CLAIM NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	
KRL 642		KRL541828		KRL580259	
KRL509643		KRL5 41829		KRL580260	
KRL509644		KRL541830		KRL580261	
KRL509645		KRL541831		KRL580262	
KRL509646		KRL541832		KRL580263	
KRL509647		KRL541833		KRL580264	
KRL509648				KRL580265	
KRL509649		KRL580201		KRL580266	
KRL509650		KR1.580202		KRL580267	
KRL509651		KRL580203		KRL580268	
KRL509652		KRL580204		KRL580269	
KRL509653		KRL580205		KRL580270	
KRL509654		KRL580206		KRL580271	
KRL509655		KRL580207		KRL580272	
KRL509656		KRL580208		KRL580273	
KRL509657		KRL580209		KRL580274	
KRL509658		KRL580210		KRL580275	
KRL509659		KRL580211		KRL580276	
KRL509660		KRL580212		KRL580277	
KRL509661		KRL580213		KRL580278	
		KRL580214		KRL580279	
KRL50966 4		KRL580215		KRL580280	
KRL509665		KRL580216		KRL580281	
KRL509666		KRL580217		KRL580282	
		KRL580218		KRL580283	
KRL541799		KRL580219		KRL580284	
		KRL580220		KRL580285	
KRL541801		KRL580221			
KRL541802		KRL580222		KRL587276	
KRL541803		KRL580223		KRL587277	
KRL541804				KRL587278	
KRL541805		KRL580226		KRL587279	
KRL541806		KRL580227		KRL587280	
KRL541807		KRL580228		KRL587281	
KRL541808		KRL580229		KRL587282	
KRL541809		KRL580230		KRL587283	
KRL541810				KRL587284	
KRL541811		KRL580242		KRL587285	
KRL541812		KRL580243		KRL587286	
KRL541813		KRL580244		KRL587287	
KRL541814		KRL580245		KRL587288	
KRL541815		KRL580246		KRL587289	
KRL541816		KRL580247		KRL587290	
KRL541817		KRL580248		KRL587291	•
KRL541818		KRL580249		KRL587292	
KRL541819		KRL580250		KRL587293	
KRL541820		KRL580251		KRL587294	
KRL541821		KRL580252		KRL587295	
KRL541822		KRL580253		KRL587296	
KRL541823		KRL580254		KRL587297	
		KRL580255		KRL587298	
KRL541825		KRL580256		KRL587299	
KRL541826		KRL580257		KRL587300	
KRL541827		KRL580258			

,

.

DAYS CLAIM NO. DAYS

TOTAL CLAIMS = 153

CLAIN NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS
KRL526635							
KRL541834							
KRL541835							
KRL541836							
KRL541837							
KRL541838							
KRL541839							
KRL541840							
KRL541841							
KRL541842							
KRL541843							
KRL541844							
KRL541845							
KRL541846							
KRL541847							
KRL541848							
KRL541849							
KRL580231		•					
KRL580232							

•••

-

TOTAL CLAIMS = 19

CLAT NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS
KRL580224							
KRL580225							
KRL580233							
KRL580234							
KRL580235							
KRL580236							
KRL580237							
KRL580238							
KRL580239							
KRL580240							
KRL580241							

TOTAL CLAIMS = 11

t

· - · ·

- · ·

.

CLAIN NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS
KRL502587		KRL541408					
KRL502588		KRL541409					
KRL502589		KRL541410					
KRL502590		KRL541411					
KRL502591		KRL541412					
KRL502592		KRL541413					•
KRL502593		KRL541414					
KRL502594		KRL541415					
		KRL541416					
KRL502601		KRL5 41417					
KRL502602		KRL541418					
KRL502603		KRL5 41419					
KRL50260 4		KRL5 41420					
		KRL541421					
KRL502625		KRL5 41422					
		KRL5 41423					
KRL502752							
KRL502753							
KRL502754							
KRL502755		• '					
KRL502756							
KRL502757							
KRL503247							
KRL503248							
KRL503249							
KRL503250							
KRL503251							
KRL503252							
KRL503253							
KRL503254							
KRL503255							
KRL503256							
KRL503257							
KRL503258							
KRL503259							
KRL503260 KRL503261							
	•						
KRL503262 KRL503263							
KRL503263 KRL503264							
KRL503264 KRL503265				ATOT	L CLAIMS :	= 54	
VKP202502		•					

_

N
Ontario

OFFICE USE ONLY

Ministry of Natural Resources

File.

GEOPHYSICAL – GEOLOGICAL – GEOCHEMICAL TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

ING LANDS SECTION ECEIVEI AIJ6 2 8 1981 Type of Survey(s) AIRBORNE ELECTROMAGNETIC Township or Area Cashimit (M. 2695) & Brownstone (M. 2149) MINING CLAIMS TRAVERSED Noranda Exploration Co., Ltd. Claim Holder(s). List numerically and Terry Byberg Questor Surveys Limited AS PER ATTACHED SCHEDULES Survey Company_ (prefix) (number) Author of Report Ken Cuomo 509, 611, 622 and 634 Address of Author 6380 Viscount Road, Mississauga AND Covering Dates of Survey February 15-April, 1981 (linecutting to office) KRL 540752 Total Miles of Line Cut KRL 540753 list SPECIAL PROVISIONS DAYS KRL 540754 attach **CREDITS REQUESTED** per claim Geophysical KRL 540756 ť --Electromagnetic___ ENTER 40 days (includes -Magnetometer___ KRL 540757 line cutting) for first -Radiometric_ KRL survey. 540758 ENTER 20 days for each -Other_ KRL 540760 additional survey using Geological___ same grid. KRL 540761 Geochemical_ AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys) Magnetometer____Electromagnetic 40 - Radiometric (enter days per claim) Aug.24/81 (0) SIGNATURE > DATE: Author of Report or Agent Res. Geol. _____ Qualifications __ **Previous Surveys** File No. Туре Date Claim Holder TOTAL CLAIMS___245

GEOPHYSICAL TECHNICAL DATA

#

<u>G</u>	ROUND SURVEYS - If more than one survey, sp	becify data for each t	ype of survey	
N	umber of Stations		of Readings	
		Line spacing		
	rofile scale	-	5	
	ontour interval			
MAGNETIC	Instrument			
	Accuracy – Scale constant			·
	Diurnal correction method			
	Base Station check-in interval (hours)		·	· · · · · · · · · · · · · · · · · · ·
	Base Station location and value			
<u>IIC</u>	Instrument			
NEJ	Coil configuration			
AG	Coil separation			
MO	Accuracy	·····		
ELECTROMAGNETIC	Method:	Shoot back	🗔 In line	Parallel line
<u>ele</u>	Frequency	(specify V.L.F. station)		·····
1 41	Parameters measured			
	Instrument	· · · · · · · · · · · · · · · · · · ·		
N.	Scale constant		·····	
ITY	Corrections made			and the second
<u> GRAVII</u>			·	
5	Base station value and location			······································
		an a		
	Elevation accuracy			
	Instrument	······································		
	Method 🔲 Time Domain		Frequency Domain	
	Parameters – On time		Frequency	
건	- Off time		Range	······································
RESISTIVITY	– Delay time			
	— Integration time			
	Power	***		
	Electrode array			
	Electrode spacing			
	Type of electrode			

INDUCED POLARIZATION RESISTIVITY

SELF POTENTIAL

Instrument.	
Survey Method	
Corrections made	

RADIOMETRIC

Instrument						
Values measured	· · · · · · · · · · · · · · · · · · ·					
Energy windows (levels)						
eight of instrumentBackground Count						
Size of detector						
Overburden						
{type, depth — ir	nclude outcrop map)					
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)						
Type of survey						
Instrument						
Accuracy						
Parameters measured	·					
Additional information (for understanding results)						
AIRBORNE SURVEYS						
Type of survey(s) Airborne Electromagnetic	Survey					
	type of survey)					
Accuracy(specify for each	type of survey)					
Aircraft used Shorts Skyvan C-FQSL						
Sensor altitude 45 meters						
o o i o	0 uncontrolled mosaics;					
	Line Spacing_ 300_meters					
	Over claims only					

GEOCHEMICAL SURVEY – PROCEDURE RECORD

•

Numbers of claims from which samples taken_____

			·····					
Total Number of Samples	ANALYTICAL METHODS							
Type of Sample(Nature of Material)								
		per cent p. p. m.						
Average Sample Weight		p. p. b.						
Method of Collection	Cu, Pb, Zn, Ni, Co	, Ag, Mo,	As,-(circle)					
Soil Horizon Sampled	Others							
Horizon Development	Field Analysis (· · · · · · · · · · · · · · · · · · ·	tests)					
Sample Depth	Extraction Method		·					
Terrain	Analytical Method	 						
	Reagents Used							
Drainage Development	Field Laboratory Analysis	;						
Estimated Range of Overburden Thickness		<u> </u>	tests)					
-	Extraction Method							
	Analytical Method							
	Reagents Used							
SAMPLE PREPARATION	Commercial Laboratory (.	· · · · · · · · · · · · · · · · · · ·	tests)					
(Includes drying, screening, crushing, ashing)	Name of Laboratory							
Mesh size of fraction used for analysis	Extraction Method							
	Analytical Method	* <u>*</u>						
	Reagents Used							
	General							
General	Ocneral							
		······································						
		<u>, *</u>						

.

.

CLI NO.	DAYS	CLAIM NO.	DAVE		האעפ		CINTM NO	`	
KRL509642			DAYS	CLAIM NO.	DAYS	-	CLAIM NO	2.	DAYS
KRL509642 KRL509643		KRL541828		KRL580259					
KRL509644		KRL541829		KRL580260					
KRL509644 KRL509645		KRL541830		KRL580261					
KRL509645 KRL509646		KRL541831		KRL580262					
KRL509647		KRL541832		KRL580263					
KRL509647 KRL509648		KRL541833		KRL580264					
KRL509648				KRL580265					
KRL509650		KRL580201		KRL580266					
KRL509651		KRL580202		KRL580267					
KRL509652		KRL580203		KRL580268					
KRL509653		KRL580204 KRL580205		KRL580269					
KRL509654		KRL580205 KRL580206		KRL580270					
KRL509655		KRL580208		KRL580271					
KRL509656		KRL580207		KRL580272					
KRL509657		KRL580208		KRL580273					
KRL509658		KRL580209		KRL580274					
KRL509659		KRL580210 KRL580211		KRL580275					
KRL509660		KRL580211 KRL580212		KRL580276					
KRL509661		KRL580212 KRL580213		KRL580277					
AAAB O D O O D L		KRL580214		KRL580278 KRL580279					
KRL509664		KRL580215		KRL580280					
KRL509665		KRL580215		KRL580280					
KRL509666		KRL580217		KRL580281					
		KRL580218		KRL580282					
KRL541799		KRL580219		KRL580284					
		KRL580220		KRL580285					
KRL541801		KRL580221		KKD200202					
KRL541802		KRL580222		VDI 507076					
KRL541803		KRL580223		KRL587276 KRL587277					
KRL541804		KKH500225		KRL587278					
KRL541805		KRL580226		KRL587279					
KRL541806		KRL580227		KRL587280					
KRL541807		KRL580228		KRL587281					
KRL541808		KRL580229		KRL587282					
KRL541809		KRL580230		KRL587283					
KRL541810		RR2500250		KRL587284					
KRL541811		KRL580242		KRL587285					
KRL541812		KRL580243		KRL587286				-	
KRL541813		KRL580244		KRL587287					
KRL541814		KRL580245		KRL587288					
KRL541815		KRL580246		KRL587289					
KRL541816		KRL580247		KRL587290					
KRL541817		KRL580248		KRL587291	•				
KRL541818		KRL580249		KRL587292					
KRL541819		KRL580250		KRL587293					
KRL541820		KRL580251		KRL587294					
KRL541821		KRL580252		KRL587295					
KRL541822		KRL580253		KRL587296					
KRL541823		KRL580254		KRL587297					
		KRL580255		KRL587298					
KRL541825		KRL580256		KRL587299					
KRL541826		KRL580257		KRL587300	ጥርጥ	AL	CLAIMS =	= 153	
KRL541827		KRL580258		· · · · · · · · · · · · · · · · · · ·				200	

.

4

CLANO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS
KRL526635							
KRL541834							
KRL541835							
KRL541836							
KRL541837							
KRL541838							
KRL541839							
KRL541840							
KRL541841							
KRL541842							
KRL541843							
KRL541844							
KRL541845							
KRL541846							
KRL541847							
KRL541848							
KRL541849							
KRL580231							
KRL580232							
			та — а				

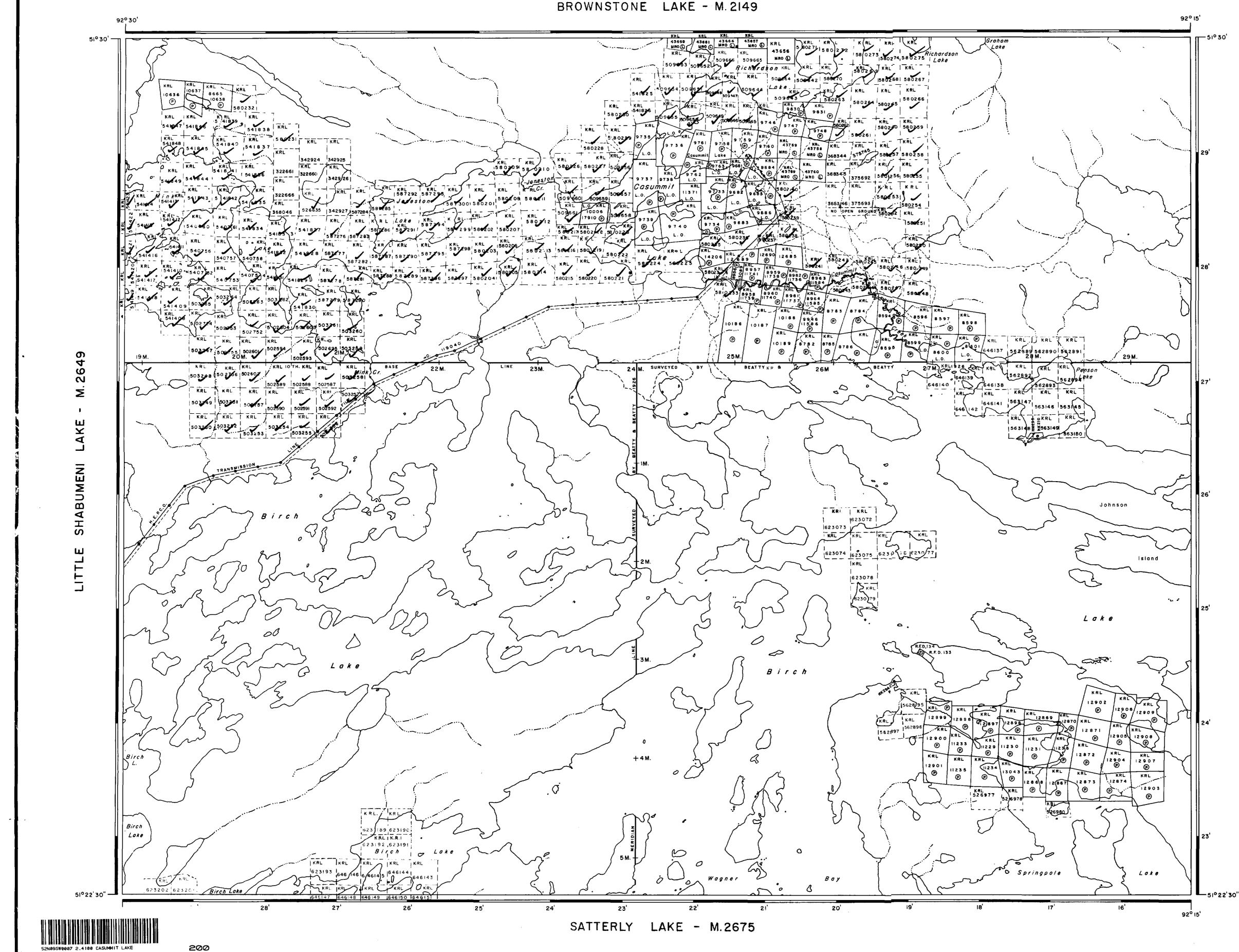
TOTAL CLAIMS = 19

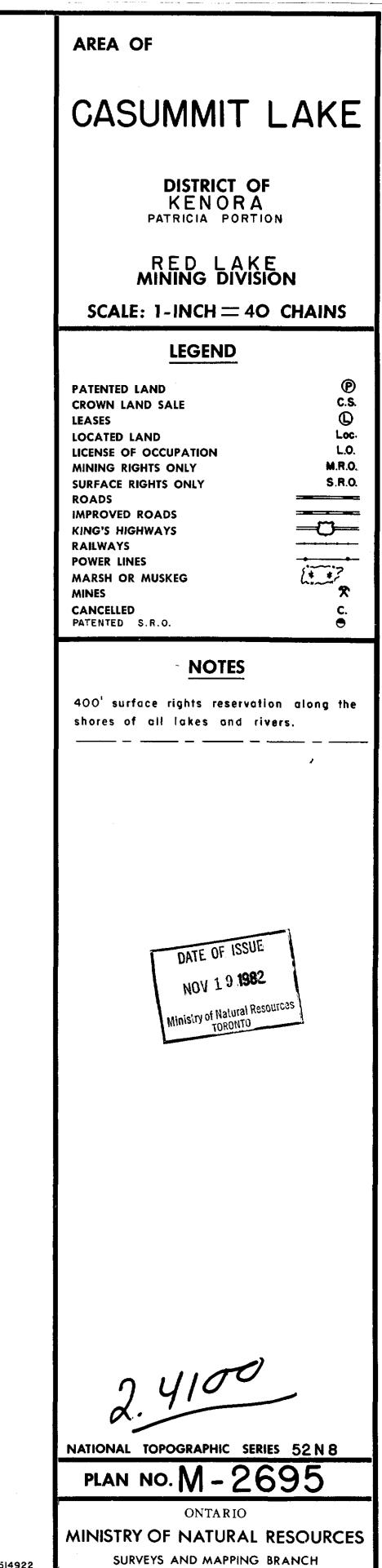
,

•

CLINO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO.	DAYS
KRL580224							
KRL580225							
KRL580233							
KRL580234							
KRL580235							
KRL580236							
KRL580237							
KRL580238							
KRL580239							
KRL580240							
KRL580241							

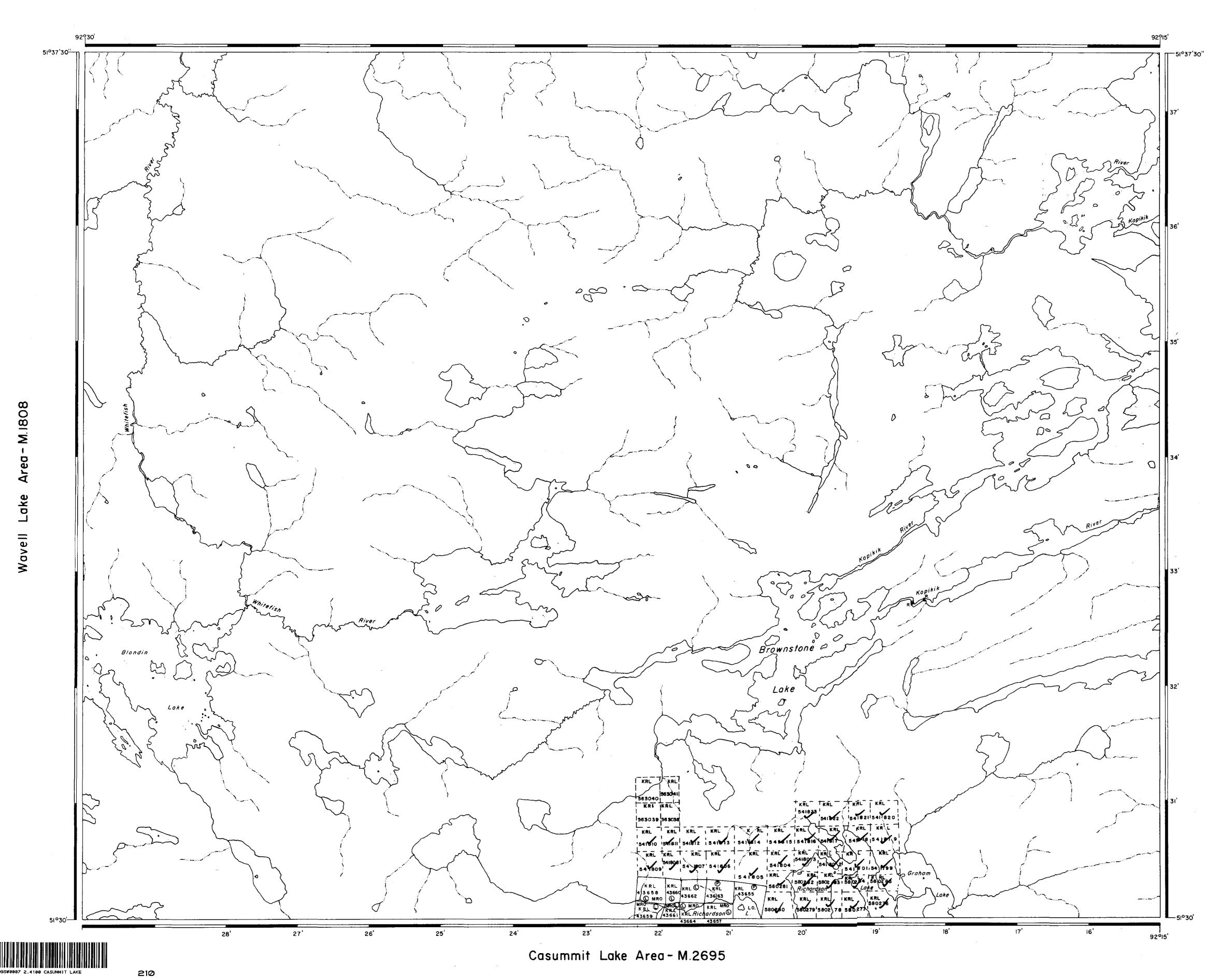
TOTAL CLAIMS = 11

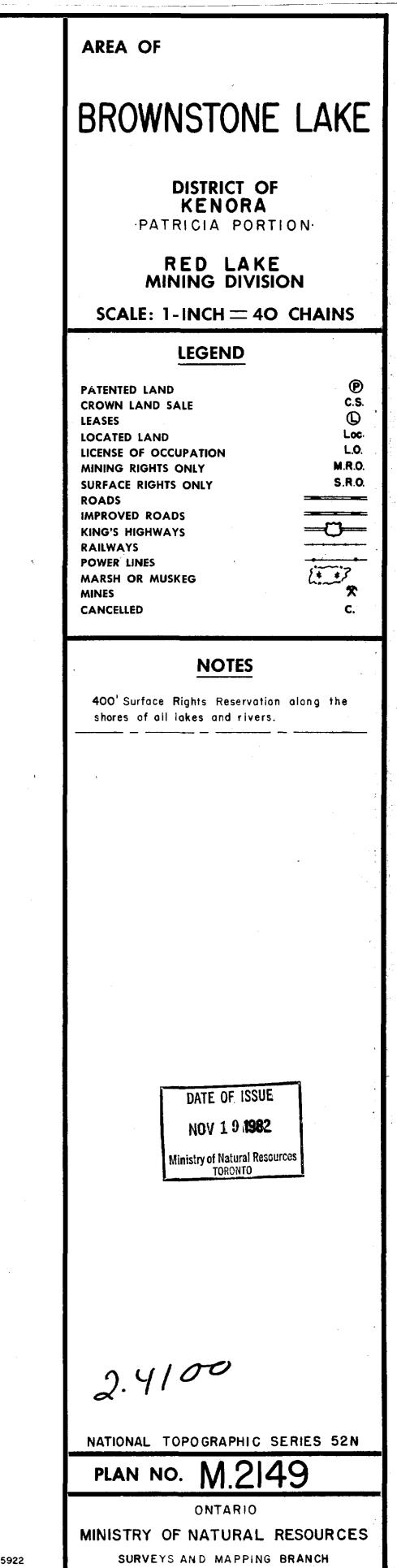

ŧ


•

•

-


CLA NO.	DAYS	CLAIM NO.	DAYS	CLAIM NO	. DAYS	CLAIM NO.	DAYS
KRL502587		KRL541408					
KRL502588		KRL541408					
KRL502589		KRL541410					
KRL502590		KRL541410					
KRL502591		KRL541411 KRL541412					
KRL502592		KRL541412 KRL541413					
KRL502593		KRL541415					
KRL502594		KRL541414					
1112002004		KRL541415					
KRL502601		KRL541410 KRL541417					
KRL502602		KRL541417 KRL541418	-				
KRL502603		KRL541410					
KRL502604		KRL541419					
		KRL541421					
KRL502625		KRL541422					
		KRL541423					
KRL502752							
KRL502753							
KRL502754							
KRL502755							
KRL502756							
KRL502757							
			··· ·				
KRL503247							
KRL503248							
KRL503249							
KRL503250							
KRL503251							
KRL503252							
KRL503253							
KRL503254							
KRL503255							
KRL503256							
KRL503257							
KRL503258							
KRL503259							
KRL503260							
KRL503261	,						
KRL503262							
KRL503263							
KRL503264							
KRL503265				тот	FAL CLAIMS	= 54	
		-					
					•		



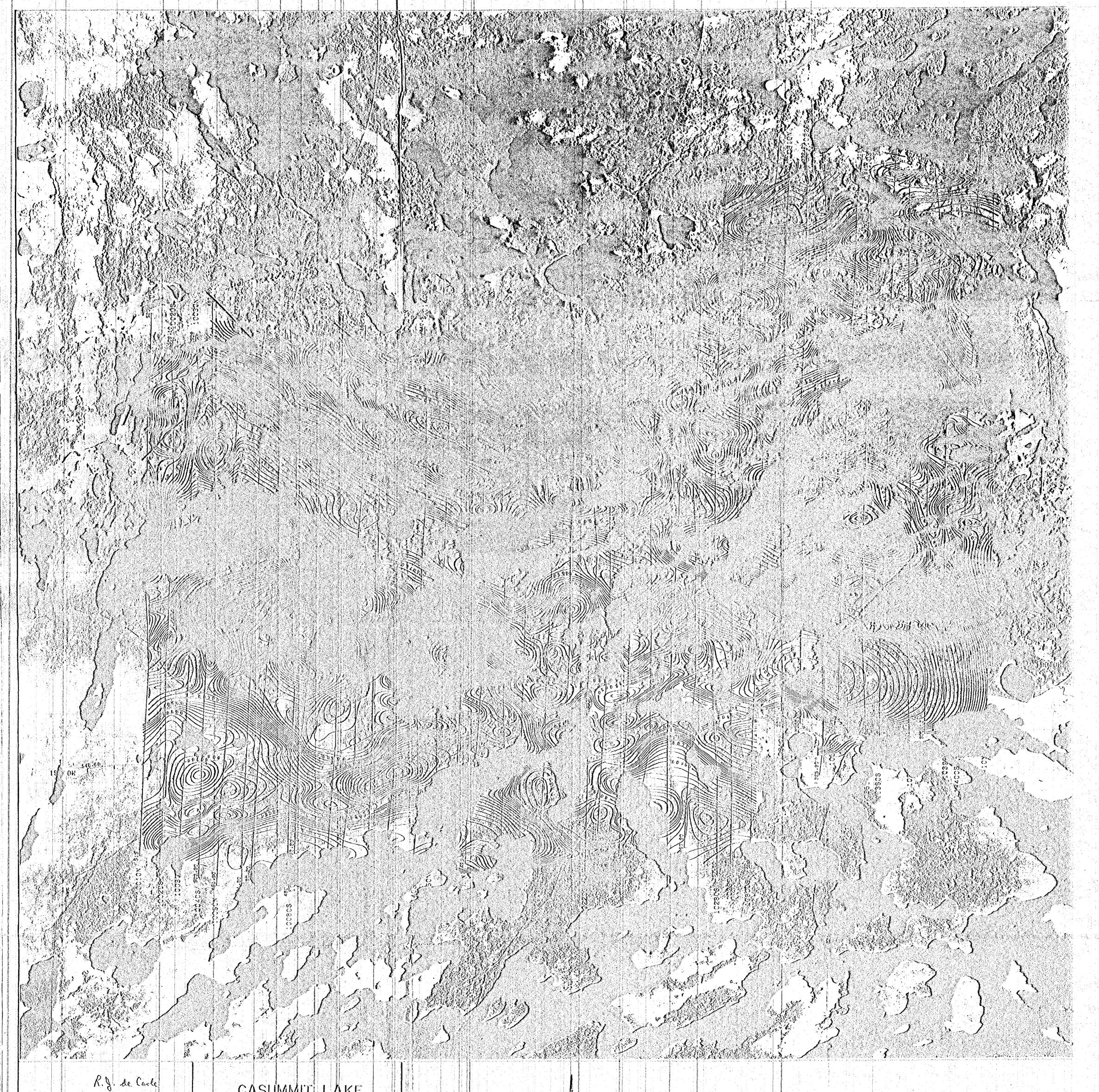

68 Ñ Σ ш × 4 ∢ ശ

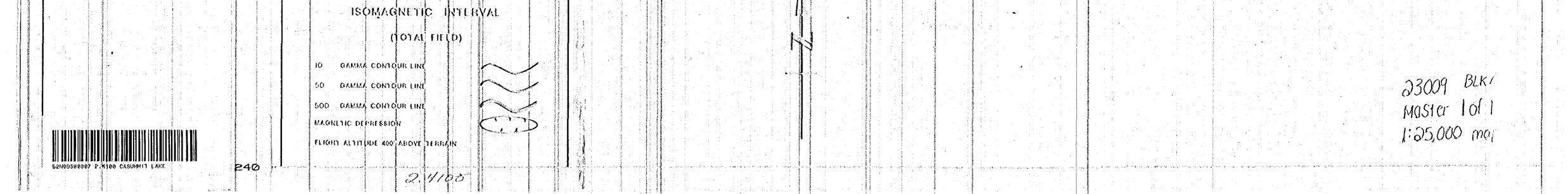
Ľ

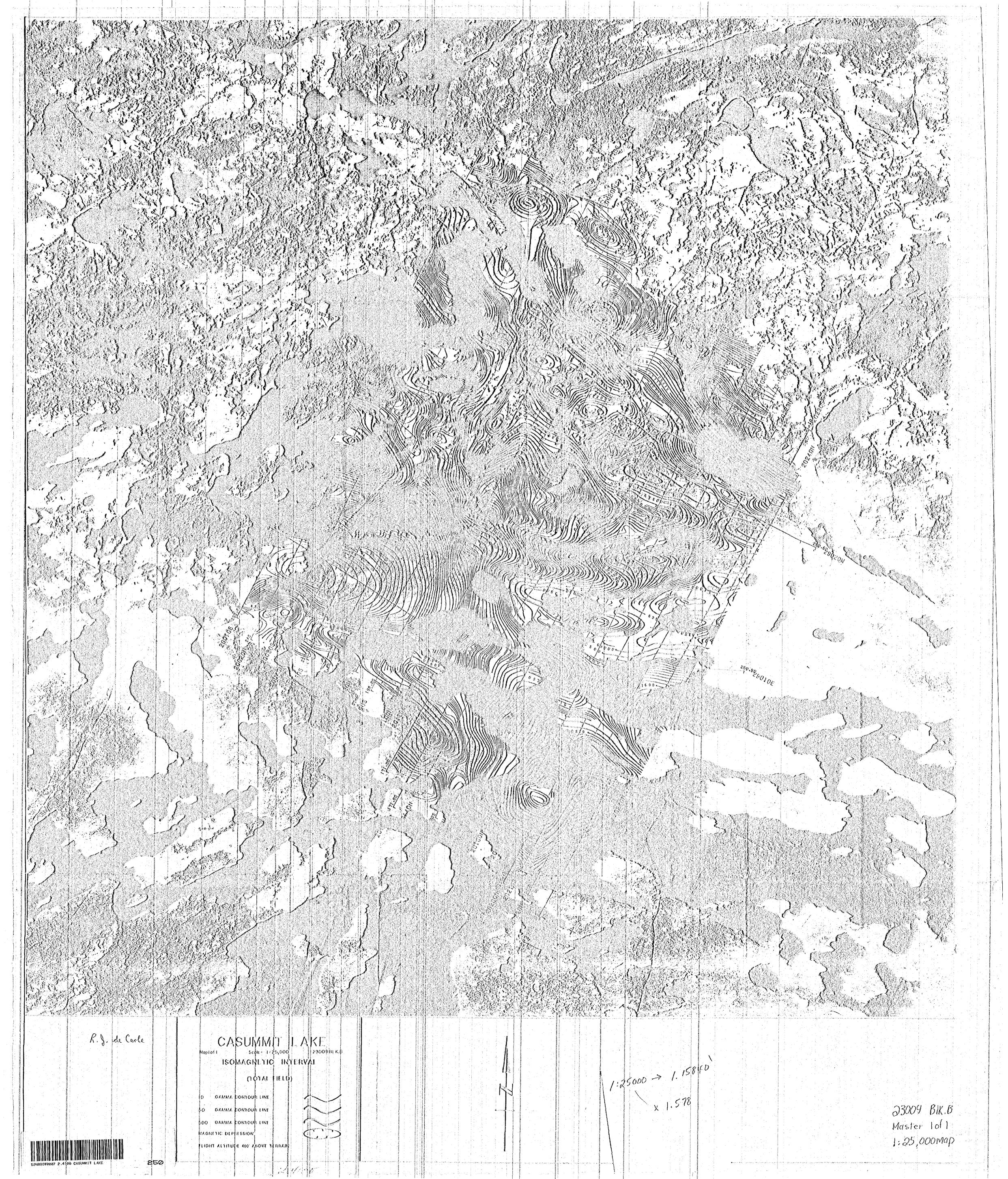
M.1973 Area Lake Carillon

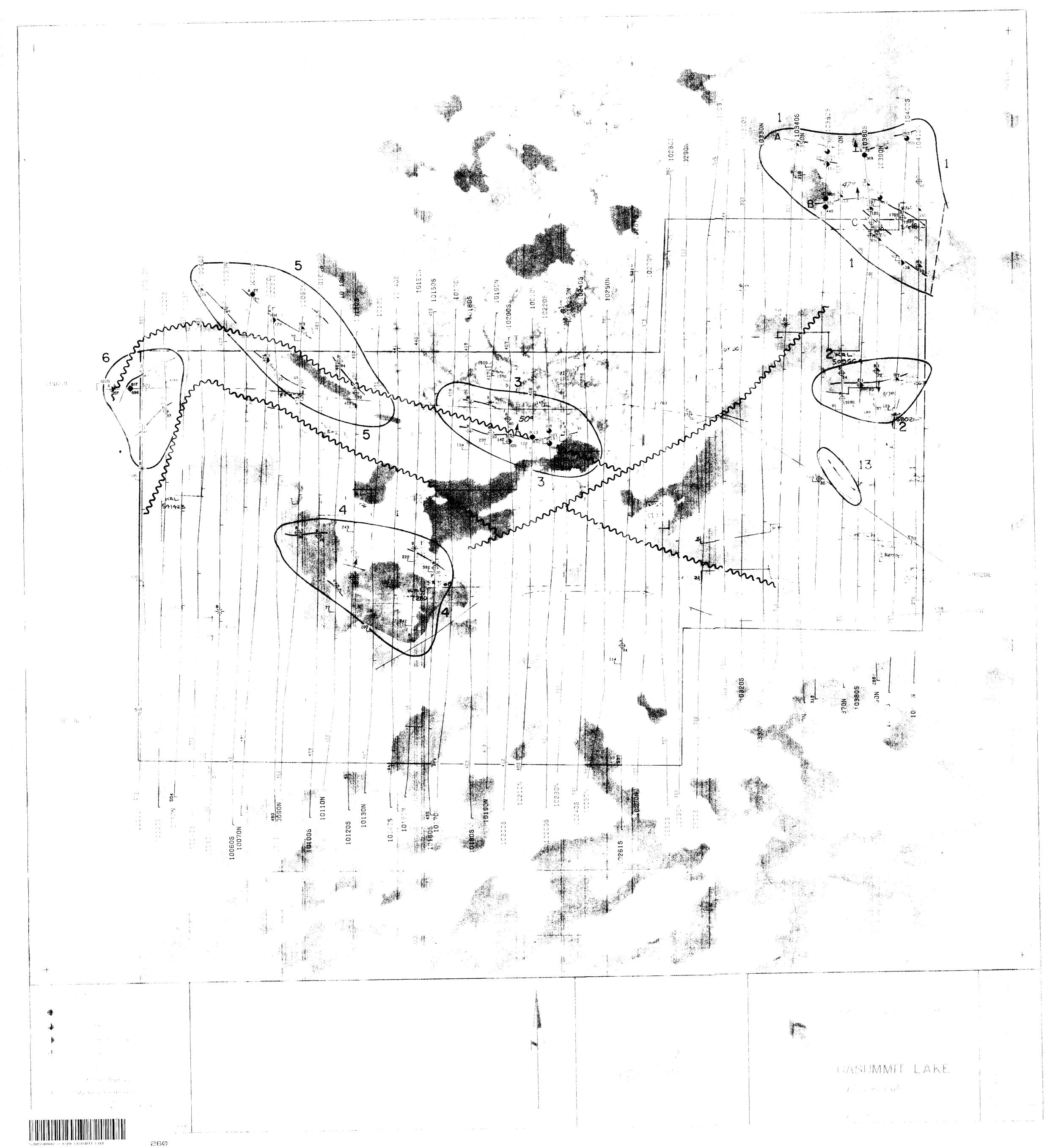
(V) (U) (V)

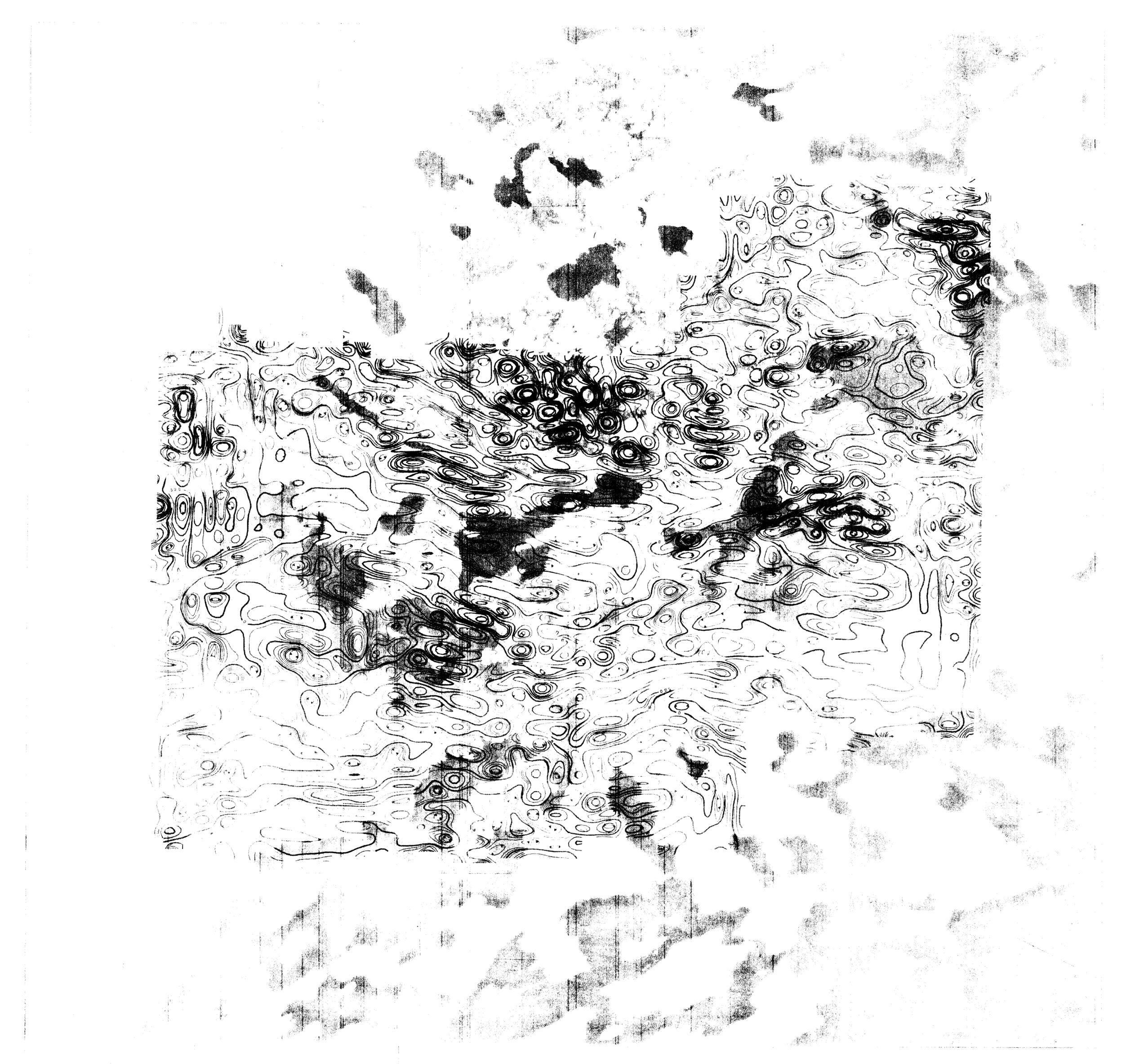









(1,2) = (1,2) + (1,2) = 0


CASUMMIT LAKE Mopleti Scole 125,000 23009 BIKA

1.80

1 ~ ,× ..

ł. .

۰.

 J_{Q_1}