

DIAMOND DRILLING

AREA: LITTLE OCHIG LAKE REPORT NO: 14

WORK PERFORMED FOR: Power Explorations Inc.

RECORDED HOLDER: Same as Above [xx]
: Other []

Claim No. <u>Date</u> Note Hole No. <u>Footage</u> Pa 786808/ 296' (1)KAS-87A-1 Sept/87 Pa 786807 KAS-87A-2 233' Sept/87 (1)266' KAS-87A-3 Sept/87 (1)KAS-87A-4 206' Sept/87 (1)KAS-87A-5 256' Sept/87 (1) KAS-87A-6 196' Sept/87 (1)KAS-87A-7 256' Sept/87 (1)Sept/87 Pa 786807 * KAS-87A-8 216' (1)316' Sept/87 (1)Pa 786807* KAS-87A-9326' KAS-87A-10 Sept/87 (1)KAS-87A-11 256' Sept/87 (1)286' KAS-87A-12 Sept/87 (1)Pa 786808 * 226 1 KAS-87A-13 Sept/87 (1) KAS-87A-14 286' (1)Sept/87 337' Pa 786809 * (1)KAS-87A-15 Sept/87 316' KAS-87A-16 Sept/87 (1)KAS-87A-17 346' Sept/87 (1)510' (1)KAS-87A-18 Pa 786796* Sept/87 526' (1)KAS-87A-19 Sept/87 516' KAS-87A-20 Sept/87 (1)406' Sept/87 (1)KAS-87A-21 Pa 786801 • 291' Sept/87 (1)Pa 786798 • KAS-87A-22 (1)KAS-87A-23 314' Sept/87

NOTE: (1) W8803.285 date filed April, 1989

.../2

DIAMOND DRILLING

AREA: LITTLE OCHIG LAKE REPORT NO: 14

WORK PERFORMED FOR: Power Explorations Inc.

RECORDED HOLDER: Same as Above [xx]
: Other []

Claim No.	Hole No.	<u>Footage</u>	<u>Date</u>	Note
Pa 786797 •	KAS-87A-24	380'	Sept/87	(1)
Pa 786800 ~	KAS-87A-25	351'	Sept/87	(1)
Pa 786808•	KAS-87A-26 KAS-87A-27	415' 667'	Oct/87 Oct/87	(1) (1)
Pa 786808 •	KAS-87A-28	606'	Oct/87	(1)
Pa 786808/* Pa 786809 *	KAS-87A-29	406'	Oct/87	(1)
Pa 786808 •	KAS-87A-30 KAS-87A-31	631 ' 444 '	Oct/87 Oct/87	(1) (1)
Pa 786807 •	KAS-87A-32 KAS-87A-33 KAS-87A-34	226 ' 206 ' 226 '	Oct/87 Oct/87 Oct/87	(1) (1) (1)
Pa 786835 *	KAS-87A-35 KAS-87A-36 KAS-87A-37 KAS-87A-38	505' 466' 526' 436'	Oct/87 Oct/87 Oct/87 Oct/87	(1) (1) (1) (1)
Pa 769516	KAS-87A-39	407'	Oct/87	(1)
Pa 786809 •	KAS-87A-40	437 '	Oct/87	(1)
Pa 786809 •	KAS-87A-41	607'	Oct/87	(1)
Pa 786809/ • Pa 786810 •	KAS-88-1	650'	Jan/88	(1)
Pa 786809/ • Pa 786810 •	KAS-88-2	492'	Jan/88	(1)

NOTES: (1) W8803.285, filed April/89

DIAMOND DRILLING

REPORT NO: 14 AREA: LITTLE OCHIG LAKE

WORK PERFORMED FOR: Power Explorations Inc.

RECORDED HOLDER: Same as Above [xx] : Other []

Claim No.	Hole No.	Footage	<u>Date</u>	Note
Pa 786810 •	KAS-88-3 KAS-88-4 KAS-88-5 KAS-88-6	692' 494' 657' 537'	Jan/88 Jan/88 Jan/88 Feb/88	(1) (1) (1) (1)
Pa 786836/ Pa 786835	KAS-88-7	637' 192841	Feb/88	(1)

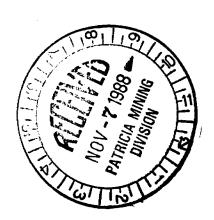
REPORT

ON

DIAMOND DRILLING

KASAGIMINNIS LAKE PROPERTY

KENORA MINING DIVISION


PATRICIA PORTION

ONTARIO

FOR

POWER EXPLORATIONS INC.

VOLUME 1

March, 1988

R. Higginson, B.Sc.

52008SW0006 14 LITTLE OCHIG LAKE

Ø10C

TABLE OF CONTENTS

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	PROPERTY DESCRIPTION	5
4.0	LOCATION, ACCESS AND SERVICES	7
5.0	PHYSIOGRAPHY AND VEGETATION	8
6.0	PREVIOUS WORK	9
7.0	REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION	10
8.0	PROPERTY GEOLOGY	12
9.0	SUMMARY OF GEOPHYSICS	13
10.0	DIAMOND DRILLING PROGRAM	14
	10.1 Description of Program 10.2 Discussion of Results	14 15
11.0	CONCLUSIONS	30
12.0	RECOMMENDATIONS	30
	12.1 Phase I 12.2 Phase II 12.3 Phase III	30 31 31
13.0	ESTIMATED COST OF RECOMMENDED EXPLORATION PROGRAM	33
	13.1 Phase I 13.2 Phase II 13.3 Phase III	
14.0	RÉFERENCES	34

APPENDICES

A.	CERTIFICATE OF QUALIFICATIONS	VOLUME	1
В.	RESAMPLING OF 1986-87 DRILL HOLES	VOLUME	1
С.	DIAMOND DRILL LOGS	VOLUME	1
D.	ASSAY CERTIFICATES	VOLUME	1
E.	LEGEND AND DIAMOND DRILL SECTIONS	VOLUME	2

LIST OF TABLES

TABLE	NO.	1	-	SUMMARY OF	DIAMOND DRILLING RESULTS	PAGE :	22-29
TABLE	NO.	2	-	PHASE II -	PROPOSED DRILL COLLARS	PAGE :	32
TABLE	NO.	3	-	RESAMPLING	OF 1986-87 DRILL HOLES APP	ENDIX	В

LIST OF FIGURES

FIGURE	NO.	1 -	LOCATION	MAP		PAGE	3
FIGURE	NO.	2 -	PROPERTY	LOCATION	AND REGIONAL GEOLOGY	PAGE	4
FIGURE	NO.	3 -	CLAIM SK	ETCH		PAGE	6
FIGURE	NO.	4a-	PLAN OF	DRILLING		PAGE	16
FIGURE	NO.	4b-	PLAN OF	DRILLING	- ZONE NO. 1	PAGE	17
FIGURE	NO.	4c-	VERTICAL	LONG SEC	CTION - ZONE NO. 1	PAGE	19
FIGURE	NO.	5 -	LEGEND			APPENDIX	E
FIGURE	NO.	6 -	SECTION	L56W	KAS-87A-22	APPENDIX	E
FIGURE	NO.	7 -	SECTION	L51W	KAS-87A-24	APPENDIX	E
FIGURE	NO.	8 -	SECTION	L51W	KAS-87A-20	APPENDIX	E
FIGURE	NO.	9 -	SECTION	L49W	KAS-87A-19	APPENDIX	E
FIGURE	NO.	10 -	SECTION	L47W	KAS-87A-18	APPENDIX	E
FIGURE	NO.	11 -	SECTION	L44W	KAS-87A-23	APPENDIX	E
FIGURE	NO.	12 -	SECTION	L37W	KAS-87A-21	APPENDIX	E
FIGURE	NO.	13 -	SECTION	L34W	KAS-87A-25	APPENDIX	E
FIGURE	NO.	14 -	SECTION	L26W	KAS-87A-10,11	APPENDIX	E
FIGURE	NO.	15 -	SECTION	L25+03W	KAS-87A-12	APPENDIX	E
FIGURE	NO.	16 -	SECTION	L25+W	KAS-87A-13	APPENDIX	E

IST OF FIGURES (Continued)

FIGURE	NO.	17	-	SECTION	L25+00W	KAS-87A-14	APPENDIX	E
FIGURE	NO.	18	-	SECTION	L25W	KAS-87A-8,9	APPENDIX	E
FIGURE	NO.	19	-	SECTION	L24+02W	KAS-87A-32	APPENDIX	E
FIGURE	NO.	20	_	SECTION	L24W	KAS-87A-6,7,33	APPENDIX	E
FIGURE	NO.	21	_	SECTION	L24W	KAS-87A-34	APPENDIX	E
FIGURE	NO.	22	-	SECTION	L23W	KAS-87A-4,5	APPENDIX	E
FIGURE	NO.	23	_	SECTION	L21W	KAS-87A-30,31	APPENDIX	E
FIGURE	NO.	24	-	SECTION	L20W	KAS-87-3 and	APPENDIX	E
						KAS-87A-1,26,27		
FIGURE	NO.	25	-	SECTION	L20W	KAS-87A-2	APPENDIX	E
FIGURE	NO.	26	-	SECTION	L20W	KAS-87A-3	APPENDIX	E
FIGURE	NO.	27	-	SECTION	L19W	KAS-87A-28,29	APPENDIX	E
FIGURE	NO.	28	-	SECTION	L17W	KAS-87A-15	APPENDIX	E
FIGURE	NO.	29	-	SECTION	L17W	KAS-87A-16	APPENDIX	E
FIGURE	NO.	30	-	SECTION	L16+97W	KAS-87A-17	APPENDIX	E
FIGURE	NO.	31	-	SECTION	L16W	KAS-87A-40,41	APPENDIX	E
FIGURE	NO.	32	-	SECTION	L12W	KAS-88-1,2	APPENDIX	E
FIGURE	NO.	33	-	SECTION	L8W	KAS-88-3,4	APPENDIX	E
FIGURE	NO.	34	-	SECTION	L4W	KAS-88-5,5A,6	APPENDIX	E
FIGURE	NO.	35	-	SECTION	L4E	KAS-88-7	APPENDIX	E
FIGURE	NO.	36	-	SECTION	L12E	KAS-87A-37	APPENDIX	E
FIGURE	NO.	37	-	SECTION	L12E	KAS-87A-36	APPENDIX	E
FIGURE	NO.	38	-	SECTION	L12+02E	KAS-87A-35	APPENDIX	E
FIGURE	NO.	39	-	SECTION	L120E	KAS-87A-39	APPENDIX	E
FIGURE	NO.	40	-	SECTION	L128E	KAS-87A-38	APPENDIX	E

1.0 SUMMARY

The current diamond drilling program on the Kasagiminnis Lake property, totalling 19,971 feet in 49 holes, has outlined an extensive zone of potentially economic gold mineralization.

The zone has been sporadically drilled over a strike length of 3700 feet and the host horizon has a traceable strike length of 8000 feet.

Compilation of available data suggests that the gold is associated with sulphide replacement bodies hosted in a horizon of sheared and locally silicified mafic tuff and iron formation. The gold-bearing zones may plunge steeply eastward in the plane of the horizon.

A three phase exploration program is warranted and recommended for the property. Phase I would involve detailed ground magnetometer and HLEM surveys, followed by 11,300 feet of diamond drilling in Phase II. Phase III would involve additional diamond drilling contingent upon the results of Phases I and II.

2.0 INTRODUCTION

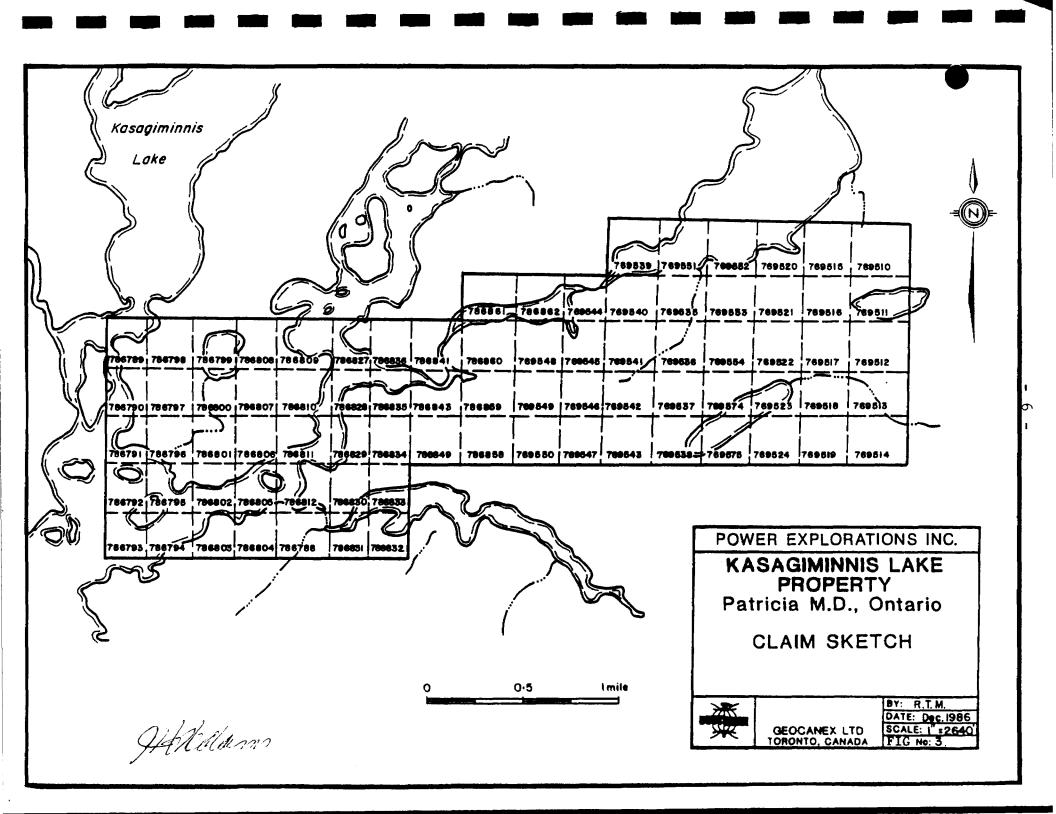
The following report describes the results of the 1987-88 diamond drilling program on the Kasagiminnis Lake Property in the Ochig Lake Area, Ontario (Figure No. 1). The property is located 16 miles south-southwest of the town of Pickle Lake (Figure No. 2) in the Patricia Mining Division, District of Kenora, Northwestern Ontario.

The present program was supervised by Geocanex Ltd. between September 2 to October 28, 1987, December 11 to December 17, 1987 and January 7 to February 9, 1988. Midwest Drilling was the diamond drilling contractor.

The property consists of 143 contiguous mining claims. All work was done on a cut picket line grid. The grid has an east-west trending baseline with perpendicular lines cut at 400 foot intervals across the strike of the local stratigraphy. Several tie lines were cut to ensure control on long picket lines.

The personnel involved in the program were:

R.	Higginson	Project Geologist	Oro Stn., Ontario
В.	Elliot	Geologist	Oshawa, Ontario
P.	Taylor	Geologist	Kingston, Ontario
J.	Pierce	Assistant	Wasaga Beach, Ontario
М.	Stevens	Assistant	London, Ontario
s.	Necan	Assistant	Osnaburgh House, Ont.
J.	Cracknell	Assistant	Toronto, Ontario


Drill targets were chosen from compiled geological. geochemical, geophysical and drilling data obtained during 1986-87 the programs. Ouartz veining, alteration (shear-fault zones) and mineralized horizons were sampled from the drill core and submitted for assay. All sample descriptions and assays as well as detailed drill logs and drill sections are included in this report.

The property is on strike with, and six miles to the east of, Lac Minerals - Hasaga Property which has reported mineral reserves of 200,000 tons grading 0.19 ounces of gold per ton.

3.0 PROPERTY DESCRIPTION

The Kasagiminnis Lake Property consists of 143 contiguous mining claims in the Ochig Lake area, Patricia Mining Division, Northwestern Ontario (Fig. No. 3). The claim numbers and recording dates are as follows:

	Claim	Nι	umbers			Recording	g Date
Pa	769510	-	769524	inclusive	(15)	April 30	, 1984
Pa	786827	-	786812	inclusive	(25)	April 30	, 1984
Pa	786827	-	786836	inclusive	(10)	April 30	, 1984
Pa	786841				(1)	April 30	, 1984
Pa	786843				(1)	April 30	, 1984
Pa	786849				(1)	April 30	, 1984

Claim Numbers		Recording Date
769535 - 769554 inclusive	(20)	April 30, 1984
769574, 769575	(2)	April 30, 1984
786858 - 786862 inclusive	(5)	April 30, 1984
964971 - 964980 inclusive	(10)	February 10, 1987
965611 - 965623 inclusive	(13)	February 10, 1987
965694 - 965713 inclusive	(20)	February 10, 1987
965836 - 965842 inclusive	(7)	February 10, 1987
1008197 - 1008209 inclusive	(13)	December 16, 1987
Total	143 claim	s

The claims are held under a Joint Venture Agreement between Moss Resources Ltd. and Power Explorations Inc., of 1003-34 King Street East, Toronto, Ontario, M5C 1E5.

4.0 LOCATION ACCESS AND SERVICES

The northern-most boundary of the property is approximately 16 miles south-southwest of the town of Pickle Lake. The eastern boundary is approximately 3.5 miles west of Highway 599 at the northern boundary of the Osnaburgh Indian Reserve (No. 63B) and 4.5 miles northwest of the Indian settlement of New Osnaburgh.

The property can be reached by float/ski plane or helicopter from Pickle Lake, or by winter road from Highway 599, four miles north of the boundary of the Osnaburgh Indian Reserve.

Pickle Lake is a mining and transportation centre with a population of approximately 500. The town is connected by paved Highway 599 to Savant Lake and the Canadian National transcontinental railway line, 90 miles to the south, and Ignace and the Trans Canada Highway 17, 180 miles south. Electricity is supplied by a hydro line connecting Pickle Lake to the Ear Falls generating station. Air, ground and water transportation for local use are readily available in town. Pickle Lake is also serviced by regularly scheduled flights from Thunder Bay.

5.0 PHYSIOGRAPHY AND VEGETATION

Outcrop exposure constitutes 7 to 10% of the property, which is extensively covered with glacial/fluvial material consisting primarily of sand and boulders. Eskers, drumlinoid ridges and sandhills cover most of the property. Vegetation on the overburden varies from open poplar to thick birch, spruce and alder forests. Low lying areas and submerged sand plains are poorly drained muskeg, black spruce, or cedar and alder swamps.

A more detailed analysis of the surficial geology can be obtained from Paradis and Rampton, 1986.

6.0 PREVIOUS WORK

In the early 1970's, the property was covered by a regional airborne geophysical survey for UMEX. This company subsequently drilled two anomalies on the property. No assay results were reported.

In 1984, Moss Resources Ltd. staked the current claim group. A regional airborne VLF-EM and magnetics survey by Terraquest Ltd. covered the property in 1985.

In the spring of 1986, Moss Resources Ltd. signed a Joint Venture Agreement with Power Explorations Inc. covering the property. Subsequent geological and geophysical surveys by Geocanex Ltd. for Power indicated the presence of several potentially gold-bearing horizons and structures, which were further explored by a 39 hole, 12,424 foot diamond drilling program during the winter of 1986-1987.

Three significant intersections of gold mineralization were reported (Higginson March 1987) and included:

- 1. A 38.9 foot intersection with values ranging from 0.01 to 0.23 ounces gold per ton in hole KAS-87-3.
- 2. An intersection of 0.58 and 1.40 ounces gold per ton over 4.7 and 4.2 feet, respectively, in hole KAS-87-6. Subsequent checks yielded trace gold.
- 3. An intersection of 0.32 ounces gold per ton over 1.0 foot in hole KAS-87-31.

A follow-up field program in the areas of the three intersections was undertaken in the summer of 1987 by Geocanex Ltd. The program included; detailed geological mapping, trenching-stripping, lithogeochemical sampling and ground magnetometer and induced polarization surveys. Higginson (Aug. 1987) reported that potentially economic gold mineralization occurred within a quartz vein hosted in silicified and sheared mafic volcanics. Trench sampling of the vein returned an intersection averaging 0.25 ounces gold per ton over 6.2 feet.

7.0 REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION

The Pickle Lake area is located within the Uchi Subprovince, a part of the Superior Province of the Canadian Shield. area is characterized by several arcuate, highly deformed and coalescing greenstone belts, consisting of predominantly intermediate volcanic flows, which have been mafic to intruded by numerous granitic to ultramafic intrusive The metamorphic grade ranges from greenschist to amphibolite facies. The volcanics host subordinate amounts mafic pyroclastics, sediments felsic to and iron Felsic quartz-feldspar porphyry dykes formation. commonly found in all lithologies.

Ultramafic rocks host copper-nickel mineralization at the Union Miniere Thierry Mine, seven miles northwest of Pickle Lake, with mined ore and mineral reserves totalling 14,000,000 tons grading 1.6% copper and 0.2% nickel.

Historically, gold production in the Pickle Lake area has been from structurally controlled vein type deposits or sulphide replacement bodies spatially associated with, or contained within, bands of Algoman (chert-magnetite) iron formation.

The former producing Pickle Crow and Central Patricia mines operated from 1935 to 1966 and 1934 to 1951, respectively, gold producing 2,068,020 collectively ounces of 4,966,820 tons of ore for an average grade of 0.416 ounces of gold per ton. Gold was recovered from quartz veins, vein networks and sulphide replacement bodies which occupied shears, faults, fissures and fold axial plane fractures in highly deformed mafic volcanics and iron formation. Gold-bearing veins also mined within quartz were quartz-albite porphyry sills near the contact of mafic volcanics and iron formation.

Placer-Dome Inc. and St. Joe Canada both recently announced plans to develop new mines in the Pickle Lake area. The Placer-Dome Inc. Dona Lake Mine has reported reserves of 1,750,000 tons grading 0.24 ounces of gold per ton. Gold mineralization occurs as sulphide replacement bodies within a band of highly deformed oxided facies iron formation (Northern Miner, September, 1986). The mine is expected to produce approximately 40,000 ounces of gold per year over a 10 year period.

St. Joe Canada's Golden Patricia Mine is reported to have an estimated 500,000 ounces of gold reserves with a grade of

0.58 ounces of gold per ton. The gold mineralization occurs in a quartz vein at a contact between a mylonitized unit and sheared mafic volcanics in close proximity to banded iron formation (Northern Miner Magazine, September, 1986). The initial mining project has drill indicated reserves of 283,000 tons grading 0.88 ounces per ton and is expected to produce 40,000 ounces of gold annually (Northern Miner, March 23, 1987).

8.0 PROPERTY GEOLOGY

The Kasagiminnis Lake property is located in the Dempster-Pickle Lake greenstone belt which trends roughly east-west and joins the Pickle Lake belt to the east, and the Meen-Dempster Lakes belt to the west. The property is underlain a complex sequence of southward younging mafic-tointermediate flows, mafic-to-felsic pyroclastics, sediments and iron formation. This sequence has been intruded by numerous small gabbroic bodies, granite pegmatite dykes and minor felsic dykes. The portion of the belt exposed on the property has been compressed between two granitic bodies, the Kasagiminnis Lake and Carling Granite Plutons on the north and south, respectively, resulting in a narrowing of the belt to approximately one mile in width. faults, interpreted from geological and geophysical data, volcano-sedimentary crosscut the sequence and trend northeast-southwest and northwest-southeast. Pervasive shearing and small scale folding is probably related to a regional tectonic event.

9.0 SUMMARY OF GEOPHYSICS

Medd (1986) summarizes the property geophysics as follows:

Magnetic and VLF-EM data indicate two general types of lithologies. The first type is characterized by relatively high magnetic and conductive background. This type may further be differentiated into three subtypes on the basis of amplitude of Collectively, these three subtypes response. interpreted as representing (1) iron formations, (2) iron rich mafic metavolcanics, and (3) intermediate to mafic metavolcanics hosting (1) and (2). type of lithology is characterized by low magnetic and conductive responses, possibly due to felsic metavolcanics or granite intrusive bodies.

Several east-west conductors are associated with the first type of lithology described above and probably represent stratabound pyrrhotite-pyrite mineralization in iron-formation and intermediate to mafic tuffs.

On the basis of magnetic discontinuities, several faults striking north-northwest have been inferred. Also indicated is a north-northeast fault and a north-south fault.

10.0 DIAMOND DRILLING PROGRAM

10.1 Description of Program

The present diamond drilling program was contracted to Midwest Drilling of Winnipeg, Manitoba. Forty-nine B.Q. size diamond drill holes totalling 19,971 feet were completed between September 2 and October 28, 1987 and December 11 to 17, 1987 and January 7 to February 9, 1988 under the supervision of Geocanex Ltd.

Midwest provided room and board on site for both geological and drill crews. The camp was supplied by helicopter and fixed-wing aircraft from Pickle Lake as well as a winter road from Highway 599.

The drilling program was designed to define zones of significant gold mineralization encountered during the 1986/87 drilling, geological mapping, and prospecting programs and to test several additional geophysical targets.

Detailed core logging was followed by sampling of favourable horizons. Samples consisted of halved core taken over measured intervals of 0.5 to 5.0 feet. Core samples were analyzed by Bell-White Analytical Laboratories of Haileybury, Ontario and Accurassay Ltd. of Kirkland Lake, Ontario.

All samples were analyzed for gold using fire assay techniques. All values were reported in ounces per ton. Where significant values were obtained, pulps were reassayed or the core was quartered and resubmitted for analysis.

Hole locations are shown on Figures No. 4a and 4b. Assay highlights for Zone No. 1 are plotted on Figure No. 4c. Detailed logs with assay results are compiled in Appendix C. Drill Sections and legend are shown in Appendix E. All Assay Certificates are compiled in Appendix D.

10.2 Discussion of Results

Compilation of available geological, geophysical and drilling data has outlined a 3700 foot long zone of potentially economic gold mineralization (Figure No. 4b). The gold-bearing zone occurs in a horizon of mafic volcanics interbedded with oxide/silicate facies iron formation, which has an east-west trending magnetic signature traceable for 8000 feet from L48+00W at 14N to L32+00E at 9N (Figure No. 4a).

The horizon consists of sheared and locally silicified, amphibolitic mafic flows and tuffs which host bands of oxide to silicate facies iron formation. Individual bands within the iron formations consist of hornblende and grunerite and sericite, + pyrrhotite alternating with chert + grunerite + sericite + magnetite + hematite. Pyrite is ubiquitous as fracture coatings and stringers. Grunerite mantled quartz + carbonate stringers crosscut the horizon and carry rare specks of visible gold.

The horizon is overlain by a thick sequence of mafic to intermediate flows and is underlain by interbedded mafic flows and felsic tuff which in turn overlie a thick sequence of pillowed mafic flows intruded by granitic rocks of the Kasagiminnis Lake Pluton.

Analysis of diamond drilling data indicates that one or more zones of gold mineralization may be present. results suggest that the zone(s) may plunge steeply eastward on the plane of the host horizon which dips steeply north at 59° to 90°. The data also suggests that the gold content is proportional to the percentage of sulphide present, especially pyrrhotite. Intersections grading over .05 ounces gold per ton were obtained in sections of the zone where magnetite has been replaced by pyrrhotite and in which the total sulphide content (pyrrhotite + pyrite) exceeds Further evidence for this relationship was obtained from drill hole KAS-88-6, which returned a value of .446 oz. Au/ton in a section containing up to 60% pyrrhotite.

A total of 35 drill holes intersected the horizon along 13 widely spaced sections extending from L28+00W to L14+00E. Plotting of the intersections in vertical long section (Figure No. 4c) indicates the extent of known and potential mineralization. Several large areas of the horizon require further testing and include:

Area A

Extending from L28+00W to L22+00W, in which a surface exposure of a quartz vein on L24+00W returned 0.25 oz. Au/ton over 6.2 feet (Higginson Aug. 1987). Shallow drilling in holes KAS-87A-4 through 11 intersected narrow mineralized zones. This portion of the zone is untested below 250 feet vertical depth.

<u>Area</u> B

Extends from L22+00W to L16+00W. Holes KAS-87-3, KAS-87A-1, 2, 26, 28, and 29 outline a steeply dipping "shoot" of potentially economic gold mineralization which extends down to at least 400' vertical depth. The width and vertical extent are as yet undefined.

Area C

Extends from L16+00W to L8+00W. Holes KAS-87A-40, 88-1, 2 and 3 encountered potentially economic gold mineralization at vertical depths of 350 to 500 feet. The holes are sited on 400' spacings along strike. This may represent a broad zone which includes several separate zones of gold mineralization. This area is untested above 300 feet and below 500 feet vertical depth.

<u>Area D</u>

Extends from L4+00W to approximately L12+00E. Holes KAS-88-6 and 7 and 87A-35 encountered potentially economic mineralization, however the holes are widely spaced and thus do not define specific zones or shoots. Hole KAS-88-6 is of particular interest because a 12.0 foot interval averaged .216 oz. Au/ton.

In addition to the above mentioned target areas the portion of the zone extending from L12+00E to L32+00E and from L28+00W to L48+00W are virtually untested and warrant investigation.

Several other geophysical and geological targets outside of Zone 1 were tested during the current program. No significant gold mineralization was encountered in these holes. A summary of the diamond drilling results is given in Table No. 1. Mineral Reserve estimates will be calculated and reported separately.

Table No. 3 in Appendix B tabulates results of resampling and reassaying of selected drill holes from the 1986-87 drilling program.

TABLE I SUMMARY OF DIAMOND DRILL RESULTS

	1	LENGTH		ASSAY	OUNCES		-FOOTAGE		
HOLE NO.	LOCATION	FEET	GENERAL GEOLOGY	NO.	GOLD/TON	FROM	ТО	TOTAL	SAMPLE DESCRIPTION
KAS-87A-1	L20+00W,	296.0	Feisic to intermediate tuff		0.168 (0.174)	156.0	159.5	3,5	sheared mafic volcanics and iron formation, trace-5% po,py
	(AZ.180°)		by mafic volcanics.		0.120	159.5	103.0	3.5	Truit tong trace 38 page
	j]	•]	(.122)				
	1	1		1	0.064	176.0	181.0	5.0	
]]				(0.060) 0.182	187.9	191.3	3,4	
]]	1			(0,168)	10.65	.,,,,		
	1 1	1			0.058	196.0	198.0	2.0	
					(0,056)				
KAS-87A-2	L20+00W,	233.0	as above		0.054	146.0	151.0	5.0	as above
	13+53N	1	·	ļ	(.054)				
	(AZ.180°)	1			.068	151.0	156.0	5.0	
	1]	(0,064)				•
KAS-87A-3	L20+00W,	266	as above						
	13+54N	ł							
	(AZ,210°)								
KAS-87A-4	L23+00W,	206	Mafic flows over11e mafic tuff		trace to	74.5	146.8	72,3	mafic tuff, 1-5% po, tr-3%py
	12+65N	ļ	with abundant quartz veining		0.062	*			
	[İ	and sheared mafic volcanics and iron formation.						
	}								
KAS-87A-5	L23+00W,	256	Mafic flows interbedded with	l	trece to	10.0	43.1	33.1	sheared iron formation and
	12+68N		mafic tuff and chert overile	1	0.020	100 0			mafic tuff
	1 1		sheared Iron formation and mafic tuff		trace to	146,4	167.3	21,1	mafic tuff, 1-2≸ po, py
						,			
KAS-87A-6	L24+00W.	196.0	Interbedded mafic flows and						
	12+64N		sheared Iron formation and					-	
			mafic tuff over11e an	. 2					
			amphibolitic-mafic instrusive.						
(AS-87A-7	L24+00W,	256.0	interbedded mafic flows and	-					
	12+69N		tuff overlie an amphibolitic-						
	l i	1	mafic intrusive.						

TABLE I
SUMMARY OF DIAMOND DRILL RESULTS

	LENGTH ASSAY OUNCES <footage></footage>								
HOLE NO.	LOCATION	FEET	GENERAL GEOLOGY	NO.	GOLD/TON	FROM	70	TOTAL	SAMPLE DESCRIPTION
KAS-87A-8	L25+00W, 12+65N	216.0	Interbedded mafic tuffs and flows, minor diorite intrusives.		0.062	69.0	73.6	4.6	mafic tuff, 2-5≸ po
KAS-87A-9	L25+00W, 12+68N	316.0	Amphibolite overlies mafic tuff and flows.	10346	0.140 (0.142)	26.0	30.2	4,2	maflc tuff
				10360 to 10377 Incl.	trace to 0,050	92.4	191.0	98.6	mafic tuff and flows
KAS-87A-10	L26+00W, 12+65N	326.0	Mafic flows and minor tuff.	10398 to 10412 Incl.	trace to 0.092	18.9	77.0	58,1	mafic tuff with 7-20% quartz <u>+</u> carbonate veining
				10473 to 10477 Incl.	trace to 0,086	300.8	326.0	25,2	mafic flows, 3-5% quartz + carbonate veining, trace-1% py,po,cpy,sph
KAS-87A-11	L26+00W, 12+63N	256.0	intermediate to mafic tuff over mafic flows, an amphibolitic-mafic intrusive and mafic tuff.	10478 to 10483 Incl.	trace to 0,034	14.0	41.0	27.0	maflc tuff, 2-3≸ py
KAS-87A-12	L25+03W, 15+95N (AZ,210°)	286.0	Mafic flows hosting minor sediments and banded iron formation.	10591	0.044	281.0	286.0	5.0	mafic tuff and sediments, trace-2\$ py
KAS-87A-13	L25+00W, 15+94N (AZ,180°)	226.0	As above with minor mafic intrusives.	10648 10649	0.014 0.010	215.0 220.0	220.0 223.0	5.0 3.0	mylonite horizon in mixed greywacke, mudstone and tuff
	(A2,180)			10597	0.014	26.0	27.5	1.5	mafic intrusive
KAS-87A-14	L24+98W, 15+96N (AZ,150°)	286.0	As per KAS-87A-12.	10654	0.020	30.0	33.0	3.0	silicified mafic flows with 2-3% magnetite
KAS-87A-15	L17+00W, 16+75N (AZ,210*)	337.0	Mafic flows with numerous mylonitized zones and minor mafic intrusives	10785	0,028	332.0	337.0	5.0	mafic flows, carbonatized

23

TABLE I SUMMARY OF DIAMOND DRILL RESULTS

	1	LENGTH	i	ASSAY	DUNCES		-FOOTAGE	1	
OLE NO.	LOCATION	FEET	GENERAL GEOLOGY	NO.	GOLD/TON	FROM	TO	TOTAL	SAMPLE DESCRIPTION
AS-87A-16	L17+00W, 16+75N (AZ.180°)	316.0	As above.						
AS-87A-17	L16+97W, 16+74N (AZ.150°)	346.0	As above.			`			
AS-87A-18	L47+00W, 3+48S	510.0	Slitstone to wacke overlying feisic tuff and mafic flows.						
AS-87A-19	L49+00W, 3+49S	526.0	As above.						
AS-87A-20	L51+00W, 3+04S	516.0	Interbedded slitstone, grey- wacke and felsic to inter- mediate tuff overlie mafic to Intermediate flows.						
AS-87A-21	L37+00W, 5+60S	406.0	As above with well defined sulphide zone at contact between mafics and felsics.						
AS-87A-22	L56+00W, 23+00N	291.0	Interbedded felsic to interme- diate tuff and siltstone over- lain by mafic volcanics.						
(AS-87A-23	L44+00W, 23+54N	314.0	Feisic to intermediate tuff and slitstone overlie mafic flows and tuff.	:					
AS-87A-24	L51+00W, 15+00N	380.0	Interbedded mafic flows, mafic to intermediate tuff and slitstone.						
AS-87A-25	L34+00W, 12+40N	351.0	Mafic flows host felsic to mafic tuff.						

. 24

TABLE 1
SUMMARY OF DIAMOND DRILL RESULTS

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY No.	OUNCES GOLD/TON	FROM	-FOOTAGE TO	TOTAL	SAMPLE DESCRIPTION
KAS-87A-26	L20+00W, 15+25N	415.0	A thick horizon of mafic flows host sheared iron formation and overlies interbedded mafic	9684 9685 9686	0.020 0.012 0.168	349.3 354.0 359.0	354.0 359.0 353.0	4.7 5.0 4.0	
		!	flows and felsic to intermediate tuff.	9687	(0,154) 0,136 (0,130)	363.0	366.0	3.0	
				9688	0,130 (0,126)	366.0	371.0	5,0	
				9689	trace	371.0	376.0	5,0	
				9690	0.016	376.0	381.0	5,0	
				9691 9692	0,012 0,100	381.0 382.1	382.1 387.0	1.1 4.9	
					(0,098)	,			
KAS-87A-27	L20+00W, 16+25N	667.0	As above with minor mytonite zones.	-	• .				
KAS-87A-28		606.0	As per KAS-87A-27.	1301	0.028	539.6	544.6	5.0	sheared mafic volcanics and
	16+25N			1302	0.024	544.6	548.3	3,7	Iron formation, trace-4% py
				1303	0.341	548.3	549.7	1,4	
				1304	0.010	549.7	553.0	3,3	
KAS-87A-29	119+00W,	406.0	As above.	9970	0.068	369.0	374.0	5,0	sheared mafic volcanics and
	15+25N			9971	0,164	374.0	378.8	4,8	iron formation, 1-4≸ po,py
					(0,176)		i		
				9972	0.062	378,8	383.0	4,2	
KAS-87A-30	L21+00W,	631.0	As above.	9983	trace to	576.0	598,3	22,3	as above, 1-3≴ po,py
	16+22N			to	0.032			f I	
				9987					
	1		· ·	inci.					
KAS-87A-31	L21+00W, 15+22N	444.0	As above.						
KAS-87A-32	L24+02W, 12+50N (AZ,210°)	226,0	Mafic flows hosting sheared mafic voicanics and iron formation	17674, 17684 to 17690 incl.	trace to 0.052	16,6	76.0	59,4	as above

25

TABLE 1
SUMMARY OF DIAMOND DRILL RESULTS

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY No.	OUNCES GOLD/TON	FROM	-FOOTAGE TO	TOTAL	SAMPLE DESCRIPTION
KAS-87A-33	124+00W, 12+50N (AZ.180°)	206.0	As above.	6016 to 6029 incl.	trace to 0,036	13.0	66.0	53,0	as above
KAS-87A-34	L24+00W, 12+50N (AZ,150°)	226.0	As above.	6051 to 6063 Incl.	trace to 0,042	16.0	71.0	55.0	as above
KAS-87A-35	L12+02E, 7+28N (AZ.325°)	505,0	Greywacke and felsic tuff overlie mefic flows hosting iron formation (lean) and overlying felsic to intermediate tuffs, mafics crosscut by mafic intrusives.	6272 6273 6274	0,016 0,278 0,004	366.0 370.2 373.7	370.2 373.7 375.0	4,2 3,5 1,3	-0.1 foot quartz veln, 2-3\$ py hosted in mafic flows
KAS-87A-36	L12+00E, 7+30N	466.0	As above.	6342 6343 6345 to 6354 Incl.	0.014 0.036 trace to 0.020	281.0 285.8 295.0	285.8 290.5 340.1	4.8 4.7 45.1	contact between mafic flows and mafic intrusive, 2-3% po, quartz <u>+</u> tourmaline veining mafic flows and iron formation in contact with mafic intrusive
KAS-87A-37	L12+00E, 7+30N	526.0	Mafic flows crosscut by numerous mafic intrusives overlying felsic to intermediate tuffs.	6449	0,052 (0,048)	456.3	459.3	3,0	schistose, mafic flows
KAS-87A-38	L128+00E, 28+00N	436.0	Felsic to intermediate tuffs hosting banded iron formation.						
KAS-87A-39	L120+00E, 15+00N	407.0	Feisic tuff overlying maffic flows.						

- 26 -

TABLE I SUMMARY OF DIAMOND DRILL RESULTS

	1 :	LENGTH	ļ	ASSAY	OUNCES	l <	-FOOTAGE	·>	1
HOLE NO.	LOCATION	FEET	GENERAL GEOLOGY	NO.	GOLD/TON	FROM	то	TOTAL	SAMPLE DESCRIPTION
KAS-87A-40	L16+00W,	437.0	Sheared-silicified mafic volcanics and iron formation	4062	0,095 (0,121)	422.0	424,5	2,5	sheared-silicified mafic volcanics and iron formation,
			are separated from an underlying sequence of mafic flows and	4063	0,166 (0,185)	424.5	427.0	2,5	1-2≸ po, py
			felsic to intermediate tuffs by an amphibolite-mafic	4064	0,051	427.0	429.5	2.5	
	I		Intrusive.	4065	0.014	429.5	432.0	2,5	,
				4066	0,008	432.0	434,5	2.5	
	i			4067	0.017	434,5	437.0	2.5	
KAS-87A-41	L16+00W,	607.0	As above, with minor mylonite	4166	0,026	577.0	581.2	4,2	as above
	16+25N		and graphitic schist horizons	4167	0.060 (0.052)	581.2	582.4	1,2	carbonate veln, 2-3% py
				4168	0,004	582,4	587.0	4,6	
KAS-88-1	L12+00W.	650.0	Interbedded felsic to inter-	4249	0.016	531.8	536.8	5,0	sheared-silicified mafic
	16+29N		mediate tuff and mafic flows	4250	0,002	536.8	541.8	5.0	volcanics and iron formation,
	ļ .		hosting sheared-silicified	4251	0.028	541.8	546.7	4.9	trace-5% po, py
			mafic voicanics and iron	4255	0,160	556.0	559.0	3.0	
			formation and crosscut by		(0,172)		ļ		
	1		minor mafic dykes and mylonitic	4256	0.026	559.0	562.0	3.0	
			horizons.	4257	0,106	562.0	564.5	2,5	
	1				(0,114)				
				4258	0.044	564.5	567,0	2.5	
				4262	0,080 (0,084)	577.4	580.0	2,6	
	,			4263	0,160	580.0	583.0	3.0	
	i i			4264	0.076	583.0	586.0	3.0	
					(0,082)				
KAS-88-2	L12+00W, 15+22N	492.0	Sheared-silicified Iron formation and mafic volcanics	4354 to	trace to	436,5	462.5	26.0	silicified—sheared mafic volcanics and iron formation
	1572ZN		hosted in matic flows over-	4361	0.004				with up to 7% py, po
			lying interbedded felsic to	Incl	1				with up to 7, py, po
			Intermediate tuffs and mafic	4362	0,268	462.5	465,5	3.0	
	i i		to intermediate flows.	7302	(0,286)	402.5	400,0	٠,٠	
	1		to illiarmadiala rioxa,	4363	0.106	465.5	468.5	3,0	
				4505	(0.108)		400,5	7,0	
				4364	0.100	468,5	472,5	4,0	
				47.2	(0.098)	470 -	475.0	, ,	
	 			4365	0.002	472.5	475.0	2,5	
	1			4366	0.056	475.0	478.0	3,0	
		ļ ;		l	(0,062)	i .			

TABLE I

		LENGTH	0505000	ASSAY	OUNCES		-FOOTAGE		
HOLE NO.	LOCATION	FEET	GENERAL GEOLOGY	NO.	90LD/TON	FROM	то	TOTAL	SAMPLE DESCRIPTION
KAS-88-3	L8+00W,	692.0	As per KAS-87A-40 with abundant	4491	0.062	634.4	637.4	3.0	silicified-sheared mafic
	16+28N		crosscutting mafic dykes and	4492	0,088	637.4	640.2	2.8	volcanics and iron formation
]]		mytonitic horizons.	4497	0.070	652.2	655.2	3.0	with up to 5% py,po
]				(0,066)				
]		· ·	4500	0.036	661.2	665.9	4,7	
				4501	0.010	665.9	670.9	5.0	mafic flows
(AS-88-4	L8+00W, 15+25N	494.0	As per KAS-87A-40.	4584	0,020	465,3	470.0	4,7	mafic volcanics and lean iron formation, 1-2% py,po
(AS-88-5	L4+00W, 15+96N	657.0	Mafic volcanics and iron formation overlying interbedded	4710	0,090	642.4	645.4	3.0	mafic volcanics, 1-2≸ py
			feisic to intermediate tuffs and mafic flows with cross- cutting mafic dykes and mylonitic horizons.						
AS-88-5A	L4+06W,	687.0	As above, with narrow altered-	4838	0.016	654.9	657.9	3.0	banded Iron formation,
	15+96N		brecclated zone.	·					2-5% py, po
AS-88-6	L4+00W,	537.0		4935	0,020	488.9	491,3	2,4	sheared-sillcifled mafic
	15+00N		silicified mafic volcanics and iron formation overlying	4936	0,194 (0,196)	491.3	494.3	3,0	volcanics and iron formation, 5-10% po, py
	1		felsic to intermediate tuffs	4937	0.436	494.3	497.3	3.0	3-10% po, py
	}		and mafic to intermediate		(0,446)		151,45		
	1		flows hosting minor banded iron	4938	0,164	497,3	500.3	3.0	
	1		formation		(0, 160)				
	1 1			4939	0,060	500.3	503,3	3,0	3-5 ≴ po,py
					(0,068)				
				4940	0,026	503.3	507.3	4.0	
	1			4941	0,030	507.3	511.3	4.0	
	j j			4942	0,002	511.3	514.8	4.0	
	[·	4943	0,014	514.8	518,3	3,5	
				4944	0,068	518.3	521.5	3,2	
]]			4945	(0.062)	521.5	524.5	ا ۾ ۽	modic dieve misem impe
] 1			4945	0.040	~	- 1	3.0	mafic flows, minor iron
]			7770	0.068 (0.064)	524.5	527.5	3,0	formation bands, 1-2% po
	1 1	1		4947	0.010	527.5	532.0	3.0	
	1 1			4948	0.002	532.0	537.0	5.0	

- 28

TABLE I
SUMMARY OF DIAMOND DRILL RESULTS

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY No.	OUNCES GOLD/TON	FROM	-FOOTAGE TO	TOTAL	SAMPLE DESCRIPTION
KAS-88-7	1.4+00E, 15+25N	637.0	As per KAS-88-6.	13774 13775 13776 13777 13781	0.030 0.232 0.026 0.032 0.046	587.9 592.0 594.0 597.0 610.1	592.0 594.0 597.0 601.6 612.7	2.0	cherty iron formation and mafic volcanics with 1-5% po

11.0 CONCLUSIONS

During the current drilling program a broad zone of potentially economic gold mineralization was outlined in a horizon of sheared and locally silicified mafic tuffs and iron formation.

The horizon has been sporadically tested along 3700 feet of the 8000 foot strike length inferred from geophysical data.

The gold mineralization is associated with pyrrhotite replacement bodies within the horizon of mafic tuffs and iron formation. These sulphide shoots or zones appear to plunge eastward in the plane of the host horizon.

Additional surface work and diamond drilling is warranted and recommended to define the full extent of the gold-bearing zones.

12.0 RECOMMENDATIONS

A three-phase exploration program is recommended for the property.

12.1 Phase I

Additional surface work including:

- a) A detailed ground magnetometer survey with profiles at 100 foot spacings and readings at 10 to 20 foot intervals from L8W to L64E between BLO and 18N.
- b) A Horizontal Loop Electromagnetic (HLEM) survey with profiles over selected magnetics and VLF-EM axes to define potential zones of gold-bearing sulphides.

12.2 Phase II

Diamond Drilling; 32 holes totalling 11,300 feet of drilling, to test the gold-bearing horizon.

Proposed collars are listed in Table No. 2.

12.3 Phase III

Additional diamond drilling dependent upon the results of Phases I and II.

TABLE 2 - PHASE II - PROPOSED DRILL COLLARS

HOLE	LOCATION	AZIM.	DIP	PROPOSED FOOTAGE	VERTICAL DEPTH OF PENETRATION
1 2 3 4	L36W,1025N L34W,1025N L32W,14N L30W,14N	0° 0° 180° 180°	-45° -45° -45° -45°	350' 350' 325' 325'	200' 200' 200' 200'
2 3 4 5 6 7 8 9	L26W,14N L24W,14N L16W,14N L14W,14N L12W,14N	180° 180° 180° 180°	-45° -45° -45° -45°	325' 325' 325' 325' 325'	200' 200' 200' 200' 200'
10 11 12 13	L10W,14N L10W,14N L8W,14N 6W,14N 5W,15N	180° 180° 180° 180°	-45° -45° -45° -45°	325' 325' 325' 325' 550'	200' 200' 200' 200' 350'
14 15 16 17	5W,14N L4W,14N 3W,15N 3W,14N	180° 180° 180° 180°	-45° -45° -45°	325' 325' 550' 325'	200' 200' 350' 200'
18 19 20 21	2W,14N L0+00,8N 2E,8+25N L4E,8+25N	180° 0° 0° 0°	-45° -45° -45° -45°	325' 400' 350' 350' 350'	200' 250' 200' 200' 200'
22 23 24 25 26	6E,8+25N L8E,8+25N 10E,8+25N 14E,7+25N 16E,7+25N	0° 0°	-45° -45° -45° -45°	350' 350' 350' 350'	200' 200' 200' 200'
27 28 29 30	18E,7+25N 20E,7+25N 22E,7+25N 26E,7+25N	0° 0°	-45° -45° -45°	350' 350' 350' 350'	200' 200' 200' 200'
31 32	28E,7+25N 30E,7+25N	0.	-45° -45°	350' 350' 11,300 ft.	200' 200'

13.0 ESTIMATED COST OF RECOMMENDED EXPLORATION PROGRAM

13.1 Phase I

Linecutting, 10 miles at \$350 per mile\$3,500.00
Detailed Ground Magnetometer Survey, 10 miles at \$300 per mile\$3,000.00
HLEM Survey, 12 miles at \$300 per mile\$3,600.00
Cost of Phase I \$10,100.00

13.2 Phase II

Diamond Drilling, 32 holes totalling 11,300 feet at \$40 per foot\$452,000.00
Contingencies 20%\$ 90,400.00
Total Cost of Phase II <u>\$542,400.00</u>
Total Costs of Phases I and II\$552,500.00

13.3 Phase III

Additional Diamond Drilling, amounts and costs contingent upon the results of Phase I and II.

Respectfully submitted,

Robert A.V. Higginson, B.Sc. Geocanex Ltd.

14.0 REFERENCES

- Gillick, R.E. Report on Induced Polarization and Detailed Magnetic Surveying on the Kasagiminnis Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario for Power Explorations Inc. October 1987, unpublished report on Geocanex Ltd.
- Higginson, R. Report on Diamond Drilling on the Kasagiminnis Lake Property for Power Explorations Inc., March 1987, Assessment File Report.
- Higginson, R. Report on Geological Mapping, Prospecting and Lithogeochemical Sampling on the Kasagiminnis Lake Property for Power Explorations Inc., August 1987, Assessment File Report.
- Higginson, R. Report on Geological Mapping, Prospecting and Geochemical Sampling, Kasagiminnis Lake Property for 669977 Ontario Ltd., December 1986, Assessment File Report.
- Medd, S. Report on Magnetic and VLF-EM Surveys on the Kasagiminnis Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario, for 669977 Ontario Ltd.; Assessment File Report for Geocanex Ltd.
- Ontario Geological Survey, 1986. Airborne Electromagnetic and Total Intensity Magnetic Survey, Pickle Lake Area, District of Thunder Bay, Ontario; by Geoterrex Ltd. for O.G.S. Geophysical/Geochemical Series Map. 80916 Scale 1:20,000.
- Ontario Geological Survey, Resident Geologists Files Toronto and Sioux Lookout. Various unpublished
 assessment reports.
- Paradis, S. and Rampton, V.N., 1986. Report on Surficial Geology and its relevance to Geochemical Exploration in the Pickle Lake Meen Lake Area; Carp, Ontario. Terrain Analyses and Mapping Services Ltd., July, 1986, unpublished.

APPENDIX A

CERTIFICATE OF QUALIFICATIONS

CERTIFICATE OF QUALIFICATIONS

THIS IS TO CERTIFY THAT:

I am a resident of Oro Township, Ontario.

I am a graduate of the University of Waterloo, Waterloo, Ontario, with a Bachelor of Science degree (Geology).

I have worked continuously as an exploration geologist since 1984, in gold exploration in Northwestern Ontario.

I supervised the drilling program on the Kasagiminnis Lake Property, from September 2, 1987 to October 28, 1987 and from December 11, 1987 to December 17, 1987 and, from January 7, 1988 to February 9, 1988.

The statements contained in this report, and conclusions reached, are based upon the study of all available data including relevant assessment work records of the Ontario Geological Survey, and geological reports and maps published by the Ontario Ministry of Natural Resources.

In this report, I have disclosed all relevant descriptive and interpretive material, which is, to the best of my knowledge, necessary to gain a complete understanding of the viability of the project and the recommendations.

DATED THIS 3rd day of June, 1987.

Robert A.V. Higginson, B.Sc. Geologist

Kot flegginn

APPENDIX B

RESAMPLING OF 1986-1987 DRILL HOLES

TABLE 3 - RESAMPLING OF 1986-1987 DRILL HOLES

HOLE NO.	ASSAY NO.	I	NTERVAL		ASSAY VALUES
		FROM	TO	TOTAL	(oz.Au/ton)
KAS-87-25	10001	23.0	27.0	4.0	Tr
KAS-87-25	10002	27.0	32.0	5.0	Tr
KAS-87-25	10003	32.0	37.0	5.0	Tr
KAS-87-25	10004	37.0	42.0	5.0	Tr
KAS-87-25	10005	42.0	46.7	4.7	Tr
KAS-87-25	10006	54.5	58.5	4.0	Tr
KAS-87-25	10007	176.2	178.2	1.8	Tr
KAS-87-25	10008	178.0	182.0	4.0	Tr
KAS-87-25	10009	182.0	187.0	5.0	Tr
KAS-87-25	10010	187.0	192.0	5.0	Tr
KAS-87-25	10011	192.0	197.0	5.0	.01
KAS-87-25	10012	197.0	202.0	5.0	.002
KAS-87-25	10013	202.0	207.0	5.0	Tr
KAS-87-25	10014	207.0	212.0	5.0	.014
KAS-87-25	10015	212.0	217.0	5.0	Tr
KAS-87-25	10016	217.0	222.0	5.0	Tr
KAS-87-25	10017	222.0	227.0	5.0	.030
KAS-87-25	10018	227.0	232.0	5.0	.020
KAS-87-25	10019	232.0	233.1	1.1	.012
KAS-87-25	10020	233.1	237.0	3.9	.028
KAS-87-25	10021	237.0	240.8	3.8	Tr
KAS-87-25	10022	240.8	242.5	1.7	Tr
KAS-87-25	10023	242.5	247.0	4.5	.020
KAS-87-25	10024	247.0	248.3	1.3	.078(.074)
KAS-87-25	10025	271.9	274.2	2.3	.040
KAS-87-26	10026	27.0	32.0	5.0	Tr
KAS-87-26	10027	78.0	80.9	2.9	Tr
KAS-87-26	10028	89.1	90.4	1.3	Tr
KAS-87-26	10029	135.6	137.7	2.1	Tr
KAS-87-26	10030	137.7	142.0	4.3	.006
KAS-87-26	10031	142.0	147.0	5.0	.026
KAS-87-26	10032	147.0	149.4	2.4	.014
KAS-87-26	10033	170.8	172.0	1.2	Tr
KAS-87-26	10034	182.8	186.1	3.3	Tr
KAS-87-26	10035	202.0	203.2	1.2	Tr
KAS-87-26	10036	211.4	213.2	1.8	Tr

TABLE 3 - RESAMPLING OF 1986-1987 DRILL HOLES

HOLE NO.	ASSAY NO.	ı	NTERVAL		ASSAY VALUES
		FROM	TO	TOTAL	(oz.Au/ton)
KAS-87-28	5901	18.2	23.1	4.9	Tr
KAS-87-28	5902	23.1	28.1	5.0	Tr
KAS-87-28	5903	28.1	33.1	5.0	Tr
KAS-87-28	5904	33.1	37.0	3.9	Tr
KAS-87-28	5905	37.0	42.0	5.0	Tr
KAS-87-28	5906	42.0	46.0	4.0	Tr
KAS-87-28	5907	46.0	48.6	2.6	Tr
KAS-87-28	5908	48.6	53.5	4.9	Tr
KAS-87-28	5909	53.5	57.0	3.5	Tr
KAS-87-28	5910	57.0	62.0	5.0	Tr
KAS-87-28	5911	62.0	67.0	5.0	Tr
KAS-87-28	5912	67.0	72.0	5.0	Tr
KAS-87-28	5913	72.0	77.0	5.0	Tr
KAS-87-28	5914	77.0	79.6	2.6	Tr
KAS-87-28	5915	79.6	84.6	5.0	Tr
KAS-87-28	5916	84.6	89.0	4.4	Tr
KAS-87-28	5917	89.0	92.0	3.0	Tr
KAS-87-28	5918	92.0	94.0	2.0	Tr
KAS-87-28	5919	94.0	99.0	5.0	Tr
KAS-87-28	5920	99.0	102.5	3.5	Tr
KAS-87-28	5921	102.5	106.6	4.1	Tr
KAS-87-28	5922	106.6	111.5	4.9	Tr
KAS-87-28	5923	111.5	114.5	3.0	Tr
KAS-87-28	5924	114.5	119.5	5.0	Tr
KAS-87-28	5925	119.5	122.0	2.5	Tr
KAS-87-28	5926	122.0	125.0	3.0	Tr
KAS-87-28	5927	125.0	130.0	5.0	Tr
KAS-87-28	5928	130.0	135.0	5.0	Tr
KAS-87-28	5929	135.0	140.0	5.0	.002
KAS-87-28	5930	140.0	143.0	3.0	.002
KAS-87-28	5931	143.0	146.0	3.0	Tr
KAS-87-28	5932	146.0	150.4	4.4	Tr
KAS-87-28	5933	150.4	154.9	4.5	.002
KAS-87-28	5934	154.9	160.0	5.1	.004
KAS-87-28	5935	160.0	164.9	4.9	.020
KAS-87-28	5936	164.9	169.9	5.0	.008

TABLE 3 - RESAMPLING OF 1986-1987 DRILL HOLES

HOLE NO.	ASSAY NO.		NTERVAL		ASSAY VALUES
		FROM	TO	TOTAL	(oz.Au/ton)
KAS-87-28	5937	169.9	172.0	2.1	Tr
KAS-87-28	5938	172.0	177.0	5.0	.002
KAS-87-28	5939	177.0	182.0	5.0	Tr
KAS-87-28	5940	182.0	187.0	5.0	.004
KAS-87-28	5941	187.0	192.0	5.0	.028
KAS-87-28	5942	192.0	197.0	5.0	.002
KAS-87-28	5943	197.0	202.0	5.0	.008
KAS-87-28	5944	202.0	207.0	5.0	.002
KAS-87-28	5945	207.0	210.5	3.5	Tr
KAS-87-28	5946	210.5	214.0	3.5	Tr
KAS-87-28	5947	214.0	218.7	4.7	Tr
KAS-87-28	5948	218.7	221.2	2.5	Tr
KAS-87-28	5949	221.2	226.0	4.8	Tr
KAS-87-28	5950	226.0	231.0	5.0	Tr
KAS-87-28	5951	231.0	235.0	4.0	Tr
KAS-87-28	5952	235.0	238.0	3.0	Tr
KAS-87-28	5953	238.0	242.8	4.8	Tr
KAS-87-28	5954	242.8	244.4	1.6	Tr
KAS-87-28	5955	244.4	248.0	3.6	Tr
KAS-87-28	5956	248.0	252.0	4.0	Tr
KAS-87-28	5957	252.0	257.0	5.0	Tr
KAS-87-31	4847	127.0	130.0	3.0	.002
KAS-87-31	4848	130.0	131.0	1.0	.382(.378)
KAS-87-31	4849	131.0	132.8	1.8	Tr
KAS-87-31	4850	178.7	182.9	4.2	.002
KAS-87-31	4851	182.9	186.5	3.6	Tr
KAS-87-31	4852	186.5	190.4	3.9	Tr

APPENDIX C

DIAMOND DRILL LOGS

NAME OF	PROPERTY	KASA	GIMINNIS LA	AKE			
HOLE NO.	KAS-87A-1		LENGTH	296.0'			
LOCATION	20+00W,	13+53N					
LATITUDE			DEPARTURE				
ELEVATION	1		AZIMUTH .	180°	DIP	-61°	
	September 2	/87	FINISHED	September	3/87		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
296.0	-48.5				
		,			

HOLE NO. KAS-87A-1 SHEET NO. 1 of 2
REMARKS PA786808
PA786807
SUMMARY LOG

FOO	T A G E	DESCRIPTION			SAMP	LΕ			Α	SSA'		
FROM	то	SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	1,0	*6	OZ/TON	oz/ton	
9.0 36.0 36.6 40.1 42.4 45.2 46.8 48.4 49.8 74.2 74.9 77.6 117.6	9.0 36.0 36.6 40.1 42.4 45.2 46.8 48.4 49.8 74.2 74.9 77.6	CASING. FELSIC TO INTERMEDIATE TUFF. MAFIC FLOW. FELSIC TO INTERMEDIATE TUFF. MAFIC FLOWS. FELSIC TO INTERMEDIATE TUFF. MAFIC FLOWS. FELSIC TO INTERMEDIATE TUFF. INTERMEDIATE TUFF. MAFIC FLOWS. FELSIC TO INTERMEDIATE TUFF. MAFIC FLOWS. FELSIC TO INTERMEDIATE TUFF. MAFIC FLOWS. INTERBEDDED FELSIC TO INTERMEDIATE AND INTERMEDIATE TUFFS. SHEARED MAFIC VOLCANIC (FLOWS?) - SHEARED IRON FORMATION AND MAFIC VOLCANICS -	10063 10068 10068		FROM	146.0 159.5 163.0	5.0 3.5	76	<u> </u>			
LANGRIDGES - TORONTO - 366-1168			10075 10076 10076		187.9		3.4 4.7 2.0			.060 .182 .168 .018	Check Check	
ANGR										.056	Check	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-1 SHEET NO. 2 Of 2

FOO	TAGE	DESCRIPTION		SAMPLE				ASSAY S				
FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL			Auron	UZ TON	
198.0	210.9	SHEARED MAFIC VOLCANIC (FLOWS?).										
210.9	228.9	MAFIC FLOWS.										
228.9	234.0	AMPHIBOLITE (MAFIC INTRUSIVE).										
234.0	241.4	MAFIC FLOWS.	İ					!				
241.4	243.6	QUARTZ-FELDSPAR PORPHYRY INTRUSIVE.										
243.6	296.0	MAFIC FLOWS.	l									
	296.0	E.O.H.										
			İ									
	1		i		:			1				
							:					
			l									
			İ									
	1 1		ì									1
			l									
			İ									
			 									
<u>il</u>			Ī									
,												
<u>;</u>												
,												
									;			
	}		1	1		İ			İ			

NAME OF	PROPERTY	KASA	<u>GIMINNIS LA</u>	AKE		
HOLE NO.	KAS-87A-1		LENGTH	296.0'		
LOCATION	20+00W,	13+53N	····			
LATITUDE			DEPARTURE			
ELEVATION			AZIMUTH	180°	DIP	-61°
	September					

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
296.0	-48.5				
-					
	<u> </u>				

HOLE NO. KAS-87A-1SHEET NO. 1 of 5

REMARKS PA786808

PA786807

FOO	TAGE	DESCRIPTION			SAMP	LE		ASSAYS				
FROM	то	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	26	¥	oz/TON	OZ/TON	
0.0	9.0	<u>Casing</u> .										
9.0	36.0	Felsic to Intermediate Tuff - dark grey to brown to dark green, fine grained, laminated. Modal percent: Quartz Feldspar Sericite 10-15% Amphibole 10-15% Chlorite 5-10% Biotite 3-5% Pyrite 2-3% Carbonate O.5-1% Pyrrhotite tr-0.5% Highly fractured, microfaulting with minor breccia zones with mylonite matrix and 3-5% pyrite, fractures sharp with irregular alteration consisting quartz-carbonate-epidote, abundant lapilli and quartz eyes throughout, quartz-carbonate-pyrite-tourmaline stringers - widely spaced, pyrite and pyrrhotite as disseminated grains, fracture fillings or blebs and bands parallel to foliation, foliation 43-46° to core axis across section, fractures at 6° to core axis at 11.0'.	10037 10038 10039 10040 10041 10042		9.0 12.0 16.0 21.0 26.0 31.0	12.0 16.0 21.0 26.0 31.0 36.0	3.0 4.0 5.0 5.0 5.0 5.0			tr tr tr tr tr		
CANGRIDGES - 7040N10 - 366-1788	36.6	Mafic Flow - dark green, fine grained, massive with slight alignment of chlorite. Modal percent: Amphibole 40-45% Quartz 35-40% Feldspar 10-15% Fine grained phaneritic, fracturing at 38° to core axis, trace disseminated pyrite.										

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A1 SHEET NO. 2 of 5

F00	TAGE	DESCRIPTION	SAMPLE				ASSAY S			
FROM	10	DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE TO	TOTAL		, oAYon	OZ TON
36.6	40.1	Felsic to Intermediate Tuff - typical, foliation at 57° to core axis at 37.0'.	10043		36.6	40.1	3.5		tr	
40.1	42.4	Mafic Flows - typical, foliation at 52° to core axis.								
42.4	45.2	Felsic to Intermediate Tuff - typical, minor 1/4" pyrite band.	10044		42.4	45.2	2.8		tr	
45.2	46.8	Mafic Flows - typical.								
46.8	48.4	Felsic to Intermediate Tuff - typical, trace-1% pyrite, minor fracturing.	10045		46.8	48.4	1.6		tr	
48.4	49.8	Intermediate Tuff - dark green to grey, fine grained, crudely banded.	10046		48.4	49. 8	1.4		tr	
49.8	74.2	Modal percent: Amphibole 40-45% Quartz Feldspar Chlorite 15-20% Mafic Flows - typical, fine to medium grained, irregular wispy foliation, common epidote-quartz-carbonate interflow bands, trace- 1% pyrite and pyrrhotite, foliation at 37° to core axis at 58.0', conjugate fracture sets at 45° and 52° to core axis, single fracture sets at 10° and 28° to core axis.								
		fine cherty-mylonitic green-pink-white gouge, strongest deformation at 61.6'.	10047	:	61.6	64.6	3.0		tr	
8		- 73.0' - 73.4' - quartz-epidote carbonate interflow bed.			Ì					
74.2	74.9	Felsic to Intermediate Tuff - typical.								
74.2 74.9 77.6	77.6	Mafic Flows - typical 76.2' - 76.5' - minor felsic to intermediate tuff bed, typical.								
77.6	117.6	Interbedded Felsic to Intermediate and Intermediate Tuffs - textural changes due to deformation?								
]										

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-1 SHEET NO. 3 OF 5

F001	TAGE				SAMPL	. E			ASSAYS		
FROM	70	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	7,	Au oz/ton		
77.6	117.6	Cont'd 77.6' - 106.0' - laminated to banded, trace-1% disseminated pyrite, minor quartz-tourmaline veins and stringers up to 0.1-foot.			77.6 82.6 86.0 91.0 96.0	82.6 86.0 91.0 96.0	3.4 5.0 5.0		.006 tr tr tr		
	3		0052 0053 0054 0055		101.0 106.0	106.0 111.0 112.7	5.0 5.0		tr tr tr		
		- 112.7' - 115.0' - intermediate tuff, trace pyrite.	10056	l	112.7	116.0	3.3		tr		
		- 115.0' - 117.6' - cherty-felsic tuff, mottled-laminated, pink to grey.	10057		116.0	117.6	1.6		tr		
		Foliation at 41° to core axis at 81.0'; 44° to core axis at 87.0'; 45° to core axis at 101.0'; 38° to core axis at 111.0'; 41° to core axis at 116.0'.									
117.6	147.3	Modal percent: Quartz Feldspar] 45-50% Amphibole 40-45%	10058 10059 10060 10061 10062 10063		117.6 121.0 126.0 131.0 136.0 141.0 146.0	126.0 131.0 136.0 141.0 146.0	5.0 5.0 5.0 5.0 5.0		tr tr tr tr .014 .002		
90		Pink poikiloblastic garnets, abundant discordant quartz-carbonate-pyrite (0.5-1%) stringers and veins, cherty-quartz-carbonate bands, trace tourmaline, generally non-magnetic foliation at 52° to core axis at 131.0'.									
147.3	198.0	Sheared Iron formation and Mafic Volcanic - black to grey, fine grained, striped to mottled to banded.	10065 10066 10067 10068 10069 10070 10071		147.3 151.0 156.0 159.5 163.0 166.0 171.0 176.0	156.0 159.5 163.0 166.0 171.0 176.0	5.0 3.5 3.5 3.0 5.0 5.0		tr tr .168 .120 .004 tr tr	122	Check Check Check

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-87A-1 SHEET NO 4 OF 5

FOOT	AGE	DESCRIPTION			SAMPI	.E			SSAYS	
FROM	10	DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE 10	TOTAL		AU oz TOM	02 TON
147.3	198.0	Modal percent: Quartz Feldspar Amphibole 30-35% Carbonate 1-3% Magnetite 0.5-2% Garnet tr-5% Pyrrhotite tr-5% Pyrite tr-3%	10073 10074 10075 10076 10077		181.0 186.0 187.9 191.3 196.0	186.0 187.9 191.3 196.0 198.0	5.0 1.9 3.4 4.7 2.0		.018	Check Check
		Magnetite as disseminated grains in felsic bands or as wispy bands, garnet in amphibole-rich bands as stretched poikiloblastic grains, pyrrhotite and pyrite as disseminated wispy blebs and as cores or mantles in garnets.								
		- 151.0' - 163.0' - 3-5% pyrrhotite 187.9' - 191.3' - irregular quartz veining with carbonate, tourmaline, and 1-2% pyrite as fracture coatings.								
		Foliation at 48° to core axis at 142.0'. Foliation at 42° to core axis at 188.0'. Foliation at 45° to core axis at 194.0'.							'	
198.0	210.9	Sheared Mafic Volcanic - as above, minor quartz veining, trace-1% pyrite.	10078 10079 10080	()	198.0 201.0 206.0	201.0 206.0 210.9	3.0 5.0 4.9		tr tr tr	
210.9	228.9	Mafic Flows - typical, fine to medium grained, abundant limonite- hematite staining along fractures parallel to core axis.		1						
		- 212.7' - 213.2' - narrow shear, highly fractured with carbonate infilling.	10081		211.7	214.2	2.5		tr	
		- 216.3' - 217.3' - discordant shear at 40° to core axis, partially brecciated, pink dolomite matrix, trace disseminated pyrite.	10082		216.3	217.3	1.0		tr	
228.9	234.0	Amphibolite - grey to black, coarse grained, massive.	10083		228.9	234.0	5.1		tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-1 SHEET NO. 5 OF 5

F001	TAGE	P. C. C. D. D. V. C. C. C. C. C. C. C. C. C. C. C. C. C.			SAMP	LE				ASSAYS		
FROM	то	DESCRIPTION	NO	". SULPH IDES	FROM	FOOTAGE	TOTAL			nz Âu	OZ TON	
228.9	234.0	Cont'd.										
		Modal percent: Plagioclase Sericite Amphibole 40-45% Potash Feldspar Magnetite 1-2%										
		Amphibolitic, possibly mafic intrusive, minor quartz veining with 1-2% pyrite on contacts, few widely spaced fractures.										
234.0	241.4		10084 10085			237.0 242.4	3.0 5.4			tr tr		
241.4	243.6	Quartz Feldspar Porphyry Intrusive - pink to black, fine to medium grained porphyritic, massive to slightly foliated. Modal percent: Quartz	10086	3-5	241.4	243.6	2.2			tr		
		Medium grained feldspar phenocrysts, partially aligned with foliated chlorite grains, 0.4-foot section highly chloritic with 3-5% pyrite, banded to massive quartz vein with trace-0.5% pyrite on fractures at 242.9' - 243.6'.										
243.6	296.0	Mafic Flows - typical, fractures subparallel to core axis with limonite, hematite and carbonate coatings, common albite wisps.										
		- 278.3' - 284.9' - cherty clean white quartz vein, potash feldspar on contacts, trace disseminated tourmaline, hematite and chlorite.	10087 10088		278.3 281.0	281.0 284.9	2.7 3.9			tr tr		
i		Foliation at 44° to core axis at 293.5'.										
	296.0	Е.О.Н.						(M	Ma	emo	

NAME OF	PROPERTY	KAS	AGIMINNIS L	.AKE		
HOLE NO.	KAS-87A-20+00W,	2	LENGTH	233.0	•	
LOCATION	20+00W,	13+53N				
LATITUDE			DEPARTURE			
ELEVATION			AZIMUTH	150°	D1P _	-47°
	September 3	3/87		September	4/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
233.0	37.8				

HOLE NO. KAS-87A-2 SHEET NO. 1 of 1

REMARKS PA786808
PA786807

SUMMARY LOG

F 0 0 1	AGE	0.5.6.6.7.1.0.1			SAMP	LE			,	SSA	Y 5
FROM	то	DESCRIPTION SUMMARY LOG	NO, S	IDES	FROM	FOOTAGE TO	TOTAL	26	૪	OZ/TON	oz/ton
0.0	12.0	CASING.									
12.0	38.6	FELSIC TO INTERMEDIATE TUFF.		1							
38.6	40.5	MAFIC FLOWS.		ı							
40.5	46.0	FELSIC TO INTERMEDIATE TUFF.	- 1								
46.0	59.3	MAFIC FLOWS.		ŀ							
59.3	104.9	FELSIC TO INTERMEDIATE TUFF.									
104.9	136.0	MAFIC FLOWS.		İ							
136.0	173.3	SHEARED IRON FORMATION AND MAFIC VOLCANICS -	0096		136.0	141.0	5.0			.016	
			0097 0098		141.0 146.0	146.0 151.0	5.0 5.0			.020	
	1		1 1	- 1						.054	Check
			0099		151.0	156.0	5.0			.068	Check
			0100 10101		156.0 161.0	161.0 166.0	5.0 5.0			.036	
173.3	233 U	MAFIC FLOWS.	0101		101.0	100.0	5.0			.014	
1/3.3	233.0	E.O.H.		1							
	233.0	1.0.11.		İ						-	
				l							
							; 				
				l							
				1							
				İ			!				

NAME OF	PROPERTY	KASAG	<u>IMINNIS LAK</u>	(E			
	KAS-87A-2		LENGTH	233.01			
	20+00W,						
LATITUDE			DEPARTURE				
ELEVATION			AZIMUTH	150°	DIP	-47°	
STARTED	September			September			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
233.0	37.8				
					
				-	<u> </u>

HOLE NO. KAS-87A-2 SHEET NO. 1 Of 2
REMARKS PA786808
PA786807

FOO	TAGE	DESCRIPTION			SAMP	LE			А	5 5 A Y	s	
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	76	76	oz/Yon	OZ/TON	
0.0	12.0	Casing.			-							
12.0	38.6	Felsic to Intermediate Tuff - dark grey to dark green to black, fine grained, laminated to banded. Modal percent: Quartz 45-50% Sericite 25-30% Chlorite 10-15% Amphibole 3-5% Pyrite tr-3% Carbonate tr-1%										
		Minor quartz eyes, frequently segregated sericite, quartz, chlorite and amphibole bands, foliation at 46° to core axis at 16.0', 46° at 30.0'.										
			10090 10091	tr5 tr5 tr5 tr5	16.0 21.0	16.0 21.0 26.0 30.0	4.0 5.0 5.0 4.0			.006 tr tr tr		
38.6	40.5	Mafic Flows - dark green, fine grained, massive. Modal percent: Amphibole 45-50% Quartz Plagioclase 35-40% Chlorite 5-10%	A Company of the Comp									
40.5		Fine grained phaneritic, closely spaced fractures at 43° to core axis.										
40.5	46.0	Felsic to Intermediate Tuff - typical.	1009:	tr-1	40.5	44.0	3.5			tr		
46.0	59.3	Mafic Flows - typical, weak foliation at 55° to core axis at 56.0'										

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-87A-2 SHEET NO 2 OF 2

F00	TAGE				SAMPI	_E			ASSAYS	<u> </u>
FROM	10	DESCRIPTION	NO	- SULPH IDES	FROM	FOOT AGE	TOTAL	•	AU	GZ TON
59.3	104.9	Felsic to Intermediate Tuff - typical, trace-1% pyrite as fine bands, foliation at 57° to core axis at 61.0', 49° at 71.0', 50° at 86.0', fractures at 38° at 61.0'.								
		- 76.0' - 86.0' - 0.5-1% disseminated pyrite.	10094 10095	.5-1 .5-1	76.0 81.0	81.0 86.0	5.0 5.0		tr tr	
104.9	136.0	<u>Mafic Flows</u> - atypical, medium grained, common cherty bands, foliation at 60° to core axis at 104.9', 45° at 112.0', 54° at 125.0', 65° at 134.0'.								
136.0	173.3	Modal percent: Quartz 25-30% Chlorite 20-25%	10097 10098	tr-1 tr-1	141.0 146.0	141.0 146.0 151.0	5.0 5.0			Check
		Amphibole 20-25% Sericite 5-7% Garnet 3-5% Carbonate 3-5% Magnetite tr-3% Pyrite tr-1%	10100 10101 10102	tr-1 tr-1 tr-1	151.0 156.0 161.0 166.0 171.0	156.0 161.0 166.0 171.0 173.3	5.0 5.0 5.0 5.0 2.3		.068 .062 .036 .014 tr	Check
		Medium grained disseminated pink poikiloblastic garnets throughout, disseminated magnetite blebs in some horizons, pyrite on fractures and as disseminated grains, foliation at 50° to core axis at 161.0'.								
173.3	233.0	Mafic Flows - typical, fine grained, minor albite wisps, minor discordant mafic dykes.		 						
3		- 202.0' - 206.0' - coarse grained co-evol mafic dyke.	10105		202.0	206.0	4.0		tr	
		- 223.0' - 223.3' - discordant, granite dyke at 48° to core axis.	10104		222.0	224.3	2.3	:	tr	
}	222.0	- 225.0' - 228.5' - discordant-irregular co-evol mafic dyke.	10106		225.0	228.5	3.5		tr	
001-005 - 0140401 - 03004047	233.0	E.O.H.						J	Me	lam

NAME OF PROPERTY	KASAGIMINNIS LAKE	_
HOLE NO. KAS-87A-3	LENGTH	
LOCATION 20+00W,	13+64N	
LATITUDE	DEPARTURE	
ELEVATION	AZIMUTH210° DIP45°	_
STARTED September	/87 FINISHED September 5/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
266.0	37°				
l l		1		I	

HOLE NO. KAS-87A-3_{SHEET} NO. 1 of 1
REMARKS PA786808
PA786807
SUMMARY LOG

FOOT	AGE	DESCRIPTION			SAMP	LE			A	5 S A	
FROM	то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	26	¹ ζ	OZ/TON	OZ/TON
0.0	7.0	CASING.									
7.0	41.8	FELSIC TO INTERMEDIATE TUFF.									
41.8	64.6	MAFIC FLOWS.			Ī			i			
64.6	98.5	FELSIC TO INTERMEDIATE TUFF.									
98.5	130.4	INTERMEDIATE TO MAFIC TUFF.	1			Ī					
30.4	173.7	SHEARED MAFIC TUFF AND IRON FORMATION -	10124		136.0	141.0	5.0			.020	
			10129 10130		161.0 166.0	166.0 171.0	5.0 5.0			.018	
			10131		171.0	173.7	2.7			.016	
73.7	266.0	MAFIC FLOWS.			1						
	266.0	E.O.H.									
	,				1						
			H								
				Ì							
										ļ	
		•		1							
J			1		•						

KASAGIMINNIS LAKE NAME OF PROPERTY HOLE NO. KAS-87A-3 266.01 ____ LENGTH ___ 20+00W, 13+64N LOCATION LATITUDE 210° -45° DIP ELEVATION September 4/87 September 5/87 STARTED. FINISHED

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
266.0	37°				
`		ļ			!
					

HOLE NO. KAS-87A-3 SHEET NO. 1 of 3
REMARKS PA786808
PA786807

F001	TAGE	DESCRIPTION			5 A M P	LE			A	5 5 A Y	s	
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	76	૪	OZ/TON	OZ/TON	
0.0	7.0	Casing.										
7.0	41.8		10107 10108			11.0 16.0	4.0 5.0			tr tr		
		Abundant quartz eyes, abundant discordant quartz stringers, fine to medium grained disseminated pyrite.		:					:			
		- 18.8' - 20.6' - breccia zone, quartz-carbonate infilling- matrix.	10109 10110	tr-2 tr-2		21.0 26.0	5.0 5.0			tr tr		
		Foliation at 58° to core axis at 10.0', 54° at 25.0', 53° at 40.0', fractures at 37-42° to core axis.		tr-2	31.0	31.0 36.0 41.8	5.0 5.0 5.8	:		tr tr tr		
41.8	64.6	Mafic Flows - dark green to black, fine to medium grained, massive. Modal percent: Amphibole 35-40% Quartz Plagioclase Chlorite 15-20%										
		Amphibolitic, minor widely spaced fractures and quartz stringers, fractures at 38-44° to the core axis, foliation at 45° to core axis at 50.0', 55° at 55.0', 52° at 61.0'.										
		- 53.6' - 54.1' - quartz vein discordant, epidote on contacts, trace - 0.5% disseminated pyrite.	0114	r5	53.0	54.5	1.5			.002		
		- 63.6' - 64.6' - highly fractured with quartz-carbonate in- filling, 0.5-1% disseminated pyrite blebs.										

NAME OF PROPERTY___KASAGIMINNIS LAKE

HOLE NO. KAS-87A-3 SHEET NO. 2 of 3

F001	AGE	DESCRIPTION			SAMP	LE			ASSAYS	
FROM	τo	DESCRIPTION	NO	5 SULPH IDES	FROM	FOOTAGE TO	TOTAL		OZ TON	GZ TON
64.6	98.5	Felsic to Intermediate Tuff - typical.		İ						
:		<u>-</u>	10116 10117 10118	tr-2 tr-2 tr-2 tr-2 tr-2	64.6 66.0 71.0 76.0 81.0	71.0 76.0 81.0	1.4 5.0 5.0 5.0 5.0		tr tr tr tr tr	
			0120 10121 10122		86.0 91.0 95.7	95.7	5.0 4.7 2.8	; ;	tr tr tr	
		Foliation at 50° to core axis at 64.6', 47° at 83.5', 52° at 96.0'								
98.5	130.4	Intermediate to Mafic Tuff - dark green to dark grey, fine grained, crudely banded. Modal percent: Amphibole 45-50% Quartz Plagioclase Carbonate 3-5% Pyrrhotite tr-0.5% Pyrite trace Amphibolitic, abundant quartz-carbonate bands and stringers, fine								
		grained disseminated-wispy blebs of sulphides, foliation at 54° to core axis across interval.								
130.4	173.7	grey, fine grained, crudely banded to striped. Modal percent: Quartz 35-40% Amphibole 25-30% Sericite 15-20% Chlorite 3 1-5% Magnetite 1-3%	0124 0125 0126 0127 0128 0129 0130	tr-1 tr-1 tr-1	136.0 141.0 146.0 151.0 156.0 161.0	136.0 141.0 146.0 151.0 156.0 161.0 166.0 171.0 173.7	5.6 5.0 5.0 5.0 5.0 5.0 5.0 2.7		tr .020 tr tr .008 tr .018 .020	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-3 SHEET NO. 3 of 3

F001	TAGE	OF COMPTION			SAMP	.E			ASSAYS		
FROM	10	DESCRIPTION .	NO	" SULPH IDES	FROM	FOOTAGE 10	TOTAL	1:-	AU oz tom	OZ TON	
130.4	173.7	Cont'd. Segregated garnet-chlorite-amphibole bands and quartz-amphibole-magnetite bands, common quartz stringers and chert bands, fine grained wispy pyrrhotite and pyrite blebs and grains, frequently as cores of, or mantles around garnet porphyroblasts, foliation at 60° to core axis at 135.0', fractures at 42° to core axis at 163.0'.									
173.7	266.0	Mafic Flows - typical, trace - 2% pyrrhotite as blebs parallel to foliation.									
			10132 10133	tr-2		178.7 197.6	5.0 1.3		tr tr		
		- 210.1' - 266.0' - non-magnetic. - 218.8' - 220.6' - coarse grained coevol mafic dyke, 0.5-1% pyrite, 1-2% magnetite contacts at 40° to core axis.	10134		218.8	220.6	1.8		tr		
			10135		232.8	236.0	3.2		tr	•	
			10136		254.3	258.7	4.4		tr		
	266.0	Е.О.Н.									
								A	Ada	M	

NAME OF PROPERTY KASAGIMINNIS LAKE
HOLE NO.
LOCATION 23+00W, 12+65N

LATITUDE DEPARTURE
ELEVATION AZIMUTH 180° DIP -49°

STARTED September 5/87 FINISHED September 5/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
206.0	43.3°				
					<u> </u>
					ļ

HOLE NO. KAS-87A-4 SHEET NO. 1 Of 1
REMARKS PA786808
PA786807

SUMMARY LOG

	F O O 1	AGE	DESCRIPTION			SAMP	LE			A	S S A '		
	FROM	то	SUMMARY LOG	NO.	SUL PL	FROM	FOOTAGE TO	TOTAL	76	3,5	OZ/TON	OZ/TON	
Γ	0.0	11.5	CASING.										
	11.5	74.5	SHEARED - INTERBEDDED MAFIC VOLCANICS AND IRON FORMATION -	0144		36.0	38.7	2.7		ĺ	.014		
				0153 0155		66.0	68.4	2.4 3.5			.028		
	74.5	165.1	MAFIC TUFF -	10155		09.0	73.1	3.5			.040		
	74.5	103.7	- 97.8' - 98.3' - quartz vein.	0157		74.5	76.0	1.5			050		
			- 57.0 - 50.5 - qual tz vein.			1					.058	Check	
-				0161 10163		91.0	96.0	5.0			.018		
				10103	l	101.0	106.0	5.0			.048		
			- 108.2' - 116.2' - quartz vein, 2-3% pyrite, 2-5% pyrrhotite			106.0	108.2	2.2			.016		
١				0167 10169		116.2 126.0	121.0	4.8 4.2			.062		Ì
			- 130.2' - 131.8' - chert bands, 3-5% pyrrhotite.	10170		130.2	135.1	4.9			.022		
			- 132.4' - 132.8' - quartz bands, pyrrhotite.										
			- 135.1' - 142.4' - quartz vein, 2-3% pyrite, 2-5% pyrrhotite	10171 10172		135.1 138.6	138.6 172.4	3.5 3.8			.028		
LANGRIDGES - TORONTO - 366-1168			- 144.1' - 146.8' - chert bands, 2-3% pyrrhotite.								:		
8			- 150.6' - 151.0' - quartz vein.										
	65.1	206.0	MAFIC FLOWS.										
Ď		206.0	E.O.H.			Į.							
ES -							•						
Sign											:		
LAN													ļ
ı	1	İ	· ·	1	1	ı	l	I	11	ł	1	l	1

NAME OF	PROPERTY _	KASAGIMINNIS LAK	E		
		LENGTH			
		12+65N			
LATITUDE	•	DEPARTURE			
ELEVATION		AZIMUTH	180°	DIP _	-49°
	September 5		September		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
206.0	43.39				
	2				

HOLE NO. KAS-87A-4 SHEET NO. 1 of 4

REMARKS PA786808

PA786807

FOO	TAGE	DESCRIPTION			SAMP	LE			A	SSA	/ S	
FROM	10	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	Ag ppm	¥	OZ/TON	oz/ton	
0.0	11.5	Casing.										
11.5	74.5	Sheared Interbedded Mafic Volcanics and Iron Formation - mafic volcanic; dark green to black, fine grained, foliated. Modal percent: Amphibole 45-50% Quartz Plagioclase Carbonate tr-0.5% Pyrite trace										
		Phaneritic, few widely spaced fractures, iron formation; dark grey to black, fine grained, banded to massive. Modal percent: Quartz 55-60% Amphibole 25-30% Pyrrhotite 1-3% Magnetite tr-3% Pyrite tr-2% Biotite tr-2% Carbonate tr-1% Garnet tr-0.5%										
LANGRIDGES - TORONTO - 366-1168		Irregular-unoriented to slightly aligned amphibole prisms in cherty groundmass with 1-3% magnetite, amphibole-biotite bands with minor pink garnet porphyroblasts, common chert bands and quartz-carbonate-pyrrhotite stringers, disseminated grains and blebs of sulphide throughout, probable sheared mafic flows.						:				
ORONTO		- 11.5' - 13.9' - mafic volcanic, foliation at 58° to core axis.	10137		11.5	13.9	2.4	1.2		tr		
r - -	:	- 13.9' - 17.9' - iron formation.	10138		13.9	17.9	4.0	1.8		tr		
BE CONTROL		- 17.9' - 19.2' - mafic volcanic.	10139		17.9	20.6	2.7	1.6		tr		
LANC												

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-4 SHEET NO. 2 of 4

F001	AGE	DESCRIPTION			SAMPL				 ASSAYS	
FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL	pAβm	AU oz fon	UZ TON
11.5	74.5	Cont'd.								
	-	- 19.2' - 20.6' - iron formation.								
			10140 10141 10142		26.0	26.0 31.0 32.8	5.4 5.0 1.8	1.2 1.4 0.6	tr tr tr	
	į	- 38.7' - 42.7' - 0.5' quartz vein with 3-5%	10143 10144 10145		32.8 36.0 38.7	38.7	3.2 2.7 4.0	0.4 1.2 0.2	tr .014 tr	
		- 42.7' - 54.6' - mafic volcanic.	10146 10147 10148		46.0	46.0 51.0 54.6	3.3 5.0 3.6	0.4 0.2 N.D.	tr tr tr	
		- 54.6' - 56.8' - iron formation.	10149		54.6	56. 8	2.2	0.6	tr	
		- 56.8' - 60.0' - mafic volcanic.								
		- 60.0' - 61.2' - finely bedded mafic volcanics and iron formation.	10150		56.8	61.2	4.4	0.8	tr	
		 61.2' - 67.1' - mafic volcanic, foliation at 35° to core axis at 65.0'. 61.2' - 62.4' - cherty quartz vein with disseminated chlorite. 	10151 10152 10153		62.4	62.4 66.0 68.4	1.2 3.6 2.4	1.2 0.4 0.6	tr tr .028	
	İ	- 67.1' - 67.4' - iron formation, massive.								
		- 67.4' - 68.4' - mafic volcanic, abundant cherty quartz- carbonate veins - stringers.								
		- 68.4' - 69.6' - iron formation, foliated at 28° to core axis.	10154		68.4	69.6	1.2	1.0	tr	
	1	- 69.6' - 73.1' - mafic volcanic.	10155		69.6	73.1	3.5	1.0	.040	
		- 73.1' - 74.5' - iron formation.	10156		73.1	74.5	1.4	0.4	tr	
74.5	165.1	Mafic Tuff - medium to dark green to white, fine grained, banded. Modal percent: Amphibole 30-35% Quartz 20-25%		:					:	

NAME OF PROPERTY__KASAGIMINNIS_LAKE

HOLE NO. KAS-87A-4 SHEET NO. 3 Of 4

FOOT	AGE	DESCRIPTION			SAMPI				ASSAYS	3
FROM	70	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE 10	TOTAL	Ag ppm	oz Tun	02 10N
74.5	165.1	Cont'd. Chlorite 10-15%								
-		Sericite 5-10% Carbonate 5-7% Pyrrhotite 1-5% Pyrite tr-3%								
		chert-carbonate bands and stringers with 1-5% pyrrhotite as dis- seminated grains or stringers, trace-3% pyrite as disseminated	10157 10158	1-5	76.0		1.5 5.0	0.6	.058 .054 .002	Check
		grains or fracture fillings. Foliation at 40° to core axis at 78.0', 46° at 86.0', 50° at 96.0', 45° at 105.0', 47° at 121.0', 51° at 134.0', 53° at 156.0'.	10159 10160 10161	1-5 1-5	86.0 91.0	86.0 91.0 96.0	5.0 5.0 5.0	0.6 1.0 1.2	tr tr .018	
			10162 10163 10164	1-5	101.0	101.0 106.0 108.2	5.0 5.0 2.2	1.0 1.8 1.2	.002 .048 .016	
		- 108.2' - 116.2' - cherty quartz-carbonate vein, abundant chloritized-carbonatized mafic inclusions with 2-3% pyrite and 2-5% pyrrhotite.	10165 10166 10167	4-8	112.2	112.2 116.2 121.0	4.0 4.0 4.8	1.4 0.8 0.8	.002 tr .062 .062	Check
			10168 10169			126.0 130.2	5.0 4.2	1.0 0.8	tr .012	
		- 130.2' - 131.8' - irregular, cherty bands and quartz strin- gers, 3-5% pyrrhotite.	10170	1-5	130.2	135.1	4.9	1.0	.022	
		- 132.4' - 132.8' - coarse grained quartz bands with coarse grained pyrrhotite blebs.								
			10171 10172	4-8	135.1 138.6		3.5 3.8	0.4 0.8	.028 .022	
		- 144.1' - 146.8' - chert bands and quartz stringers with 2-3% medium grained pyrrhotite blebs.	10173 10174		146.8	146.8 151.0	4.4 4.2	0.4	.006 tr	
		, ·	10175 10176 10177	1-5	151.0 156.0 161.0	161.0	5.0 5.0 4.1	0.4 0.2 0.4	tr tr tr	
				:						

NAME OF PROPERTY_ KASAGIMINNIS LAKE

HOLE NO. KAS-87A-4

SHEET NO. 4 Of 4

F00	TAGE		i i		SAMPL			T		ASSAY S		
FROM	10	DESCRIPTION	NO	50LPH		FOOTAGE		Aq		AU oz ton	GZ TON	
FROM	10			IDES	FROM	70	TOTAL	Ag		02 100	13.2 10M	
165.1	206.0	Mafic Flows - typical, fine to medium grained, few fractures and chert bands, abundant albite wisps, foliation at 47° to core axis at 176.0' and 54° at 194.0'.										
I		- 200.9' - 202.2' - quartz-epidote-carbonate interflow band, trace pyrite.	10178	tr	200.9	202.2	1.3	0.4		tr		
	206.0	E.O.H.										
						:						
						·						
					Į Į							
						·						
									!			
									1	M) al	m	7
										Well	em	
									,			

Bee sale - CTMCONT .. 2000100M

NAME	OF	PROPERTY _	KASAGI	MINNIS LAK	(E			_
HOLE	NO.	KAS-87A-5		LENGTH	256.0'			
LOCAT		23+00W,						
LATITE	DE			DEPARTURE	E			
ELEVA	TION			AZIMUTH	180°	DIP	-76°	
		Sentember			Sentember			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIF	AZIMUTH
256.0	70.9		·		

HOLE NO. KAS-87A-5_{SMEET} NO. 1 of 1
REMARKS PA786808
PA786807
SUMMARY LOG

FOOT	AGE	DESCRIPTION		5	A M P	LE				ASSA	Y S
FROM	10	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	76	36	OZ/TON	OZ/TON
0.0	10.0	CASING.									
10.0	43.1	SHEARED IRON FORMATION AND MAFIC TUFF.	0181		16.0	21.0	5.0			.016	
			0184 0185		31.0 36.0	36.0 41.0	5.0 5.0			.012	
43.1	75.5	MAFIC FLOWS.	0187	ł	49.8	51.3	1.5	:		.026	
75.5	83.9	INTERBEDDED MAFIC TUFF AND CHERT - 60:40.									
83.9	98.6	MAFIC FLOWS.		İ							
98.6	119.5	MAFIC TUFF AND CHERT - 45:55.									
119.5	136.6	MAFIC FLOWS.									
36.6	138.4	MAFIC TUFF AND CHERT - as above.		ľ							
138.4 146.2	146.2	MAFIC FLOWS. MAFIC TUFF -	10201		46 2	151.0	4.8			.066	
140.2	107.3	PAL 10 1011 -	1020	'	40.2	131.0	4.0				Check
			10202	1	51.0	156.0	5.0			.014	
167.3	256.0	MAFIC FLOWS AND TUFF - 70:30.	10213	2	20.0	222.0	2.0			.024	
	256.0	Е.О.Н.		ļ							
				1							
				ŀ			•				
ļ							İ				
	1										

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-5 LENGTH 256.0'

LOCATION 23+00W, 12+68N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -76°

STARTED September 6/87 FINISHED September 7/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
256.0	70.9				

HOLE NO. KAS-87A-5 SHEET NO. 1 of 3
REMARKS PA786808
PA786807

	FOOT	TAGE	DESCRIPTION				LE		ASSAYS				
ſ	FROM	то	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	10	76	OZ/TON	oz/ton	
	0.0	10.0	Casing.										
	10.0	43.1	Sheared Iron Formation and Mafic Tuff - dark grey to dark green to black, fine grained, crudely banded to laminated, poorly foliated. Modal percent: Amphibole 35-40% Quartz 25-30% Chlorite 10-15% Sericite 5-10% Pyrrhotite 1-3% Magnetite tr-1% Garnet tr-1% Pyrite tr-1% Amphibolitic overgrowth of schistose amphibole-chlorite bands, pink porphyroblastic garnets in mafic bands, abundant chert-carbonate bands, foliation at 18° to core axis at 14.0', 22° at 26.0' 19° at 43.0'.	1018; 1018; 1018; 1018; 1018;	1-3 1-3 1-3 1-3 1-3 1-3	10.0 13.0 16.0 21.0 26.0 31.0 36.0 41.0	16.0 21.0 26.0 31.0 36.0 41.0	3.0 5.0 5.0 5.0 5.0 5.0			.002 tr .016 tr tr .012 .020 .002		
_TORONTO _ 366-1168	43.1	75.5	Mafic Flows - dark green, medium grained, massive. Modal percent: Amphibole 50-55% Quartz Plagioclase 0.5-1% Carbonate 0.5-1% Pyrite tr-0.5% Amphibolitic, few widely spaced fractures and chert-carbonate bands. - 49.8' - 51.3' - tuff horizon with 0.4-foot quartz-carbonate	10182	7	49.8	51.3	1.5			.026		
LANGRIDGES -	75.5	83.9	vein, foliation at 33° to core axis. <u>Interbedded Mafic Tuff and Chert</u> - 60:40, typical, 1-2% dissemin-	10188		75.5	78.5 83.9	3.0 5.4			tr tr		

NAME OF PROPERTY___KASAGIMINNIS LAKE

HOLE NO. KAS-87A-5 SHEET NO. 2 Of 3

F00	TAGE	DESCRIPTION	SAMPLE					ASSAYS				
FROM	то	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL			AU 02 TON	62 TON	
75.5	83.9	Cont'd. chert, trace-1% pyrrhotite as medium grained blebs, minor quartz veining.										
83.9	98.6	Mafic Flows - medium to coarse grained, trace-1% magnetite, abun- dant-irregular chert bands, minor quartz veining, foliation at 20° to core axis at 83.9'.	10190 10191 10192 10193		83.9 86.0 91.0 96.0	91.0 96.0	5.0 5.0			tr tr tr tr		
98.6	119.5	Mafic Tuff and Chert - as above, 45:55, foliation at 15° to core axis at 101.0'.		:								
		- 98.6' - 109.1' - 0.5-1% pyrrhotite, 1-2% magnetite.	10195	.5-1 .5-1 .5-1	98.6 103.6 106.0 109.1	106.0 109.1	2.4 3.1			tr tr tr tr		
		- 111.9' - 119.5' - massive chert with minor amphibole grains partially aligned with foliation.	10198 10199		111.9 116.0			İ		tr tr		
119.5	136.6	Mafic Flows - medium grained, typical.	İ									
136.6	138.4	Mafic Tuff and Chert - typical, as above.	10200		136.6	138.4	1.8		ĺ	tr		
138.4	146.2	Mafic Flows - as above.	Ì		į.							
146.2	167.3	Modal percent: Amphibole 45-50% Quartz Plagioclase 3 25-30% Chlorite 10-15% Carbonate 1-2% Pyrrhotite 3 1-2% Pyrite 4 tr-1% Abundant chert-carbonate bands and quartz-carbonate stringers,	10202 10203 10204		151.0 156.0 161.0	156.0 161.0 164.0	5.0 5.0 3.0			.066 .064 .014 tr .002 .004	Check	
		sulphides in chert bands as stringers, foliation at 32° to core axis at 147.0', 28° at 156.0', 22° at 167.0', fracture at 52° to core axis at 156.0'.										

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-5 SHEET NO. 3 of 3

F00	TAGE				SAMPI	LE			ASSAY S		
FROM	то	DESCRIPTION	NO.	". SULPH	FROM	FOOTAGE TO	TOTAL		o AYun	UI TON	
167.3	256.0	Mafic Flows and Tuff - 70:30, typical, trace-2% pyrite as fracture coatings, stringers and disseminated grains, foliation at 27° to core axis at 198.0', 26° at 216.0', 32° at 244.0', 4° at 255.0', fractures at 28° and 58° to core axis at 250.0'.									
		- 180.1' - 181.7' - cherty tuff, abundant chlorite.	10206 10207	tr-2	180.1 181.7		1.6 4.5		tr tr		
		pyrite, quartz stringers common.	10209 10210 10211	tr-3 tr-3 tr-3 tr-3 tr-3	191.0 196.0 201.0	196.0 201.0 206.0	5.0 5.0 5.0		tr tr tr .002 tr		
		- 220.0' - 222.0' - 0.2-foot massive tourmaline pod with 2-3% disseminated pyrite.	10213 10214	2-3 tr-2	220.0 222.0				.024 tr		
		- 225.0' - 232.5' - 1-2% pyrite on closely spaced fractures, subparallel to core axis.	10215 10216	1-2 1-2	225.0 228.0				tr tr		
		- 255.0' - 256.0' - quartz-carbonate-pyrite stringers, trace- 1% pyrite.	10307	tr-1	251.0	256.0	5.0		tr		
	256.0	E.O.H.		process graphical deleteration of the control of th							
								G.	M	gla	NIO

NAME OF	PROPERTY	KASAG	IMINNIS LA	(E		
	KAS-87A-6		LENGTH	196.0'		
LOCATION	24+00W,					
LATITUDE						
ELEVATION			AZIMUTH	180°	DIP	50°
STARTED	September 8		FINISHED			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
196.0	50.5				
	-		-:		

HOLE NO. KAS-87A-6 SHEET NO. 1 of 1

REMARKSPA786807
PA786808

SUMMARY LOG

	001	AGE	DESCRIPTION			SAMP			ASSAYS				
	FROM	то	SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	36	76	oz/Hon	OZ/TON	
	0.0	10.0	CASING.										
ı	10.0	44.3	AMPHIBOLITE.										
- 1	44.3	53.2	SHEARED IRON FORMATION AND MAFIC TUFF.										
ļ	53.2	91.2	MAFIC FLOWS.										
	91.2	129.3	SHEARED MAFIC TUFF AND IRON FORMATION.	10241		111.0	116.0	5.0			.022		
1	29.3	196.0	MAFIC FLOWS.	10253		166.0	171.0	5.0			.010		
		196.0	E.O.H.	Ī									
ı													
							i		ŀ				
ŀ													
1168													
88													
OTO													
P.													
SES -													
LANGRIDGES - TORONTO - 366-1168													
LAN					1								
1	1	,		71	ı	ļ	, ,		Ħ	I	1	1 (

NAME OF	PROPERTY	KASA	AGIMINNIS LA	KE			
HOLE NO	KAS-87A-6		LENGTH	196.01			
LOCATION		12+64N					
LATITUDE	•		DEPARTURE				_
ELEVATION			AZIMUTH	180°	DIP .	-50°	
STARTED	September	8/87	FINISHED	September	8/87		

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZIMUTH
196.0	50.5				

HOLE NO. KAS-87A-6 SHEET NO. 1 Of 3
REMARKS PA786807
PA786808

F 0 0 1	T A G E	DESCRIPTION	SAMPLE			A 5 5 A Y 5						
FROM	то	DESCRIPTION .	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	"	46	OZ/TON	OZ/TON	
0.0	10.0	Casing.										
10.0	44.3	Amphibolite - dark green to dark grey, medium to coarse grained, massive to slightly schistose. Modal percent: Amphibole 40-45% Plagioclase 25-30% Chlorite 10-15% Quartz 3-5% Magnetite 1-2% Carbonate 1-2% Epidote 0.5-1% Pyrrhotite Pyrite] 0.5-1% Amphibolitic, few widely spaced fractures and minor shears, common quartz-carbonate veins and stringers with 1-2% disseminated	10219 10220 10221 10222 10223 10224	.5-1 .5-1 .5-1 .5-1 .5-1 .5-1	13.0 16.0 21.0 26.0 31.0 36.0	13.0 16.0 21.0 26.0 31.0 36.0 41.0 44.3	3.0 5.0 5.0 5.0 5.0 5.0			tr tr tr tr tr tr		
LANGRIDGES - TORONTO - 386-1168	53.2	sulphides, foliation at 52° to core axis at 12.0', 50° at 30.5', possible mafic intrusive. Sheared Iron Formation and Mafic Tuff grained, banded. Modal percent: Quartz 35-40% Amphibole 25-30% Chlorite 10-15% Sericite 5-7% Carbonate 1-2% Pyrrhotite 1-2% Magnetite 0.5-3% Garnets 0.5-1% Segregated quartz-sericite-magnetite bands and chlorite-amphibole-garnet bands, abundant chert bands, disseminated pyrrhotite blebs and grains throughout.	10227	1-2 1-2	44.3 49.3	49.3 53.2				tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-6 SHEET NO. 2 of 3

F00	TAGE	DESCRIPTION	SAMPLE				ASSAY S					
FROM	to	DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE TO	TOTAL			AU oz Ton	GZ TON	
53.2	91.2	Mafic Flows - dark green, fine to medium grained, massive to schistose. Modal percent: Amphibole 50-55% Quartz 35-40% Plagioclase Carbonate 1-2% Pyrrhotite 1-2% Pyrite tr-0.5%	10228 10229 10230 10231	1-2 1-2 1-2	61.0	56.0	2.8 5.0 5.0 5.0		:	tr tr tr tr		
		Magnetite tr-0.5% Amphibolitic, medium grained horizons with 2-3% coarse grained pyrrhotite blebs, common chert and quartz-carbonate bands, stringers and veins, foliation at 50° to core axis at 46.0', 54° at 90.0', fractures at 40° to core axis at 57.0', 50° at 68.0'.										
		- 72.8' - 74.5' - medium grained flows.	10232 10233 10234	1-3 1-3 1-3	76.0		5.0 5.0 3.1			tr tr tr		
		- 84.1' - 88.9' - medium grained flows.	10235	1-3	84.1	88.9	4.8			.002		
		- 88.9' - 91.2' - disseminated magnetite and pyrrhotite throughout.	10236	1-3	88.9	91.2	2.3		'	tr		
91.2	129.3	Sheared Mafic Tuff and Iron Formation - typical, spotty magnetic horizons with tr-2% pyrrhotite and/or tr-3% magnetite, foliation at 56° to core axis at 96.0' and 55° at 116.0'.	10238 10239 10240 10241 10242	tr-2 tr-2 tr-2 tr-2 tr-2 tr-2 tr-2	96.0 101.0 106.0 111.0 116.0 121.0	96.0 101.0 106.0 111.0 116.0 121.0 126.0 129.3	4.8 5.0 5.0 5.0 5.0 5.0 3.3			tr tr tr .022 tr tr		
129.3	196.0	Mafic Flows - typical, 1-2% fine grained pyrrhotite throughout, 0.5-1% pyrite as fracture coatings, minor chert bands, foliation at 46° to core axis at 146.0', 45° at 166.0', 38° at 186.0', fractures at 35° to core axis at 146.0', 27° at 176.0', 25° at 185.0'.	10245 10246 10247 10248 10249 10250 10251 10252	1-2 1-2 1-2 1-2 1-2 1-2	131.0 136.0 141.0 146.0 151.0 156.0	131.0 136.0 141.0 146.0 151.0 156.0 161.0 166.0	1.7 5.0 5.0 5.0 5.0 5.0 5.0			.002 tr tr tr tr tr tr		

NAME OF PROPERTY___KASAGIMINNIS LAKE

HOLE NO. KAS-87A-6 SHEET NO. 3 of 3

F00	FAGE	DESCRIPTION			SAMPI					ASSAYS		
FROM	10	DESCRIPTION	ИО	", SUL PH	FROM	FOOTAGE TO	TOTAL		۳,	AU oz ton	DZ TON	
129.3	196.0	Cont'd.	0253 0254	1-2 1-2	171.0	171.0 176.0	5.0 5.0 5.0 5.0		1	.010 tr		
			0255 0256 0257 0258	1-2 1-2 1-2 1-2 1-2	176.0 181.0	181.0 186.0 191.0 196.0	5.0 5.0 5.0 5.0			tr tr tr tr	·	
	196.0	E.O.H.										
	:											
		-						,	M	Ida	M	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-7 LENGTH 256.0'

LOCATION 24+00W. 12+69N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -76°

STARTED September 7/87 FINISHED September 7/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
256.0	73°				
		ļ			_
	,				-

HOLE NO. KAS-87A-7 SHEET NO. 1 Of 1
REMARKS PA786807

SUMMARY LOG

FOOT	TAGE	DESCRIPTION			SAMP	LE		ASSAVS				
FROM	то	SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	76	48	огЖон	OZ/TON	
0.0	5.0	CASING.										
5.0	67.3	AMPHIBOLITE.		Ì								
67.3	94.4		10266		81.0	86.0	5.0			.014		
94.4	99.6	MAFIC FLOWS.										
99.6	102.0	MAFIC TUFF.										
102.0	129.9	MAFIC FLOWS.									}	
	152.4	MAFIC TUFF.										
1	256.0		10302	٠	225.8	230.8	5.0			.014		
	256.0	E.O.H.										
					Ì							
							:					
											İ	
80 60												
98												
0												
Š.												
LANGRIDGES - TORONTO - 366-1168												
LANG					1							
	j i		H		1						1	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-7 LENGTH 256.0'

LOCATION 24+00W, 12+69N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -76°

STARTED September 7/87 FINISHED September 7/87

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
256.0	73°				
					L

HOLE NO. KAS-87A-7_{SHEET} NO. 1 of 3 REMARKS PA786807

FOOT	AGE		SAMPLE							ASSAYS				
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE	TOTAL	26	ř	oz)4on	OZ/TON			
0.0	5.0	Casing.												
5.0	67.3	Amphibolite - dark green to dark grey, coarse grained, massive to slightly schistose. Modal percent: Amphibole 40-45% Plagioclase Quartz 3-5% Chlorite 3-5% Carbonate 2-3% Pyrrhotite tr-1% Pyrite tr-0.5% Magnetite tr-0.5%		tr-1	5.0	10.0	5.0			tr				
		Amphibolitic, weakly carbonatized, few widely spaced fractures and quartz-carbonate bands, patches of disseminated sulphides and magnetite, trace chalcopyrite. Foliation at 32° to core axis at 16.5', 34° at 39.0'. fracture sets at 56° to core axis at 50.0'.												
		- 17.0' - 17.5' - chloritized-carbonatized with 1-2% pyrrbo- tite stringers, trace-0.5% disseminated pyrite, 0.5-1% disseminated <u>chalcopyrite</u> .	10260	1-2	16.0	21.0	5.0			tr				
			10261 10262		34.5 39.0	39.0 43.8	4.5 4.8			tr tr				
67.3	94.4	banded to laminated to striped. Modal percent: Quartz 40-45% Amphibole 30-35% Chlorite 5-10%	10266	tr-3 tr-3 tr-3 tr-3	71.0 76.0 81.0 86.0	71.0 76.0 81.0 86.0 91.0 94.4	3.7 5.0 5.0 5.0 5.0 3.4			tr tr tr .014 .004 tr				

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-7 SHEET NO. 2 Of 3

F001	TAGE			·	SAMPL	- E			ASS AYS	· · · · · · · · · · · · · · · · · · ·	
FROM	10	DESCRIPTION	NO	". SULPH		FOOTAGE			. Ayon	OZ TON	
67.3	94.4	Cont'd.	<u> </u>	IDES	FROM	70	TOTAL	-			
		Pyrite tr-2% Magnetite tr-1%					i				
		Abundant quartz-carbonate veining (20-30%) with disseminated sulphides and magnetite, pyrite as fractures coatings, disseminated pink garnet prophyroblasts in amphibole-chlorite bands, amphibole consists of 5-10% grunerite, banding at 45° to core axis at 71.0'.									
94.4	99.6	sity. Modal percent: Amphibole 40-45% Quartz Plagioclase] 40-45% Chlorite 5-10%		tr5		96.0 99.6	1.6 3.6		tr tr		
		Pyrite tr-0.5% Amphibolitic, few widely spaced fractures, foliation at 33° to core axis at 94.4'.					İ				
99.6	102.0	Mafic Tuff - as above, 1-2% disseminated sulphides.	10271	1-2	99.6	102.0	2.4		tr		
	129.9	Mafic Flows - typical, quartz-carbonate stringers and quartz-epidote-carbonate veins, trace-1% disseminated pyrrhotite 120.7' - 123.8' - quartz rich, 1-2% pyrrhotite.	0274 0275 0276 0277	tr-1 tr-1 tr-1 1-2 tr-1	102.0 106.0 111.0 116.0 120.7 123.8 126.9	106.0 111.0 116.0 120.7 123.8 126.9 129.9	4.0 5.0 5.0 4.7 3.1 3.1		tr tr tr tr tr tr		
129.9	152.4	Mafic Tuff - as above, common irregular quartz-carbonate-pyrrhotite stringers (trace-1%) disseminated fine to coarse grained garnet porphyroblasts, banding at 47° to core axis at 137.0', foliation at 27° to core axis at 151.0', fractures at 58° to core axis at 151.0'.	0280 0281 0282 0283	tr-1 tr-1 tr-1	129.9 132.5 136.0 141.0 146.0 150.0	132.5 136.0 141.0 146.0 150.0 152.4	2.6 3.5 5.0 5.0 4.0 2.4		tr tr tr tr .002 .002		
152.4	256.0	Mafic Flows and Tuff - 90:10, typical, regular closely spaced fractures sets with 0.5-1% pyrite as coatings, minor quartz-carbonate stringers, trace-3% magnetite throughout.	0285	tr-1	152.4	157.0	4.6		tr	*	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-7 SHEET NO. 3 Of 3

F001	TAGE	DESCRIPTION			SAMP	LE		ır.		ASSAYS		
FROM	70	DESCRIPTION	NO	3 SULPH IDE5	FROM	FOOTAGE 10	TOTAL			OZ TON	OZ TON	
152.4	256.0	Cont'd.										
		- 155.0' - 156.0' - mafic tuff, numerous quartz-carbonate stringers.										
	ļ	- 164.1' - 165.1' - 1-2% magnetite in massive grey quartz.	10286		164.1	165.1	1.0			tr		
		- 168.5' - 170.1' - 2-3% magnetite in massive grey quartz.	10287 10288	.5-1		170.1 175.8	1.6 5.7			tr tr		
		- 175.8' - 176.6' - mafic tuff, typical.	10289	.5-1	175.8	180.7	4.9			tr		
		- 180.7' - 182.9' - mafic tuff, typical.		tr-1 tr-1		182.9 185.4	2.2 2.5			tr tr		ļ
		- 185.4' - 188.9' - mafic tuff, typical.	10293 10294 10295 10296 10297 10298 10299	tr-1 .5-1 tr-1 tr-1 tr-1 tr-1 tr-1	188.9 193.4 197.4 202.4 207.6 211.5 216.0	188.9 193.4 197.4 202.4 207.6 211.5 216.0 221.0 223.0	3.5 4.5 4.0 5.0 5.2 3.9 4.5 5.0 2.0			tr tr .002 .002 tr tr tr		
		- 223.0' - 225.8' - mafic tuff, trace-1% pyrite blebs, no magnetite.	10301 10302 10303	tr-1 tr-1	223.0 225.8 230.8	225.8 230.8	2.8 5.0 5.0 4.2			tr .014 tr tr		-
		- 240.5' - 241.0' - quartz vein, 3-5% pyrrhotite and pyrite stringers.	10305	3-5	240.0	241.5	1.5			tr		
		- 245.0' - 246.0' - mafic tuff, typical. Foliation averages 24° to core axis. Fracture sets at 69° to core axis at 153.0', 60° at 187.0', 63° at 222.0', 52° at 244.0', banding at 40° to core axis at 206.0'.	10306	tr-1	241.5	246.0	4.5			tr		
	256.0	E.O.H.							M	Bold	m	

NAME OF	PROPERTY	KASA	GIMINNIS	LAKE		
HOLE NO.	KAS-87A-8		LENGTH _	216.0'		
	25+00W,					
LATITUDE			DEPARTUR	E		
ELEVATION	l		AZIMUTH .	180°	DIP	-50°
C+48750	September 9	/87	E11116116B	September	9/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
216.0	-44.5				

HOLE NO. MAS-87A-8 SHEET NO. 1 of 1
REMARKS PA786807

SUMMARY LOG

F 0 0 1	FAGE	DESCRIPTION			5 A M P	L €		ASSAYS					
FROM	то	SUMMARY LOG	NO.	SUL PHI-	FROM	FOOTAGE TO	TOTAL	26	યુ	oz/Yon	OZ/TON		
0.0	3.0	CASING.											
3.0	45.8	SHEARED - SILICIFIED MAFIC TUFF AND IRON FORMATION - 0.5-3% pyrrhotite, tr-0.5% pyrite, tr-2% magnetite.	10314		26.1	28.2	2.1			.010			
45.8	61.1	MAFIC FLOWS.											
61.1	73.6	MAFIC TUFF.	10323 10324		66.0 69.0	69.0 73.6	3.0 4.6			.012			
73.6	146.8	MAFIC FLOWS AND TUFF - 90:10	10325		73.6	76.0	2.4			.028			
146.8	147.1	DIORITE INTRUSIVE.	1										
147.1	176.5	MAFIC FLOWS AND TUFF - 90:10											
176.5	178.5	DIORITE INTRUSIVE.											
178.5	216.0	MAFIC FLOWS AND TUFF - 50:50	l							1			
	216.0	E.O.H.			1								
			1			:							
			1										
			-							1			
			ı										
			1										
				1				i		1			
			Ŋ		ļ								

KASAGIMINNIS LAKE NAME OF PROPERTY KAS-87A-8 216.0' ___ LENGTH ___ HOLE NO. 25+00W, 12+65N LOCATION LATITUDE . 180° -50° ELEVATION _ AZIMUTH STARTED September 9/87 FINISHED September 9/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
216.0	44.5°				
					1

HOLE NO. KAS-87A-8 SHEET NO. 1 of 3
REMARKS PA786807

FOO	TAGE	DESCRIPTION	SAMPLE					A	SSAY	· 5		
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	r	oz/Yon	OZ/TON	
0.0	3.0 45.8	Casing. Sheared-Silicified Mafic Tuff and Iron Formation - dark green to black to grey, fine grained, banded - schistose. Modal percent: Quartz 35-40% Amphibole 25-30% Sericite 10-15% Chlorite 5-7% Carbonate 1-3% Pyrrhotite 0.5-3% Magnetite tr-2% Pyrite tr-0.5% Disseminated magnetite in felsic, quartz-sericite bands, pyrrrhotite in amphibole-chlorite bands, abundant quartz-carbonate bands and stringers. Foliation at 45° to core axis at 6.0', 44° at	10308 10309 10310 10311 10312	2-3 2-3 2-3 2-3	3.0 6.0 11.0 16.0 21.0	6.0 11.0 16.0 21.0 24.5	3.0			tr tr tr tr		
LANGRIDGES — TORONTO — 366-1166		16.0', 38° at 28.0', 44° at 45.8'. - 3.0' - 24.5' - 2-3% pyrrhotite. - 24.5' - 26.1' - brecciated, discordant quartz stringers with chlorite inclusions. - 26.1' - 28.2' - trace-2% pyrrhotite as sparse bands. - 28.2' - 30.4' - brecciated zone, quartz-carbonate matrix, discordant quartz stringers with 1-2% sulphides. - 30.4' - 45.8' - typical tuff, as per 3.0' - 24.5'. - 34.5' - 36.7' - 3-5% pyrrhotite as blebs, quartz rich.	10313 10314 10315 10316 10317 10318 10319	tr-2 1-2 2-3 3-5 2-3	24.5 26.1 28.2 30.4 34.5 36.7 41.0	26.1 28.2 30.4 34.5 36.7 41.0 45.8	1.6 2.1 2.2 4.1 2.2 4.3 4.8			tr .010 tr .002 tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-87A-8 SHEET NO 2 of 3

F001	AGE	DESCRIPTION			SAMP	LE			 ASSAYS	
FROM	70	DESCRIPTION	NO	SULPH	FROM	FOOTAGE TO	TOTAL	-	o, Au	GZ TON
45.8	61.1	Mafic Flows - dark green, fine grained, massive. Modal percent: Amphibole 50-55% Quartz 40-45% Plagioclase 1-2% Pyrite tr-0.5% Magnetite tr-0.5%	10320	tr	45.8	49.0	3.2		tr	
	:	Amphibolitic, abundant quartz-carbonate stringers and bands, foliation at 51° to core axis at 58.0'.	10321	tr	58.1	61.1	3.0		tr	
61.1	73.6	Mafic Tuff - atypical, amphibolitic, banded to schistose, abundant quartz-carbonate stringers with trace-3% disseminated to banded pyrrhotite, foliation at 47° to core axis at 62.0'.	10322 10323			66.0 69.0	4.9 3.0		.008 .012	-
		- 69.0' - 73.6' - 2-3% pyrrhotite.	10324	2-3	69.0	73.6	4.6		.062	
73.6	146.8	Mafic Flows and Tuff - 90:10, typical, trace-1% disseminated pyrr-hotite, 1-2% pyrite as fracture coatings, foliation averages 45° to core axis, fractures at 52° to core axis at 96.0', 47° at 118.0'.	10325	tr-2	73.6	76.0	2.4		.028	
		- 83.4' - 86.0' - tuff, abundant quartz-carbonate stringers.	10326		83.4	87.5	4.1		tr	
			10327 10328		87.5 91.4	91.4 96.0	3.9 4.6		tr tr	
		- 96.0' - 96.6' - chloritized tuff, 0.5-1% magnetite 99.7' - 100.2' - quartz-carbonate-epidote vein, trace-0.5% pyrite.	10329	tr5	96.0	100.2	4.2		tr	
		- 131.5' - 134.4' - discordant quartz-carbonate stringers with trace -1% sulphides.	10330	tr-1	131.0	136.0	5.0		tr	
146.8	147.1	Diorite Intrusive - dark green, very fine grained, massive. Modal percent: Quartz 50-55% Plagioclase 40-45% Carbonate 1-2% Slightly crosscutting, sharp contacts, no fractures.	10331		146.0	148.4	2.4		tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-8 SHEET NO. 3 Of 3

F00	TAGE				SAMP	LE			ASSAY S		
FROM	TO	DESCRIPTION	ИО	". SULPH	FROM	FOOTAGE	TOTAL		az AU	UZ TON	
147.1	176.5	Mafic Flows and Tuff - 90:10, typical foliation at 45° to core axis at 148.4'.									
		- 148.4' - 150.6' - tuff, typical.	10332		148.4	150.6	2.2		tr		
			10333 10334		150.6 154.6	154.6 157.1	4.0 2.5		.002 tr		
		- 165.7' - 166.9' - fractured - silicified, mauve coloured, quartz-carbonate fracture filling.	10335		165.0	167.0	2.0		tr		
176.5	178.5	Diorite Intrusive - typical, subparallel to core axis, irregular contacts with quartz-carbonate stringers parallel to contacts.	10336		176.5	178.5	2.0		tr		
178.5	216.0	Mafic Flows and Tuff - 50:50, typical.									
		- 178.5' - 179.8' - fine grained flows.	10337		178.5	179.8	1.3		tr		
j			10338 10339		179.8 182.5	182.5 186.0	2.7 3.5		tr tr		
!		- 186.0' - 189.4' - medium grained amphibolitic flows.	10340		186.0	190.6	4.6		.006	i	
		- 189.4' - 190.6' - carbonatized mafic tuff.									
		- 190.6' - 216.0' - medium grained, amphibolitic flows, frac- turing at 35° to core axis at 209.0'.									
	216.0	Е.О.Н.									
								A	Mil	dan	20
								H	YUU		

NAME OF	PROPERTY	KASAG	IMINNIS LAK	(E	
HOLE NO.	KAS-87A-9		LENGTH	316.0'	
LOCATION	25+00W.	12+68N			
LATITUDE	•		DEPARTURE		
					75°
	Contambon			Contombou	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZMUTH
316.0	67.5°				
					1

HOLE NO.KAS-87A-9 SHEET NO. 1 of 1
REMARKS PA786807

SUMMARY LOG

SIANIEL	, <u> </u>	FINISHED SEPTEMBEL 10/8/									
FOO	TAGE	DESCRIPTION			SAMP	LE				SSA	/ S
FROM	то	SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	76	36	OZ/TON	oz/ton
0.0	2.0	CASING.		IOES			TOTAL			<u> </u>	
2.0	63.0	MAFIC TUFF.	1024		25.0	30.0					
2.0	03.0	MATIC TOTT.	10346	1	26.0	30.2	4.2			.146 .142	Check
63.0	245.0	MAFIC FLOWS AND TUFF.	10363		101.0	104.7	3.7			.018	
			10364	1	104.7	109.7	5.0			.050	
			10365 10369	(109.7 151.0	114.7 155.0	5.0 4.0			.010 .012	
			10375	į	176.0	181.0	5.0			.024	
245.0	316.0	AMPHIBOLITE.	10376		181.0	186.0	5.0			.030	
1245.0	316.0	E.O.H.									
	0.0.0										
			1							:	
			1								
В											
B							:				
2		•									
5	1										
CANGARIOGES - CORON O - 386 - 186											
1								R			

NAME OF	PROPERTY	KASAG	IMINNIS LA	KE			
	KAS-87A-9						
	25+00W,						
LATITUDE			DEPARTUR	Ε			
ELEVATION			AZIMUTH _	180°	DIP	-75°	
	September 9						

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
316.0	67.5°				

HOLE NO. KAS-87A-9_{SHEET} NO. 1 of 3

F 0 0 1	FAGE	D.E.S.C.D.L.D.T.L.O.N			SAMP	LE			A	5 5 A 1	/ S	
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE	TOTAL	36	ម	офЧон	oz/ton	
0.0	2.0	<u>Casing</u> .										
2.0	63.0	Mafic Tuff - dark green to black to grey, fine grained, banded. Modal percent: Amphibole Grunerite 40-45% Quartz 35-40% Sericite 3-5% Carbonate 3-5% Magnetite tr-3% Pyrrhotite Pyrite] tr-2% Magnetite disseminated in quartz-sericite bands, sulphide in amphibole bands, abundant quartz-carbonate stringers in upper portion of section, foliation averages 28° to core axis. Fractures at 62° to core axis at 56.0'.	10341 10342 10343 10344 10345 10346 10349		2.0 7.0 12.0 16.0 21.0 26.0 30.2 35.0 40.0	7.0 12.0 16.0 21.0 26.0 30.2 35.0 40.0 43.7	5.0 5.0 4.0 5.0 5.0 4.2 4.8 5.0 3.7			tr .002 tr .002 tr .146 .142 tr .002 .004	Check	
CANGRIDGES - TORON O - 366-7168	245.0	- 43.7' - 53.5' - abundant, irregular quartz-carbonate stringers with trace-1% sulphides, 3-5% coarse grained, pink, porphyroblastic garnets in garnet-chlorite bands, minor brecciation. Mafic Flows and Tuffs - flows are dark green, fine to medium grained, massive. Modal percent: Amphibole 50-55% Quartz Plagioclase Carbonate tr-1% Pyrite Pyrrhotite	0351 0352	tr-1 tr-1 tr-2 tr-2	48.7 53.5	48.7 53.5 58.5 63.0	5.0 4.8 5.0 4.5			.004 .006 tr .002		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-9 SHEET NO. 2 Of 3

FOO	TAGE	DESCRIPTION			SAMPI	LE			ASSAY\$	
FROM	10	DESCRIP HON	но	50LPH IDE5	FROM	FOOTAGE TO	TOTAL		AU 07 TON	GZ TOM
63.0	245.0	Cont'd. averages 22° to core axis and varies between 14° and 32°, fracturing averages 63° and 4° to core axis.								
		- 63.0' - 69.3' - fine grained flows.								
:		- 69.3' - 75.8' - tuff.	10354 10355		69.3 73.0	73.0 -75.8	3.7 2.8		tr tr	
		- 75.8' - 88.7' - fine grained flows.	10356 10357 10358	1	75.8 80.8 85.8	80.8 85.8 89.7	5.0 5.0 3.9		tr tr .002	
		- 88.7' - 89.7' - tuff.								
	 	- 89.7' - 92.4' - fine grained flows.	10359	tr	89.7	92.4	2.7		tr	
į		ing subparallel to core axis 98.1' - 104.7' - abundant-discordant quartz-carbonate stringers, 1-3% coarse	10360 10361 10362 10363 10364 10365 10366	tr tr 1-3 tr tr	92.4 96.0 98.1 101.0 104.7 109.7 114.7 119.7	96.0 98.1 101.0 104.7 109.7 114.7 119.7 122.2	3.6 2.1 2.9 3.7 5.0 5.0 2.5		.002 .002 .008 .018 .050 .010 .008 tr	
:		 122.2' - 151.0' - fine grained flows. 125.0' - 126.0' - 0.1-foot quartz stringer with 1-2% coarse grained magnetite and pyrrhotite. 	10368	1-2	122.2	126.0	3.8		.002	
		- 151.0' - 194.8' - tuff, abundant quartz-carbonate stringers.	10369 10370 10371 10372 10373 10375 10376 10378	tr tr tr tr tr tr	151.0 155.0 160.0 163.0 166.0 171.0 176.0 181.0 186.0 191.0	155.0 160.0 163.0 166.0 171.0 176.0 181.0 186.0 191.0	4.0 5.0 3.0 3.0 5.0 5.0 5.0 5.0 3.8		.012 .002 .004 tr tr .004 .024 .030 .002 tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-9 SHEET NO. 3 Of 3

F007	AGE				SAMP	E			-	ASSAY S		
FROM	10	DESCRIPTION	NO	". SULPH	FROM	FOOTAGE	TOTAL	. I	.]	AU 07 TON	UZ TON	
63.0	245.0	Cont'd.		1023	PHUM	''	10122					
		- 194.8' - 245.0' - fine to medium grained flows with trace- 2% wispy albite grains, 0.5-1% pyrite as fracture coatings. - 210.4' - 212.2' - irregular quartz-car- bonate veins with 2-3% pyrrhotite, trace- 1% pyrite as stringers. - 236.2' - 236.6' - irregular quartz-car- bonate vein with 3-5% disseminated pyrite.	10387 10388 10389	.5-1 .5-1 .5-1 .5-1 .5-1 .5-1 .5-1	194.8 198.8 202.8 206.0 210.4 212.0 216.0 221.0 226.0 231.0 236.0 241.0	198.8 202.8 206.0 210.4 212.2 216.0 221.0 226.0 231.0 236.0 241.0 245.0	4.0 4.0 3.2 4.4 1.8 4.0 5.0 5.0 5.0 5.0			tr tr tr tr tr .002 tr tr tr		
245.0	316.0	Amphibolite - dark green, coarse grained, massive. Modal percent: Amphibole 50-55% Plagioclase 40-45% Pyrite trace Amphibolitic texture, unoriented, well developed amphibole grains, few widely spaced fractures.					,,,			•		
		- 261.0' - 262.1' - shearing parallel to core axis, irregular quartz-carbonate stringers with 1-2% sulphide.	10391	1-2	261.0	262.1	1.1			tr		
		- 286.0' - 296.6' - closely spaced fractures at 4° and 59° to core axis, quartz-carbonate stringers, carbonatization, trace-0.5% tourmaline bands, 1-2% fine grained pyrite.	10393	1-2	286.0 289.0 293.0	289.0 293.0 296.6	3.0 4.0 3.6			.002 tr tr		
	316.0	E.O.H.							J.	Ha	deso	N

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-10 LENGTH 326.0'

LOCATION 26+00W, 12+65N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -75°

STARTED SEPTEMBER 10/87 FINISHED SEPTEMBER 11/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
326.0	67.8°				
			ļ		<u> </u>
					

HOLE NO. KAS-87A-10 SHEET NO. 1 of 1
REMARKS PA786807

SUMMARY LOG

ľ	F O O 1	TAGE				SAMP	LE			ļ	S S A	Y 5
	FROM	то	DESCRIPTION SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	76	४	OZ/TON	OZ/TON
۱ ا	0.0	6.0	CASING.	Ī								
	6.0	18.9	MAFIC FLOWS - fine grained.]		
	18.9	77.0	SHEARED - SILICIFIED MAFIC TUFF AND IRON FORMATION.	10401		29.9	33.0	3.1		l	.010	
				10402 10408	1	33.0 60.1	36.0 62.9	3.0 2.8			.010	
1				10409 10410	1	62.9	65.4 69.0	2.5			.092	
				10412		65.4 72.0	77.0	3.6 5.0			.048	
	77.0	88.1	MAFIC FLOWS - medium grained.	l						ŧ		
	88.1	90.7	MAFIC FLOWS - chloritized.	1					1			
	90.7	326.0	MAFIC FLOWS - medium grained, amphibolitic with chloritized	10433		146.0	151.0	5.0			.016	
			horizons.	10446 10474	l	194.5 306.0	197.7 311.0	3.2 5.0			.012	
				10476		316.0	321.0	5.0			.080	Check
				10477		321.0	326.0	5.0	1		.018	Check
1		326.0	E.O.H.]			
				1								
- 366-1168												
]		•	
- TORONTO												
ρ				1								
ANGRIDGES												
ANGR	į			1								
3	į											

NAME OF	PROPERTY	KASAGIMINNIS LAKE			
HOLE NO.	KAS-87A-10	LENGTH	326.0'		
LOCATION	26+00W,	12+65N			
LATITUDE		DEPARTURE .			
ELEVATION		AZIMUTH	180°)IP	75°
STARTED _	September 1	0/87 FINISHED	September 11/8	37	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
326.0	-67.8				

HOLE NO. AS-87A-10 SHEET NO. 1 of 4

	FOOT	r a g E	DESCRIPTION			SAMP	LE			A	SSAY	S	
-	FROM	то		NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	16	ž	o2/HON	oz/TON	
	0.0	6.0	Casing.										
	6.0	18.9		10395 10396 10398	1	6.0 11.0 16.0	11.0 16.0 18.9	5.0 5.0 2.9			tr tr tr		
O - 366-1168	18.9	77.0	Sheared-Silicified Mafic Tuff and Iron Formation - dark green to black to white, fine grained, banded. Modal percent: Amphibole 40-45% Plagioclase 40-45% Quartz 5-7% Carbonate 2-3% Garnet tr-1% Pyrrhotite tr-1% Abundant quartz veining and quartz carbonate stringers, minor pink porphyroblastic garnet bands in chlorite-amphibole bands, pyrrhotite as patches of disseminated grains. Foliation at 30° to core axis at 23.0', 32° at 43.0', 30° at 76.0'.										
LANGRIDGES - TORONTO - 366-1168			- 28.9' - 29.9' - 0.3-foot quartz vein with	10399 10400 10401 10402	tr-1	23.9 28.9 29.9 33.0	23.9 28.9 29.9 33.0 36.0 41.0	5.0 5.0 1.0 3.1 3.0 5.0			.002 tr .002 .010 .010		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-10 SHEET NO. 2 Of 4

FOOT	AGE	DESCRIPTION			SAMP	LE			ASSAY S		
FROM	10	DESCRIPTION	NO	" SULPH IDES	FROM	FOOTAGE TO	TOTAL		Au oz ton	OZ TON	
18.9	77.0	Cont'd.									
			10405 10406	tr-1 tr-1 tr-1 tr-1	46.0	46.0 51.0 56.0 60.1	5.0 5.0 5.0 4.1	· 	tr tr .004 .002		
		vein, 2-3% pyrrhotite stringers with inclusions of 2-3% biotite, amphibole and chlo-	10409 10410 10411		69.0	62.9 65.4 69.0 72.0 77.0	2.8 2.5 3.6 3.0 5.0		.036 .092 .048 .002 .030		
77.0	88.1	carbonate veins.	10413 10414 10415 10416	1-2 tr	77.0 79.5 81.0 86.0	79.5 81.0 86.0 88.1	2.5 1.5 5.0 2.1		tr tr tr tr		
88.1	90.7	Mafic Flows - chloritized, 25-30% chlorite, schistose, 1-2% quartz-carbonate stringers, trace pyrite.	10417	tr	88.1	90.7	2.6		tr	1	
90.7	326.0	narrow quartz-carbonate veins with trace-1% pyrite, pyrrhotite, trace-0.5% chalcopyrite, trace sphalerite.	10418 10419 10420 10421 10422 10423 10424		90.7 96.0 101.0 106.0 111.0 116.0 121.0 126.0	96.0 101.0 106.0 111.0 116.0 121.0 126.0 129.8	5.3 5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr		
		- 129.8' - 131.2' - 0.1-foot quartz-carbonate vein with trace- 1% sulphides.	10426 10427		129.8 131.2	131.2 133.4	1.4 2.2		tr .002		
		- 133.4' - 134.8' - as above.	10428 10429 10430		133.4 134.8 137.8	134.8 137.8 140.8	1.4 3.0 3.0		tr tr tr		
	;	- 140.8' - 142.0' - as above.	10431 10432 10433 10434		140.8 142.0 146.0 151.0	142.0 146.0 151.0 154.7	1.2 4.0 5.0 3.7		tr .002 .016 tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-10 SHEET NO. 3 Of 4

F00'	TAGE	DEFERRAÇÃO			SAMPI				ASSAY S		
FROM	to	DESCRIPTION	ИО	SULPH IDES	FROM	FOOTAGE	TOTAL	·	OZ TON	UZ TON	
90.7	326.0	Cont'd.									
		- 154.7' - 156.0' - as above.	10435 10436 10437	1	154.7 156.0 161.0	156.0 161.0 165.0	1.3 5.0 4.0		tr tr .002		
		stringers.	10439 10440 10441 10442	tr-2 tr-1 tr-1	165.0 170.0 173.5 176.0 181.0 184.0	170.0 173.5 176.0 181.0 184.0 186.3	5.0 3.5 2.5 5.0 3.0 2.3		tr tr tr tr tr		
		- 186.3' - 191.0' - chloritized flows with 5-7% quartz-car- bonate stringers, 1-2% pyrrhotite blebs.	10444 10445	1-2 tr-1	186.3 191.0 194.5	191.0 194.5 197.7	4.7 3.5 3.2		tr tr .012		
		- 197.7' - 198.8' - discordant banded quartz-carbonate strin- gers.		tr tr-1	197.7 198.8	198.8 207.5	1.1 8.7		tr tr		
		- 207.5' - 209.6' - fine grained flows, foliated at 46° to core axis.	10450 10451		207.5 209.6	209.6 212.7	2.1 3.1		.002		
		- 210.8' - 212.7' - chloritized flows with 0.9-foot composite quartz vein, 1-2% carbonate as fracture fillings, minor sericite and biotite bands.	10453		212.7 216.0 221.0 226.0 231.0 236.0 241.0 246.0	216.0 221.0 226.0 231.0 236.0 241.0 246.0 248.4	3.3 5.0 5.0 5.0 5.0 5.0 5.0 2.4		tr tr tr tr tr tr		
901.000 - CINOWO - CI		- 248.4' - 251.5' - fine grained, chloritized flows, 3-5% quartz-carbonate stringers.	0460 0461 10462 10463 10465 10466 0467		248.4 251.5 256.0 261.0 266.0 271.0 276.0 281.0 286.0	251.5 256.0 261.0 266.0 271.0 276.0 281.0 289.0	3.1 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-10

SHEET NO 4 of 4

F001	AGE	DECORPTION .			SAMPI	. E				ASSAYS	
FROM	ŤO	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL			AU oz ton	GZ TON
90.7	326.0	Cont'd.									
		- 289.0' - 291.0' - chloritized flows with 0.3-foot quartz- carbonate vein, foliation at 35° to core axis.	10469 10470 10471 10472		289.0 291.0 296.0 299.8	291.0 296.0 299.8 300.8	2.0 5.0 3.8 1.0			tr tr tr tr	
		- 299.8' - 300.8' - 0.1-foot, quartz-carbonate vein, discordant.	0473 0474 0475 0476		300.8 306.0 311.0 316.0	306.0 311.0 316.0 321.0	5.0		:	.002 .010 tr .080	
			0477		321.0	326.0	5.0			.086 .018	Check
	326.0	E.O.H.									
			İ	,							
		•									
						ļ 				March	im
						ļ		6		7	

NAME OF	PROPERTY _	KASAGI	MINNIS LA	(E		
	KAS-87A-11		LENGTH	256.0'		
LOCATION	26+00W,	12+63N				
LATITUDE			DEPARTURE			
ELEVATION			AZIMUTH	180°	DIP	-49.5°
	Sentember 1					

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-49.5				
	·				

HOLE NO. KAS-87A-1 SHEET NO. 1 Of 1
REMARKS PA786807
SUMMARY LOG

FOO	TAGE	DESCRIPTION			SAMP	LE		ASSAYS					
FROM	70	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	7,6	ı,	OZ/TON	OZ/TON		
0.0	14.0	CASING.											
14.0	52.4	SHEARED - SILICIFIED MAFIC TUFF AND IRON FORMATION.	10479 10480 10482		18.0 22.0 31.0	22.0 26.0	4.0			.014 .032			
52.4	57.0	AMPHIBOLITE.	10482	1	31.0	36.0	5.0			.034			
	243.2	MAFIC FLOWS.											
243.2		INTERMEDIATE TO MAFIC TUFF.											
	256.0	E.O.H.											
								ĺ					
											1		
						·							
25	Ì												
96 1													
HONT													
LANGRIDGES - TOHONTO - 366-1168													
HIDGE													
LANG											{		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-11 SHEET NO. 2 of 3

FROM		DECORIDATION								ASSAY5		
	70	DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE TO	TOTAL			Ayon	uz ton	
57.0	243.2	Cont'd.										
		axis at 71.0' and 109.0'.	10495		91.0	96.0	5.0			tr		
			10496		96.0	101.0	5.0			tr	i	
			10497 10498		101.0 106.0	106.0 111.0	5.0 5.0			tr tr		
			10499	ĺ	111.0	116.0	5.0			tr		
4			10500 10501	1	116.0	121.0	5.0			tr		
}			10502		121.0 126.0	126.0 131.0	5.0 5.0			tr tr		
			10503	•	131.0	136.0	5.0			tr		
			10504		136.0	141.0	5.0			tr		
			10505 10506		141.0 146.0	146.0 149.0	5.0 3.0		[tr tr		
	:		10507	Ì		151.6	2.6			tr		
			10508		151.6	154.2	2.6			tr		
		stringers and veins, foliation at 62° to	10509		154.2	156.0	1.8			tr	ĺ	
\		core axis at 152.0'.	10510 10511		156.0 161.0	161.0 166.0	5.0 5.0			tr tr		
			10512	1	166.0		5.0	l	ŀ	tr		
			10513	•	171.0	176.0	5.0			tr		
			10514 10515		176.0 181.0	181.0 182.8	5.0 1.8			tr .002		
			10516	l	182.8	186.8	4.0		İ	tr		
		carbonate on fractures, 3-5% coarse grain-			186.8	191.8	5.0		i I	tr		
			10518		191.8	194.9	3.1			tr		
	1		10519 10520		194.9 199.9	199.9 201.0	5.0 1.1	1	İ	tr tr		
		•	10521	l	201.0	206.0	5.0			tr		
			10522	1	206.0	211.0	5.0			.002		
			10523 10524			216.0 221.0	5.0 5.0		ļ	tr .002		
			10525	4	221.0	226.0	5.0	ŀ		tr		
			10526		226.0	228.5	2.5			tr		
,		- 228.5' - 243.2' - chloritic flows, 20-25% carbonate, 5-10%	10527		228.5	231.0	2.5			tr		
			10528 10529		231.0 236.0	236.0 241.0	5.0 5.0			tr tr		
			10530		241.0	243.2	2.2			tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-11 SHEET NO. 3 of 3

FOO	TAGE	P. C. COLINE			SAMP	LE				ASSAY S		
FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE	TOTAL	, .	T .	of Ayon	02 TON	
	256.0	Intermediate to Mafic Tuff - dark grey to dark green, fine grained banded to schistose. Modal percent: Amphibole 45-50% Quartz Plagioclase 30-35% Biotite 5-10% Carbonate 3-5% Medium grained disseminated to banded biotite, few widely spaced fractures and quartz stringers, foliation at 53° to core axis at 256.0'. E.O.H.	10531 10533 10533		243.2 246.0 251.0	236.0 251.0	2.8 5.0			tr tr tr		
									M	Add	mo	

NAME OF	PROPERTY _	KASAG	IMINNIS LA	KE			
	KAS-87A-12		LENGTH	286.0'			
	25+03W,						
	`						
ELEVATION			AZIMUTH	210°	DIP	-45°	
	September 12	/87		September	13/87		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
286.0	-36°				
 					
	*				-

HOLE NO.KAS-87A-12SHEET NO.1 OF 1
REMARKS PA786808
SUMMARY LOG

FOOT	AGE	DESCRIPTION			SAMP	LE	İ		,	SSA	7 5
FROM	то	SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	76	76	oz/Ton	OZ/TON
0.0	4.0	CASING.									
4.0	39.2	MAFIC FLOWS - fine grained.									
39.2	49.9	MAFIC FLOWS - medium grained.								İ	
49.9	108.6	MAFIC FLOWS - chloritized.									
08.6	109.9	SILTSTONE.									
09.9	111.1	BANDED IRON FORMTION.									
111.1	152.0	AMPHIBOLITE.									
52.0	182.0	MAFIC FLOWS - fine grained.									
82.0	198.3	MUDSTONE.									:
198.3	217.6	INTERMIXED MAFIC TUFF AND MUDSTONE.									
217.6	232.0	MAFIC FLOWS - fine grained.									
232.0	286.0	INTERMIXED GREYWACKE, MUDSTONE AND TUFF.								1	
	286.0	E.O.H.									
	1				-						
}	Ì		·]								
	}										
			ļ.	:							
			İ		٠						
	ļ				٠						
	ļ									ŀ	

NAME OF	PROPERTY	KASA	GIMINNIS LA	\KE		
HOLE NO.	KAS-87A-12		LENGTH	286.01		
LOCATION	25+03W,	15+96N				
LATITUDE			DEPARTURE			
ELEVATION	ł		AZIMUTH	210°	DIP .	-45°
STARTED	September 1	2/87	FINISHER	September	13/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
286.0	-36.0				·

HOLE NO. SHEET NO. 1 of 4

FOO	TAGE	DESCRIPTION			SAMP	LE			A	5 5 A 1	, s	
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	20	હ	OZ/TON	oz/ton	
0.0	4.0	Casing.										
4.0	39.2	Mafic Flows - dark green, fine grained, schistose. Modal percent: Amphibole 50-55% Plagioclase] 40-45%	10534 10535		4.0 9.0	9.0 13.2	5.0 4.2			tr tr		
		5-10% quartz veining, trace carbonate on fractures, foliation at 62° to core axis at 36.0'.										
		- 13.2' - 16.0' - discordant quartz veins, chlorite inclu- sions.	10536 10537		13.2 16.0	16.0 20.6	2.8 4.6			tr tr		
			10538 10539 10540 10541 10542		20.6 25.6 29.0 32.5 37.0	25.6 29.0 32.5 37.0 39.2	5.0 3.4 3.5 4.5 2.2			tr tr tr tr		
39.2	49.9	Mafic Flows - medium grained, massive, amphibolitic.										
49.9	108.6	tourmaline, 2-3% quartz-carbonate veins and stringers with trace- 1% disseminated pyrite, foliation at 50° to core axis at 53.0', 65° at 72.0'.	0544 10545 10546	tr-1 tr-1 tr-1 tr-1	54.9 59.9 64.9	54.9 59.9 64.9 69.9 74.9 79.9 84.9 99.9 104.9	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0			tr tr tr tr tr tr tr tr tr tr tr		

NAME OF PROPERTY__KASAGIMINNIS LAKE

HOLE NO KAS-87A-12 SHEET NO. 2 Of 4

F001	TAGE				SAMPL	E			ASSAY S		
FROM	τo	DESCRIPTION	NO.	5 SULPH	FROM	FOOTAGE TO	TOTAL		o Ayon	UZ TON	
108.6	109.9	Siltstone - brown to white, fine grained, banded. Modal percent: Quartz 55-60% Sericite 20-25% Biotite 10-15% Carbonate trace	10555		108.6	109.9	1.3		tr		
		Finely banded (bedded?) with fine disseminated biotite grains, 3-5% quartz-carbonate stringers, foliation at 50° to core axis, fractures at 47° to core axis.									
109.9	111.1	Banded Iron Formation - black to green to white, fine grained, banded. Modal percent: Magnetite 30-35% Quartz 20-25% Grunerite Tremolite Carbonate 5-10% Pyrite 2-5%	10556	2-5	109.9	111.1	1.2		tr		
111.1	152.0	Discordant 0.5-foot quartz vein with amphibole inclusions and 3-5% disseminated pyrite, 2-3% pyrite as fracture fillings, banding at 61° to core axis. Amphibolite - dark green to dark grey, coarse grained, massive. Modal percent: Amphibole 45-50% Quartz Plagioclase 3 40-45%	10557 10558 10559	 	111.1 131.0 147.0	116.0 136.0 152.0	4.9 5.0 5.0		tr tr tr		
152.0	182.0	Biotite 3-5% Amphibolitic, minor biotite bands throughout, minor quartz veining and few widely spaced fractures, fractures at 59-61° to core axis. Mafic Flows - fine grained typical fractures at 22° to core axis at			152.0	156.0	4.0		tr		
		173.0'. - 160.9' - 161.9' - composite quartz vein, 5-7% pyrrhotite, 0.5-1% pyrite as anastomosing stringers.	0561 0562		156.0 160.9	160.9 161.9	4.9 1.0		tr tr		
		- 161.9' - 182.0' - abundant quartz-carbonate stringers and veins with chlorite inclusions, 10-15% carbonate.	1056: 1056: 1056:	1	161.9 166.0 171.0	166.0 171.0 176.0	5.0		tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-12 SHEET NO. 3 Of 4

F001	TAGE	DESCRIPTION			SAMPL	_ E			ASSAY S		
FROM	10	DESCRIP FION	МО	". SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	o Ayon	UZ TON	
152.0	182.0	Cont'd.									
			10566 10567		176.0 179.0				tr tr		
182.0	198.3	ated to banded. Modal percent: Biotite 35-40%	10568 10569 10570 10571		182.0 186.0 191.0 196.0	191.0 196.0			tr tr tr tr		
198.3	217.6	Minor narrow porphyroblastic garnet bands banding (bedding) at 54° to core axis at 194.0'. Intermixed Mafic Tuff and Metasediments (Mudstone) - dark green to purplish-brown to white, fine grained, banded to laminated. Modal percent: Amphibole 30-35% Plagioclase Quartz Biotite 10-15% Carbonate 10-15% Garnet 3-5%			198.3 201.0 206.0 211.0 216.0	206.0 211.0 216.0	5.0 5.0 5.0		tr tr tr tr .002		
		5-10% quartz-carbonate stringers, biotite bands with disseminated fine grained pink porphyroblastic garnets, fractures at 19° to core axis at 199.0'.									
217.6	232.0	 Mafic Flows - fine grained, typical. - 230.5' - 232.0' - minor mylonitic zone with quartz-carbonate cherty infilling of fractures, greenish to mauve coloured. 	0577 0578 0579 0580		217.6 221.0 226.0 230.5	226.0 230.5	5.0 4.5		tr tr tr tr		
217.6	286.0	Intermixed Greywacke, Mudstone and Tuff - purplish-grey to dark green to brown, fine grained, banded to laminated. Modal percent: Biotite 30-35%	0582	2-3 2-3 2-3	236.0	236.0 241.0 246.0	5.0		tr tr tr		
								ļ ;			

NAME OF PROPERTY__KASAGIMINNIS_LAKE

HOLE NO. KAS-87A-12 SHEET NO. 4 Of 4

NAME OF	PROPERTY _	KASAG	IMINNIS LAK	E		
	KAS-87A-13					
	25+00W,					
LATITUDE	•		DEPARTURE			
ELEVATION			AZIMUTH	180°	DIP _	-45°
	Sentember	13/97		Santambar	14/97	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
226.0	-37.2				

HOLE NO. KAS-87A-13HEET NO. 1 OF 1
REMARKSPA786808
SUMMARY LOG

FOO	TAGE	DESCRIPTION			SAMP	LΕ			A	5 5 A Y	· 5	
FROM	то	SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	70	76	oz/Hon	oz/ton	
0.0	7.0	CASING.										
7.0	26.0	MAFIC FLOWS - fine grained.										
26.0	27.5	MAFIC INTRUSIVE.										
27.5	36.8	MAFIC FLOWS - fine grained.										
36.8	39.0	MAFIC FLOWS - medium grained, amphibolitic.	İ									
39.0	40.8	MAFIC INTRUSIVE.	l									
40.8	48.6	MAFIC FLOWS - medium grained, amphibolitic.										:
48.6	56.0	MAFIC FLOWS - fine grained.							•		Ì	:
56.0	62.4	MAFIC FLOWS - medium grained, amphibolitic.										
62.4	86.0	MAFIC FLOWS - chloritized.										
86.0	92.0	MAFIC FLOWS - carbonatized.	l									
l .	110.3	MAFIC FLOWS - fine grained.										
110.3	l i	SILTSTONE.									Ì	
111.6	l 1	BANDED IRON FORMATION.										
112.9		MAFIC FLOWS - fine to medium grained, amphibolitic.										
148.2	149.8	QUARTZ VEIN - 5-7% pyrite.	1					1				
149.8	172.7	MAFIC FLOWS - fine grained, carbonatized.										
172.7	187.7	INTERMIXED MAFIC TUFF AND MUDSTONE.										
187.7	188.8	<u>MUDSTONE</u> - mylonitized - silicified.			ľ							
172.7 187.7 188.8 213.7	i i	MAFIC FLOWS - mottled, amphibolitic.										
213.7	226.0	INTERMIXED GREYWACKE, MUDSTONE AND TUFF.	-						•			
	226.0	E.O.H.										
Ī	j j		I	1	l			1		1	1	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-13
LENGTH 226.0'

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -45°

STARTED September 13/87 FINISHED September 14/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
226.0	37.2				
		1			

HOLE NO. KAS-87A-13HEET NO.1 OF 4

	F 0 0 1	TAGE	DESCRIPTION			SAMP	LE			A	SSAY	′ S
	FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	7,	76	OZ/TON	OZ/TON
	0.0	7.0	<u>Casing</u> .			·						
	7.0	26.0	Modal percent: Amphibole 50-55% Quartz 30-35% Plagioclase 5-10%	10592		7.0	11.0	4.0			tr	
			Highly fractured and silicified with green quartz-carbonate infilling, foliation at 58° to core axis at 11.0'.									
				10593 10594 10595 10596		11.0 15.0 20.0 23.0	20.0 23.0	5.0 3.0			tr tr tr tr	
	26.0	27.5	Mafic Intrusive - cream to pink to green, medium grained, massive. Modal percent: Amphibole 35-40% Plagioclase 25-30% Microcline 15-20% Carbonate 5-10%	10597		26.0	27.5	1.5			.014	
6-1168			Inequigranular with medium grained amphibole grains in a fine grained feldspar matrix, foliated chloritic contacts with carbon-ate stringers parallel to contacts at 40° to core axis.								;	
NGRIDGES - TORONTO - 366-	27.5	36. 8		10598 10599		27.5 32.0	32.0 36.8				tr tr	
GES - TOR	36.8	39.0	<u>Mafic Flows</u> - medium grained, massive, amphibolitic, 3-5% quartz- carbonate stringers.	10600		36.8	39.0	2.2			tr	
LANGRID	39.0	40.8	<u>Mafic Intrusive</u> - as above.	10601		39.0	40.8	1.8			tr	
)	İ)	ļ	ji	l i		l i	ĺ	1	ļ	! }	}

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-13

SHEET NO. 2 Of 4

F00	TAGE	DESCRIPTION	SAMPLE				ASSAY S				
FROM	10	DESCRIP FION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL			o Ayon	OZ TON
40.8	48.6	Mafic Flows - medium grained, as above.	10602 10603		40.8 45.0	45.0 48.6	4.2 3.6			tr tr	
48.6	56.0	Mafic Flows - fine grained, typical.	10604 10605		48.6 51.0	51.0 56.0				tr .002	
56.0	62.4	Mafic Flows - medium grained, as above.	10606 10607		56.0 59.0	59.0 62.4	3.0 3.4			.002 tr	
62.4	86.0	Mafic Flows - chloritized, schistose, weakly carbonatized, common quartz-carbonate stringers, foliation at 66° to core axis at 66.0°	10608 10609 10610 10611 10612		62.4 66.0 71.0 76.0 81.0	66.0 71.0 76.0 81.0 86.0	5.0 5.0			.002 tr .002 .002 tr	
86.0	92.0		10613 10614		86.0 89.5	89.5 92.0	3.5 2.5			.004	
92.0	110.3	Mafic Flows - fine grained, typical, foliation at 58° to core axis at 95.0'.	10615 10616 10617 10618		92.0 96.0 101.0 106.0	96.0 101.0 106.0 110.3				tr .002 tr tr	
110.3	111.6	Siltstone - brown to white, fine grained, banded. Modal percent: Quartz 55-60% Sericite 20-25% Biotite 10-15% Carbonate trace Finely banded (bedded?) with fine disseminated biotite grains, 3-5% quartz-carbonate stringers.	10619		110.3	111.6	1.3			tr	
111.6	112.9	Banded Iron Formation - black to green to white, fine grained, banded. Modal percent: Magnetite 30-35% Quartz 25-30% Grunerite] 20-25%	10620	1-3	111.6	112.9	1.3			tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-87A-13 SHEET NO 3 OF 4

F00"	TAGE	DESCRIPTION			SAMPI	E			ASSAY\$	
FROM	10	DESCRIPTION	NO	". SULPH IDES	FROM	FOOTAGE TO	TOTAL		oAYon	GZ TON
111.6	112.9	Cont'd. Carbonate 5-7% Pyrite 1-3%								
		Discordant quartz-carbonate stringers with 1-2% pyrite and trace tourmaline, banding distorted, ½" garnet-tremolite band with acicular-radiating tremolite prisms.			 					
112.9	148.2	Mafic Flows - fine to medium grained, amphibolitic, common quartz-carbonate stringers, foliation at 58° to core axis at 145.0', fractures vary from 28° - 32° to core axis.	10621 10622 10623 10624 10625 10626 10627		112.9 116.0 121.0 126.0 131.0 136.0 141.0 146.0	116.0 121.0 126.0 131.0 136.0 141.0 146.0 148.2			tr tr tr tr tr tr tr	
148.2	149.8	Quartz Vein - blue-grey, banded, 5-7% pyrite bands and stringers, 3-5% grunerite bands.	0629	5-7	148.2	149.8	1.6		tr	
149.8	172.7	Mafic Flows - fine grained, weak to moderate carbonatization, abundant irregular quartz-carbonate stringers, foliation at 52° to core axis at 150.0'.	0630 0631 0632 0633 0634 0635		149.8 153.0 156.0 161.0 166.0 171.0	153.0 156.0 161.0 166.0 171.0 172.7	3.2 3.0 5.0 5.0 5.0		tr tr tr tr tr	
172.7	187.7	to white, fine grained, banded to laminated. Modal percent: Amphibole 30-35% Plagioclase 25-30% Quartz Carbonate 10-15% Biotite 10-15% Garnet 3-5%	10636 10637 10638 10639		172.7 176.0 181.0 186.0	176.0 181.0 186.0 187.7	3.3 5.0 5.0 1.7		tr tr tr tr	
		5-10% quartz-carbonate stringers, biotite bands with disseminated fine grained pink porphyroblastic garnets.								

NAME OF PROPERTY__KASAGIMINNIS_LAKE

HOLE NO. KAS-87A-13 SHEET NO. 4 Of 4

F00	TAGE				SAMPL	. E				ASSAY S		
FROM	70	DESCRIPTION	ИО.	". SULPH	FROM	FOOTAGE	TOTAL	-	ï	· AVon	UZ TON	
187.7	188.8	Mudstone - mylonitized and silicified, highly fractured with green quartz-carbonate fracture filling, 3-5% carbonate throughout.	10640		187.7	188.8	1.1			tr		
188.8	213.7	Mafic Flows - mottled, amphibolitic, foliation at 60° to core axis at 199.0'.	10641 10642 10643 10644 10645		188.8 193.8 196.0 201.0 206.0 211.0	193.8 196.0 201.0 206.0 211.0 213.7	5.0			tr tr tr tr tr		
213.7	226.0	Intermixed Greywacke, Mudstone and Tuff - purplish-grey to dark green to brown, fine grained, banded to laminated. Modal percent: Biotite 30-35% Quartz 25-30% Amphibole Chlorite Feldspar 5-10% Carbonate 5-7% Sericite 2-3% Pyrite tr-2% Abundant quartz, feldspar, carbonate eyes, gradational compositional changes, mylonitic zones with green, quartz-carbonate fracture fillings, quartz-carbonate stringers with disseminated coarse grained pyrite blebs, foliation at 57° to core axis at 226.0'. - 215.0' - 226.0' - mylonitic bands, highly fractured, silicification along fractures with quartz-carbonate infillings.	0648 0649 0650	tr-2	215.0 220.0	215.0 220.0 223.0 226.0	3.0			tr .014 .010 tr		
	226.0	E.O.H.						J	Ha	pr		

NAME	OF	PROPERTY	KASAG1	MINNIS LA	NE			
HOLE	NO.	KAS-87A-14		LENGTH_	286.0'			
		24+98W.						
ELEVAT	TION			AZIMUTH	150°	DIP	-45°	
		September 1						

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
286.0	36. <u>25</u>				

HOLE NO. KAS-87A-14 SHEET NO. 1 Of 1

SUMMARY LOG

		Der 14/8/ FINISHED September 15/87						т		*33	
F 0 0 1	AGE	DESCRIPTION			5 A M P				,	SSA	Y 5
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	36	*6	oz/Yon	oz/ton
0.0	10.0	CASING.					i				
10.0	49.0	MAFIC FLOWS - fine grained.									
49.0	78.7	MAFIC FLOWS - medium grained.	l								
78.7	138.5	MAFIC FLOWS - chloritic, carbonatized.									
138.5	142.6	MUDSTONE.									
142.6	169.8	MAFIC FLOWS - medium grained.									
169.8	171.8	SILTSTONE.									
171.8	190.4	MAFIC FLOWS - fine grained, carbonatized.					:				
190.4	194.0	MYLONITE.	İ								
194.0	207.7	MAFIC TUFF.									
207.7	218.8	MAFIC TUFF AND GREYWACKE.	1.		l						
218.8	221.0	MAFIC TUFF.									
221.0	230.0	GREYWACKE.									
230.0	286.0	MAFIC TUFF, GREYWACKE AND MUDSTONE.		1	<u> </u>						
	286.0	E.O.H.	1								
										:	
								ŀ			
l]		H		1			H]	1	

NAME OF	PROPERTY _	KASAGI	MINNIS LAKE			
HOLE NO.	KAS-87A-14	1	LENGTH	286.0'		
LOCATION	24+98W.	15+96	<u>N</u>			
LATITUDE			DEPARTURE			
ELEVATION			AZIMUTH	150°	DIP	-45°
	September '					

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
286.0	36.25				
	ļ				

HOLE NO. KAS-87A-1 HEET NO. 1 Of 4

F 0 0 1	AGE	DESCRIPTION	SAMPLE				A	SSAY	5		
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	.,. 0	76	oz/Hon	oz/ton
0.0	10.0	Casing.									
10.0	49.0	Mafic Flows - dark green to black, fine grained, massive with slight schistosity. Modal percent: Amphibole 50-55% Quartz Plagioclase Carbonate 3-5% Pyrite tr-1%									
		3-5% quartz-carbonate stringers and veins with trace-1% disseminated pyrite; 0.5-1% pyrite as fracture coatings, foliation at 42° to core axis at 11.0', 44° at 37.0'. - 12.1' - 14.7' - silicified with 0.6-foot discordant quartz	0651	2_3	12.0	14.7	2.7			tr	
		vein, 2-3% pyrite in chlorite inclusions 27.0' - 30.0' - silicified with 2-3% disseminated magnetite			27.0 30.0	30.0 33.0	3.0 3.0			tr .002	
40.0	70.7	- 33.0' - 35.6' - as above.	0654 0655 0656 0657		33.0 35.6 40.6 45.6	35.6 40.6 45.6 49.0	2.6 5.0 5.0 3.4			.020 .002 tr tr	
49.0	78.7	Mafic Flows - dark green to dark grey, medium grained, massive to slightly foliated. Modal percent: Amphibole 40-45% Plagioclase 40-45% Quartz Carbonate 3-5% Albite 3-5%	10658		56.0	58.7	2.7			tr	
		Albite wisps throughout, amphibolitic, foliation at 63° to core axis at 56.0'.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-14 SHEET NO. 2 Of 4

F00	TAGE				SAMPL	.Ε			ASSAY S		
FROM	10	DESCRIPTION	NO	SUL PH	FROM	FOOTAGE TO	TOTAL	٠,	_o Ay _o ,	ÚZ TON	
49.0	78.7	Cont'd 58.7' - 62.9' - 10-15% quartz and carbonate stringers, and veins, chloritic, trace pyrite.	10659 10660 10661 10662 10663	tr	58.7 62.9 66.0 71.0 76.0	62.9 66.0 71.0 76.0 78.7	5.0		tr tr tr tr .012		
78.7	138.5	Mafic flows - fine to medium grained, chloritic, weakly carbonatized, 3-5% carbonate, 5-15% biotite, as disseminated grains, 0.5-1% pyrite blebs on fracture and foliation planes, foliation at 52° to core axis at 83.0', 43° at 136.0'.	0664 0665 0666 0667 0668 0669 0670 10673 10673 10675 10676		78.7 81.0 86.0 91.0 96.0 101.0 106.0 111.0 121.0 126.0 131.0 136.0 138.5	81.0 86.0 91.0 96.0 101.0 106.0 111.0 121.0 126.0 131.0 136.0 138.5 142.6	5.0 5.0 5.0 5.0		tr. 002.002 tr tr tr tr tr tr. 002 tr tr tr.		
	142.6	Mudstone - purplish-brown to white, fine grained, laminated to banded. Modal percent: Biotite 35-40% Carbonate 20-25% Quartz 15-20% Sericite 5-10% Amphibole Chlorite] 3-5% Minor blue-grey chert bands, carbonate as bands or grains, chloritic fractures banding (bedding?) at 45° to core axis, fractures at 39° to core axis.									
1422.6	169.8	Mafic Flows - medium grained, amphibolitic, mottled, 3-5% quartz-carbonate stringers, foliation at 47° to core axis, fractures at 25° to core axis.	10678 10679 10680)(146.0	146.0 151.0 156.0	5.0		tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-14 SHEET NO. 3 Of 4

F001	TAGE	DESCRIPTION			SAMP	. E			ASSAY5		
FROM	10	DESCRIPTION	МО	SULPH IDES	FROM	FOOTAGE TO	TOTAL	**	ο Ayon	UZ TON	
142.6	169.8	Cont'd.									
		- 156.0' - 169.8' - as above, 1-2% quartz carbonate stringers massive, few widely spaced fractures at 43° to core axis.	10681 10682 10683	1	156.0 161.0 166.0	161.0 166.0 169.8	5.0		tr tr tr		
169.8	171.8	Siltstone - purplish-brown to grey, fine grained, finely banded. Modal percent: Quartz 55-60% Sericite 20-25% Biotite 10-15% Carbonate trace	10684	tr-5	169.8	171.8	2.0		tr		
		3-5% quartz-carbonate stringers, 3-5% carbonate and pyrite in upper 0.5 feet, banding (bedding?) at 49° to core axis.									
171.8	190.4	Mafic Flows - dark green, fine grained, highly fractured and carbonatized, 10-15% banded quartz-carbonate veins with 3-5%, very coarse grained pyrrhotite blebs, banding at 42° to core axis.	10687	3-5	171.8 176.0 181.0 186.0	176.0 181.0 186.0 190.4			tr tr tr tr		
190.4	194.0	Mylonite - pink to greyish-green, fine grained, banded to brecciated. Modal percent: Quartz 25-30% Carbonate 25-30% Amphibole 15-20% Chlorite 5-10% Biotite 3-5% Sericite 3-5%	10689		190.4	194.0	3.6		tr		
		Carbonate and chlorite matrix around angular fragments and as fracture coatings, banding at 51° to core axis.						'			
194.0	207.7	Mafic Tuff - dark green to brown to white, fine grained, banded. Modal percent: Amphibole 40-45% Quartz 15-20% Chlorite 10-15% Biotite 10-15% Carbonate 5-10%	10690 10691		194.0 199.0	199.0 204.1	5.0 5.1		tr tr		
		Segregated banding 2-3% quartz-carbonate stringers, foliation at 52° to core axis at 203.0'.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-14

SHEET NO. 4 Of 4

F00	TAGE	DESCRIPTION			SAMPL	-E			ASSAYS		
FROM	10	DESCRIP HON	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	je.	AU oz TOM	GZ FON	
194.0	207.7	Cont'd. - 204.1' - 207.7' - brecciated and silicified greenish quartz-carbonate fracture filling, folia- tion at 50° to core axis at 207.7'.	10692		204.1	207.7	3.6		tr		
207.7	218.8	Mafic Tuff and Greywacke - intermixed to interbedded, greywacke - dark grey to black to brown, fine to medium grained. Modal percent: Quartz 20-25% Feldspar 20-25% Carbonate 20-25% Biotite 10-15% Chlorite 3-5% Sericite 3-5%	10693 10694 10695			212.7 216.0 218.8	3.3		tr tr tr		
		Quartz-carbonate-feldspar eyes in fine grained biotite-sericite-chlorite.									
218.8	221.0	Mafic Tuff - typical.	10696		218.8	221.0	2.2		tr		
221.0	230.0	Greywacke - typical fractures at 34° to core axis at 230.0'.	10697 10698		221.0 226.0	226.0 231.0			tr tr		
230.0	286.0	Mafic Tuff, Greywacke and Mudstone - minor chert bands, 1-5% fine grained disseminated to banded pyrite throughout, abundant fracturing with greenish-yellow silicification haloes, 1-3% quartz-carbonate stringers, interbedded to gradational-intermixed bands, banding at 53° to core axis at 236.0', 50° at 244.0', 57° at 286.0', fractures at 40° to core axis at 251.0', 30° at 274.0'.	10699 10700 10701	1-5	231.0 236.0 241.0	241.0	5.0		tr tr tr		
		- 246.0' - 266.0' - 3-5% pyrite as stringers and bands.	10702 10703 10704 10705 10706 10707 10708 10709	1-5 1-5 1-5 1-5 1-5 1-5	256.0 261.0 266.0 271.0 276.0	256.0 261.0 266.0 271.0 276.0 281.0	5.0 5.0 5.0 5.0 5.0 5.0		tr tr tr tr .002 tr tr		
	286.0	E.O.H.					:		M	Ma	am

NAME OF	PROPERTY _	KASA	GIMINNIS LA	KE		
HOLE NO.	KAS-87A-15		LENGTH	337.0'		
	17+00W,					
LATITUDE			DEPARTURE			
ELEVATION						_48°
STABLED	September 1	15/87	EINIGHED	September	16/87	

FOOTAGE	DIP	HTUMESA	FOOTAGE	DIP	AZIMUTH
200.0	38.75				

HOLE NO. KAS-87A-15HEET NO. 1 Of 1
REMARKS PA786809

SUMMARY LOG

FOOTAGE		DESCRIPTION SUMMARY LOG	<u> </u>	SAMPLE					ASSAYS				
FROM TO	но.		SULPH-	FROM	FOOTAGE TO	TOTAL	76	¥	oz/TON	oz/ton			
0.0	11.0	CASING.]						
11.0	18.9	MAFIC FLOWS.					İ					ĺ	
18.9	26.0	MAFIC INTRUSIVE.								1	!!!	l	
26.0	39.1	MAFIC FLOWS.											
39.1	56.0	MAFIC FLOWS - mylonitized.					ļ		ļ			ĺ	
56.0	66.0	MAFIC FLOWS.											
66.0	76.7	MAFIC FLOWS - mylonitized.										l	
76.7	78.1	MAFIC INTRUSIVE.							İ			l	
78.1	98.9	MAFIC FLOWS.										l	
98.9	101.8	MYLONITE.	1								1 1	l	
101.8	122.2	MAFIC TUFF.					•]				
122.2	125.8	MYLONITE.	1										
125.8	140.8	MAFIC FLOWS.					Ì					ı	
140.8	144.0	MAFIC FLOWS - mylonitized.										Í	
144.0	164.7	MAFIC FLOWS.								1			
164.7	197.1	MYLONITE.				İ				İ		l	
197.1	236.7	MAFIC FLOWS.											
	248.2	INTERMEDIATE FLOWS.					<u> </u>					İ	
248.2	337.0	MAFIC FLOWS - amphibolitic.	i i							1			
		- 284.0' - 337.0' - carbonatized, chloritized.											
	337.0	E.O.H.		1								ĺ	
			. 1]	1				l	

NAME OF	PROPERTY	KASAGIMIN	INIS LA	KE			
HOLE NO.	KAS-87A-15	LEN	GTH	337.0'			
	17+00W,						
ELEVATION	*** **********************************	A Z IN	иитн	210°	DIP	-48°	
	September					-	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200.0	38.75				
					

HOLE NO. AS-87A-15 SHEET NO. 1 of 4
REMARKSPA786809

FOOTAGE		DESCRIPTION		SAMPLE				ASSAYS				
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	2%	26	oz/Yon	oz/ton	
0.0	11.0	Casing.										
11.0	18.9	Mafic Flows - dark green to black, fine grained, massive with slight foliation. Modal percent: Amphibole 45-50% Plagioclase 40-45% Quartz Carbonate 3-5%	10710 10711		11.0 16.0	16.0 18.9				tr tr		
		Amphibolitic, few widely spaced fractures and quartz-carbonate stringers.										
18.9	26.0	Mafic Intrusive - dark green to black, fine to medium grained, massive. Modal percent: Amphibole 50-55% Biotite 30-35% Carbonate 5-10%	10712 10713		18.9 22.5	22.5 26.0	3.6 3.5			tr tr		
		Porphyritic texture, medium grained biotite grains in fine grained groundmass, no fractures, quartz-carbonate stringers on contacts, contacts at 18° to core axis.							:			
26.0	39.1	<u>Mafic Flows</u> - typical.	0714 0715 0716	1	26.0 31.0 36.0	31.0 36.0 39.1	5.0 5.0 3.1	:		tr tr tr		
39.1 56.0	56.0	Mafic Flows - mylonitized, green to pink to black, banded, silicified and carbonatized, minor zones of breccia, potassic alteration throughout, 3-5% quartz-carbonate bands and fracture fillings, foliation at 45° to core axis at 56.0'.	0717 0718 10719 10720		39.1 42.0 46.0 51.0	42.0 46.0 51.0 56.0	2.9 4.0 5.0 5.0			tr tr tr tr		
56.0	66.0	Mafic Flows - typical, minor quartz veining.	10721		56.0	61.0	5.0			tr		
]	1		Ŋ		ļ	ļ ']	ļ l			1	1

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-15 SHEET NO. 2 of 4

F 0 01	FAGE	DESCRIPTION			SAMPL	E			ASSAY S	
FROM	το	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU oz Tom	GZ TON
56.0	66.0	Cont'd.	10722		61.0	66. 0	5.0		tr	
66.0	76.7	Mafic Flows - mylonitized.	10723 10724 10725		66.0 71.0 74.0	71.0 74.0 76.7	5.0 3.0 2.7		tr tr tr	
76.7	78.1	Mafic Intrusive - as above.	10726		76.7	78.1	1.4		tr	
78.1	98.9	Mafic Flows - typical.	10727 10728 10729 10730 10731		78.1 81.0 86.0 91.0 96.0	81.0 86.0 91.0 96.0 98.9	2.9 5.0 5.0 5.0 2.9		.002 tr tr tr .004	
98.9	101.8	Mylonite - pink to grey, fine grained, banded. Modal percent: Quartz 40-45% Sericite 35-40% Carbonate 5-10% Epidote 5-7% Tourmaline 1-3% Numerous quartz blebs and stringers, carbonate throughout and as	10732		98.9	101.8	2.9		tr	
101.8	122.2	stringers and fracture fillings, tourmaline as disseminated grains Mafic Tuff - dark green to brown to grey, fine grained, banded. Modal percent: Amphibole 45-50% Quartz 25-30% Carbonate 5-10%	10733 10734 10735 10736 10737		101.8 105.8 110.8 115.8 120.8	105.8 110.8 115.8 120.8 125.8	4.0 5.0 5.0 5.0 5.0		tr .012 .006 tr	
122.2	125.8	Mylonite - typical, breccia zones with fragments up to 0.1-foot across, 3-5% quartz-carbonate stringers.						:		
125.8	140.8	to core axis at 131.0', fractures at 33° to core axis at 131.0'.	10738 10739 10740		125.8 130.8 135.8	130.8 135.8 140.8	5.0		tr tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-15 SHEET NO. 3 Of 4

F00	TAGE	DESCRIPTION			SAMPL	.E			ASSAY S	
FROM	10	DESCRIPTION	NO	". SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU oz tom	GZ TON
140.8	144.0	Mafic Flows - mylonitic, minor zones of intense alteration, 3-5% quartz-carbonate stringers.	10741		140.8	144.0	3.2		tr	
144.0	164.7	Mafic Flows - typical, 2-3% quartz-carbonate stringers, foliation at 47° to core axis at 157.0'.	10742 10743 10744 10745 10746		144.0 147.0 151.0 156.0 161.0	147.0 151.0 156.0 161.0 164.7	3.0 4.0 5.0 5.0 3.7		tr tr tr tr	
164.7	197.1	Mylonite - typical, 10-15% quartz-carbonate stringers, veins and fracture fillings, highly fractured with 10-15% ground core.	10747 10748 10749 10750 10751 10752 10753 10754		164.7 167.7 171.0 176.0 181.0 186.0 190.0 194.0	167.7 171.0 176.0 181.0 186.0 190.0 194.0 197.1	3.0 3.3 5.0 5.0 4.0 4.0 3.1		tr tr tr tr tr tr	
197.1	236.7	Mafic Flows - atypical, fine to medium grained, 10-15% quartz-carbonate as fracture fillings, fracturing with minor dislocations throughout 2-3% epidote, 5-10% chlorite, limonite staining and potash feldspar in quartz stringers, foliation at 43° to core axis at 202.0'.	10756 10757		197.1 201.0 206.0 211.0 216.0 221.0 226.0 229.0 232.0	201.0 206.0 211.0 216.0 221.0 226.0 229.0 232.0 236.7	3.9 5.0 5.0 5.0 5.0 3.0 3.0 4.7		tr tr tr tr tr tr tr	
236.7	248.2	Modal percent: Quartz 40-45%	10764 10765 10766	1	236.7 241.7 246.0	241.7 246.0 248.2	5.0 4.3 2.2		tr tr tr	
248.2	337.0	sporadic horizons with 2-3% disseminated magnetite.	10767 10768 10769 10770 10771		248.2 251.0 256.0 261.0 266.0		2.8 5.0 5.0 5.0		tr tr tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-15

SHEET NO. 4 Of 4

FOO	TAGE	DESCRIPTION			SAMPL			ASSAY S				
FROM	10	DESCRIPTION	МО	7. SULPH IDES	FROM	FOOTAGE 10	TOTAL			o Z TOM	DZ TON	
248.2	337.0	Cont'd.	10772 10773 10774		271.0 276.0 281.0		5.0			tr tr		
		zation downhole, carbonate increases from 2-20%, 3-5% quartz-carbonate stringers throughout, disseminated tourmaline as widely spaced coarse clots or aggregates of grains.	10775 10776 10777 10778 10779 10780		286.0 291.0 296.0 301.0 306.0 311.0	291.0 296.0 301.0 306.0 311.0 316.0	5.0 5.0 5.0 5.0 5.0 5.0			tr tr tr tr tr tr		
		321.0', 60° at 336.0', fractures at 33° to core axis at 248.0'.	10781 10782 10783 10784 10785		316.0 321.0 326.0 329.0 332.0	326.0 329.0	5.0 3.0 3.0			tr tr tr tr .028		
	337.0	E.O.H.										
									J	M	den	

NAME OF	PROPERTY _	KASA	GIMINNIS LA	\KE		
HOLE NO.	KAS-87A-16		LENGTH			
LOCATION	17+00W,	16+75N				
LATITUDE			DEPARTURE			
ELEVATION			AZIMUTH	180°	DIP	-47.5°
	Sentember '					

DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
35.0				
_				
		35.0		

HOLE NO. AS-87A-16 SHEET NO. 1 OF 1
REMARKS PA786809

SUMMARY LOG

	FOOT	AGE	DESCRIPTION	DESCRIPTION					A	S 5 A 1	/ S		
	FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	70	ь	OZ/TON	OZ/TON	
	0.0	12.0	CASING.										
-	12.0	19.6	MAFIC FLOWS.										
1	19.6	27.7	MAFIC INTRUSIVE.										
l	27.7	30.3	MAFIC FLOWS.								:		
	30.3	31.5	MAFIC INTRUSIVE.										
	31.5	35.6	MAFIC FLOWS.							•			
	35.6	70.6	MAFIC FLOWS AND MYLONITE. - 35.6' - 40.6' - mylonite. - 40.6' - 48.8' - mafic flows, silicification. - 48.8' - 50.9' - mylonite. - 50.9' - 60.2' - mafic flows. - 60.2' - 70.6' - mylonite.										
-	70.6	71.3	MAFIC INTRUSIVE.										
- 366-1168	71.3 159.7 173.3	159.7	MAFIC FLOWS AND MYLONITE. - 71.3' - 84.5' - mafic flows 84.5' - 90.4' - mafic flows, silicification 90.4' - 107.5' - mafic flows 107.5' - 115.7' - mafic flows, silicification 115.7' - 143.0' - mafic flows, carbonatization 143.0' - 156.7' - mylonite 156.7' - 159.7' - mafic flows.										
O	159.7	173.3	MAFIC TUFF.										
5	173.3	292.6	MAFIC FLOWS - amphibolitic.	i									-
ES -	292.6	316.0	MAFIC FLOWS - mottled to massive.										Ì
LANGRIDGES -		316.0	E.O.H.										

FOOTAGE	DiP	AZMUTH	FOOTAGE	DIP	AZIMUTH
316.0	35.0				
					<u> </u>
					<u></u>

HOLE NO. KAS-87A-16HEET NO. 1 Of 4

FOO	TAGE DESCRIPTION			,	5 A M P	LE			A	S 5 A Y	5	
FROM	то	5 C S C R T F T T O W	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	"	ï	oz/Ton	oz/ton	
0.0	12.0	Casing.										
12.0	19.6		10786 10787		12.0 16.0	16.0 19.6	4.0 3.6			.008 tr		
19.6	27.7	Mafic Intrusive - dark green to black, fine to medium grained, massive. Modal percent: Amphibole 50-55% Biotite 30-35% Carbonate 5-10%	10788 10789		19.6 23.6	23.6 27.7	4.0 4.1			tr tr	į.	
		Porphyritic textures, medium grained, biotite grains in fine grained groundmass, no fractures, quartz-carbonate stringers parallel to contacts at 42° to core axis.										
27.7	30.3	Mafic Flows - typical.	0790		27.7	30.3	2.6			tr		
30.3	31.5	Mafic Intrusive - typical, contacts at 41° to core axis.	0791		30.3	31.5	1.2			tr		
31.5	35.6	Mafic Flows - typical, foliation at 47° to core axis at 35.0'.	0792		31.5	35.6	4.1			tr		
35.6	70.6	Mafic Flows and Mylonite - intense fracturing and brecciation with silicification, potassic alteration and carbonitzation, minor dislocations along fracture planes sub-parallel to core axis, greenish-yellow silicification along fractures, 3-5% quartz-carbonate stringers, foliation at 52° to core axis at 46.0', 63° at 70.6'.										

NAME OF PROPERTY___KASAGIMINNIS_LAKE

HOLE NO. KAS-87A-16 SHEET NO. 2 Of 4

F001	TAGE	DESCRIPTION			SAMPL	.E			ASSAYS	
FROM	10	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU o7 TON	GZ TON
35.6	70.6	Cont'd.								
		- 35.6' - 40.6' - mylonite, 5-10% carbonate, minor crypto- crystalline chert bands, pink to grey, banded.	10793		35.6	40.6	5.0		tr	
			10794 10795		40.6 44.6	44.6 48.8			tr tr	
		- 48.8' - 50.9' - mylonite, 15-20% carbonate, pink to green- ish yellow to grey, potassic alteration, silicification.	10796		48.8	50.9	2.1		tr	
			10797 10798		50.9 56.0	56.0 60.2	5.1 4.2		tr tr	
		- 60.2' - 70.6' - mylonite, muddy-brown to yellow-green, 3-5% quartz-carbonate stringers, 10-15% carbon- ate, potassic alteration and silicification	10800		60.2 63.0 66.0	63.0 66.0 70.6	3.0		tr tr tr	
70.6	71.3	Mafic Intrusive - as above with minor potassic alteration and 25-30% carbonate near upper contact.	10802		70.6	71.3	0.7		tr	
71.3	159.7	Mafic Flows and Mylonite - foliation at 52° to core axis at 80.0', 53° at 94.4', 60° at 112.0', 48° at 136.0', 38° at 138.0', 57° at 151.0', 54° at 159.7', fractures at 9° and 35° to core axis at 130.5'.	10803 10804 10805	-	71.3 76.0 80.0	76.0 80.0 84.5	4.0		tr tr tr	
		- 71.3' - 84.5' - mafic flows, typical 84.5' - 90.4' - mafic flows, fractured with quartz-carbon- ate stringers and adjacent silicification haloes.	10806 10807 10808		84.5 86.0 90.4	86.0 90.4 94.4	1.5 4.4 4.0		tr .008	
		- 90.4' - 107.5' - mafic flows, typical 98.4' - 99.5' - 0.3-foot banded quartz- tourmaline vein, discordant, 3-5% carbon- ate.	10809 10810 10811		94.4 98.4 99.5	98.4 99.5 104.3	4.0 1.1 4.8		tr tr .002	
		 104.3' - 107.5' - 1.7-foot irregular-dis- cordant quartz-tourmaline vein with 3-5% disseminated pyrite, 3-5% carbonate and minor potassic alteration. 	10812		104.3	107.5	3.2		tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-87A-16 SHEET NO 3 Of 4

F001	TAGE	DESCRIPTION.			SAMPL	.E		 ASSAYS	
FROM	10	DESCRIPTION	NO	5 SULPH IDES	FROM	FOOTAGE	TOTAL	, OAKN	GZ TON
71.3	159.7	Cont'd.							
		- 107.5' - 115.2' - mafic flows, silicified.	10813		107.5	111.5	4.0	tr	
		tured, abundant cryptocrystalline chert bands, 3-5% carbonate and quartz-carbon- ate stringers.	10814 10815 10816 10817 10818 10819 10820		111.5 115.2 118.0 121.0 126.0 131.0 136.0		3.7 2.8 3.0 5.0 5.0 5.0 3.5	tr tr tr tr tr	
			10821		139.5	143.0	3.5	tr	
		line chert blebs and bands, 5-10% carbon-	10822 10823 10824		143.0 146.7 151.7	146.7 151.7 156.7	3.7 5.0 5.0	tr tr tr	
		- 156.7' - 159.7' - mafic flows, typical.	10825		156.7	159.7	3.0	.002	
59.7	173.3	Modal percent: Amphibole 35-40% Quartz 30-35%	10826 10827 10828 10829		159.7 161.0 166.0 171.0	161.0 166.0 171.0 173.3	1.3 5.0 5.0 2.3	tr tr tr tr	
		Silicification haloes around fractures with greenish-yellow fracture filling, minor cryptocrystalline chert bands, narrow mylonite zones, foliation at 60° to core axis at 173.3'.							
73.3	292.6	Mafic Flows - atypical, fine to medium grained, amphibolitic, 3-5% quartz-carbonate stringers throughout foliation at 48° to core axis at 231.0', 42° at 266.0', few widely spaced fractures at 37° to core axis at 202.0' and 17° to core axis at 276.0'.	10830 10831 10832		173.3 176.0 181.0	176.0 181.0 186.0	2.7 5.0 5.0	tr tr tr	
		- 186.0' - 187.5' - 5-7% quartz-carbonate stringers.	10833 10834 10835 10836 10837 10838 10839		186.0 187.5 191.0 196.0 201.0 206.0 211.0	187.5 191.0 196.0 201.0 206.0 211.0 212.8	1.5 3.5 5.0 5.0 5.0 1.8	tr tr tr tr .002	

NAME OF PROPERTY__KASAGIMINNIS_LAKE

HOLE NO. KAS-87A-16 SHEET NO. 4 Of 4

F00	TAGE	DESCRIPTION			SAMPL	E				ASSAYS		
FROM	70	DESCRIPTION	но	". SULPH IDES	FROM	FOOTAGE TO	TOTAL	3	·•	AU OZ TUM	OZ TON	
173.3	292.6	Cont'd.										
		- 212.8' - 226.0' - as above.	10840 10841	1	212.8	221.0	5.0			tr tr		
			10842 10843 10844	l	221.0 226.0 231.0	226.0 231.0 236.0	5.0 5.0 5.0			tr tr tr	l	
		·	10845 10846		236.0 241.0	241.0 246.0	5.0 5.0			tr tr		
		·	10847 10848		246.0 251.0	251.0 256.0	5.0 5.0			tr tr		
		- 256.0' - 292.6' - schistose, chloritic flows, quartz-car- bonate stringers and fracture fillings.	10849 10850 10851	Ĭ	256.0 261.0 266.0	261.0 266.0 271.0	5.0 5.0 5.0			tr tr tr		
			10852 10853		271.0 276.0	27 6. 0 2 81. 0	5.0 5.0			tr tr		i
			10854 10855 10856	l	281.0 286.0 291.0	291.0	5.0			tr tr tr		
292.6	316.0	Mafic Flows - atypical, massive-mottled, medium grained, foliation at 57° to core axis at 313.0'.	10857 10858		296.0 301.0		5.0 5.0			tr tr		
		- 292.6' - 296.0' - 5-10% quartz-carbonate stringers and fracture fillings.	10859 10860	1	306.0 311.0	311.0	5.0			.002 tr		
	316.0	E.O.H.										
									_	1 1		
										Ma	1 M	0
								,	XIII.	ALC:		,

NAME OF	PROPERTY	KASAGIMINNIS I	AKŁ		
		LENGTH			
	16+97W,				
LATITUDE		DEPARTURE			
ELEVATION		AZIMUTH	150°	DIP _	-45°
STARTED	September 17	7/87 FINISHED	September	18/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
346.0	37.25				
•					
	İ				

HOLE NOKAS-87A-17 SHEET NO. 1 OF 1
REMARKS PA786809

SUMMARY LOG

FOOT	AGE	DESCRIPTION				5 A M P	LE			•	S 5 A	7 5
FROM	то	DESCRIPTION SUMMARY LOG		NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	76	16	oz/TON	oz/ton
0.0	13.0	CASING.										
13.0	25.1	MAFIC FLOWS.										
25.1	32.0	MAFIC INTRUSIVE.						1		•		
32.0	78.9	MAFIC FLOWS AND MYLONITE.	1					<u> </u>				
78.9	81.0	MAFIC INTRUSIVE.						i				
81.0	96.0	MAFIC FLOWS AND MYLONITE.	1									
96.0	185.0	MAFIC TUFF AND MYLONITE.	1									
185.0	316.6	MAFIC FLOWS - amphibolitic to chloritic-carbonatized.	1									
16.6	328.0	MAFIC TUFF.										
328.0	346.0	MAFIC FLOWS.										
	346.0	E.O.H.										
			. [!				
						•						
1						! !				}		
	ľ											
	ļ											
											<u> </u>	
	- 1											
	-											

NAME OF	PROPERTY _	KASAGIMINNIS L	AKE		
		LENGTH			
LOCATION	16+97W,	16+74N			
LATITUDE		DEPARTURE			
ELEVATION		AZIMUTH	150°	OIP	-45°
		7/87			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
346.0	37.25				

HOLE NO. AS-87A-17 SHEET NO. 1 of 5

FOOT	FAGE	DESCRIPTION			SAMP	LE			А	5 5 A Y	S	
FROM	τo	5230 1777 0 1	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	r _o	"	OZ/TON	OZ/TON	
0.0	13.0	Casing.										
13.0	25.1	Mafic Flows - dark green to black, fine grained, massive to foliated. Modal percent: Amphibole 50-55% Plagioclase 40-45% Quartz Carbonate] 2-3%	10861 10862 10863	1	13.0 16.0 21.0	16.0 21.0 25.1	5.0			tr tr tr		
25.1	32.0	2-3% quartz-carbonate stringers foliation at 42° at 16.0', fractures at 47° to core axis at 14.0'. Mafic Intrusive - dark green to black, fine to medium grained, massive. Modal percent: Amphibole 50-55% Biotite 30-35% Carbonate 5.10%	10864 10865		25.1 29.0	29.0 32.0	3.9 3.0			tr tr		
LANGRIDGES - TORONTO - 366-1168	78.9	Porphyritic texture, medium grained biotite in fine grained groundmass, no fractures, carbonate stringers on contacts, contacts at 17° to core axis. Mafic Flows and Mylonite - mylonite: pink to grey, fine grained, banded. Modal percent: Quartz 40-45% Potash Feldspar 20-25% Carbonate 10-15% Sericite 10-15% Mylonitic zones highly fractured to brecciated, gradational changes from flows, flows fractured, silicified and carbonatized variable potassic alteration.										

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-17 SHEET NO. 2 of 5

F00	TAGE	DESCRIPTION			SAMPL	.E			ASSAYS		
FROM	10	DESCRIPTION	NO.	5 SUL PH	FROM	FOOTAGE 10	TOTAL		. Ay	GZ TON	
32.0	78.9	Cont'd.									
		- 32.0' - 38.4' - mafic flows, typical.	10866 10867		32.0 36.0	36.0 38.4	4.0 2.4		tr tr		
		- 38.4' - 42.4' - mafic flows, brecciated, microfaulted, dis- locations of 1/4" at 14° to core axis,minor drag folding along fault lineament, quartz- carbonate (calcite-dolomite) infillings of fractures.	10868		38.4	42.4	4.0		tr		
		- 42.4' - 51.2' - mafic flows, fractured, 3-5% quartz-carbon- ate veins.	10869 10870		42.4 46.0	46 .0 51.2			tr tr		
		- 51.2' - 51.5' - mylonite.									
		- 51.5' - 66.7' - fractured mafic flows, minor silicification	10871 10872 10873 10874		51.2 53.7 56.7 61.0	53.7 56.7 61.0 66.0			tr tr tr tr		
			10875 10876		66.0 69.5	69 .5 72.0			tr tr		
		- 72.0' - 78.9' - mafic flows, fractured, minor silicifica- tion.	10877 10878		72.0 76.0	76.0 78.9			tr tr		
		Foliation at 37° to core axis at 33.0', 44° at 42.4', 45° at 56.0'				'	'				
78.9	81.0	Mafic Intrusive - typical, as above.	10879		78.9	81.0	2.1		tr		
81.0	96.0	Mafic Flows and Mylonite -									
		- 81.0' - 88.1' - mafic flows, fractured, minor silicifica- tion.	10880 10881		81.0 86.0	86.0 88.1		! !	tr tr		
		- 88.1' - 96.0' - mylonite, trace disseminated pyrite, 10-13% quartz-carbonate stringers.	10882 10883	tr tr	88.1 91.0	91.0 96.0			tr tr		
		Foliation at 47° to core axis at 22.5', 50° at 91.0'.]						
96.0	185.0	Mafic Tuff and Mylonite - dark green to grey to brown, fine grained, banded.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-17 SHEET NO. 3 OF 5

F001	r AGE	DESCRIPTION			SAMPL	.E			ASSAY5		
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE TO	TOTAL		OZ TON	UZ TON	
96.0	185.0	Modal percent: Amphibole-Grunerite 35-40% Quartz 35-40% Biotite 5-7% Carbonate 3-5% Tourmaline 2-3% Epidote 1-2% Pyrite tr-2% Pyrrhotite tr-1% Highly fractured, silicified, 5-10% quartz-carbonate stringers, banded with grunerite-tremolite-tourmaline-pyrite, minor crypto-crystalline chert bands, pyrite as blebs and fracture coatings, pyrrhotite as disseminated grains and blebs. - 96.0' - 156.9' - minor potassic alteration and silicification 145.1' - 146.2' - mottled with quartz-feldspar eyes.	10886 10887 10889 10889 10891 10891	tr-2 tr-2 tr-2 tr-2 tr-2 tr-2 tr-2 tr-2	101.0 106.0 111.0 116.0 121.0 126.0 131.0 136.0	101.0 106.0 111.0 121.0 126.0 131.0 136.0 141.0 145.1 146.2 149.6 152.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.1 1.1 3.4 2.9		tr tr tr tr tr tr tr tr tr		
		- 156.9' - 169.6' - mylonite, typical, 5-10% carbonate-chlo- rite fracture fillings.	10898 10899 10900	İ	156.9 161.0 166.0	161.0 166.0 169.0	5.0		tr tr tr		
		- 169.6' - 172.0' - mafic tuff, typical.	10901		169.0	172.0	3.0		tr		
	,	- 172.0' - 185.0' - mylonite, typical, increased carbonati- zation downhole, 5-15% carbonate.	10903	tr-2 tr-2 tr-2	176.0	176.0 181.0 185.0	5.0		.002 .002 tr		
		foliation at 49° to core axis at 106.0', 52° at 138.0', 48° at 156.0', 49° at 170.0'.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-17 SHEET NO. 4 of 5

F00	TAGE	DESCRIPTION			SAMPL	. E			ASSAY5		
FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL		o Ayun	OZ TON	
185.0	316.6	Mafic Flows - medium grained-amphibolitic to fine grained-chlo- ritic and schistose. - 185.0' - 188.5' - chloritic flows 20-25% carbonate, folia- ation at 46° to core axis.	10905		185.0	188.5	3.5		.002		
		- 188.5' - 244.3' - amphibolitic flows medium to coarse grained, 3-5% quartz-carbonate stringers, foliation at 51° to core axis at 216.0'.	10906 10907 10908 10909 10910 10911 10913 10914 10915 10916		188.5 191.0 196.0 201.0 206.0 211.0 216.0 221.0 226.0 231.0 236.0 241.0	196.0 201.0 206.0 211.0 216.0 221.0 226.0 231.0 236.0 241.0			tr tr .016 tr tr tr tr tr tr tr tr		
		 - 244.3' - 246.9' - chloritic flows, 20-25% quartz-carbonate stringers with trace-1% hematite weather- ing on fractures, trace-2% disseminated tourmaline wisps. 	10918		244.3	246.9	2.6	;	tr		
		- 246.9' - 281.5' - amphibolitic flows, fractures at 12° to core axis.	10919 10920 10921 10922 10923 10924 10925		246.9 251.0 256.0 261.0 266.0 271.0 276.0 278.5	256.0 261.0 266.0 271.0 276.0 278.5	5.0 5.0 5.0 5.0 5.0 2.5		tr tr tr tr tr tr		
		- 281.5' - 286.9' - chloritic flows, as above.	10927 10928		281.5 284.0	284.0 286.9	2.5 2.9		tr tr		
		- 286.9' - 295.0' - amphibolitic flows.	10929 10930		286.9 291.0	291.0 294.5			tr tr		
		- 295.0' - 296.0' - chloritic flows as above.	10931	ł	294.5	296.0	1.5		tr		
		- 296.0' - 300.2' - amphibolitic flows.	10932		296.0	300.2	4.2		tr	[]	
			10933 10934		300.2 303.0	303.0 306.0			tr tr		

KASAGIMINNIS LAKE

HOLE NO. KAS-87A-17 SHEET NO. 5 of 5

FOOT	AGE		T		SAMPI	. E		Γ		ASSAY S		
FROM	70	DESCRIPTION	NO	". SUL PH		FOOTAGE				oz Ayn	OZ TON	
T NOM				IDES	FROM	10	TOTAL		•	02 104	07 104	
185.0	316.6	Cont'd.										
		, ·	10935			307.9				tr		
			10936			312.9				tr	}	
Ì		- 312.9' - 316.6' - amphibolitic flows.	10937		312.9	316.6	3.7			tr		
16.6	328.0	Mafic Tuff - typical, foliation at 50° to core axis at 318.0'.	10938		316.6		4.4			tr		
	l		10939 10940		321.0 326.0	326.0 328.0	5.0 2.0			tr tr		
	246.0				328.0	331.0	3.0					
328.0	346.0	Mafic Flows - atypical, mottled with coarse grained amphibole clots in chlorite-amphibole groundmass, 1-2% quartz-carbonate stringers,	10942	l	331.0	336.0	5.0			tr tr		
		fractures at 40° to core axis at 334.0'.	10943 10944		336.0	341.0 346.0			,	tr tr		
			10944		341.0	340.0	5.0			Li		
	346.0	E.O.H.										
]	Ì]							
1					1							
ŀ												
		· ·										
			:									
									ΔM	$h \Omega$		3
j					1		i	/	11/2	(IIN)	1///	1
								\	4K)	unce		
									11 8			
}												
ĺ												

NAME OF	PROPERTY	KASAG	IMINNIS LA	KE		
HOLE NO.	KAS-87A-18		LENGTH	510.0'		
	47+00W,					
LATITUDE			DEPARTURE			
ELEVATION			AZIMUTH	180°	DIP	45°
STABTED	September	18/87	FINISHED	September	19/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
250.0	39.25				
510.0	30.50				
				_	

HOLE NO. AS-87A-18 SHEET NO. 1 Of 1
REMARKS PA786796

SUMMARY LOG

F001	AGE				5 A M P	LΕ			,	S 5 A '	/ S	
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	26	25	oz/Yon	oz/ton	
0.0	14.0	CASING.										
14.0	261.1	MAFIC TO INTERMEDIATE FLOWS - 151.0' - 155.5' - 5-7% pyrrhotite.										
261.1	322.7	FELSIC TUFF 261.1' - 270.5' - 3-7% pyrrhotite.										
322.7	330.1	GRANITIC INTRUSIVE.										
330.1	510.0	SILTSTONE TO WACKE.										
	510.0	E.O.H.										
	j											
			ı									
			1									
	İ											
								1				

NAME OF PROPERTY KASAGIMINNIS LAKE
HOLE NO. KAS-87A-18 LENGTH 510.0'
LOCATION 47+00W, 03+48S

LATITUDE DEPARTURE
ELEVATION AZIMUTH 180° DIP -45°
STARTED September 18/87 FINISHED September 19/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
250.0	39.25				
510.0	30.50				
÷ ÷					

HOLE NO. AS-87A-18 SHEET NO. 1 Of 3

FOOT	AGE	DESCRIPTION			SAMP	LE		ASSAYS					
FROM	то	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	7,5	36	OZ/TON	oz/ton		
0.0	14.0	Casing.											
14.0	261.1	Mafic to Intermediate Flows - dark grey to dark green to black, fine to medium grained, banded. Modal percent: Hornblende 40-45% Plagioclase 20-25% Quartz 10-15% Chlorite 3-5% Grunerite 2-3% Garnet 2-3% Carbonate 1-2% Sericite 1-2% Interbanded feldspar-quartz-hornblende-sericite and hornblende-chlorite-garnet-grunerite bands with porphyroblastic pink garnets											
		in chlorite, foliation varies from 59° to 64° across interval. - 26.0′ - 31.0′ - 0.5-foot quartz-carbonate vein, 1-2% dis- seminated pyrrhotite and pyrite grains and blebs.	10945	1-2	26.0	31.0	5.0			tr			
		- 98.9' - 100.9' - 0.6-foot discordant quartz-carbonate vein highly fractured, 2-3% disseminated pyrit throughout.	, 10946 e 10947 10948		98.9 100.9 106.0	100.9 106.0 109.1	2.0 5.1 3.1			tr tr tr			
		- 109.1' - 124.9' - 3-5% quartz-carbonate stringers and vein 1-2% disseminated <u>tourmaline</u> .	0949 0950 0951 0952 0953		109.1 111.0 116.0 121.0 124.9	111.0 116.0 121.0 124.9 128.8	1.9 5.0 5.0 3.9 3.9			tr tr tr tr			
		- 128.8' - 131.7' - 3-5% fine grained biotite bands with 1-3 fine grained disseminated pyrrhotite blebs.	10954 10955		128.8 146.0	131.7 151.0	2.9 5.0			tr tr			

NAME OF PROPERTY____KASAGIMINNIS LAKE

HOLE NO. KAS-87A-18 SHEET NO. 2 Of 3

F00	TAGE	DESCRIPTION		_	SAMPL	.Ε		ASSAY S				
FROM	70	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE 10	TOTAL			o Albu	UZ TON	
14.0	261.0	Cont'd.										
		stringers, highly folded to wispy, 3-5%	10956 10957 10958		151.0 155.5 160.5	160.5	5.0			tr tr tr		
		- 162.8' - 164.6' - 1-2% disseminated pyrrhotite.	10959	1-2	162.8	164.6	1.8			tr		
		- 190.6' - 192.5' - 0.3-foot discordant quartz-carbonate vein	10960		190.6	192.5	1.9			tr		
		- 214.0' - 216.6' - 1-2% disseminated pyrrhotite and pyrite in amphibole-chlorite-garnet bands.	10961	1-2	214.0	2 16. 6	2.6			tr		
		- 260.1' - 261.1' - 2-3% wispy pyrrhotite.	10962	2-3	260.1	261.1	1.0			tr		
261.1	322.7	Felsic Tuff - dark grey, fine grained, schistose. Modal percent: Sericite 40-45% Quartz 30-35% Chlorite 5-10% Garnet tr-5% Biotite 1-3% Amphibole 1-2%										
		Crenulated, foliation - schistosity at 65° to core axis at 277.0', 61° at 306.0'.										
		- 261.1' - 270.5' - 3-7% pyrrhotite bands and stringers, 2-3% medium grained magnetite, exclusive of pyrrhotite.	10963 10964		261.1 266.0					tr tr		
		- 319.9' - 322.7' - distorted bands, crenulated, 5-7% quartz- carbonate stringers.	10965		319.9	322.7	2.8			tr		
322.7	330.1		10966 10967		322.7 326.0	326.0 330.1	3.3 4.1			tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-18 SHEET NO. 3 Of 3

F00	TAGE				SAMPL	.E				ASSAY5		
FROM	10	DESCRIPTION	NO	SULPH	FROM	FOOTAGE	TOTAL			OZ TON	GZ TON	
330.1	510.0	Siltstone to Wacke - black to grey, finely laminated, fine grained Modal percent: Quartz)DES	FROM	то	IOTAL					,
		Very finely laminated, plagioclase as medium grained eyes in some horizons, minor carbonate bands, few widely spaced fractures and quartz-carbonate stringers, pyrite as very fine grained wisps, foliation at 70° to core axis across interval.										
		- 361.3' - 361.8' - granite dykelet as above.	10968	4	361.0	362.0	1.0			tr		
		- 383.5' - 384.1' - fractured horizon, 3-5% quartz-carbonate stringers, 2-3% coarse grained pyrrhotite blebs.	10969	2-3	383.5	386.0	2.5			tr		
			9699 9700 10971	l	474.1 478.9 481.8	478.9 481.8 486.8	4.8 2.9 5.0			tr tr tr tr		
	510.0	E.O.H.						ļ 				
											Wa	M

NAME OF	PROPERTY	KASAG	IMINNIS LA	K <u>E</u>			
HOLE NO.	KAS-87A-19		LENGTH	526.0'			
LOCATION	49+00W,						
LATITUDE	,		DEPARTURE				
ELEVATION			AZIMUTH	180°	DIP	-45°	
	September 1	9/87		September			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
250.0	40°				
506.0	33°				
Ė					

HOLE NO. AS-87A-19 SHEET NO. 1 Of 1 REMARKS PA786796

SUMMARY LOG

F 0 0 1	AGE					SAMP	LΕ			,	SSA	r s	
FROM	то	DESCRIPTION SUMMARY LOG		NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	"	"	oz/TON	oz/ton	
0.0	4.0	CASING.					,						
4.0	241.8	MAFIC TO INTERMEDIATE VOLCANIC FLOWS. - 84.1' - 91.0' - 3-5% pyrrhotite.											
241.8	322.7	FELSIC TUFF.			ĺ								
322.7	526.0	SILTSTONE TO ARKOSE, FELSIC TUFF.											
	526.0	E.O.H.											
					<u> </u>	-							
			•	i.									
									ļ				
									ļ				
								-					
			·		İ								
			-	Į.	ļ		l	l	H	1			

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO.
LOCATION 49+00W, 03+49S

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -45°

STARTED September 19/87 FINISHED September 20/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
250.0	40°				
506.0	33°				

HOLE NOKAS-87A-19 SHEET NO. 1 of 3

F 0 0	TAGE	DESCRIPTION			SAMP	LE			A	SSAY	, s	
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	%	1,0	oz/Yon	OZ/TON	
0.0	4.0	Casing.										
4.0	241.8	Mafic to Intermediate Volcanic Flows - dark grey to dark green to black, fine grained, banded. Modal percent: Hornblende Plagioclase Quartz 10-15% Chlorite 3-5% Grunerite 2-3% Garnet 2-3% Carbonate 1-2% Sericite 1-2%										
		Bands of hornblende-chlorite-garnet-grunerite in feldspar-quartz-hornblende-sericite groundmass, fine to medium grained porphyro-blastic pink garnets on chlorite bands. Foliation varies from 58° to 65° to core axis across interval.										
		- 4.0' - 8.2' - quartz-carbonate veining up to 1.0-foot wide, banded with trace-1% pyrite and pyrrhotite.	10973	tr-1	4.0	8.2	4.2			tr		
		- 29.9' - 32.2' - as above.	10974	tr-1	29.9	34.5	4.6			tr		
		- 34.5' - 36.7' - as above.	10975	tr-1	34.5	36.7	2.2		•	tr		
i		- 36.7' - 44.1' - 1-2% disseminated pyrrhotite and pyrite.	10976 10977			41.0 44.1	3.3 3.1			tr tr		
		- 51.0' - 56.0' - 3.0-foot banded quartz-carbonate vein with 3-5% disseminated or aggregated tourmaline.			51.0	56.0	5.0			tr		
		- 75.0' - 78.8' - quartz-carbonate vein subparallel to caxis.			75.0	78.8	3.8			tr		
		- 84.1' - 91.0' - 3-5% pyrrhotite as widely spaced massive stringers.	10980 10981		84.1 86.0	86.0 91.0	1.9 5.0			tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-19 SHEET NO. 2 Of 3

F00	TAGE	DESCRIPTION	SAMPLE FOOTAGE						ASSAY S	
FROM	70	DESCRIPTION	NO	5 SULPH IDES	FROM	FOOTAGE TO	TOTAL		oz Yon	OZ TON
4.0	241.8	Cont'd. - 103.7' - 106.0' - 2-3% quartz-carbonate stringers.	0982 10983 10984 10985		103.7 156.0 196.0 236.8	161.0 201.0	5.0 5.0		tr tr tr tr	
241.8	322.7	Felsic Tuff - dark grey, fine grained, schistose. Modal percent: Sericite 40-45% Quartz 30-35% Chlorite 5-10% Garnet tr-5% Biotite 1-3% Amphibole 1-2%	0986		241.8	246. 0	4.2		tr	
		Upper 5.0 feet consists of 10-15% disseminated porphyroblastic pink garnets, 1-2% pyrrhotite throughout, foliation at 68° to core axis at 249.0', 60° at 256.0' and 311.0'. - 266.0' - 291.6' - sericite schist, 3-5% quartz-carbonate	10987	2-3	266.0	271.0	5.0		tr	
		stringers, 2-3% disseminated pyrrhotite wisps.	10988 10989 10990 10991	2-3 2-3 2-3	271.0 276.0 281.0		5.0 5.0 5.0		tr tr tr tr	
322.7		- 291.6' - 322.7' - 1-3% pyrrhotite.	10992 10993 10994 10995 10997 10998	1-3 1-3 1-3 1-3 1-3	296.0 301.0 306.0 311.0 316.0	296.0 301.0 306.0 311.0 316.0 321.0	5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr	
322.7	526.0	Sitstone to Arkose, Felsic Tuff - white to black to grey, finely laminated to massive, fine grained. Modal Percent: Quartz 40-45% Biotite 15-20% Feldspar 10-15% Chlorite 5-10% Sericite 3-5% Carbonate 3-5% Amphibole 1-2%								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-19 SHEET NO. 3 Of 3

FOO'	TAGE	DESCRIPTION			SAMPL	.E				ASSAY S		
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE TO	TOTAL	i		AU oz ton	DZ TON	
322.7	526.0	Cont'd. Siltstones very finely laminated, arkose mottled to poorly banded, white to cream coloured, foliation varies from 63° to 72° to core axis across interval.										
!		- 356.0' - 376.0' - intermixed felsic tuff and siltstone with 3-5% quartz-carbonate stringers.	0999 1000 9501 9502		356.0 361.0 366.0 371.0	366.0 371.0	5.0 5.0			tr tr tr tr		
		- 411.3' - 413.6' - 5-7% quartz-carbonate stringers.	9503		411.3	413.6	2.3			tr		
		- 432.2' - 435.0' - as above.	9504		432.2	435.0	2.8			tr		
ĺ		- 453.0' - 456.0' - 0.5-foot quartz vein, abundant quartz- carbonate stringers.	9505		453.0	456.0	3.0			tr		
		- 476.0' - 492.7' - arkose, 0.6-foot carbonate vein.	9506 9507 9508 9509		476.0 481.0 486.0 491.0	486.0 491.0	5.0			tr .006 tr tr	;	
		- 509.9' - 526.0' - 2-3% banded quartz-carbonate stringers with 1-3% disseminated pyrrhotite and pyrite.	9510 9511 9512 9513	1-3 1-3	514.9 519.9	514.9 519.9 524.0 526.0	5.0 4.1			tr tr tr tr		
	526.0	E.O.H.										
									J.		an	î,O
								•				

NAME OF	PROPERTY	KASAGI	MINNIS LAKE	<u> </u>			
	KAS-87A-20						
	51+00W,						
LATITUDE	•		DEPARTURE				
ELEVATIO	н		AZIMUTH	180°	DIP	-45°	
	September						

FOOTAGE	DIP	AZ IMUTH	FOOTAGE	DIP	AZIMUTH
250.0	-42°				
516.0	-34°				
-					

HOLE NO. AS-87A-20 SHEET NO. 1 of 1
REMARKS PA786796

SUMMARY LOG

TARTED		EMIDER 20/07 FINISHED SEPTEMBER 22/87											_
F 0 0 1	TAGE	DESCRIPTION				SAMP					SSA		
FROM	70	SUMMARY LOG	·	NO,	SUL PHI	FROM	TO TAGE	TOTAL	76	16	oz/TON	oz/ton	_
0.0	6.0	CASING.											
6.0	290.6	MAFIC TO INTERMEDIATE VOLCANIC FLOWS - 49.6' - 60.6' - 3-7% pyrrhotite. - 64.5' - 72.7' - 3-7% pyrrhotite.											
290.6	308.1	FELSIC TUFF.			İ								
308.1	310.4	GRANITIC INTRUSIVE.											
310.4	313.0	FELSIC TUFF.									1		
313.0	318.4	GRANITIC INTRUSIVE.											
318.4	335.1	FELSIC TO INTERMEDIATE TUFF.					٠.						
335.1	366.0	SILTSTONE.	1										
366.0	367.7	FELSIC TO INTERMEDIATE TUFF.			}							1	
367.7	375.0	GREYWACKE.											
375.0	516.0	SILTSTONE.	ı										
	516.0	E.O.H.	1										
											ł		
			1										
						:							
						:				c			
			1							<u> </u>			

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-20 LENGTH 516.0'

LOCATION 51+00W, 03+04S

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -45°

STARTED September 20/87 FINISHED September 22/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
250.0	-42°				
516.0	-34°				

HOLE NOKAS-87A-20 SHEET NO. 1 OF 4

SUMMARY LOG

FOO	TAGE	DESCRIPTION	SAMPLE							SSA	Y 5
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	TO	TOTAL	36	"	oz/HbN	oz/ton
0.0	6.0	Casing.									
6.0	290.6	Mafic to Intermediate Volcanic Flows - dark grey to dark green to black, fine to medium grained, banded. Modal percent: Hornblende 40-45% Plagioclase 20-25% Quartz 10-15% Chlorite 3-5% Grunerite 2-3% Garnet 2-3% Carbonate 1-2% Sericite 1-2% Hornblende-chlorite-garnet-grunerite bands in feldspar-quartz-hornblende-sericite groundmass, pink porphyroblastic garnets in									
	:	chlorite bands, foliation varies from 58° to 68° to core axis across interval.	9514		16.0	18.4	2.4		<u> </u>	tr	
		- 16.0' - 18.4' - 2-3% quartz-carbonate stringers. - 29.9' - 31.8' - as above.	9514 9515		29.9	31.8				tr	
		- 29.9' - 31.8' - as above. - 39.4' - 40.4' - 0.1-foot irregular quartz vein with 2-3% pyrite stringers.	9516 9516		39.4	40.4	1.0			tr	
		- 49.6' - 60.6' - 3-7% pyrrhotite in chlorite-carbonate bands as disseminated grains and in tourmaline- carbonate veins as 5-7% coarse grained blebs, 3-5% quartz-carbonate stringers.	9517 9518 9519 9520	3-7 3-7	49.6 54.0 57.0 60.6	54.0 57.0 60.6 64.5	4.4 3.0 3.6 3.9			tr tr tr tr	
		- 64.5' - 72.7' - as above.	9521 9522		64.5 68.0	68.0 72.7	3.5 4.7			tr tr	
		- 82.4' - 83.6' - irregular banded quartz vein, clean.	9523		82.4	83.6	1.2			tr	
		- 91.0' - 93.0' - 0.4-foot quartz-carbonate vein, 3-5% pyrr-	9524	3-5	91.0	93.0	2.0			tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-20 SHEET NO. 2 Of 4

F001	TAGE	DECORPORTION.			SAMPI	LE			Α	SSAY5	
FROM	70	DESCRIPTION	NO.	". SULPH	FROM	FOOTAGE	TOTAL			o Z TON	OZ TON
6.0	290.6	Cont'd.									
		hotite as massive stringers.						1	1	1	
:		- 96.0' - 101.0' - 3-5% quartz-carbonate stringers, 1.0-foot quartz-carbonate vein with 1-3% dissemin- ated pyrite.	9525	1-3	96.0	101.0	5.0			tr	
		- 108.7' - 127.7' - 2-3% irregular quartz-carbonate stringers	9526 9527 9528 9529 9530		111.0 116.0 121.0	111.0 116.0 121.0 126.0 127.7	2.3 5.0 5.0 5.0 1.7			tr tr tr tr tr	
		- 136.0' - 138.5' - 1.0-foot irregular banded quartz-carbon- ate vein with 1-2% coarse grained pyrrho- tite.	9531	1-2	136.0	138.5	2.5			tr	
		- 161.0' - 166.0' - 2-3% irregular quartz-carbonate stringers	9532		161.0	166.0	5.0			tr	
		- 187.0' - 196.0' - 3-5% quartz-carbonate veins, less than 0.2 feet wide.	9533 9534			191.0 196.0	4.0 5.0			.002 tr	ļ
		- 246.0' - 251.0' - 1-2% quartz-carbonate veins.	9535		246.0	251.0	5.0		}	tr	
		regular fractures.	9536 9537 9538	1-2		256.0 261.0 266.0	5.0 5.0 5.0			tr .002 tr	
		- 277.7' - 280.6' - 1-3% disseminated pyrrhotite in chlorite bands.	9539	1-3	277.7	280.6	2.9			tr	
290.6	308.1	Modal percent: Sericite 40-45% Quartz 30-35%	9540 9541 9542 9543	1-2 1-2	296.0 301.0	296.0 301.0 306.0 308.1	5.4 5.0 5.0 2.1			tr tr tr tr	
		Crenulated, irregular quartz stringers with 1-2% disseminated pyrite, upper 5.0 feet has 10-15% garnets (pink, medium grained, porphyroblastic) with 2-3% pyrite stringers, foliation at 60° to core axis at 296.0'.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-20

SHEET NO. 3 OF 4

F00	TAGE		T		SAMP	LE		ASSAYS	
FROM	70	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	Au oz/ton	
308.1	310.4	Granitic Intrusive - cream to purplish-grey to green, coarse grained, massive. Modal percent: Feldspar 45-50% Quartz 25-30% Muscovite 15-20%	9544		308.1	310.4	2.3	tr	
		Coarse anhedral grains of cream-coloured feldspar and purplish- grey quartz; fine grained green muscovite disseminated throughout, contacts at 78° to core axis at 308.1', 55° at 310.4'.					·		
310.4	313.0	<u>Felsic Tuff</u> - as above.	9545	1-2	310.4	313.0	2.6	.005	
313.0	318.4	Granitic Intrusive - as above, contact 72° to core axis at 313.0', irregular at 318.4', 1-2% coarse grained potash felspar laths.	9546 9547			316.0 318.4	3.0 2.4	tr tr	
318.4	335.1	Felsic to Intermediate Tuff - brown to white to green, fine to medium grained, banded. Modal percent: Quartz Feldspar 50-55% Biotite 20-25% Amphibole 15-20% Carbonate tr-1% Pyrite Pyrrhotite tr-0.5% Some bands with medium grained feldspar eyes, minor quartz stringer foliation banding at 200 to	9548	tr	318.4	321.0	2.6	tr	
335.1	366.0	gers, foliation - banding at 80° to core axis at 321.0'. Siltstone - dark grey to pink, fine grained, finely laminated. Modal percent: Quartz 40-45% Chlorite 30-35% Garnet 5-10% Biotite 3-5% Pyrite Pyrrhotite Carbonate 0.5-2% Disseminated fine to medium grained porphyroblastic pink garnets, pyrrhotite and pyrite disseminated throughout pyrite as fracture fillings.	9549 9550 9551 9552 9553 9554 9555	1-3 1-3 1-3 1-3 1-3	340.1 345.1 350.1 355.1 360.1	340.1 345.1 350.1 355.1 360.1 363.0 366.0	5.0 5.0 5.0 5.0 5.0 2.9 3.0	tr tr tr tr tr tr	

NAME OF PROPERTY____KASAGIMINNIS LAKE

HOLE NO. KAS-87A-20 SHEET NO. 4 Of 4

F00	TAGE				SAMP	LE		ASSAYS	
FROM	10	DESCRIPTION	NO.	7, SULPH IDES	FROM	FOOTAGE TO	TOTAL	oz?ton	
366.0	367.7	Felsic to Intermediate Tuff - as above.							
367.7	375.0		9556 9557			371.0 375.0	3.3 4.0	tr tr	
		Numerous quartz-feldspar-carbonate eyes and bands interbedded with biotite, chlorite, amphibole bands, 2-3% quartz-carbonate stringers.							
375.0	516.0	Siltstone - as above, foliation averages 68° to core axis.			l ·				
		- 382.8' - 388.2' - 3-5% quartz-carbonate veins and stringers with trace-1% disseminated pyrite.	9558 9559	tr-1 tr-1		386.0 388.2	3.2 2.2	tr	
		- 393.3' - 394.8' - quartz-carbonate stringers and 2-3% pyr- rhotite stringers.	9560		393.3	394.8	1.5	tr	
		- 399.4' - 400.4' - irregular banded quartz-carbonate vein with fractured and silicified wallrock fragments.	9561	i:	399.4	400.4	1.0	tr	
		- 415.8' - 421.0' - 5-7% irregular quartz-carbonate stringers with trace-1% pyrrhotite and pyrite.	9562	tr-1	415.8	421.0	5.2	tr	
10 – 366-1166		- 466.5' - 488.2' - irregular, arkosic siltstone bands, 15- 20% feldspar, 5-7% carbonate, poorly banded. - 466.5' - 471.0' - 2-3% irregular quartz stringers with 3-5% pyrrhotite, pyrite stringers.	9563	3-5	466.5	471.0	4.5	tr	
NON I		- 495.5' - 500.5' - 1-2% irregular quartz-carbonate stringers	9564		495.5	500.5	5.0	tr	-
LANGRIDGES - TORONTO		- 502.9' - 504.8' - irregular quartz-carbonate vein with 1-3% disseminated pyrrhotite and pyrite.	9565	1-3	502.9	504.8	1.9	tr	
LANGRIC	516.0	Е.О.Н.						MARIE	

NAME OF	PROPERTY	KAS	SAGIMINNIS I	LAKE			
HOLE NO.	KAS-87A-2	1	LENGTH				
LOCATION	37+00 W ,	05+605	3				
LATITUDE			DEPARTURE				
ELEVATION			AZIMUTH	180°	DIP	47°	
			EINICHED				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200.0	45.25				
406.0	35.00				

HOLE NOKAS-87A-21_{SHEET} NO. 1 of 1
REMARKS PA786801
SUMMARY LOG

FOO	TAGE	DESCRIPTION			SAMP	L E			A	5 5 A Y		
FROM	то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	ı,	OZ/TON	OZ/TON	
0.0		CASING.										-
i i	194.4	MAFIC TO INTERMEDIATE VOLCANIC FLOWS.				•						
194.4	202.2	SULPHIDE ZONE - 5-7% pyrrhotite, 2-3% pyrite.									1	ĺ
202.2	220.4	FELSIC TUFF - 1-3% pyrrhotite, pyrite.										
220.4	233.5	MAFIC TO INTERMEDIATE VOLCANIC FLOWS.										
233.5	301.4	FELSIC TUFF - 2-3% pyrite.	1									
301.4	325.5	FELSIC TO INTERMEDIATE TUFF.										
325.5	406.0	SILTSTONE.				, .					1	
İ	406.0	E.O.H.										
				ŀ					:			
											· 1	
			1								j	ł
1												
	İ											
				1								
E .					ŀ						-	ł
Z Z				}							1	:
Ö											.]	:
) ES												
ON THE STATE OF TH												
LANGRIDGES - TORONTO - 366-1168												
1	į l		Ħ	1	1)]	 	ł

NAME OF	PROPERTY _	KASAG	SIMINNIS LA	KE		
	KAS-87A-21					
LOCATION	37+00W. C	<u> 15+605</u>				
LATITUDE	-		DEPARTURE			
ELEVATION			AZIMUTH	180°	DIP _	-47°
	Sentember					

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200.0	45.25				
200.0 406.0	35.00				
			i		

HOLE NOKAS-87A-21 SHEET NO. 1 Of 3

FOO	TAGE	DESCRIPTION	SAMPLE					A	SSAY	5		
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE	TOTAL	26	36	OZ/HON	oz/TON	
0.0	30.5	Casing.		IDES	1.00		10172					
30.5	194.4	Mafic To Intermediate Volcanic Flows - dark green to dark grey to black, fine grained, poorly banded to massive. Modal percent: Hornblende 45-50% Plagioclase 20-35% Quartz 10-15% Chlorite 3-5% Garnet 1-5%										!
		Interbanded amphibole-chlorite-garnet bands and amphibole-quartz-plagioclase bands, pink porphyroblastic garnets increase in size and proportion downhole, foliation varies from 52° to 60° to coreaxis across interval.										
		- 41.0' - 43.0' - 1-2% quartz-carbonate stringers.	9566		41.0	43.0	2.0			tr		
		- 53.8' - 58.3' - as above.	9567		53.8	58.3	4.5			tr	ŀ	
			9568 9569		106.0 111.0	111.0 116.0	5.0 5.0			tr tr		
194.4	202.2				194.9 198.9	198.9 202.2	4.0			tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLENO KAS-87A-21

SHEET NO. 2 of 3

FOOT	AGE				SAMPL			ASSAYS	
FROM	10	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE TO	TOTAL	oz/ton	-
202.2	220.4	Felsic Tuff - dark grey to pink, fine grained, schistose. Modal percent: Sericite 40-45% Quartz 25-30% Garnet 10-15% Chlorite 5-10% Pyrrhotite Pyrite] 1-3% Crenulated, foliation-schistosity at 63° to core axis at 219.5', disseminated fine grained porphyroblastic pink garnets.	9572 9573 9574 9575	1-3 1-3	202.2 206.0 211.0 216.0	216.0	5.0	tr tr tr tr	
220.4	233.5	Mafic to Intermediate Volcanic Flows - typical.	9576 9577 9578	1	220.4 226.0 231.0		5.0	tr tr tr	
233.5	301.4	Felsic Tuff - typical, with 2-3% chlorite blebs and 2-3% pyrite as blebs and fracture coatings, foliation at 50-70° to core axis over interval. - 246.0' - 248.5' - 0.8-foot quartz vein, clean. - 290.0' - 291.0' - 0.6-foot quartz vein, clean. - 296.0' - 301.4' - 3-5% quartz-carbonate stringers with 1-2% coarse grained pyrrhotite and pyrite.	9580 9581 9582 9583 9584 9586 9586 9588 9589 9590	2-3 2-3 2-3 2-3 2-3	241.0 246.0 251.0 256.0	236.0 241.0 246.0 251.0 256.0 261.0 271.0 276.0 281.0 286.0 291.0 296.0 301.4	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	tr tr tr tr tr tr tr tr tr tr tr tr tr t	
301.4	325.5	Felsic to Intermediate Tuff - purplish-grey to dark green to white fine grained, banded. Modal percent: Quartz 35-40% Sericite 30-35% Amphibole 20-25% Carbonate tr-1% Pyrite tr-1%			301.4 321.0	306.0 325.5		tr tr	
		Pyrite as disseminated grains gradational contact with sediments.							

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-21 SHEET NO. 3 Of 3

F	OOTAGE				SAMPL	E			A	SSAYS	
FROM	1 10	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	3		Au z/ton	
325.	5 406.0	Siltstone - dark grey to grey, fine grained, finely laminated. Modal percent: Quartz 40-45% Chlorite 30-35% Garnet 5-10% Biotite 3-5% Carbonate 1-3% Pyrite tr-1%	9596 9597 9598 9599	tr-1 tr-1 tr-1 tr-1 tr-1	381.0 396.0	330.5 346.0 366.0 386.0 401.0 406.0	5.0 5.0 5.0 5.0			tr tr tr tr tr	
	406.0	Very fine porphyroblastic pink garnets throughout, 2-5% quartz-carbonate eyes; pyrite as fracture coatings, foliation at 70° to core axis at 326.0' and 345.0', 81° at 371.0', 73° at 400.5'. E.O.H.									
NTO - 366-1168											
LANGRIDGES - TORONTO - 366-1188										John	ano

NAME OF	PROPERTY _	KASAGI	MINNIS LA	KE		
	KAS-87A-22					
	56+00W.					
LATITUDE	<u></u>		DEPARTUR	E		<u> </u>
ELEVATION			AZIMUTH _	180°	DIP _	-47°
	September 24					

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-47°				
291.0	-31°				

HOLE NO. KAS-87A-22 SHEET NO. 1 OF 1
REMARKS PA786798
SUMMARY LOG

F 0 0 1	AGE	DESCRIPTION	SAMPLE						A	SSA		
FROM	то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	76	46	oz/Yon	oz/ton	
0.0	17.0	CASING.										
17.0	68.2	FELSIC TO INTERMEDIATE TUFF.	1								i i	
68.2	74.0	SILTSTONE.										
74.0	122.9	FELSIC TO INTERMEDIATE TUFF.										
122.9	139.1	MAFIC FLOWS.	l									
139.1	146.6	MAFIC TO INTERMEDIATE TUFF AND SILTSTONE - 65:35.	1						i I		1	
146.6	291.0	MAFIC FLOWS.										
	291.0	E.O.H.										
	1											
			l									
				:	[
3					l							
8			H									
					1							
											ŀ	
				Ì]			
ž l					}							
מיניים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים בישטיים												
'			A			•		1			\	

NAME OF	PROPERTY _	KASA	GIMINNIS	LAKE			
	KAS-87A-22						
	56+00W,						
LATITUDE	·		DEPARTUR	E			
ELEVATION			AZIMUTH _	180°	DIP	-47°	
	September 2						

FOOTAGE	ÐIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	47°				
291.0	-31°				

HOLE NO. ASS-87A-22 SHEET NO. 1 of 3
REMARKS PA786798

F 0 0 1	T A G E		SAMPLE				DESCRIPTION SAMPLE			SAMPLE ASSAY					
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	76	ı;	OZ/HON	oz/ton				
0.0	17.0	Casing.		I IDES	77.0		,,,,,,,								
17.0	68.2	Felsic to Intermediate Tuff - grey to green, fine grained, laminated to banded.	9996		17.0	21.0	4.0			tr					
;		Modal percent: Quartz 30-35% Feldspar 20-25% Amphibole 15-20% Biotite 15-20% Carbonate 1-3%													
		Few widely spaced fractures or quartz-carbonate stringers, trace pyrite, foliation at 59° to core axis across interval.													
		- 27.6' - 29.0' - medium grained quartz-plagioclase, crystal tuff.													
		- 60.9' - 63.9' - 2-3% quartz-carbonate stringers.	9997 9998		60.9 63.9	63.9 68.2	3.0 4.3			tr tr					
68.2	74.0	Siltstone - purplish-brown to green to white, fine grained, laminated. Modal percent: Biotite 30-35%	9999 10000		68.2 71.0	71.0 74.0	2.8 3.0			tr tr					
		Carbonate 25-30% Quartz 15-20% Amphibole 10-15% Epidote 1-2%													
		2-3% quartz-carbonate stringers and eyes.													
74.0	122.9	Felsic to Intermediate Tuff - typical, foliation at 59° to core axis at 86.0', 63° at 105.0', 62° at 118.0'.	1401		74.0	76.0	2.0	1		tr					
		- 96.0' - 102.5' - 3-5% irregular quartz-carbonate veins,		tr-1		99.0	3.0			tr					
Ì		trace-1% disseminated <u>tourmaline</u> and pyrite.	1403 1404	tr-1	99.0 102.5	102.5 105.0	3.5 2.5			tr tr					

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-22 SHEET NO. 2 of 3

		0.5100.1510.14	SAMPLE FOOTAGE					ASSAYS			
FROM	то	DESCRIPTION	NO.	1, SULPH IDES	FROM	FOOTAGE TO	TOTAL		Au pz/ton		
74.0	122.9	Cont'd.								-	
		- 105.0' - 107.1' - fractured - silicified, yellowish-green, quartz-carbonate-epidote infilling.	1405 1406 1407		105.0 107.1 111.0	107.1 111.0 113.7	2.1 3.9 2.7		tr tr tr		
		- 113.7' - 118.8' - brecciated zone, minor potassic altera- tion, greenish-yellow matrix.	1408		113.7	118.8	5.1		tr		
		- 118.8' - 122.9' - 3-5% disseminated to banded pyrite.	1409	3-5	118.8	122.9	4.1		tr		
122.9	139.1	Mafic Flows - dark green, fine grained, massive to slightly schistose. Modal percent: Amphibole 50-55% Plagioclase 40-45% Quartz Carbonate 3 2-3%	1411 1412	1-2 1-2	122.9 126.0 131.0 136.0	126.0 131.0 136.0 139.1	3.1 5.0 5.0 3.1		tr tr tr tr		
		Amphibolitic, 2-3% quartz-carbonate stringers with 1-2% pyrite, foliation at 70° to core axis at 137.0'.									
139.1	146.6	Mafic to Intermediate Tuff and Siltstone - 65:35, siltstone as beds or bands, tuff dark green to dark grey, fine grained, banded. Modal percent: Amphibole 45-50% Quartz 30-35% Chlorite 10-15% Carbonate 1-2%	1414		139.1	146.6	7.5		tr		
		Interbedded siltstone horizons, typical, few widely spaced fractures or quartz-carbonate stringers.									
146.6	291.0	Mafic Flows - fine to coarse grained, typical.	1415		146.6	151.6	5.0		tr		
1		- 146.6' - 186.0' - fine grained flows. - 181.0'- 186.0' - 2-3% quartz-carbonate veins - tourmaline - 2-3% pyrrhotite.	1416	2-3	181.0	186.0	5.0		tr		
		- 186.0' - 291.0' - medium to coarse grained flows with minor schistose horizons, 2-5% quartz-carbonate stringers. - 186.0' - 219.8' - 2-5% quartz-carbonate- epidote veins.			186.0 191.0 196.0 201.0 206.0	191.0 196.0 201.0 206.0 211.0	5.0 5.0		tr tr tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-22 SHEET NO. 3 Of 3

FOOT	AGE		DESCRIPTION			SAMP					ASSAYS		
FROM	10		DESCRIPTION	NO.	SUL PR	FROM	FOOTAGE	TOTAL			Au oz/ton		
146.6	291.0	Cont'd.											
·				1422 1423 1424 1425		216.0	216.0 219.8 240.7 243.7	5.0 3.8 3.0 3.0			tr tr tr tr		
			- 237.7' - 243.7' - 2-3% quartz-carbonate stringers at 12° and 20° to core axis.	1426 1427 1428		243.7 245.7 249.7	245.7 249.7 253.7	2.0 4.0 4.0		į	tr tr tr		
			- 281.6' - 291.0' - mottled flows, 2-3% irregular quartz-carbonate veins.	1429 1430		281.6 286.0	286.0 291.0	4.4 5.0			tr tr		
	291.0	E.O.H.											
							ļ		:				
80.000 - 0.0000 - 0.00000000000000000000			·							J.	W)	Ada	cm c
									j j	4	LH4		rnv
}													

NAME OF	PROPERTY	KASAG	I SINNIMIS	_AKE		
	KAS-87A-23					
	44+00W,					
ELEVATION			AZIMUTH .	180°	DIP _	-45°
STARTED	September 25	/87	FINISHED	September	26/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-45°				
300.0	-33°				

HOLE NOKAS-87A-23 SHEET NO. 10f 1
REMARKS PA786798

SUMMARY LOG

FOOTAGE FROM TO		SAMPLE				ASSAYS					
	DESCRIPTION SUMMARY LOG		SUL PH IDES	FROM	FOOTAGE TO	TOTAL	36	76	oz/Ton	OZ/TON	
0.0	7.0	CASING.									
7.0	74.6	MAFIC FLOWS.									
74.6	97.7	MAFIC TUFF.		ĺ							
97.7	187.0	MAFIC FLOWS.									
	230.0	SILTSTONE.	1								
	314.0	FELSIC TO INTERMEDIATE TUFF.									
	314.0	E.O.H.									
İ											
					<u>'</u>						
										!	
				j							
				İ							
					:						
				İ							
					1			į į			

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO.
LOCATION 44+00W, 23+54N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -45°

STARTED September 25/87 FINISHED September 26/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-45°				
300.0	-33°				
		-			

HOLE NOKAS-87A-23_{SHEET} NO. 1 of 3 REMARKS PA786798

LOGGED BY R. Higginson

ſ	F 0 0 1	TAGE	DESCRIPTION			SAMF	LE			A	SSA	S	
	FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	36	*6	oz)ton	oz/TON	
	0.0	7.0	Casing.				·						
	7.0	74.6	Mafic Flows - dark green, fine grained, foliated - massive. Modal percent: Amphibole 50-55% Plagioclase 40-45% Quartz Carbonate] 2-3%										
			Few widely spaced fractures, amphibolitic, foliated at 51° to core axis at 26.0', 50° at 52.0', 45° at 74.6'.										
			- 11.0' - 21.7' - 3-5% quartz-carbonate-epidote veining.	1431 1432 1433	ł	11.0 16.0 19.0	16.0 19.0 21.7	5.0 3.0 2.7		-	tr tr tr		
			- 37.7' - 39.7' - fracturing, silicified.	1434 1435		37.7 39.7	39.7 42.0	2.0			tr tr		
			- 42.0' - 46.0' - veining, as above with 1-2% pyrrhotite and and pyrite.	1436 1437	1-2	42.0 46.0	46.0 47.8	4.0 1.8			tr tr		
.			- 47.8' - 52.2' - clean, quartz-carbonate vein.	1438		47.8	52.2	4.4			tr		
0 - 366-1168	74.6	97.7	Modal percent: Amphibole 45-50% Quartz 20-25% Carbonate 10-15%	1440 1441 1442	tr5 tr5 tr5 tr5 tr5	79.6 84.6 89.6	79.6 84.6 89.6 94.6 97.7	5.0 5.0 5.0 5.0 3.1			tr tr tr tr		
TORONT			3-5% quartz-carbonate veining with trace-0.5% pyrite and pyrrhotite foliation at 56° to core axis at 96.0'.										
- ANGRIDGES -	97.7	187.0	slightly schistose, trace-0.5% tourmaline and pyrrhotite as strin-	1445	tr-2	97.7 101.0 106.0	101.0 106.0 111.0	3.3 5.0 5.0			tr .002 tr		

NAME OF PROPERTY____KASAGIMINNIS LAKE

HOLE NO. KAS-87A-23

_____ SHEET NO. 2 Of 3

F001	AGE				SAMPI	LE			ASSAYS	
FROM	10	DESCRIPTION	NO.	7. SULPH IDES	FROM	FOOTAGE	TOTAL	7.	Au Dz/ton	
97.7	187.0	Cont'd. 1-2% pyrrhotite, pyrite. - 166.0' - 186.0' - 2-3% disseminated pyrrhotite. Foliation averages 60° to core axis.	1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459	tr-2 tr-2 tr-2 tr-2 tr-2 tr-2 tr-2 tr-2	111.0 116.0 121.0 126.0 131.0 136.0 141.0 146.0 151.0 166.0 171.0	116.0 121.0 126.0 131.0 136.0 141.0 146.0 151.0 166.0 171.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr .004 tr tr tr tr tr tr tr tr	
187.0	230.0	Siltstone - purplish-brown to green to white, fine grained, laminated. Modal percent: Biotite 30-35% Carbonate 25-30% Quartz 15-20% Amphibole 10-15%	1461 1462	tr-2 tr-2	176.0 181.0 186.0 187.0	181.0 186.0 187.0 191.0	5.0 5.0 1.0 4.0		tr tr tr	
230.0		Carbonate as bands and disseminated grains, abundant carbonate and quartz eyes, minor quartz-carbonate stringers. - 206.0' - 209.7' - fractured and silicified with greenish-yellow quartz-epidote-carbonate infilling - 215.0' - 230.0' - as above with minor brecciation, 3-5% quartz-carbonate veins with trace-2% pyrrhotite and pyrite. Foliation averages 65.6° to core axis.	1465 1466	tr-2	206.0 215.0 220.0 225.0	209.7 220.0 225.0 230.0	3.7 5.0 5.0 5.0		tr tr tr tr	
230.0	314.0	Felsic to Intermediate Tuff - grey to green, fine grained, laminated to banded.								-

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-23 SHEET NO. 3 Of 3

ſ	FOOT	AGE	DESCRIPTION			SAMPL	. E			ASSAYS	
Ī	FROM	70	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	7.	Au oz/ton	
	230.0	314.0	Modal percent: Quartz 30-35% Feldspar 20-25% Amphibole 15-20% Biotite 15-20% Carbonate 1-3%								
			Minor lapilli and plagioclase crystals (medium grained), foliation averages 68.4° to core axis.								
			- 236.5' - 237.5' - breccia zone, chlorite carbonate infill- ing-matrix.	1468		236.5	240.6	4.1		tr	
			- 239.6' - 240.6' - breccia zone, 50:50, matrix clasts, clasts pink to grey from potassic alteration, chlorite carbonate infilling.								
		:	- 240.6' - 242.7' - trace - 1% disseminated <u>arsenopyrite</u> and pyrite, 2-3% quartz-carbonate stringers.	1469	tr-1	240.6	242.7	2.1		tr	
			- 266.0' - 268.2' - 3-5% quartz-carbonate stringers.	1470	ļ	266.0	268.2	2.2		tr	
115.5			- 281.3' - 284.3' - 3-5% quartz-carbonate veins and stringers with 2-3% disseminated pyrite.	1471	2-3	281.3	284.3	3.0		tr	
			- 289.0' - 314.0' - 2-3% quartz-carbonate stringers with 1-3% disseminated pyrite.	1472 1473 1474 1475 1476 1477		289.0 291.0 296.0 301.0 306.0 311.0	296.0 301.0 306.0 311.0	2.0 5.0 5.0 5.0 5.0 3.0		tr tr tr tr tr .006	
- 366-1168		314.0	E.O.H.								
LANGRIDGES - TORONTO - 386-1166										A Pala	mo

NAME OF	PROPERTY _	KASAGIMINNIS LA	Œ			
HOLE NO.	KAS-87A-24	LENGTH	380.01			
		15+00N				
LATITUDE		DEPARTURE				
ELEVATION	ı	AZIMUTH	180°	DIP	47°	
		/97				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-47°				
380.0	-43°				
	i i				

HOLE NO. KAS-87A-24 SHEET NO. 1 of 1
REMARKSPA786797

SUMMARY LOG

LOGGED BY R. Higginson

FOOT	AGE				SAMP	LE			A	5 5 A Y	/ S
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SUL PH-	FROM	TO TAGE	TOTAL	96	16	oz/Yon	oz/TON
0.0	10.0	CASING.									
10.0	135.9	MAFIC FLOWS.									
35.9	161.9	SILTSTONE.								į	
61.9	214.9	INTERMEDIATE TO MAFIC TUFF.		1							}
14.9	228.3	SILTSTONE.									
28.3	357.6	INTERMEDIATE TO MAFIC TUFF.									İ
57.6	380.0	MAFIC FLOWS.									
	380.0	E.O.H.									
1											
			1								
į						,					
											1
			l								
											1
				1					•		

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-47°				
380.0	-43°				

HOLE NO. AS-87A-24 SHEET NO. 1 0f 4

LOGGED BY R. Higginson

	F001	TAGE	DESCRIPTION			SAMP	LΕ			A	SSA	7 5	
	FROM	то		NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	76	j6	oz/TON	OZ/TON	
	0.0	10.0	Casing.										
	10.0	135.9	Mafic Flows - dark green to black, fine to coarse grained, massive to schistose. Modal percent: Amphibole 50-55% Plagioclase 40-45%				·						
			Quartz Carbonate] 2-3%										
			Amphibolitic, few widely spaced fractures, common quartz-carbonate stringers, foliation at 50° to core axis at 16.0', 70° at 48.0', 42° at 103.5', 58° at 133.0', fractures at 44° to core axis at 133.0'.										
			- 10.0' - 43.7' - fine grained, massive. - 36.0' - 37.6' - 3-5% quartz-carbonate stringers. - 40.8' - 43.7' - as above with 2-3% dissemi-	1478		36.0	37.6				.002		
			nated pyrite. - 43.7' - 52.2' - medium grained, massive.	14/9		40.8	43.7	2.9			tr		
168			- 52.2' - 59.8' - fine grained, massive to schistose 52.2' - 54.6' - 3-5% quartz-carbonate veining.	1480		52.2	54.6	2.4			tr		
0 - 366.1			- 57.9' - 59.8' - as above with 5-10% coarse grained tourmaline clots.	1481		57.9	59.8	1.9			.002		
NGRIDGES - TORONT			- 82.0' - 84.0' - as above.	1482 1483 1484 1485		76.0 79.8 82.0 84.0	79.8 82.0 84.0 89.1	3.8 2.2 2.0 5.1			.002 tr tr tr		

NAME OF PROPERTY_KASAGIMINNIS LAKE

HOLE NO. KAS-87A-24 SHEET NO. 2 of 4

FO	OTAGE	OFFICE DATE OF THE PROPERTY OF			SAMPL	E			ASSA'	'S	
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	Au pz/to	n	
10.0	135.9	Cont'd 94.3' - 135.9' - massive, mottled, medium to coarse grained - 94.3' - 96.3' - 1-2% quartz-carbonate stringers subparallel to core axis.	1486 1487			96.3 105.5	2.0 2.2		tr		
135.9	161.9	Siltstone - purplish-brown to green to white, fine grained, laminated. Modal percent: Biotite 30-35% Carbonate 25-30% Quartz 15-20% Amphibole 10-15% Minor quartz stringers and eyes, foliation at 59° to core axis at 161.0' fracturing and silicification with quartz-carbonate-epidote infillings throughout.	1488 1489 1490 1491 1492 1493		139.9 141.9 146.9 151.9	139.9 141.9 146.9 151.9 156.9 161.9	4.0 2.0 5.0 5.0 5.0 5.0		tr tr tr tr		
161.9	214.9	Intermediate to Mafic Tuff - green to grey to white, fine grained, banded to laminated. Modal percent: Amphibole 45-50% Quartz Plagioclase Biotite 5-10% Chlorite 5-10% Carbonate Garnet 2-3%									
		Minor disseminated porphyroblastic pink garnets, few fractures, foliation at 60° to core axis at 186.0', fractures at 50° to core axis at 186.0'.									
86.		- 181.6' - 183.3' - 3-5% quartz-carbonate stringers.	1494 1495		181.6 183.3		1.7 2.7		tr		
ORONTO - S		- 186.0' - 187.0' - as above.	1496 1497 1498	1	186.0	187.0 191.0	1.0 4.0 4.3		.012 tr tr		
LANGRIDGES - TORONTO - 366-1168		- 195.3' - 209.2' - 5-10% quartz-carbonate stringers, 1-3% disseminated pyrrhotite, trace-1% pyrite.	1750	1-3 1-3 1-3 1-3	198.0 201.0	198.0 201.0 206.0 209.2	2.7 3.0 5.0 3.2		tr tr .002 tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-24 SHEET NO. 3 Of 4

F001	r A G E	DESCRIPTION			SAMPL	.E	•		ASSAYS	
FROM	r o	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	,,	Au oz/tor	
161.9	214.9	Cont'd.	17504 17505			212.4 214.9	3.2 2.5		tr tr	
214.9	228.3	Siltstone - irregular laminations and banding, 3-5% irregular quartz-carbonate stringers and veins, foliation at 55° to core axis at 226.0'.	17506 17507 17508 17509		217.9 221.0	217.9 221.0 226.0 228.3	3.0 3.1 5.0 2.3		tr tr .002	
228.3	357.6	Intermediate to Mafic Tuff - trace-5% disseminated porphyroblastic pink garnets, foliation at 66° to core axis at 256.0', 57° at 286.0', 48° at 313.0', 62° at 346.0', 62° at 357.0'.								
		- 228.3' - 238.8' - 2-3% quartz-carbonate stringers with trace-3% pyrrhotite.	17511	tr-3 tr-3 tr-3	232.8 235.7 238.8	235.7	4.5 2.9 3.1 2.7 3.7		.002 .002 .002 .004 tr	
		- 245.2' - 247.7' - 3-5% quartz-carbonate stringers.	17515 17516 17517 17518		247.7 251.0	247.7 251.0 256.0 260.5	2.5 3.3 5.0 4.5		.010 tr .002 tr	
		- 260.5' - 349.9' - fracturing and brecciation, 2-5% quartz- carbonate stringers.	7519 7520 7521 7522 7523 7524 7525		263.0 266.0 271.0 276.0 281.0 286.0	263.0 266.0 271.0 276.0 281.0 286.0 291.0	2.5 3.0 5.0 5.0 5.0 5.0		tr .004 tr tr .002 .004	
			7526 7527 7528 7529 7530 7531 7532 7533		296.0 301.0 306.0 311.0 316.0 321.0	296.0 301.0 306.0 311.0 316.0 321.0 326.0 331.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr tr	
			7534 7535			336.0 341.0	5.0 5.0		tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-24 SHEET NO. 4 of 4

	F001	AGE		T		SAMPL	. E			Α	SSAYS		
-	ROM	то	DESCRIPTION	NO.	", SUL PH		FOOTAGE		3	1	Au z/ton		
-	28.3	357.6	Cont'd.		IDE S	FROM	70	TOTAL			z/ton		
				17536 17537 17538		341.0 346.0 349.9	346.0 349.9 354.7	5.0 3.9 4.8			tr tr tr		
3!	57.6	380.0	Mafic Flows - fine to medium grained, foliation at 68° to core axis at 376.0'.										
	Ĺ	380.0 280.0	- 376.8' - 379.0' - 2-3% quartz-carbonate stringers. E.O.H.			i.		i.					
	-		.*										
						:							
991													
10 – 366-1													
S - TOHON											M	1.	
LANGRIDGES - TORONTO - 366-1168										A		len	7/1

NAME OF	PROPERTY	KASAGIMINNIS	LAKE		
HOLE NO.	KAS-87A-25	LENGTH	351.0'		
LOCATION	34+00W,	1274UN			
LATITUDE		DEPARTU	RE		
ELEVATION		AZIMUTH	180°	DIP	56°
STABLED	September 2	8/87	Sentember	29/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0 351.0	56.0°				

HOLE NO. KAS-87A-25 SHEET NO. 1 of 1 REMARKS PA786800

SUMMARY LOG

LOGGED BY R. Higginson

FOOT	A G E	DESCRIBITION			5 A M P	LΕ			,	SSA	/ S	
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SULPH-	FROM	TO TAGE	TOTAL	26	યુ	oz/ton	oz/ton	
0.0	16.0	CASING.			-							
16.0	194.6	MAFIC FLOWS.										
94.6	276.1	FELSIC TO INTERMEDIATE TUFF.							•			
76.1	314.3	MAFIC TO INTERMEDIATE TUFF.	1									l
14.3	351.0	MAFIC FLOWS.										
	351.0	E.O.H.										
ļ												
												l
												!
												l
				Ì								l
												l
								:				
					<u>.</u>							
						:						
						•						Į

NAME OF	PROPERTY	KASAGIMINNIS	LAKE			
	KAS-87A-25					
	34+00W, 12+					
LATITUDE		DEPARTUR	E		 	
ELEVATION	·	AZIMUTH	180°	DIP	56°	
	Sentember 28/8				· -	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	56.0°				
351.0	45.3°				

HOLE NO.KAS-87A-25 SHEET NO. 1 Of 4

LOGGED BY R. Higginson

FOO	TAGE	DESCRIPTION			SAMP	LE			A	SSA	Y 5	
FROM	то	BESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	%	6	oz/Yon	OZ/TON	
0.0	16.0	Casing.										
16.0	194.6	Mafic Flows - dark green to black, fine to coarse grained, massive to schistose. Modal percent: Amphibole 45-50%										
		Plagioclase 40-45%										
		Quartz Carbonate] 2-5%										
		Tourmaline tr-2% Pyrite										
		Pyrrhotite trace										
		Amphibolitic, abundant quartz-carbonate veining in some horizons, foliation at 72° to core axis at 25.0', 58° at 50.0', 50° at 145.0', 43° at 181.0', 43° at 190.5'.										
		- 16.0' - 51.9' - fine grained, massive flows 24.4' - 25.3' - quartz-carbonate vein, 3-5% pyrrhotite and pyrite blebs, 2-3% medium grained angletite, 1-2% tourmaline as	17539	3-5	21.0	26.0	5.0	:		tr		
!			17540		37.2	41.4	4.2			tr		
		stringers 42.6' - 46.0' - 5-7% quartz-carbonate vein- ing, trace-1% pyrite and pyrrhotite with trace chalcopyrite.	17541		41.4	46.0	4.6			.002		
		- 51.9' - 134.0' - medium grained, massive flows. - 51.9' - 53.4' - 3-5% quartz-carbonate vein ing with 2-3% <u>tourmaline</u> grains and 1-2% pyrite blebs.	17542	1-2	51.9	56.0	4.1			tr		
.			17543		76.0	78.6	2.6			tr		
										ļ		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-25 SHEET NO. 2 Of 4

FOOT	AGE	DESCRIPTION			SAMPL	.E			ASSAYS	
HOM	10	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	7,	oz/ton	
16.0	194.6	Cont'd.								
		 130.6' - 131.7' - coarse grained flow, massive with 5-7% coarse grained tourma- line clots. 	17544 17545		130.6 131.7	131.7 134.0	1.1		tr tr	
		rite, 3-5% biotite grains in flows.	17546 17547 17548 17549 17550	1-2 1-2	136.0	136.0 141.0 146.0 149.4 153.8	2.0 5.0 5.0 3.4 4.4		tr .010 .008 .002 tr	
		- 167.9' - 182.3' - medium grained flows and 3-5% banded mafic tuff, 2-5% quartz-carbonate stringers.	17551 17552 17553		167.9 171.0 176.0	171.0 176.0 181.0	3.1 5.0 5.0		tr tr tr	
		- 182.3' - 190.4' - medium grained, flows. - 190.4' - 194.6' - fine grained, flows.	17554		181.0	182.3	1.3		tr	
94.6	276.1	Felsic to Intermediate Tuff - dark grey to brown to dark green, fine grained, laminated to banded. Modal percent: Quartz Feldspar Sericite Amphibole Chlorite Biotite Carbonate Felsic to brown to dark green, 50-55% 10-15% 10-15% 2-3%								
		Minor quartz-carbonate stringers and widely spaced fractures, foliation at 53° to core axis at 195.5', 60° at 235.5', 56° at 251.0', 53° at 266.0'. - 194.6' - 212.1' - 3-5% quartz and plagioclase crystals,								
		- 216.7' - 218.4' - breccia zone, potassic alteration of clasts, chlorite, quartz and carbonate infillings.	17555		216.0	221.0	5.0		tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-25 SHEET NO. 3 Of 4

F00	TAGE	OFFCONDATION.			SAMPL	Ε.			ASSAYS	
FROM	τo	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	7.	Au oz/ton	
194.6	276.1	Cont'd.								
		- 221.0' - 223.0' - 3-5% quartz-carbonate stringers.	7556		221.0	223.0	2.0		tr	
		irregular quartz-carbonate-tourmaline stringers, 1-2% pyrite, potassic altera-	17557 17558 17559 17560 17561	1-2 1-2 1-2	236.0 241.0 246.0 251.0 254.2	241.0 246.0 251.0 254.2 257.3	5.0 5.0 5.0 3.2 3.1		tr tr tr tr tr	
		- 257.3' - 273.5' - 2-3% pyrrhotite and pyrite as stringers sub-parallel to core axis and as bands and irregular blebs.	7562 7563 7564 7565	2-3 2-3	257.3 261.0 266.0 271.0	261.0 266.0 271.0 273.5			tr .006 tr tr	
276.1 314.3	314.3	bonate stringers throughout, foliation at 45° to core axis at 290.0', 52° to core axis at 312.0'. - 289.0' - 290.0' - irregular quartz-carbonate vein, clean. - 291.7' - 296.0' - fracturing and silicification, 3-5% quartz-carbonate-epidote stringers. - 307.1' - 310.1' - 3-5% quartz-carbonate stringers, trace	17566 17566 17566 17570 17571 17573 17574 17576		276.1 281.0 286.0 289.0 290.0 291.7 296.0 301.0 304.0 307.1 310.1	286.0 289.0 290.0 291.7 296.0 301.0 304.0 307.1 310.1	5.0 3.0 1.0 1.7 4.3 5.0 3.0 3.1		.008 .006 tr .012 tr .008 tr tr .002	

NAME OF PROPERTY___KASAGIMINNIS LAKE

HOLE NO. KAS-87A-25

SHEET NO. 4 OF 4

FC	OTAGE	DESCRIPTION		·	SAMPL	. E		ASSAY	5	
FROM	10	DESCRIPTION	NO.	7, SUL PH IDE 5	FROM	FOOTAGE TD	TOTAL	oz/to	n	
314.	3 351.0	Cont'd.								
		- 314.3' - 324.9' - fractured, silicified with 3-5% irregular quartz-carbonate-epidote stringers.	17577 17578 17579		314.3 318.0 321.0	318.0 321.0 324.9	3.7 3.0 3.9	tr tr tr		į
		- 346.0' - 351.0' - as above with irregular mauve coloured quartz-carbonate fracture fillings.	17580		346.0	351.0	5.0	tr		
	351.0	E.O.H.								
							·			
						İ				
8										
6								mana	en	
								Made		
LANGRIDGES - TOMONTO - 368-1166										
3										

NAME OF	PROPERTY _	KASAGI	MINNIS L	AKE				
HOLE NO.	KAS-87A-26	ı	FNGTH					
LOCATION	20+00W,	15+25N						
LATITUDE		D	EPARTURE		_			
ELEVATION	ı <u></u>	A	ZIMUTH	180°		DIP	53.5°	
STARTED	September 3	0/87	NISHED	October 0	1/87			

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0.0	53.5°				
200.0	42.0°				
400.0	39.6°				

HOLE NO. KAS-87A-26 SHEET NO. 1 of 1
REMARK PA786808

SUMMARY LOG

LOGGED BY P. Taylor

FOO	TAGE	DESCRIPTION			SAMP	LE			,	SSA	Y S
FROM	то	SUMMARY LOG	NO.	SUL PHI	FROM	FOOTAGE TO	TOTAL	36	ઇ	oz/Yon	oz/ton
0.0	4.0	CASING.									
4.0 114.2 119.2	119.2 127.6	MAFIC FLOW. FELSIC TO INTERMEDIATE TUFF. MAFIC FLOW.						ı			
238.6	238.6 242.8 251.0	FELSIC TO INTERMEDIATE TUFF. MAFIC FLOW. FELSIC TO INTERMEDIATE TUFF.								į	
255.8	252.0 255.8 269.2	MAFIC FLOW. FELSIC TO INTERMEDIATE TUFF. MAFIC FLOW.									
i	297.4 346.0 382.1	FELSIC TO INTERMEDIATE TUFF. MAFIC FLOW. SHEARED IRON FORMATION AND MAFIC VOLCANICS.	9686		359.0	363.0	4.0			.168	
6-1168			9687 9688		363.0 366.0	366.0 371.0	3.0 5.0			.136 .130 .130	Check Check Check
395.8	395.8 415.0 415.0	SHEARED MAFIC VOLCANICS. MAFIC FLOW. E.O.H.	9692		382.1	387.0	4.9			.100	Check

NAME OF	PROPERTY	KASAGIMINNIS LAI	KE		
HOLE NO.	KAS-87A-26	LENGTH	415.0'		
		15+25N			
		DEPARTURE			
ELEVATION		AZIMUTH	180°	DIP	-53.5°
		0/87 FINISHED			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200.0	42.0				t
400.0	39.6				

HOLE NO. KAS-87A-26HEET NO. 1 of 11

LOGGED BY P. Taylor

F 0 0 1	AGE				5 A M P	LE			A	SSAY	5	
FROM	то	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	26	16	OZ/TON	oz/ton	
0.0	4.0	Casing.			i							
4.0	114.2	Mafic Flow - greenish grey to dark green, very fine to medium grained; weakly foliated, irregular to wispy, indistinct banding. Modal percent: Amphibole 40-45% Quartz 30-35% Chlorite 10-15% Carbonate tr-2% Magnetite tr-1% Pyrite tr-1% Pyrrhotite tr-1% Foliation at 43° to core axis at 18.0', fracture at 38° to core axis at 14.5'; quartz-epidote-carbonate interflow bands common; trace pyrite and pyrrhotite common throughout section occuring as										
		disseminations or parallel to foliation surface. - 4.0' - 6.4' - trace to 1% pyrite-pyrrhotite occuring as disseminations or parallel to foliation surface; at 5.5', ½" quartz vein, concordant, with trace-1% very fine grained pyrite.	9601	1	4.0	6.4	2.4			tr		
	:		9602	1-2	6.4	7.4	1.0			tr		
			9603	1	7.4	10.0	2.6			tr		
			9604	1	10.0	12.9	2.9			tr		
		- 12.9' - 17.9' - typical mafic flow.	9605		12.9	17.9	5.0			tr		
- 1		- 17.9' - 22.6' - typical mafic flow.	9606		17.9	22.6	4.7			tr	İ	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS 87A-26

SHEET NO. 2 Of 11

FOO'	TAGE		SAMPLE FOOTAGE			ASSAYS				
FROM	τo	DESCRIPTION	но	'SULPH IDES	FROM	FOOTAGE TO	TOTAL	٠,	Au oz/ton	
4.0	114.6	Cont'd.						·		
		- 22.6' - 26.0' - mafic flow with siliceous, carbonaceous bands and coarser grained amphibole.	9607		22.6	26.0	3.4		tr	:
		- 26.0' - 31.0' - as per above.	9608		26.0	31.0	5.0		tr	
		- 31.0' - 36.0' - mafic flow with medium grained green amphi- bole.	9609		31.0	36.0	5.0		tr	
		- 36.0' - 41.0' - mafic flow with siliceous, carbonaceous bands and coarser grained amphibole 40.9' - 3/4" quartz - carbonate pod with amphibole clasts.	9610		36.0	41.0	5.0		tr	
		- 41.0' - 46.0' - mafic flow with intermittent 1/4" - ½" quartz - carbonate veinlets; concordant; medium grained amphibole fracture at 43° to core axis at 42.7'.	9611		41.0	46.0	5.0		tr	
		 46.0' - 51.0' - mafic flow with several 1/4" quartz-carbon- ate veinlets; concordant; foliation at 46° to core axis at 47.1'. 	9612		46.0	51.0	5.0		tr	
		- 51.0' - 56.0' - mafic flow with quartz-carbonate-epidote interflow bands and medium grained amphibole.	9613		51.0	56.0	5.0		tr	
		- 56.0' - 59.9' - as per above.	9614		56.0	59.9	3.9		tr	
		- 59.9' - 64.9' typical mafic flow.	9615		59.9	64.9	5.0		tr	
	_	- 64.9' - 66.0' - typical mafic flow. - 65.5' - 65.7' - wispy, discordant 1/8" quartz-carbonate veinlets.	9616		64.9	66.0	1.1		tr	
		- 66.0' - 71.0' - typical mafic flow, fracture at 39° to core axis at 66.0'.	9617	:	66.0	71.0	5.0		tr	
		- 71.0' - 76.0' - typical mafic flow.	9618		71.0	76.0	5.0	}	tr	
		- 76.0' - 78.8' - typical mafic flow, foliation at 41° to core axis at 76.0'.	9619		76.0	78.8	2.8		tr	
		- 78.8' - 82.0' - typical mafic flow.	9620		78.8	82.0	3.2		tr	

KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26 SHEET NO. 3 OF 11

FOO	TAGE				SAMP	E			ASSAYS	
FROM	то	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE	TOTAL		oz/ton	
4.0	114.6	Cont'd.								
]	- 82.0' - 86.0' - typical mafic flow.	9621		82.0	86.0	4.0		tr	
]	- 86.0' - 91.0' - typical mafic flow.	9622		86.0	91.0	5.0		tr	
]	- 91.0' - 94.5' - typical mafic flow.	9623		91.0	94.5	3.5	Į .	tr	
		- 94.5' - 97.7' - mafic flow strongly foliated with biotite lenses; foliation at 40° to core axis at 95.0'.	9624		94.5	97.7	3.2		.006	
		- 97.7' - 102.6' - typical mafic flow with several 1/4" to ½" quartz-carbonate-epidote veinlets at 39° to core axis; foliation at 37° to core axis at 98.6'.	9625		97.7	102.6	4.9		.004	
1		- 102.6' - 106.0' - typical mafic flow.	9626		102.6	106.0	3.4	1	.002	
		- 106.0' - 111.0' - typical mafic flow.	9627		106.0	111.0	5.0		tr	
		- 111.0' - 114.2' - typical mafic flow. - 113.8' - 114.2' - very fine grained; massive.	9628		111.0	114.2	3.2		tr	
114.6	119.2	Felsic to Intermediate Tuff or dark grey to brown to green; fine grained; strong to irregular banding; well foliated. Modal percent: Quartz Feldspar Amphibole 10-15% Sericite 5-10% Chlorite 5-10% Biotite 3-5% Carbonate 1-3% Pyrite tr-1% Pyrrhotite tr-1% Interflow bands of quartz-carbonate-epidote occuring infrequently; pyrite and pyrrhotite occuring as disseminated grains or thin stringers parallel to foliation; foliation at 52° to core axis at 118.0'.	9629 9630			116.3	2.1		tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26

SHEET NO. 4 OF 11

F001	AGE				SAMP	. E			ASSAYS	
FROM	10	DESCRIPTION	NO.	S SULPH IDES	FROM	POOTAGE	TOTAL	`.	oz/ton	
119.2	127.6	Mafic Flow - typical; foliation at 66° to core axis at - 119.2' - 123.0' - typical 123.0' - 126.6' - typical.	9631 9632	1	1	123.0 126.6	3.8 3.6		tr tr	
		- 126.0' - ½" quartz-carbonate vein 126.6' - 127.6' - mafic flow; slightly distorted; trace-1% <u>pyrite</u> occuring as disseminated grains or wispy irregular blebs and veinlets along more siliceous contacts.	9633	1	126.6	127.6	1.0		tr	
127.6	238.6	Felsic to Intermediate Tuff - dark grey to brown to green, fine grained, strong to irregular banding; well foliated. Modal percent: Quartz Feldspar 45-50% Amphibole 10-15% Sericite 10-15% Chlorite 5-10% Carbonate 3-5% Biotite 3-5% Pyrite trace Magnetite trace								
		Interflow bands of quartz-carbonate-epidote abundant, stretched to angular quartz lapilli abundant; pyrite occuring as disseminated grains or thin stringers parallel to foliation.								
		- 127.6' - 130.0' - typical.	9634		127.6	130.0	2.4	1	tr	
		 130.0' - 135.0' - typical. 133.3' - 133.5' - microfaulting with a minor breccia zone and a mylonite matrix; 1-2% pyrite in matrix. 	9635	1-2	130.0	135.0	5.0		tr	
		- 135.0' - 139.9' - typical.	9636		135.0	139.9	4.9]	tr	
		- 139.9' - 144.8' - typical, foliation at 49° to core axis at 144.0' 142.4' - 142.7' - brecciated zone with mylonite matrix, trace pyrite in matrix 142.9' - 143.3' - ½" concordant quartz veins.	9637	tr	139.9	144.8	4.9		tr	

NAME OF PROPERTY_KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26 SHEET NO. 5 of 11

F001	TAGE	OFFICE CONTRACTOR OF THE PROPERTY OF THE PROPE		-	SAMP	E			ASSAYS	
FROM	10	DESCRIPTION	NO.	*, ŠULPN IDES	FROM	FOOTAGE	TOTAL	7.	Au oz/ton	
127.6	238.6	Cont'd.								
		- 144.8' - 149.0' - typical; foliation at 50° to core axis at 148.6'. - 148.6' - 148.7' - 1% pyrite occuring as small blebs parallel to foliation.	9638		144.8	149.0	4.2		.002	
		- 149.0' - 154.0' - typical. - 153.2' - 153.5' - quartz-carbonate-epi- dote veinlet.	9639		149.0	154.0	5.0		tr	
		- 154.0' - 158.8' - typical; foliation at 48° to core axis at 156.5', trace pyrite.	9640	tr	154.0	158.8	4.8		tr	
		- 158.8' - 163.0' - typical. - 158.9' - 159.0' - quartz-carbonate vein with trace pyrite on contact; contact at 53° to core axis.	9641		158.8	163.0	4.2		tr	
		- 163.0' - 168.0' - typical; fracture at 24° to core axis at 165.4'.	9642		163.0	168.0	5.0		tr	
		- 168.0' - 173.0' - typical.	9643		168.0	173.0	5.0		tr	
		- 173.0' - 176.0' - typical; foliation at 48° to core axis at 175.0'.	9644		173.0	176.0	3.0		tr	
-		- 176.0' - 181.0' - typical. - 178.6' - 179.0' - ½" and 2" quartz car- bonate veins, trace pyrite on contact.	9645	tr	176.0	181.0	5.0		tr	
Landari D. 455 - 1050 -		- 181.0' - 186.0' - typical 182.2' - 182.8' - breccia zone with mylo- nite matrix 183.1' - 183.4' - zone of quartz veining; pyrite occuring as disseminations or as small blebs on or near contact of quartz vein and tuff.	9646	1-2	181.0	186.0	5.0		tr	
		- 186.0' - 191.0' - typical. - 190.6' - 1/16" band of pyrite on folia- tion plane.	9647	1	186.0	191.0	5.0		tr	
Table 1		- 191.0' - 196.0' - typical, foliation at 54° to core axis at 194.0'.	9648		191.0	196.0	5.0		tr	

KASAGIMINNIS LAKE

SHEET NO. 6 of 11

FOOT	AGE	OF CONTROL			SAMPL	. E			A	SSAYS	
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE 10	TOTAL		o	z/ton	
127.6	238.6	Cont'd 193.2' - 193.3' - quartz-carbonate vein; concordant.									
		 196.0' - 201.0' - typical tuff with trace-1% pyrite occuring as small blebs or crude stringers parallel to the foliation. 197.2' - 197.4' - 2-5% pyrrhotite/pyrite. 198.0' - 198.3' - epidote-feldspar alteration showing fracture displacement; 2% pyrrhotite occuring as blebs in a microbrecciated quartz-carbonate zone. 199.1' - 199.5' - 2" quartz vein with 21/4" quartz-carbonate veinlets; quartz vein has 1-2% pyrrhotite/pyrite occuring as blebs. 	9649	1-5	196.0	201.0	5.0			tr	
		- 201.0' - 206.0' - typical; 1% pyrrhotite/pyrite occuring as small blebs parallel to the foliation.	9650	1	201.0	206.0	5.0			tr	
		- 206.0' - 210.6' - typical.	9651		206.0	210.6	4.6			tr	
		- 210.6' - 215.0' - typical; foliation at 55° to core axis at 212.2' 214.2' - 214.3' - fracture with quartz-carbonate-epidote alteration crosscutting foliation at 30° to core axis.			210.6	215.0	4.4			tr	
		- 215.0' - 220.0' - minor microfaulting and brecciation with a mylonite matrix and quartz-carbonate-interflow bands.	9653		215.0	220.0	5.0			tr	
. I		- 220.0' - 223.0' - as per 215.0' - 220.0'.	9654		220.0	223.0	3.0	1		tr	
20 - 100 - 1		- 223.0' - 228.0' - typical; 1% pyrite as small blebs para- llel to foliation. - 224.7' - 225.0' - quartz-carbonate vein; concordant; contact at 48° to core axis; 1% pyrite as disseminated blebs or patch- es.	9655	1	223.0	228.0	5.0			tr	
]	- 228.0' - 233.0' - typical; foliation at 59° to core axis at 231.0'.	9656		228.0	233.0	5.0			tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26 SHEET NO. 7 of 11

F001	TAGE	DESCRIPTION			SAMPI				ASSAYS	
FROM	70	DESCRIPTION	HO.	1 SULPH IDES	FROM	FOOTAGE	TOTAL	,	Au oz/ton	
127.6	238.6	Cont'd 232.6' - 233.0' - brecciation zone with mylonite matrix and sericitic-feldspar alteration.								
	ļļ	- 233.0' - 237.0' - typical.	9657	l	233.0	237.0	4.0		tr	
		- 237.0' - 238.6' - typical.	9658		237.0	238.6	1.6		tr	
238.6	242.8	Mafic Flow - dark green to grey green; fine to medium grained; massive to weakly foliated, irregularly banded to no banding. Modal percent: Amphibole 50-55% Quartz Feldspar Jeldspar	9659		238.6	242.8	4.2		tr	
		Foliation at 46° to core axis at 239.5'; trace sulphide as disseminated grains.								
		 241.8' - 242.8' - zone of extensive quartz-carbonate-epi- dote irregular interflow banding. 								
242.8	251.0	Felsic to Intermediate Tuff - typical, foliation at 50° to core axis at 246.4'.	9660 9661			247.0 251.0			tr	
251.0	252.0	Mafic Flow - typical as per 238.6' - 242.8', foliation at 51° to core axis at 251.5'.	9662		251.0	252.0	1.0		tr	
252.0	255.8	Felsic to Intermediate Tuff - typical, trace-1% pyrite as disseminated grains or irregular stringers parallel to the foliation.	9663	1	252.0	255.8	3.8		tr	
255.8	269.2		9664 9665 9666	tr	255.8 260.1 265.0	265.0	4.9		tr tr tr	
Ś								}		

KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26

SHEET NO. 8 OF 11

FO	OT AGE	DESCRIPTION			SAMP	-E	-	ASSAYS	
FROM	10	DESCRIPTION	NO.	7, SULPH IDES	FROM	FOOTAGE	TOTAL	oz?tor	
269.	2 297.4	felsic to Intermediate Tuff - typical as per 127.6' - 238.6'; foliation at 52° to core axis at 274.0', fracture at 12° to core axis at 287.0'; trace pyrite on fracture surface.	9667 9668 9669 9670 9671 9672	tr tr	274.0 279.0 284.0 288.3	274.0 279.0 284.0 288.3 293.0 297.4	4.8 5.0 5.0 4.3 4.7 4.4	tr tr tr tr tr tr	
.ANGREDGEE - TORONTO - 366-1168	346.0	Mafic Flow - dark green to grey green; foliated to massive; in frequent, irregular banding. Modal percent: Amphibole 50-55% Quartz	9673 9674 9675 9676 9677 9678		301.0 306.0 311.0 316.0	301.0 306.0 311.0 316.0 321.0 326.0	3.6 5.0 5.0 5.0	tr tr tr tr	

NAME OF PROPERTY__KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26

SHEET NO. 9 of 11

F00	TAGE				SAMPI	. E			ASSAYS	
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	3	Au oz/ton	
297.4	346.0	Cont'd.								
		- 325.1' - 325.4' - quartz-carbonate-epi- dote vein.								
		- 326.0' - 331.0' - medium grained mafic flow; 1% pyrite as disseminated grains or as wispy stringers on fracture surfaces 330.5' - 330.6' - quartz-carbonate veinlet.	9679	1	326.0	331.0	5.0		tr	
		- 331.0' - 336.0' - medium grained flow; trace to 1% pyrite as disseminated grains or small blebs 333.0' - 333.6' - quartz-carbonate-epidote-tourmaline with trace to 1% pyrite occuring as blebs.	9680	tr-1	331.0	336.0	5.0		tr	
		- $336.0'$ - $341.0'$ - typical, foliation at 60° to core axis at $340.0'$.	9681		336.0	341.0	5.0		.004	
		- 341.0' - 346.0' - magnetite-rich zone occuring as dissemin- ated grains; trace-1% pyrite occuring as disseminated grains or small blebs.	9682		341.0	346.0	5.0		tr	
346.0	382.1	Sheared Iron Formation and Mafic Volcanics - black to grey to dark green; fine to medium grained; striped to mottled to banded.								
		Modal percent: Quartz Feldspar Amphibole Garnet Carbonate Magnetite Pyrrhotite Magnetite occuring as disseminated grains in felsic bands or as				Andrew Market Market				
		wispy bands; garnets occuring in amphibole-rich bands as stretched or irregularly shaped poikiloblastic grains; pyrrhotite and pyrite occuring as disseminated wispy blebs, as cores or mantles in garnets; as blebs parallel to foliation; quartz-carbonate-epidote-pyrite bands common.								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26

SHEET NO. 10 of 1

F00	TAGE	DESCRIPTION			SAMPL	.E			ASSAY	s
FROM	то	DESCRIP (ION	NO.	Z SULPH IDES	FROM	FOOTAGE 10	TOTAL	1	Au oz/ta	on
346.0	382.1	Cont'd.							[- -	
		- 346.0' - 349.3' - typical, foliation at 51° to core axis at 348.4'.	9683	tr	346.0	349.3	3.3		tr	
		- 349.3' - 354.0' - garnet poikiloblast-rich zone; trace-1% pyrite/pyrrhotite; several quartz-carbon- ate interflow bands.	9684	tr-1	349.3	354.0	4.7		.020	
		- 354.0' - 359.0' - as per 349.3' - 354.0'.	9685	tr-1	354.0	359.0	5.0		.012	
		- 359.0' - 363.0' - garnet poikiloblast-rich zone; 1% pyrite/ pyrrhotite; several quartz-carbonate interflow bands.	9686	1	359.0	363.0	4.0		.168 .154	
		- 363.0' - 366.0' - as per 359.0' - 363.0', 1% pyrite/pyrrho- tite occuring as disseminated grains or wispy blebs parallel to foliation.	9687	1	363.0	366.0	3.0		.136 .130	
		- 366.0' - 371.0' - typical; foliation at 46° to core axis at 368.8'. - 370.0' - 371.0' - 1-2% pyrite/pyrrhotite.	9688	1-2	366.0	371.0	5.0		.130	
		- 371.0' - 376.0' - typical; garnet poikiloblast-rich.	9689	tr-1	371.0	376.0	5.0		tr	1
		- 376.0' - 381.0' - typical; garnet-poikiloblast-rich.	9690	tr-1	376.0	381.0	5.0		.016	
		- 381.0' - 382.1' - typical, garnet-poikiloblast-rich.	9691	tr	381.0	382.1	1.1		.012	
382.1	395.8	Sheared Mafic Volcanics - as per 346.0' - 382.1', trace magnetite, disseminated, trace-1% pyrite/pyrrhotite; limonite-hematite staining on fracture surfaces.								
		- 382.1' - 387.0' - typical; fracture at 34° to core axis at 383.5'; with 2" quartz-carbonate-epidote vein 384.7' - 1/16" blebs or arsenopyrite parallel to the foliation.	9692		382.1	387.0	4.9		.100	
		- 387.0' - 392.0' - typical.	9693		387.0	392.0	5.0		tr	
		- 392.0' - 395.8' - garnet poikiloblast rich; foliation at 43° to core axis at 392.8'.	9694		392.0	395.8	3.8		tr	
LANGRIDGES - TORONTO - 396-116		- 392.0' - 395.8' - garnet poikiloblast rich; foliation at				ł				

KASAGIMINNIS LAKE

HOLE NO. KAS-87A-26 SHEET NO. 11 Of 11

FOO	TAGE				SAMPL	.E			ASSAYS	
FROM	10	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	,	oz/ton	
395.8	415.0	Mafic Flow - dark green to grey-green, fine to medium grained; massive to poorly foliated. Modal percent: Amphibole 45-50% Chlorite 10-15% Quartz 30-35% Feldspar 1 30-35% Carbonate tr-1% Hematite tr-1% Pyrite trace Pyrrhotite trace								
_		Trace pyrite/pyrrhotite occuring as disseminated grains or blebs parallel to the foliation; minor hematite staining on fracture surface common. - 395.8' - 400.0' - typical.	9695		395.8	400.0	4.2		tr	
		- 397.7'- 397.9' - sericitic and potassic alteration; minor hematite staining.								
		- 400.0' - 405.0' - typical; fracture at 22° to core axis at 400.0'.	9696		400.0	405.0	5.0		tr	:
		- 405.0' - 410.0' - typical.	9697		405.0	410.0	5.0		.002	
		- 410.0' - 415.0' - typical.	9698		410.0	415.0	5.0		tr	
	415.0	E.O.H.								
									82	Jaams

NAME OF	PROPERTY _	KASAGIMINNI	S LAKE			
HOLE NO.	KAS-87A-2	27 LENGTH	667.0'			
LOCATION	20+00W,	16+25N				
LATITUDE	·	DEPARTUR	E			
ELEVATION		AZIMUTH	180°	DIP	-60°	
STABTED	October 1	/87 AZIMUTH _	October	3/87		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-60.0				
200.0	-59.0				
400.0	-50.5				
650.0	-44.5				

HOLE NO. KAS-87A-2HEET NO. 1 Of 1
REMARKS PA786808

SUMMARY LOG

LOGGED BY B.E. Elliott

FO	DTAGE	DESCRIPTION			SAMP	LE			A	SSAY	S	
FRO	и то	DESCRIPTION SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	36	ĸ	oz/Yon	OZ/TON	
0.0	8.6	CASING.										
8.6	21.8	FELSIC TO INTERMEDIATE TUFF.		1								
21.8	22.4	MYLONITE.									l	1
22.4	81.8	FELSIC TO INTERMEDIATE TUFF.										
81.8	95.8	MYLONITE.										
95.8	121.0	FELSIC TO INTERMEDIATE TUFF.		Ì '								Ì
121.0	212.8	MAFIC FLOWS.										
212.8	236.0	FELSIC TO INTERMEDIATE TUFF.										
236.0	296.8	MAFIC FLOWS.										
296.8	384.0	INTERMEDIATE TO MAFIC TUFF.								,	ļ	ł
384.0	422.9	SHEARED INTERMEDIATE TO MAFIC TUFF.		1					:			
422.9	489.6	INTERMEDIATE TO MAFIC TUFF.				1						
489.6		MAFIC FLOWS.										İ
549.6	1	GARNETIFEROUS MAFIC VOLCANIC.										
560.1	1	SHEARED MAFIC FLOWS.										Ì
573.6 <u>۽</u>	607.1	MAFIC FLOWS.	ı									ĺ
ैं 607 . 1	625.3	SHEARED IRON FORMATION AND MAFIC VOLCANIC.	9808		618.6	621.6				.028		
6 626 3	638.0	MAETO NOLCANIO	9809	1	621.6	625.3	3.7			.042		
625.3 638.0	630.0	MAFIC VOLCANIC.		1			!					
LO.	i	FELSIC INTRUSIVE.										
639.2	1	MAFIC ELOUS										
642.8		MAFIC FLOWS.										ļ
1	667.0	E.O.H.	1]		Ŋ			!	1

NAME O	F PROPERTY _	KASAGIMINNIS L	AKE		
HOLE N	o. <u>KAS-87A-27</u>	LENGTH .	667.0'		
LOCATIO	20+00W,	16+25N			
LATITUD	Ε	DEPARTU	RE		
ELEVATI	ON	AZIMUTH	180°	DIP	60°
STARTE	October 1/8	7 FINISHED	October 0	3/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-60.0				
200.0	-59.0				
400.0	-50.5				
650.0	-44.5				

HOLE NO. KAS-87A-27 SHEET NO. 1 of 8 REMARKS PA786808

LOGGED BY B.E. Elliott

FOOT	TAGE	DESCRIPTION	SAMPLE				A	S 5 A Y	/ S			
FROM	то	DESCRIPTION	но.	SULPH-	FROM	FOOTAGE TO	TOTAL	26	f.	OZ/HON	oz/ton	
0.0	8.6	<u>Casing</u> .							_			
8.6	21.8	fine grained, laminated to banded.	9701 9702 9703		8.6 13.6 18.6	13.6 18.6 21.4	5.0 5.0 2.8			tr tr tr		
		Texture - rare quartz eyes, frequently segregated sericite, quartz chlorite and amphibole bands; foliated 30° to core axis at 16.0'; few to several quartz-carbonate-chlorite-epidote veinlets and fracture fillings, few quartz veinlets up to 1.0" with minor carbonate-trace pyrite-trace hematite.										
21.8	22.4	Mylonite - medium grey, fine grained, schistose. Modal percent: Quartz 60-65% Sericite 25-35% Pyrite tr-1% Chlorite trace Carbonate trace	9704		21.4	22.8	1.4			.002		
		Texture - highly fractured with quartz-epidote infilling; trace-1% disseminated pyrite.					1					
22.4	81.8		9705 9706 9707		22.8 40.0 52.2	27.8 45.0 57.2	5.0 5.0 5.0			tr tr tr		
		- 57.2' - 58.9' - several 1" quartz-carbonate-chlorite vein- lets; concordant to subconcordant (30° to 40° to core axis); trace-1% disseminated	9708		57.2	58.9	1.7			tr	i	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-27 SHEET NO. 2 Of 8

F00	r AGE	DESCRIPTION			SAMPL				ASSAYS	
FROM	70	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	Au pz/ton	
22.4	81.8	Cont'd.								
		pyrite in quartz veins.	9709 9710		58.9 63.9	63.9 68.9			tr tr	
		 76.0' - 76.6' - silicified, carbonatized, chloritized, potassically altered; trace to 0.5% pyrite. 	9711		76.0	77.0	1.0		tr	
81.8	95.8	Mylonite - light grey to pink, very fine grained, finely laminated Modal percent: Quartz 55-60% Feldspar 20-25% Sericite 10-15% Carbonate 5% Pyrite trace Hematite trace	9712 9713 9714		81.8 86.8 91.8	86.8 91.8 95.8			tr tr tr	
05.0		Texture - finely laminated, very fine quartz crystals; 5% carbonate throughout; trace disseminated pyrite; few concordant quartz veinlets.					·			
95.8	121.0	Felsic to Intermediate Tuff - typical as per 8.6' - 21.8' 101.2' - 102.3' - felsic tuff; typical.	9715 9716		101.0 109.5	102.5 114.5	1.5 5.0		tr tr	
		- 114.6' - 115.3' - sheared; 25 to 30% carbonate; 5% magne- tite as fine grains and clots; 5% pyrite as disseminations and wisps; chloritized.	9717		114.5	117.5	3.0		tr	
		- 116.0' - 117.1' - sheared; 10-15% carbonate; chloritized; 10-15% magnetite; 5-10% pyrite.								
56-1168		- 117.1' - 121.0' - typical; minor fracturing with quartz- carbonate.	9718		117.5	121.0	3.5		tr	
121.0	212.8	Mafic Flows - medium to dark green to grey, fine to medium grained, weakly foliated, striped to crudely banded, possibly sheared. Modal percent: Quartz Feldspar Amphibole Annhibole Carbonate Tr-2%								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-27

__ SHEET NO. 3 Of 8

٢	FOOT	AGE				SAMPL	E			ASSAYS	·
十	FROM	то	DESCRIPTION	110.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	Au loz/tor	
	121.0	212.8	Cont'd. Magnetite tr-2%								
			Pyrite tr-1% Pyrrhotite tr-1%								
			Texture - striped to crudely banded with green amphibole-rich bands and grey quartz-feldspar-rich bands. Locally numerous quartz-carbonate-sulphide; veinlets generally concordant to subconcordant; trace-1% disseminated pyrite and/or pyrrhotite; locally minor magnetite; locally carbonatized and/or chloritized; foliated at 45° to core axis at 137.0'.								
			- 121.0' - 151.1' - typical; trace disseminated pyrite; locally trace magnetite and carbonate; foliated 45° to core axis at 150.0'.	9719 9720		126.0 131.0				tr tr	
			- 151.1' - 161.7' - typical but with 1-3% magnetite; foliated 30° to core axis at 171.0'; rare 1" quartz veinlets, discordant.	9721 9722		151.0 156.0	156.0 161.0			tr tr	
		-	 - 161.7' - 163.5' - sheared; 0.5% pyrite; foliation 20° to core axis. - 162.8' - 163.0' - quartz vein with trace pyrite along contacts; trace carbonate. 	9723		161.0	163.5	2.5		tr	
			 163.5' - 212.8' - typical; trace-2% magnetite; trace-1% pyrite disseminations; very rare garnets; few quartz-carbonate veinlets. 	9724 9725 9726		163.5 168.5 173.5	173.5	5.0		tr tr tr	
6-1168			 178.0' - 179.0' - several irregular quart veins with 2% disseminated pyrite in wallrock, trace chalcopyrite. 196.0' - 200.0' - up to 5% biotite. 	9727 9728 9729 9730 9731	1	178.0 179.0 184.0 189.0 194.0	179.0 184.0 189.0 194.0 199.0	5.0 5.0 5.0		tr tr tr tr	
MONTO - 36			- 196.0' - 212.8' - medium grained amphi- bole phenocrysts.								
LANGRIDGES - TORONTO - 366-1168	212.8	236.0	<u>felsic to Intermediate Tuff</u> - as per 8.6' - 21.8'; numerous quartz carbonate-chlorite interbands or veinlets; concordant to subconcordant; locally 2-3% biotite; foliation 45° to core axis at 231.0'; trace sulphide as disseminations and associated with veining.	9733 9734		217.8	217.8 222.8 227.8 230.1	5.0 5.0		tr tr tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-27 SHEET NO. 4 of 8

FOO	TAGE				SAMP	- E			ASSAYS]
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL		Au oz/ton	
236.0	296.8	Mafic Flows - medium to dark green-grey, fine grained, massive to weakly foliated.	9736		236.0	241.0	5.0		tr	
		Modal percent: Amphibole 55-60% Chlorite Plagioclase 40-45% Quartz Pyrite trace								
		Carbonate trace		}						
		Texture - rare quartz-carbonate-chlorite-epidote-sulphide veinlets locally chloritized; few carbonate-epidote interbands (less than 1").				1				
		- 236.0' - 268.7' - typical.								
		- 268.7' - 296.8' - variably carbonatized, silicified with numerous quartz-carbonate filled fractures and carbonate-epidote filled fractures with epidote haloes; trace sulphide; locally minor biotite; locally upto 3% pyrite as disseminations associated with wispy carbonate.	9737 9738 9739 9740 9741 9742 9743		268.7 271.2 276.2 281.2 286.2 291.2 295.2	276.2 281.2 286.2 291.2	5.0 5.0 5.0 5.0 4.0		tr tr tr tr .002 tr	
296.8	384.0	Intermediate to Mafic Tuff - medium green to grey to brown, fine grained, well-foliated, laminated. Modal percent: Amphibole 30-35%								
1		Quartz Plagioclase] 40-45%			1			1	1	1
366-116.B		Biotite 5-10% Carbonate 5-10% Sericite 3-5% Chlorite 3-5% Pyrite trace								
LANGRIGGES - TORONTO - 366-1169		Texture - variably banded and laminated; abundant quartz-feldsparcarbonate eyes; variable potassic alteration giving a green-orange tinge; variable fracturing with a greenish quartz-carbonate infilling; pyrite as disseminations and wisps; numerous quartz-carbonat veinlets generally less than 1.0" and concordant to subconcordant; foliated 45° to core axis at 315.0' and 45° at 357.0'.								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-27

SHEET NO. 5 of 8

FOO	TAGE	OF CONTROL OF	SAMPLE FOOTAGE				ASSAYS			
FROM	70	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	7.	Au pz/ton	
296.8	384.0	Cont'd.								
		- 322.5' - 323.6' - highly brecciated with green quartz-car- bonate infilling; minor pyrite.	9749 9750 9751 9752 9753 9754 9755 9756 9757 9768 9760 9761	addi a mada dalama da mada da mada da mada da mada da mada da mada da mada da mada da mada da mada da mada da m	321.8 324.0 329.0 334.0 339.0 344.0 354.0 359.0 364.0 369.0 374.0 379.0	329.0 334.0 339.0 344.0 354.0 359.0 364.0 369.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr tr tr tr tr	
384.0	422.9	Sheared Intermediate to mafic Tuff - medium green to grey to brown, fine grained, banded and laminated to massive; numerous irregular quartz-carbonate veinlets and fracture fillings often with pale green potassic alteration haloes; variably carbonatized; 1-3% pyrite as disseminations, blebs and stringers and along contacts of quartz veinlets; numerous irregular hairline fractures with pale green carbonate, epidote, quartz infilling.	9762 9763 9764 9765 9766 9767 9768 9769		384.0 389.0 394.0 399.0 404.0 409.0 414.0 419.0	389.0 394.0 399.0 404.0 409.0 414.0 419.0 422.9	5.0 5.0 5.0 5.0 5.0		tr tr tr tr .002 .002	
422.9	489.6	Intermediate to Mafic Tuff - medium grey to green to brown, fine grained, banded to poorly banded. Modal percent: Amphibole 40-45% Quartz Plagioclase Biotite 3-5% Sericite 2-3% Pyrite 1-2% Magnetite tr-1% Carbonate trace Texture - crudely banded, locally few quartz-plagioclase eyes, locally amphibole-rich; few to several quartz-carbonate veinlets; pyrite as disseminations and wisps; banding 45° to core axis at 439.0'	9770 9771 9772 9773 9774 9775 9777 9778 9779		430.8 435.8 449.0 454.0 459.0 464.0 474.0 479.0 484.0	435.8 440.8 454.0 459.0 464.0 474.0 479.0 484.0 489.6	5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr .002 tr tr tr tr tr tr tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-27 SHEET NO. 6 Of 8

F00	TAGE	OFFICE CO.			SAMPI	Æ	_	ASSAYS	
FROM	10	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	Au pz/ton	
489.6	549.6	Mafic Flows - dark green-grey; fine to coarse-grained, massive to weakly foliated to crudely banded. Modal percent: Amphibole 35-40% Plagioclase Quartz 35-40% Chlorite 15-20% Pyrite tr-1% Carbonate trace							
		- 489.6' - 498.9' - fine grained, massive; trace-0.5% dis- seminated pyrite; few quartz-carbonate veinlets with trace pyrite; irregular to 30° to 40° to core axis.	9780 9781		489.6 494.6	494.6 498.9	5.0 4.3	tr tr	
		- 498.9' - 514.8' - sheared? medium to coarse grained; amphibolitic; few quartz-carbonate veinlets; striped to mottled 507.2' - 507.6' - chloritic shear with 3% pyrite as blebs and wisps 508.7' - 509.0' - quartz veinlets with 5% pyrite wisps and blebs.	9782		506.9	509.3	2.4	tr	
		- 514.8' - 549.6' - as per 498.9' - 513.8' but with trace-2% magnetite as disseminated grains; trace-0.5% disseminated, pyrite 515.2' - 515.8' - 2% disseminated pyrite.	9783 9784 9785 9786 9787 9788 9789 9790		514.8 516.0 521.0 526.0 531.0 536.0 541.0 546.0	516.0 521.0 524.0 531.0 536.0 541.0 546.0 549.6	1.2 5.0 5.0 5.0 5.0 5.0 5.0	tr tr tr tr tr tr tr	
549.6	560.1	Garnetiferous Mafic Volcanic - dark grey to green, fine grained, striped to mottled, poikiloblastic. Modal percent: Quartz Feldspar Amphibole Garnet Magnetite Pyrite Pyrrhotite Garnet Tr-1% Pyrrhotite	9791 9792 9793	ļ	549.6 552.6 556.6	552.6 556.6 560.1	3.0 4.0 3.5	.006 tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-27 SHEET NO. 7 of 8

F001	AGE	DESCRIPTION			SAMP	L E		ASSAYS				
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	3,	Au oz/ton			
549.6	560.1	Cont'd. Texture - magnetite as fine grained disseminations; garnets less than 1/32"; sulphides as disseminations and associated with few narrow quartz-carbonate veinlets.										
560.1	573.6	trace-0.5% disseminated sulphide.	9794 9795 9796		560.1 565.1 570.1	565.1 570.1 573.6	5.0 5.0 3.5		tr tr .002			
573.6	607.1	Mafic Flow - as per 498.9' - 514.8'; trace-1% disseminated pyrite; few quartz-carbonate veinlets.	9797 9798 9799 9800		573.6 578.6 583.6 588.6	578.6 583.6 588.6 593.6	5.0 5.0 5.0 5.0		tr tr .002 tr			
		- 593.6' - 607.1' - up to 2% disseminated pyrite and pyrrho- tite and rare blebs and stringers; trace to 1% magnetite.			593.6 598.6 603.6	598.6 603.6 607.1	5.0 5.0 3.5		tr tr .002			
607.1	625.3	Sheared Iron Formation and Mafic Volcanic - green to black to grey, fine grained, striped to mottled to banded. Modal percent: Quartz Feldspar 40-45% Amphibole 30-35% Garnet tr-5% Magnetite 0.5-2% Pyrite tr-2% Pyrrhotite tr-2% Carbonate trace Texture - magnetite as disseminated grains in felsic bands or as wispy bands, garnets in amphibole-rich bands as stretched poikiloblastic grains; pyrrhotite as disseminations and wisps in and around garnets and associated with numerous quartz-carbonate vein-	1	and the same with the same with the same with the same with the same same with the same same with the same same same same same same same sam								
		around garnets and associated with numerous quartz-carbonate wilets; foliation at 60° to core axis at 609.0'. - 607.2' - 607.3' - 10% pyrrhotite with 2% pyrite associa with irregular quartz-carbonate veining	9804		607.1 608.4 612.2 616.8 618.6 621.6	608.4 612.2 616.8 618.6 621.6 625.3	1.3 3.8 4.6 1.8 3.0 3.7		.008 .006 tr tr .028 .042			

HOLE NO. KAS-87A-27 SHEET NO. 8 OF 8

FOO	TAGE				SAMPI	.E		ASS AYS					
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	7	oz/t	0			
607.1	625.3	Cont'd. - 607.3' - 612.2' - up to 4% pyrrhotite and pyrite.											
625.3	638.0	<u>Mafic Volcanic</u> - dark green, fine grained, massive; typical mineralogy; rare quartz-carbonate stringers; locally trace mange-tite; trace-0.5% disseminated pyrite.	9810		625.3	630.3	5.0		tr				
638.0	639.2	Felsic Intrusion - white to pink, flecked with black, coarse grained, massive, pegmatitic. Modal percent: Quartz 45-50% Feldspar 45-50% Muscovite 5% Carbonate trace Texture - contacts 30° to core axis.	9811		638.0	639.2	1.2		tı				
639.2	642.8	Mafic Intrusion - medium grey to green, medium grained, massive. Modal percent: Amphibole 45-50% Chlorite 45% Feldspar 5% Texture - medium grained disseminated magnetite; lower contact 45° to core axis.	9812		639.2	642.8	3.6		tr				
	667.0	Mafic Flows - dark green, fine grained, massive and weakly foliated, typical mineralogy; trace magnetite; trace sulphide. - 642.8' - 646.0' - typical. - 646.0' - 646.2' - felsic intrusive as per 638.0' - 639.8'. - 646.0' - 667.0' - typical.	9813 9814 9815 9816		646.0 647.0	646.0 647.0 652.0 667.0	1.0 5.0		tr tr tr				
	667.0	E.O.H.							John State of the	dan	NO.		

ANGE - TOBOT - 35C

NAME OF	PROPERTY _	KASAG	IMINNIS LAKI	E			
	KAS-87A-28	3	LENGTH		606.01		
	19+00W,						
ELEVATION			AZIMUTH	180°		DIP	-60°
	October 4/						

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-60.0				
200.0	-52.8				
400.0					
606.0	-37.3				

HOLE NO. KAS-87A-28 SHEET NO. 1 Of 1
REMARKS PA786808

SUMMARY LOG

LOGGED BY B.E. Elliott

F 0 0 1	TAGE				SAMP	LE	ASSAYS					
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	3.0	¥	oz)4on	oz/ton	
0.0	7.0	CASING.]		
7.0	79.2	FELSIC TO INTERMEDIATE TUFF.										
79.2	97.4	MYLONITE.										
97.4	102.8	FELSIC TO INTERMEDIATE TUFF.										
02.8	106.6	MYLONITE.	İ									
06.6	127.1	FELSIC TO INTERMEDIATE TUFF.										
27.1	259.0	MAFIC FLOWS.										
59.0	265.4	FELSIC TO INTERMEDIATE TUFF.										
65.4	283.4	MAFIC FLOWS.										
83.4	286.0	SILTSTONE.										
86.0	401.7	FELSIC TO INTERMEDIATE TUFF.										
01.7	419.6	MAFIC FLOWS.								İ		
19.6	446.5	FELSIC TO INTERMEDIATE TUFF.										
46.5	519.7	MAFIC FLOWS.										
19.7	560.9	SHEARED IRON FORMATION AND MAFIC VOLCANIC.	1301		539.6	544.6				.028		
		·	1302 1303		544.6 548.3	548.3 549.7	3.7 1.4			.024		
			1304		549.7					.010		
1	56 2.5	MAFIC INTRUSIVE.										
62.5	606.0	MAFIC FLOWS.										
	606.0	E.O.H.										
						•			}	1		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-28 LENGTH 606,0'

LOCATION 19+00W, 16+25N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -60°

STARTED October 4/87 FINISHED October 6/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-60.0				
200.0	-52.8				
400.0					
606.0	-37.3				

HOLE NO. KAS-87A-28 SHEET NO. 1 of 7

LOGGED BY B.E. Elliott

FOO	TAGE	D E S C R I P T I O N			SAMP	LE		ASSAYS						
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	9%	4,6	oz/Yon	OZ/TON			
0.0	7.0	Casing.												
7.0	79.2	Felsic to Intermediate Tuff - medium grey to green to black, fine grained, laminated to banded.							j					
		Modal percent: Quartz Feldspar												
		Sericite 10-15% Amphibole 10-15%												
		Chlorite 5-10% Biotite 3-5%										-		
		Carbonate trace Pyrite trace										:		
		Texture - rare quartz eyes; frequently segregated sericite, quartz chlorite and amphibole bands; foliated 30° to core axis at 16.0' and 40° to core axis at 61.0'; few to several quartz-carbonate - chlorite - epidote veinlets and fracture fillings, often severely fractured and brecciated with pale green quartz-feldspar-epidote infillings.												
		- 12.1' - 14.0' - brecciated with quartz-feldspar-epidote in- fillings.	9817		12.1	14.1	2.0			tr				
8		- 35.5' - 37.6' - quartz veining.	9818	l	35.5	37.6	2.1			tr				
8		- 40.2' - 44.9' - variably brecciated as per 12.1' - 14.0'.	9819		40.2	44.9	4.7			tr				
		- 44.9' - 49.2' - light grey; more felsic.	9820 9821		44.9 51.3	49.2 53.9	4.3 2.6			tr tr				
Landrildes - Idrunic - 300-1700		- 56.0° - 57.9° - several irregular quartz veins with minor chlorite, trace carbonate; minor pyrite in haloes.	9822		55.6	57.9	2.3			tr				
TI DANGE		- 69.7' - 70.7' - few quartz veinlets with minor pyrite.	9823 9824		69.7 74.2	70.7 79.2	1.0 5.0			.002 tr				

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-28 SHEET NO. 2 of 7

F001	TAGE				SAMP	LE			ASSAYS	
FROM	10	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	7.	oz Au	
79.2	97.4	Mylonite - pink to grey, fine grained, laminated to banded. Modal percent: Quartz 50-55% Sericite 35-40% Epidote 5% Carbonate trace	9825 9826 9827 9828		79.2 84.2 89.2 94.2	84.2 89.2 94.2 97.4	5.0 5.0 5.0 3.2		.002 .002 .002 .002 tr	
		Texture - few quartz-carbonate veins, foliation; foliation 45° to core axis at 90.0'; laminations locally contorted.								
97.4	102.8	Felsic to Intermediate Tuff - typical as per 7.0' - 79.2'.	9829 9830		97.4 100.4	100.4 102.8	3.0 2.4		tr tr	
102.8	106.6	Mylonite? - as per 79.2' - 97.4'.	9831		102.8	106.6	3.8		.004	
106.6	127.1	Felsic to Intermediate Tuff - typical as per 7.0' - 79.2'; foliation 40° to core axis at 112.0'.								
		- 113.7' - 119.0' - variable fractured with pale green quartz-feldspar-epidote infilling; sev- eral quartz veinltes-carbonate; 2% dis- seminated pyrite.	9832 9833			116.0 117.0	2.3 1.0		tr tr	
			9834 9835		117.0 118.0	118.0	1.0 1.0		.002 tr	
		- 120.8' - 121.3' - quartz veins with minor pyrite in haloes.	9836		120.5	121.5	1.0		tr	
		- 121.3' - 127.1' - trace-0.5% pyrite as disseminations.	9837 9838		121.5 125.5	125.5 127.1	4.0 1.6		tr tr	
127.1	259.0	Mafic Flows - medium to dark green to grey, fine to medium grained, weakly foliated, striped to crudely banded, variably sheared. Modal percent: Quartz Feldspar Amphibole Chlorite Magnetite Carbonate Pyrite Pyrrhotite Mark green to grey, fine to medium grained. 40-45% 40-45% 45-50% tr-2% tr-1%								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-874-28 SHEET NO. 3 of 7

F001	r AGE				SAMPL	E			ASSAYS	
FROM	то	DESCRIPTION	NO.	7, SULPH IDES	FROM	FOOTAGE TO	TOTAL	٠,	oz/ton	
127.1	259.0	Cont'd. Texture - striped to crudely banded to massive; green amphibolerich bands and grey quartz-feldspar-rich bands; variable from very fine grained to medium grained (amphibolite); locally numerous quartz-carbonate veinlets - sulphide; veinlets generally concordant to subconcordant. Trace-1% disseminated pyrite and/or pyrrhotite; locally minor magnetite; locally carbonatized and/or chloritized; foliated 30° to core axis at 131.0'.								
		- 127.1' - 132.7' - several quartz-carbonate veinlets with trace-1% pyrite-pyrrhotite in haloes and trace chalcopyrite; trace-1% magnetite.	9839 9840		127.1 129.8	129.8 132.7			tr .002	
		- 132.7' - 144.0' - medium grained, amphibolitic; 2% magne- tite.	9841		132.7	137.7	5.0		tr	
		- 144.0' - 198.6' - typical 145.4' - 149.9' - up to 3% pyrite associated with quartz-carbonate veining 149.9' - 159.6' - up to 2% pyrite disseminations; minor carbonate 159.6' - 161.2' - quartz-carbonate veining; carbonatization; 3% pyrite in and around veinlets 162.3' - 162.5' - quartz vein with 5% pyrrhotite in fractures with lesser sulphide in haloes.	9842 9843 9844 9845 9846 9847 9848 9849 1500 9850 9851		145.4 149.9 154.9 159.6 161.2 162.5 167.5 172.5 177.5 180.0 194.0	149.9 154.9 159.6 161.2 162.5 167.5 172.5 177.5 180.0 185.0 198.6	5.0 4.7 1.8 1.3 5.0 5.0 5.0 5.0		.010 .002 .002 tr tr tr tr tr tr tr	
		 198.6' - 259.0' - atypical; no magnetite; very fine grained, massive, no banding or mottled appearance; locally phlogopite. 198.6' - 212.9' - numerous quartz-carbonate veinlets; locally brecciated with pale green to orange potassic alteration; trace-0.5% pyrite. 	1		198.6 203.6 208.6 216.0 222.1	203.6 208.6 212.9 218.6 226.0	5.0 4.3		tr tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-28 SHEET NO. 4 OF 7

F001	AGE	OFFICE			SAMPL	.E			ASSAYS	
FROM	10	DESCRIPTION	NO.	7. SULPH	FROM	FOOTAGE	TOTAL	3	oz/toni	
127.1	259.0	Cont'd. - 237.6' - 237.9' - 3% pyrrhotite blebs.	9857 9858 9859		237.2 238.2	238.2	1.0 5.0		tr .014 tr	
259.0	265.4	Felsic to Intermediate Tuff - medium green to grey to black, fine grained, laminated, typical as per 7.0' - 79.2' but poorly banded.	9860		259.0	261.0	2.0		tr	
265.4	283.4	Mafic Flows - typical but becoming tuffaceous near base of section 5% phlogopite; trace magnetite; several quartz-carbonate veinlets; foliated 60° to core axis at 281.0'.			265.4 270.4 275.4 280.4	270.4 275.4 280.4 283.4	5.0 5.0 5.0 3.0		.016 tr tr tr	
283.4	286.0	Siltstone - purplish grey to brown, fine grained, finely laminated Modal percent: Quartz 55-60% Sericite 30-35% Biotite 5% Carbonate trace Pyrite trace Texture - numerous wispy quartz-carbonate veinlets; laminations	9865		283.4	286.0	2.6		tr	
286.0	401.7	60° to core axis. Felsic to Intermediate Tuff - typical as per 7.0' - 79.2'; well laminated and banded; numerous fine quartz-carbonate eyes; well segregated mineralogy; foliation 60° to core axis at 296.0' and 60° at 330.0'; rare quartz-carbonate veinlets or interbands (concordant).	9866 9867		303.0 315.0				tr tr	
		 286.0' - 327.7' - typical. 327.7' - 329.5' - atypical; few quartz-carbonate veinlets; trace-0.5% pyrite. 	9868		327.7	329.5	1.8		tr	
		- 329.5' - 336.9' - typical 336.9' - 340.7' - atypical; few quartz-carbonate veinlets; trace-0.5% pyrite 340.7' - 346.0' - typical.	9869		336.9	340.7	3.8		tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-28 SHEET NO. 5 of 7

F001	TAGE	DESCRIPTION			SAMPL	.E			ASSAYS	
FROM	70	DESCRIPTION	NO.	2 SULPH IDES	FROM	FOOTAGE	TOTAL	•	Au oz/toni	
286.0	401.7	Cont'd.								
		- 346.0' - 356.0' - atypical; locally up to 1% disseminated pyrite.	9870 9871		346.0 351.0	351.0 356.0	5.0 5.0		tr .002	
		- 356.0' - 367.8' - typical.	9872		364.9	367.8	2.9		tr	
		- 367.8' - 389.4' - atypical - variably brecciated fractured, irregular quartz veining; variable po- tassic alteration and hematite staining; generally trace-1% pyrite.	9873 9874		367.8 372.8	372.8 375.4	5.0 2.6		tr tr	
		- 375.4' - 377.2' - quartz veining with 5% pyrite.	9875 9876 9877		375.4 377.2 382.2	377.2 382.2 384.3	1.8 5.0 2.1		tr tr tr	
		- 384.3' - 386.0' - loss of core.	9878		386.0	389.4	3.4		tr	
		- 389.4' - 401.7' - locally hematite staining; up to 1% disseminated pyrite.	9879 9880 9881		389.4 394.4 399.4	394.4 399.4 401.7	5.0 5.0 2.3		.002 tr tr	
401.7	419.6	Mafic Flow - dark green, fine grained, massive, typical mineralogy no magnetite; few quartz-carbonate veinlets; locally hematite staining; trace pyrite.	9882 9883		405.3 413.7	408.1 418.7	2.8 5.0		tr tr	
419.6	446.5	Felsic to Intermediate Tuff - typical but more felsic composition; few quartz-carbonate veinlets; trace disseminated pyrite.	9884		434.6	439.6	5.0		tr	
446.5	519.7	Mafic Flows - typical as per 127.1' - 259.0'; typical mineralogy with textural variations.								
		 - 446.5' - 467.5' - fine grained; variably striped to mottled trace magnetite; trace disseminated pyrite few quartz-carbonate veinlets; local potassic alteration. 	9885 9886			456.7 461.7	5.0 5.0		tr	
		- 467.5' - 483.8' - fine to medium grained; striped to mot- tled; trace-2% magnetite; trace-0.5% dis- seminated pyrite; rare quartz-carbonate veinlets.	9887 9888			481.0 483.8	5.0 2.8		tr tr	
						:				

HOLE NO. KAS-87A-28 SHEET NO. 6 of 7

FOO	TAGE				SAMPL	.E			ASSAYS	
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	٠,	Au oz/ton	
446.5	519.7	Cont'd.						,		
		- 483.8' - 519.7' - 3-5% very fine poikiloblastic garnets; 1-3% magnetite; very rare quartz vein with trace carbonate.	9889 9890 9891 9892 9893 9894		483.8 488.8 493.8 498.8 503.8 508.8	488.8 493.8 498.8 503.8 508.8 513.2	5.0		tr tr tr tr tr tr	
		- 513.2' - 514.6' - 3% pyrite, 1% pyrrho- tite associated with quartz veins and 1/4" poikiloblasts garnets.	9895 9896		513.2 514.6	514.6 519.6	1.4		tr tr	
519.7	560.9	Sheared Iron Formation and Mafic Volcanic - green to grey to black, fine grained, striped to mottled to banded. Modal percent: Quartz Feldspar Amphibole 30-35% Garnet tr-5% Magnetite 0.5-3% Pyrite tr-2% Carbonate tr-1%	9897 9898 9899	l	519.6 524.6 529.6	524.6 529.6 534.6	5.0		tr tr tr	
		Texture - magnetite in disseminated grains in felsic bands or as wispy bands; garnets in amphibole-rich bands as deformed poikilo-blasts; pyrite and pyrrhotite as disseminations and wisps in and around garnets and associated with several quartz-carbonate veinlets; foliation at 55° to core axis at 521.0' and 55° to core axis at 551.0'.	9900 1301 1302		534.6 539.6 544.6		5.0		tr .028 .024	
80		- 548.3' - 549.7' - 3-4% pyrite and pyrhotite.	1303 1304		548.3 549.7				.341	
8 1 2		- 553.3' - 554.1' - quartz vein; white; trace sulphide.	1305 1306		553.0 554.1	554.1 558.1			.002	
BOLLONG TO NOT TO THE		- 559.0' - 559.2' - quartz vein with 3% pyrrhotite in haloes.	1307 1308		558.1 559.1	559.1 560.9			tr tr	
560.9	562.5	Mafic Intrusion? - medium grey to green, medium grained, massive.	1309		560.9	562.5	1.6		tr	
1			1		-			ļ		-

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-28 SHEET NO. 7 of 7

F001	TAGE		55465:5:					SAMPL	. E			,	ASSAYS		
FROM	τo		DESCRIP	TION		NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	,]		Au oz/ton		
560.9	562.5	Cont'd.					,DIS	7.00		1012			727 <u>COIII</u>		
		C Q F	mphibole hlorite uartz eldspar]]	45-50% 45%					:			:		
		M Texture - medium grain	agnetite ed dissemina	ated magnetite	5% :.										
562.5	606.0	P M	mphibole hlorite lagioclase agnetite	ained, massive	55-60% 40-45% tr-2%	1310 1311		562.5 567.5	572.5	5.0 5.0			tr .006		
		P. Texture - very rare qu ed bands.	yrite artz-carbona	ate veinlets;	trace rare epidote alter-	1312		572.5	576.6	4.1			tr		
		- 576.6' - 578.8'	pyrite ar	r quartz veini nd 1% pyrrhoti 1% carbonate.	te along contacts;	1313 1314 1315 1316		576.6 578.6 596.0 601.0	578.8 583.6 601.0 606.0	2.2 5.0 5.0 5.0			.002 tr tr tr	i i	
	606.0	E.O.H.													
													-		
305															
מפי - 1985 בי מסיים בי מפיים מיים מיים מיים מיים מיים מיים מי								:						lan	r)
PNU I													"		

NAME OF	PROPERTY _	KASAGIMINNIS	LAKE		
HOLE NO.	_KAS-87A-2	9 LENGTH		406.0	
LOCATION	19+00W,	15+25N			
LATITUDE	·	DEPART	JRE		
ELEVATION	N	AZIMUTH	180°	DIP	52°
		7			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-52.0				
200.0	-48.5				
400.0	-43.2				

HOLE NO. KAS-87A-29 SHEET NO. 1 Of 1
REMARKS PA786808
PA786809

SUMMARY LOG
LOGGED BY P. Taylor

FOOT	TAGE	DESCRIPTION			5 A M P	LE			A	5 5 A '	/ S	
FROM	то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	ý	OZ/TON	oz/ton	
0.0	126.2	MAFIC FLOW.										
126.2	129.2	FELSIC TO INTERMEDIATE TUFF.										
129.2	145.2	MAFIC FLOW.										
145.2	237.8	FELSIC TO INTERMEDIATE TUFF.										
237.8	272.9	MAFIC FLOW.										i
272.9	302.6	FELSIC TO INTERMEDIATE TUFF.										
302.6	306.3	MAFIC FLOW.										
306.3	345.7	SHEARED MAFIC VOLCANIC (FLOWS).										
345.7	390.7	SHEARED IRON FORMATION AND MAFIC VOLCANIC.	9970		369.0	374.0	5.0			.068		
			9971		374.0	378.8	4.8			.164 .172	Check	
			9972		378.8	383.0	4.2			.062		
390.7	406.0	SHEARED MAFIC FLOW.	ŀ								1	
	406.0	E.O.H.			ł							
					<u> </u>		1			,		
011.6												
1					ļ		,					
2							:					
51						1						
LANGHILDES — ICHUMIC — 586-1188												
5												

NAME OF	PROPERTY	KASAGIMINNIS LA	KE		
HOLE NO	KAS-87A-29	LENGTH	406.0'		
LOCATION	19+00W,	15+25N			
LATITUDE	·	DEPARTUR	Ε		
ELEVATIO	N	AZIMUTH _	180°	DIP	52°
		87 FINISHED			

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-52.0				
200.0	-48.5				
400.0	-43.2				

HOLE NO.AS-87A-29 SHEET NO.1 OF 9
REMARKS PA786808
PA786809

FOOT	AGE	DESCRIPTION			S A M P	LE			A	SSA	' S	
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE	TOTAL	26	46	oz/TON	oz/ton	
0.0	126.2	Mafic Flow - greenish grey to dark green; fine to medium grained, massive to moderately foliated; indistinct, irregularly banding to no banding. Modal percent: Amphibole 40-45%	9901	tr	0.0	4.0	4.0			tr		
		Quartz Feldspar Chlorite Carbonate Pyrite Pyrrhotite Hematite Magnetite 10-15% tr-2% tr-2% tr-1% tr-1% tr-1% tr-1%										
		Fine grained, well foliated to medium grained and massive; quartz-carbonate - epidote interflow bands parallel to foliation common; hematite staining on fracture surfaces infrequent; trace pyrite-pyrrhotite occur as disseminated grains, wispy stringers or blebs parallel to the foliation.										
	parallel to the folia	- 4.0' - 5.0' - abundant quartz-carbonate-epidote veinlets.	9902	tr	4.0	5.0	1.0			tr		
		- 5.0' - 10.0' - at 8.3' 2% pyrrhotite on fracture surface; fractured at 23° to core axis.	9903	2	5.0	10.0	5.0			tr		
		- 10.0' - 15.0' - foliation at 54° to core axis at 11.5'.	9904		10.0	15.0	5.0			tr		
		- 28.0' - 29.2' - abundant distorted quartz-carbonate inter- flow bands; fracture at 31° to core axis at 29.2'.	9905		28.0	29.2	1.2			tr		
		- 33.0' - 34.0' - abundant, distorted quartz-carbonate inter- flow bands.	9906		33.0	34.0	1.0			tr		
		- 36.8' - 40.0' - trace-1% pyrrhotite on fracture surface; fracture at 23° to core axis at 39.0'.	9907	tr-1	36.8	40.0	3.2			tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-29

SHEET NO. 2 OF 9

FO	OTAGE								ASSAYS	
FROM	70	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL		Au oz/ton	
0.0	126.2	Cont'd.								
		- 42.0' - 43.0' - quartz-carbonate-epidote veinlet.	9908		42.0	43.0	1.0		tr	İ
		- 44.4' - fracture at 25° to core axis.	İ							
		- 57.0' - 58.4' - 1" quartz-carbonate-epidote vein with trace pyrite on contracts between mafic flow inclusions in quartz vein.	9909	tr	57.0	58.4	1.4		tr	
		- 66.2' - foliation at 58° to core axis.								İ
		- 66.9' - 71.0' - abundant quartz-carbonate-epidote fractures at 17° to core axis.	9910		66.9	71.0	4.1		tr	
		- 71.0' - 76.0' - as per 66.9' - 71.0'.	9911		71.0	76.0	5.0		tr	
1		- 83.7' - foliation at 56° to core axis.					1			i
		- 87.9' - 88.9' - abundant quartz-carbonate-epidote veinlets parallel to the foliation.	9912		87.9	88.9	1.0		tr	
		- 93.1' - 94.1' - quartz-carbonate-epidote veining, contact at 28° to core axis.	9913		93.1	94.1	1.0		tr	
		- 99.0' - 101.0' - 1% pyrite in a quartz-carbonate-epidote veinlet.	9914	1	99.0	101.0	2.0		tr	
		- 101.0' - 102.6' - trace to 1% disseminated pyrite.	9915	tr-1	101.0	102.6	1.6		tr	1
		- 103.0' - foliation at 45° to core axis.			<u> </u>					
		- 108.0' - 109.6' - 1.1' quartz-carbonate vein.	9916	ļ	108.0	109.6	1.6		tr	
		- 110.5' - 114.2' - 1.6' quartz-carbonate vein, contact at 35° to core axis.	9917		110.5	114.2	3.7		tr	
		- 118.6' - 119.6' - fracture displacment, fracture at 14° to core axis; carbonate on fracture surface.	9918		118.6	119.6	1.0		tr	
B0 1 200 1 0 2		- 119.6' - 122.2' - abundant quartz-carbonate-epidote irregu- lar banding; micro-brecciation with a mylonite matrix also abundant.	9919		119.6	122.2	2.6		tr	
- Capone		- 123.8' - foliation at 58° to core axis.								
Í	i i									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-29 SHEET NO. 3 OF 9

F001	TAGE	051000000			SAMPL	.E			ASSAYS	
FROM	10	DESCRIPTION	NO.	7, SULPH IDES	FROM	FOOTAGE 10	TOTAL	7.	Au pz/ton	
0.0	126.2	Cont'd. - 124.2' - 125.4' - 1" quartz-carbonate-epidote vein, contact at 65° to core axis.	9920		124.2	125.4	1.2		tr	
126.2	129.2	Felsic to Intermediate Tuff - dark grey to brown to green; fine grained; strong to irregular banding; well foliated. Modal percent: Quartz Feldspar Amphibole Chlorite Sericite Sericite Biotite Carbonate Pyrite Interflow bands of quartz-carbonate-epidote occur infrequently; pyrite occuring as disseminated grains or thin stringers parallel to foliation.	9921	tr	126.2	129.2	3.0		tr	
129.2	145.2	Mafic Flow - typical as per 0-126.2'. - 129.2' - 133.4' - abundant quartz-carbonate-epidote irregular veinlets parallel to the foliation; foliation at 48° to core axis at 131.4'; trace-1% pyrite/pyrrhotite as disseminated grains, or blebs or wispy stringers parallel to the foliation.	9922	tr-1	129.2	133.4	4.2		.008	
		· ·		tr-1	133.4	138.2	4.8		tr	
		- 138.2' - 143.0' - abundant quartz-carbonate-epidote vein- lets.	9924		138.2	143.0	4.8		tr	
		- 143.0' - 145.2' - typical; foliation at 57° to core axis at 144.2'.	9925 17700		143.0 145.2	145.2 146.2	2.2 1.0		tr tr	
145.2	237.8	Felsic to Intermediate Tuff - dark grey to brown to green; fine grained; strong to irregular banding; well foliated.	9926		146.2	151.1	4.9		tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-29

SHEET NO. 4 of 9

F001	TAGE				SAMPL	Ē			ASSAYS	
FROM	10	DESCRIPTION	NO.	'S SUL PH	FROM	FOOTAGE TO	TOTAL	•	oz/ton	
145.2	237.8	Cont'd. Modal percent: Quartz Feldspar Amphibole 15-20% Sericite 5-10% Chlorite 5-10% Carbonate tr-5% Biotite 1-3% Pyrite tr-1% Pyrrhotite tr-1% Magnetite trace								
		Interflow bands of quartz-carbonate-epidote abundant; stretched to angular quartz lapilli common to rare; zones of microfaulting and brecciation with a mylonite matrix; pyrite/pyrrhotite occuring as disseminated grains, fracture fillings or blebs and wispy stringers parallel to the foliation.								
		- 153.8' - foliation at 55° to core axis.								
		- 154.8' - 156.6' - trace pyrite as blebs parallel to foliation; 3/8" quartz-carbonate-epidote vein-let parallel to foliation; fracture at 36° to core axis at 155.6'.	9927	tr	154.8	156.6	1.8		tr	
		- 159.0' - 160.5' - 0.3' brecciation zone.	9928		159.0	160.5	1.5		.006	
		- 161.0' - 162.5' - several quartz-carbonate-epidote veinlets with trace pyrite.	9929	tr	161.0	162.5	1.5		tr	
		- 165.7' - 167.1' - abundant quartz-carbonate-epidote vein- lets.	9930		165.7	167.1	1.4		tr	
8		- 173.6' - foliation at 54° to core axis.						ļ		
Š S		- 184.5' - 186.6' - abundant fracture displacement quartz- carbonate-epidote-sericite on fracture surfaces.	9931		184.5	186.6	2.1		tr	
באוקייים ביי ביים משכים משכיים משכיים משכיים משכיים משכיים משכיים משכיים משכיים משביים		- 189.4' - 191.0' - abundant fractures, generally parallel to foliation; quartz-carbonate-epidote-hema- tite-trace pyrite on fracture surface.	9932	tr	189.4	191.0	1.6		tr	

NAME OF PROPERTY___KASAGIMINNIS_LAKE

HOLE NO. KAS-87A-29

SHEET NO. 5 OF 9

F001	TAGE	DESCRIPTION	DESCRIPTION					ASSAYS		
FROM	τo	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	7, [Au oz/ton	
145.2	237.8	Cont'd.		151.5	7.00	.,,	10111		027101	
		- 191.0' - 194.0' - abundant quartz-carbonate-epidote-hema- tite-trace pyrite, veins; from 191.3' - 191.4', 192.4' - 192.7', 193.2' - 193.4'.	9933	tr	191.0	194.0	3.0		tr	
		- 194.0' - 199.0' - fractures and brecciation abundant; quartz-carbonate-epidote-hematite-seri- cite-trace pyrite as disseminated grains, common on fracture surfaces.	9934	tr	194.0	199.0	5.0		tr	
		- 199.0' - 201.0' - as per 194.0' - 199.0'.	9935	tr	199.0	201.0	2.0		tr	
	 	- 201.0' - 205.0' - typical; trace-1% pyrite as blebs or stringers parallel to foliation; foliation at 54° to core axis at 204.7'.	9936	tr-1	201.0	205.0	4.0		tr	
		- 205.0' - 206.0' - trace-5% pyrite occuring as per 201.0' - 205.0'.	9937	tr-5	205.0	206.0	1.0		tr	
		- 206.0' - 211.0' - trace pyrite parallel to foliation.	9938	tr	206.0	211.0	5.0		tr	
]]	- 211.0' - 214.2' - typical.	9939	tr	211.0	214.2	3.2		tr	
		- 214.2' - 217.6' - foliation at 58° to core axis at 215.2', typical with minor fracturing displace- ment.	9940	tr	214.2	217.6	3.4		tr	
		- 217.6' - 222.6' - irregular fracturing with potassic alter- ation and hematite staining common; trace disseminated pyrite in fracture zones; trace-1% pyrite as blebs parallel to foliation; hematite staining common on foliation surface.		tr-1	217.6	222.6	5.0		tr	
		- 222.6' - 226.8' - as per 217.6' - 222.6'.	9942	tr-1	222.6	226.8	4.2		tr	
		- 226.8' - 230.0' - as per 21 7.6' - 222.6'.	9943	tr	226.8	230.0	3.2		tr	
		- 230.0' - 232.5' - as per 21 7.6' - 222.6'.	9944		230.0	232.5	2.5		tr	
		- 232.5' - 235.3' - abundant quartz-carbonate-epidote veining hematite staining on foliation; folia- tion at 58° to core axis at 234.0'.	9945		232.5	235.3	2.8		tr	
į		- 235.3' - 237.8' - as per 232.5' - 235.3'.	9946		235.3	237.8	2.5	1	tr	1

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-29

__ SHEET NO. 6 of 9

F00	r AGE				SAMP	LE			ASSAYS	
FROM	τo	DESCRIPTION	NO.	3, SULPM	FROM	FOOTAGE	TOTAL	3	oz/tan	7
237.8	272.9	Mafic Flow - greenish grey to dark green, fine to medium grained, massive to moderately foliated; indistinct, irregular banding to no banding. Modal percent: Amphibole 45-50% Quartz Feldspar Chlorite 10-15% Carbonate tr-2% Pyrite trace								
		Texture - ranges from fine to medium grained and massive to fine grained and foliated; quartz-carbonate-epidote interflow bands or veins common, typically parallel to foliation, trace pyrite as disseminated grains or blebs parallel to foliation.								
		- 237.8' - 238.8' - quartz-carbonate-epidote interflow band.	9947		237.8	238.8	1.0		tr	
		- 243.3' - foliation at 59° to core axis.								1
		- 248.0' - 251.3' - trace disseminated pyrite. - 248.6' - foliation at 57° to core axis. - 251.0' - fracture at 21° to core axis.	9948	tr	248.0	251.3	3.3		tr	
		- 253.0' - 255.3' - typical.	9949		253.0	255.3	2.3		tr	
		- 258.0' - 259.0' - 0.2' quartz-carbonate-epidote vein, contact at 60° to core axis.	9950		258.0	259.0	1.0		tr	
		- 260.2' - 261.4' - trace disseminated pyrite.	9951	tr	260.2	261.4	1.2		tr	1
		- 266.4' - foliation at 50° to core axis.	i							
6	:	 - 269.2' - fracture at 28° to core axis; green paste on fracture surface. 		,						
272.9	302.6	Felsic to Intermediate Tuff - typical as per 145.2' - 237.8'.		ţ						
- OFFICE CONTROL		- 279.0' - 280.4' - trace pyrite parallel to foliation, hematite also on foliation surfaces.	9952	tr	279.0	280.4	1.4		tr	
LANGRIDGES - TORONTO		- 283.6' - 285.3' - as per 279.0' - 280.4', fracture at 15° to core axis at 284.0'.	9953		283.6	285.3	1.7		tr	
LANGHI		- 286.0' - 289.8' - trace pyrite parallel to foliation surface	9954	tr	286.0	289.8	3.8		tr	
· 1	1		7	1	1	1	ļ	1	1 1	1 1

NAME OF PROPERTY KASAGIMINNIS LAKE

KAS-87A-29

SHEET NO. 7 of 9

ſ	FOOT	AGE	DESCRIPTION			SAMP	.E			ASSAYS	
	FROM	10	DESCRIPTION	NO.	Z SULPH IDES	FROM	FOOTAGE	TOTAL	",	Au pz/ton	
	272.9	302.6	Cont'd. - 291.5' - foliation at 57° to core axis.								
			- 296.0' - 297.0' - trace pyrite on fracture surface; frac- ture at 28° to core axis.	9955	tr	296.0	297.0	1.0		tr	
	302.6	306.3	Mafic Flow - typical as per 237.8' - 272.9'; very fine grained, massive.	9956		302.6	306.3	3.7		tr	
WWW.	306.3	345.7	Sheared Mafic Volcanic (Flows) - dark green to grey-green; fine to medium grained, striped to crudely banded to massive to sheared. Modal percent: Amphibole 40-45% Quartz								
	:		- 306.3' - 311.0' - typical; foliation at 56° to core axis at 306.9'.	9957	tr	306.3	311.0	4.7		tr	
3			- 311.0' - 316.0' - typical.	9958	tr	311.0	316.0	5.0		tr	
99			- 316.0' - 321.0' - typical.	9959	tr-1	316.0	321.0	5.0		tr	
LANGRIDGES - TORONTO - 366-1168			- 321.0' - 326.0' - typical. - 324.8' - 325.5' - very fine grained with a 0.2' quartz vein, contact at 30° to core axis.	9960		321.0	326.0	5.0		tr	
LANGRIDGES			- 326.0' - 331.0' - typical, with distorted quartz-carbonate- epidote bands.	9961	tr-2	326.0	331.0	5.0		.002	

NAME OF PROPERTY KASAGIMINNIS LAKE
HOLE NO. KAS-87A-29 SHEET NO. 8 OF 9

FOO	TAGE	DESCRIPTION		_	SAMPL	Æ			ASSAYS	
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	7,	Au oz/ton	
306.3	345.7	Cont'd. - 331.0' - 336.0' - abundant magnetite zones in felsic units	9962	tr 1	331.0	336.0	5,0		.002	
		from 333.0' - 333.4' and 334.2' - 334.8'.			1				.002	
		- 336.0' - 341.0' - typical with distorted quartz-carbonate bands.	9963	tr	336.0	341.0	5.0		tr	
		- 341.0' - 345.7' - poikiloblastic garnets.	9964	tr	341.0	345.7	4.7		tr	
345.7	390.7	Sheared Iron Formation and Mafic Volcanic - dark grey-green to dark green; fine to medium grained; striped to mottled to banded; weakly foliated.			i i					
		Modal percent: Quartz] 35-40%								
		Amphibole 35-40% Chlorite 1-5%								
		Garnet 1-5% Carbonate tr-5%						İ		
		Magnetite tr-2% Pyrite tr-2%						ļ		
		Pyrrhotite tr-1%						i I		
		Magnetite occuring as disseminated grains or wispy stringers in felsic bands; garnets occuring in amphibole-rich bands as stretched or irregularly shaped poikiloblastic grains; pyrrhotite and pyrite occuring as disseminated wispy blebs as cores or mantles in garnets or as blebs parallel to foliation; quartz-carbonate-epidote bands common.								
		- 345.7' - 350.0' - typical; foliation at 48° to core axis at 347.0' 347.5' - 347.8' - 0.3' quartz-carbonate vein.	9965	1-2	345.7	350.0	4.3		.044	
			9966	1	i	355.0	l		tr	
		- 355.0' - 360.0' - typical.	1	tr-1	l	360.0	i		.002	
		- 360.0' - 364.6' - typical.	1	tr-1	360.0	l .			tr	
		- 364.6' - 369.0' - typical.	3969	tr-1	304.6	369.0	4.4		l tr	
1			1		1					

AME OF PROPERTY_ KASAGIMINNIS LAKE

HOLE NO. KAS-87A-29

SHEET NO. 9 of 9

FOO	TAGE				SAMPI	LE			ASSAYS	
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	*	oz/ton	
345.7	390.7	Cont'd. - 369.0' - 374.0' - typical. - 372.4' - 373.6' - 1-3% pyrite/pyrrhotite as disseminated grains or wispy stringers parallel to foliation; foliation to 55° to core axis at 372.5'.	9970	1-3	369.0	374.0	5.0		.068	
			9971	1-3	374.0	378.8	4.8		.164 .176	Check
		 378.8' - 383.0' - typical; foliation at 51° to core axis at 380.5'. 379.0' - 379.4' - 2-4% pyrite/pyrrhotite parallel to foliation. 	9972	2-4	378.8	383.0	4.2		.062	
_		- 383.0' - 388.0' - typical; fracture at 31° to core axis at 385.2'.	9973	tr-1	383.0	388.0	5.0		tr	
		- 388.0' - 390.9' - abundant irregular quartz-carbonate bands	9974		388.0	390.9	2.9		tr	
390.7	406.0	Sheared Mafic Volcanic (Flows) - dark green to grey-green, fine to medium grained; crudely banded, massive to weakly foliated. Modal percent: Amphibole 45-50% Quartz 7 30-35% Feldspar 6 5-10% Carbonate 7-3% Magnetite 7-3% Pyrite tr-1%	9975 9976 9977 9978	tr tr	390.9 395.0 400.0 405.0	395.0 400.0 405.0 406.0	4.1 5.0 5.0 1.0		tr .002 tr .010	
LANGRIDGES - TORONTO - 565: 166	406.0	Concordant to discordant quartz-carbonate-epidote bands common; magnetite occurs as disseminated grains; pyrite as disseminated grains parallel to the foliation; foliation at 46° to core axis 400.5'. E.O.H.								damo

NAME OF	PROPERTY	KASAGIMINNIS I	LAKE		
HOLE NO.	KAS-87A-30	LENGTH	631.0'		
		16+22N			
LATITUDE		DEPARTURE			
ELEVATION		AZIMUTH	180°	DIP	-62°

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-62.0				
200.0	-53.5				
400.0	-53.2				
631.0	-44.5				

HOLE NO. AS-87A-30 SHEET NO. 1 Of 2 REMARKS PA786808

SUMMARY LOG

F 0 0 1	TAGE	DESCRIPTION			SAMP	LE			A	SSAY	′ S	
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	"	16	OZ/YON	OZ/TON	
0.0	3.0	CASING.										
3.0	8.1	MYLONITE.							:			
8.1	45.6	FELSIC TO INTERMEDIATE TUFF.				:	İ					
45.6	62.8	MYLONITE.										
62.8	78.6	FELSIC TO INTERMEDIATE TUFF.										
78.6	80.7	BANDED IRON FORMATION.										
80.7	179.2	MAFIC FLOWS AND TUFF.										1
179.2	199.5	MAFIC TO INTERMEDIATE TUFF.										
199.5	242.4	MAFIC FLOWS.										
242.4	249.4	FELSIC TO INTERMEDIATE TUFF.										
249.4	282.9	MAFIC FLOWS 272.0' - 272.3' - banded iron formation.										
282.9	365.0	INTERMIXED INTERMEDIATE TUFF AND GREYWACKE.				1 1						
365.0	426.2	FELSIC TO INTERMEDIATE TUFF.										
426.2	429.6	MAFIC FLOWS.										
429.6	459.4	FELSIC TO INTERMEDIATE TUFF.]		
429.6 459.4	566.3	MAFIC FLOWS.	1	1]							į
566.3	598.3	SHEARED MAFIC VOLCANICS AND IRON FORMATION.	9983		576.0	581.0	5.0			.018		ĺ
566.3 598.3	606.0	MAFIC FLOWS.	9985 9986 9987		586.0 591.0 596.0	591.0 596.0 598.3	5.0 5.0 2.3			.010 .024 .032		
	608.0	MAFIC INTRUSIVE.	1	{								

HOLE NO. KAS-87A-30 SHEET NO. 2 OF 2

F	00 T	AGE				SAMPL				ASSAYS	
FRO	м	70	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	3	oz∕ton	$\neg \neg$
608	8.0	631.0 631.0	MAFIC FLOWS. E.O.H.								
									٠		
LANGRIDGES - TORONTO - 366-1168											

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-30 LENGTH 631.0'

LOCATION 21+00W, 16+22N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -62°

STARTED October 7/87 FINISHED October 9/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-62.0		***************************************		
200.0	-53.5				
400.0	-53.2				
631.0	-44.5				

HOLE NO. KAS-87A-3QHEET NO. 1 0f 7

	F 0 0 1	TAGE	DESCRIPTION			5 A M P				A	. 5 S A 1	' S
	FROM	то		NO.	SULPH-	FROM	FOOTAGE TO	TOTAL.	હ	š	oz/Hon	OZ/TON
	0.0	3.0	Casing.									
	3.0	8.1	Mylonite - yellowish-green to grey, fine grained, laminated. Modal percent: Quartz 40-45% Carbonate 15-20% Feldspar 10-15% Sericite 5-10% Epidote 5-10%	1317		3.0	8.1	5.1			.002	
			Highly fractured to brecciated, abundant (5-7%) quartz-carbonate and carbonate stringers, foliation at 50° to core axis at 3.0'.									
	8.1	45.6	Felsic to Intermediate Tuff - grey to green, fine grained, finely laminated. Modal percent: Quartz 30-35% Feldspar 20-25% Amphibole 15-20% Biotite 15-20% Carbonate 1-3%									
f			Biotite as wispy bands, minor quartz-feldspar eyes, foliation at 38° to core axis at 16.0', 44° at 25.0', 42° at 44.0'.					:				
8			- 23.0' - 26.0' - 3-5% quartz-carbonate stringers.	1318		23.0	26.0	3.0			tr	
366-1168			- 31.5' - 33.2' - as above.	1319		31.5	36.0	4.5			tr	
LANGRIDGES - TORONTO -	45.6	62.8	Mylonite - pink to dark grey, fine grained, laminated. Modal percent: Quartz 35-40% Potash Feldspar Plagioclase 3-5% Sericite 3-5% Chlorite 3-5% Carbonate 2-5%	1320 1321 1322 1323		45.6 50.6 55.6 59.6	50.6 55.6 59.6 62.8	5.0 5.0 4.0 3.2			tr tr tr tr	

HOLE NO. KAS-87A-30 SHEET NO. 2 OF 7

F001	TAGE	OFICENOTION			SAMPL	E			ASSAYS	
FROM	то	DESCRIPTION	NO.	* SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	oz/ton	
45.6	62.8	Cont'd. Chlorite-sericite along foliation-cleavage planes, few quartz-carbonate stringers, foliation at 45° to core axis at 56.0'.								
62.8	78.6	Felsic to Intermediate Tuff - as above foliation at 55° to core axis at 70.0', fracture at 40° to core axis at 70.0'.			74.5	70.4				
78.6	80.7	- 74.5' - 76.0' - 2-3% quartz-carbonate stringers. Banded Iron Formation - dark green to slate grey, fine grained, laminated-banded. Modal percent: Quartz 30-35% Tremolite Hornblende 30-35% Magnetite 10-15%	1324 1325	3-5	7 4. 5	78 .6 80.7			tr	
		Grunerite 3-5% Carbonate 3-5% Pyrite 3-5% Minor grunerite haloes between magnetite bands and amphibole (tremolite-hornblende) bands.								
80.7	179.2	Mafic Volcanic Flows and Tuffs - 85:15, flows, fine to medium grained, dark green to dark grey, massive, tuffs, fine grained, green to white to brown, laminated, schistose. Modal percent: Amphibole 50-55% Quartz Plagioclase Biotite 3-5% Carbonate 1-2% Pyrite tr-3%		gelikki, Alpilikki, gerija di min milikinik-mana kalakimen mendimmen mendim						
		- 80.7' - 116.0' - medium grained mottled flows, foliation at 35° to core axis at 97.0', fracture at 51° to core axis at 97.0' 80.7' - 83.3' - breccia zone, quartz-carbonate matrix (20-25%), 2-3% disseminated pyrite.		2-3	80.7 83.3	83.3 86.0			tr tr	

HOLE NO. KAS 87A-30 SHEET NO. 3 OF 7

FOO	TAGE				SAMPL				ASSAYS	
FROM	то	DESCRIPTION	NO.	's SUL PH IDES	FROM	FOOTAGE TO	TOTAL	3,	Au oz/ton	
80.7	179.2	Cont'd.								
		 96.0' - 98.0' - 2-3% quartz-carbonate stringers, 2-3% disseminated pyrite. 	1328	2-3	96.0	98.0	2.0		tr	
		- 116.0' - 139.2' - fine to medium grained, mottled flows, 1-3% disseminated magnetite 118.1' - 122.7' - cherty, 3-5% magnetite, 2-3% disseminated pink porphyroblastic garnets.	1329 1330 1331 1332 1333 1334		116.0 118.1 122.7 126.0 131.0 136.0	118.1 122.7 126.0 131.0 136.0 139.2	4.6 3.3 5.0		tr tr tr tr tr	
		- 139.2' - 156.2' - fine grained, laminated, tuffaceous, 2-3% quartz-carbonate stringers, 2-3% disseminated pyrite, foliation at 44° to core axis at 140.0', 38° at 152.0'.		2-3	139.2 141.0 146.0 151.0	141.0 146.0 151.0 156.2	1.8 5.0 5.0 5.2		tr .012 tr tr	
		 156.2' - 179.2' - medium grained, massive flows with minor schistose horizons and 2-3% quartz-carbonate stringers. 169.2' - 173.5' - 3-5% quartz-carbonate stringers. 176.0' - 178.0' - 0.1-foot tourmaline pyrite band and 1-2% quartz-carbonate stringers. 	1339 1340 1341 1342 1343 1344 1345		156.2 161.2 166.2 169.2 171.2 173.5 176.0	161.2 166.2 169.2 171.2 173.5 176.0 179.2	5.0 5.0 3.0 2.0 2.3 2.5 3.2		tr tr .002 tr tr tr	
LANGRIDGES - TORONTO - 386-1168	199.5	Mafic to Intermediate Tuff - dark grey to dark green to brown, laminated to banded, fine grained. Modal percent: Amphibole 40-45% Quartz 30-35% Plagioclase Biotite 5-10% Carbonate 3-5% Chlorite 3-5% Wispy biotite laminae between amphibole and quartz-plagioclase bands, foliation 55° to core axis at 187.0', fracture at 48° to core axis at 186.0'. - 188.5' - 189.8' - 3-5% quartz-carbonate stringers.	1346 1347			189.8 193.3	3.8 3.5		tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-30 SHEET NO. 4 of 7

FOO	TAGE				SAMPL	.E			ASSAYS	
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	"3	oz/ton	
179.2	199.5	Cont'd.								
		- 191.3' - 193.3' - composite quartz-carbonate vein with minor amphibole, chlorite, biotite bands and inclusions.								
199.5	242.4	Mafic Flows - typical, amphibolitic, massive to poorly foliated, fine to coarse grained, few fractures or quartz stringers, foliation at 53° to core axis at 211.0'.								
		- 232.3' - 234.9' - 3-5% quartz-carbonate-epidote stringers and narrow veins.	1348		232.3	234.9	2.6		tr	
242.4	249.4	Felsic to Intermediate Tuff - typical, minor fracturing and silicification, 2-3% quartz-carbonate stringers, foliation at 43° to core axis at 247.0'.	1349 1350		242.4 246.0	246.0 249.4	3.6 3.4		tr tr	
249.4	282.9	Mafic Flows - typical, fine to medium grained, 2-5% quartz-carbonate stringers throughout, trace-1% pyrrhotite and pyrite, foliation at 38° to core axis at 277.0', fractures at 47° and 76° to core axis at 276.0'.	1251	1	267.0	272 0				
			L	1	267.0	1 1			tr	
		 - 272.0' - 272.3' - banded iron formation, typical. - 272.3' - 272.6' - biotite-chlorite-sericite schist, fine 	1	1	272.0				tr tr	
		grained, brown.	1333		2/2.0	270.0	3.4			
LANGRIDGES - TORONTO - 366-1166 585-166	365.0	Intermixed Intermediate Tuff and Greywacke - fine to medium grained, dark green to white to grey, laminated to crudely banded. Modal percent: Amphibole 20-25% Quartz 20-25% Chlorite 10-15% Sericite 10-15% Carbonate 5-10% Biotite 3-5% Plagioclase 3-5% Pyrite tr-2% Medium grained clasts of carbonate-plagioclase in fine grained matrix, 3-5% quartz-carbonate stringers and veins, frequent quartz lenses or eyes, foliation at 44° to core axis at 284.0', 48° at 296.0', 48° at 318.0', 38° at 336.0'.								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-30

SHEET NO. 5 of 7

FOO	TAGE	DESCRIPTION			SAMPL	.E			ASSAYS	
FROM	70	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE TO	TOTAL	7.	Au oz/ton	
282.9	365.0	Cont'd. - 282.9' - 283.9' - 3-5% pyrite as bands and stringers.	1354 1355 1356 1357	3-5	282.9 286.0 291.0 296.0	286.0 291.0 296.0 301.4	3.1 5.0 5.0 5.4		tr tr .002	
		- 301.4' - 306.2' - 3-5% quartz-carbonate veins. - 303.8' - 306.0' - quartz vein, 1-2% py- rite on fractures.	1358 1359 1360 1361	1-2	301.4 306.2 311.0 314.0	306.2 311.0 314.0 317.0	4.8 4.8 3.0 3.0		tr tr tr tr	
		- 317.0' - 318.0' - quartz-carbonate stringers with trace tourmaline as bands on downhole contacts.	1362 1363 1364		317.0 318.0 323.0	318.0 323.0 327.1	1.0 5.0 4.1		tr tr tr	
		- 327.1' - 332.1' - fracturing - mylonitic, greenish-yellow quartz-carbonate-epidote fracture fill.	1365 1366 1367 1368 1369		327.1 332.1 336.0 341.0 346.0	332.1 336.0 341.0 346.0 349.2	5.0 3.9 5.0 5.0 3.2		tr tr tr tr tr	
		- 349.2' - 365.0' - 2-5% pyrite as disseminated grains or stringers, 1-2% quartz- <u>tourmaline</u> stringers.	1370 1371 1372 1373	2-5 2-5	349.2 352.2 356.0 361.0	352.2 356.0 361.0 365.0	3.0 3.8 5.0 4.0		tr tr tr tr	
365.0	426.2	Felsic to Intermediate Tuff - typical, 2-5% quartz-carbonate stringers, foliation averages 46° to core axis, fracture at 53° to core axis at 370.0'.								
		- 365.0' - 376.5' - 2-5% disseminated pyrite.	1374 1375 1376	2-5		369.0 372.0 376.5	4.0 3.0 4.5		tr tr tr	
		- 376.5' - 387.0' - fractured - silicified, yellowish-green, quartz-carbonate-epidote infilling.	1377 1378 1379	tr	376.5 380.0 385.0	380.0 385.0 387.0	3.5 5.0 2.0		tr tr tr	
	:	- 387.0' - 399.7' - 2-5% disseminated pyrite, 1-2% quartz- carbonate stringers.	1380 1381 1382	2-5	387.0 391.0 396.0	391.0 396.0 399.7	4.0 5.0 3.7		tr .002 tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-30

SHEET NO. 6 of 7

F001	AGE	DESCRIPTION			SAMPL	.E			AS	SAYS	
FROM	τo	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	3.	DZ	Au /ton	
365.0	426.2	Cont'd. - 399.7' - 417.0' - trace sulphides.									
		- 417.0' - 418.4' - 1-2% disseminated tourmaline grains, trace sulphides.	1383	tr	417.0	418.4	1.4		.(012	
		- 418.4' - 426.2' - 2-3% quartz-carbonate stringers and veins 1-2% disseminated to banded pyrite.	1384 1385	1-2 1-2	418.4 421.6					tr tr	
426.2	429.6	Mafic Flows - typical, fine grained, 1-2% quartz-carbonate veins, 1-2% disseminated pyrite.	1386	1-2	426.2	429.6	3.4		1	tr	
429.6	459.4	Felsic to Intermediate Tuff - typical, foliation at 46° to core axis at 456.0'. - 458.4' - 459.4' - mylonite, pink, 3-5% quartz-carbonate stringers.	1387 1388 1389 1390 1391 1392 1393		429.6 432.1 436.0 441.0 446.0 451.0 456.0	436.0 441.0 446.0 451.0		9	1	tr tr tr tr tr tr	
459.4	566.3	Mafic Flows - medium to coarse grained, amphibolitic with 2-3% disseminated albite wisps, 2-3% quartz-carbonate stringers, foliation at 54° to core axis at 508.0'.									
		 459.4' - 460.6' - narrow shear, schistose, chloritic, 2-3% carbonate. 460.6' - 479.0' - 1-2% pyrrhotite and pyrite in quartz-carbonate stringers. 	1394 1395 1396 1397 1398		464.4 468.4 471.0 476.0	471.0 476.0 479.0	5.0 4.0 2.6 5.0 3.0		1	tr tr tr D14	
566.3		 512.0' - 513.8' - 3-5% pyrrhotite in quartz-carbonate stringers. 547.0' - 548.5' - 1-2% graphite flakes and plates in quartz stringers. 				513.8 548.5	1.8			tr tr	
566.3	598.3	Sheared Mafic Volcanic and Iron Formation - dark green to black to grey, fine to medium grained, crudely banded. Modal percent: Quartz Feldspar] 45-50%		1-3	570.3		4.0 2.6 1.3		l t	tr tr tr	
			1								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-30

_____ SHEET NO. 7 of 7

F001	TAGE				SAMP	E			ASSAYS	
FROM	70	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE TO	TOTAL	7,	pz/ton	
566.3	598.3	Cont'd. Amphibole 40-45%	0000		E74 2	576 0	1.0			
		Magnetite 2-5% Pyrrhotite] 1-3% Pyrite	9983 9984 9985 9986	1-3 1-3 1-3 1-3 1-3 1-3	574.2 576.0 581.0 586.0 591.0 596.0	581.0 586.0 591.0 596.0	5.0 5.0 5.0 5.0		.018 tr .010 .024 .032	
		Magnetite occurs in quartz-feldspar bands, pyrrhotite and pyrite disseminated throughout, foliation at 60° to core axis at 581.0', 49° at 596.0'; 3-5% quartz-carbonate veins and stringers. - 572.9' - 574.2' - quartz vein clean.								
598.3	606.0	Mafic Flows - typical, fine to medium grained.	9988 9989		598.3 602.0	602.0 606.0	3.7 4.0		tr tr	
606.0	608.0	Mafic Intrusive - dark grey to dark green, coarse grained, massive-amphibolitic. Modal percent: Amphibole 50-55% Plagioclase 35-40% Magnetite 3-5%	9990		606.0	608.0	2.0		tr	
608.0	631.0	Mafic Flows - fine to medium grained spotty magnetite zones, foliation at 68° to core axis at 624.0'. - 608.0' - 610.9' - irregular, discordant carbonate stringers.	9991 9992 9993 9994	-	610.9 616.0 621.0	610.9 616.0 621.0 626.0	5.1 5.0 5.0		tr tr tr tr	
LANGRIDGES - TORONTO - 366-1168	631.0	E.O.H.	9995		626.0	631.0	5.0		tr Alle	damo

NAME OF	PROPERTY	KASAGIMINNIS LAK	<u>E</u>			
HOLE NO	KAS-87A-31	LENGTH	444.0'			·
		15+22N				
		DEPARTURE				
ELEVATIO	N	AZIMUTH	180°	DIP _	-5 <u>2</u> °	
		87 FINISHED				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-52.0				
200.0	-49.3				
444.0					

HOLE NO. AS-87A-31 SHEET NO. 1 OF 1
REMARK PA786808

SUMMARY LOG

FOO	TAGE				SAMP	LE			A	SSA	Y S	
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	26	*	oz/Yon	OZ/TON	
0.0	7.0	CASING.										
7.0	82.4	MAFIC FLOWS.										
82.4	99.8	FELSIC TUFF.		}	·	'						
99.8	100.7	BANDED IRON FORMATION.										
100.7	123.3	MAFIC FLOWS.										
123.3	210.7	FELSIC TO INTERMEDIATE TUFF.										
210.7	220.7	MAFIC FLOWS.	l									
220.7	227.1	QUARTZ CRYSTAL TUFF.										
227.1	228.9	FELSIC TO INTERMEDIATE TUFF.										
228.9	232.8	MAFIC FLOWS.										
232.8	263.2	FELSIC TO INTERMEDIATE TUFF.		-								
263.2	264.2	MAFIC FLOWS.		1								
264.2	293.4	FELSIC TO INTERMEDIATE TUFF.										
293.4	346.6	SHEARED MAFIC VOLCANICS.								<u> </u>		
346.6	421.5	SHEARED MAFIC VOLCANICS AND IRON FORMATION.					ı					
421.5	444.0	MAFIC FLOWS.		1								
8	444.0	E.O.H.										
				1								
5				ł				1				
421.5			H	.]			}				
3]				•			
			1	1								
1			1					1	1	1	1	

NAME OF	PROPERTY	KASAGIMINNIS LA	AKE		
HOLE NO.	KAS-87A-31	LENGTH	444.(0'	
		15+22N			
LATITUDE		DEPARTURE			
ELEVATION		AZIMUTH	180°	DIP	-52°
STARTED	October 10/	87 FINISHED	October	11/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-52.0				
200.0	-49.3			•	
444.0	-43.0				

HOLE NO. KAS-87A-31 SHEET NO. 1 Of 5
REMARKS PA786808

FOO	TAGE	DESCRIPTION			5 A M P	LE				SSAI	/ S	
FROM	то	DESCRIPTION	NO.	SUL PHI	FROM	FOOTAGE TO	TOTAL	20	£	oz/Hon	OZ/TON	
0.0	7.0	Casing.										
7.0	82.4	Mafic Flows - dark green, fine to medium grained, foliated to massive. Modal percent: Amphibole 50-55% Plagioclase 40-45% Quartz Carbonate] 1-3%										
		Minor mafic tuff horizons, fine grained flows foliated, medium grained flows, slightly foliated to massive.										
		- 7.0' - 11.8' - fine grained flows, 1-2% disseminated pyrite, 1-2% quartz-carbonate stringers.	17581	1-2	7.0	11.8	4.8			tr		
			17582 17583 17584 17585 17586		11.8 16.0 21.0 26.0 31.0	16.0 21.0 26.0 31.0 35.6	4.2 5.0 5.0 5.0 4.6			.002 tr tr tr tr		
			17587 17588		35.6 40.6	40.6 43.7	5.0 3.1			tr tr	,	
		- 44.5' - 47.5' - 2-3% fracturing and silici- fication with quartz-carbonate-epidote in-	17589 17590 17591 17592		43.7 47.5 51.0 56.0	47.5 51.0 56.0 59.5	3.8 3.5 5.0 3.5			tr tr tr tr		
			17593 17594		59.5 63.0	63.0 66.2	3.5 3.2			.002 tr		
			17595 17596		66.2 71.0	71.0 76.0				tr tr		

HOLE NO. KAS-87A-31 SHEET NO. 2 OF 5

F001	rAGE	OEECDISTION .			SAMPI				ASSAYS	
FROM	10	DESCRIPTION	NO.	4, SULPH	FROM	FOOTAGE TO	TOTAL	3	Au oz/ton	
7.0	82.4	Cont'd.	17597 17598			80.0 82.4	4.0 2.4		tr tr	
82.4	99.8	Foliation at 42° to core axis at 9.0', 32° at 47.0', 52° at 66.0'.								
62.4	99.8	Felsic Tuff banded. Modal percent: Quartz 40-45% Feldspar 35-40% Sericite Biotite Carbonate 1-2%	17599 17600		82.4 96.0	86.0 99.8	3.6 3.8		tr	
99.8	100.7	Horizon may represent silicified siltstone or intermixed tuff and siltstone, foliation at 50° to core axis at 95.0'. Banded Iron Formation - greyish green to green to black, fine grained, banded to laminated.		1-2	99.8	100.7	0.9		tr	
		Modal percent: Grunerite] 45-50% Tremolite Quartz 30-35% Magnetite 7-10% Carbonate 2-3% Pyrite 1-2%								
		Magnetite as blebs and bands, pyrite as coarse grained irregular blebs, foliation at 52° to core axis at 100.7'.								
100.7	123.3	Mafic Flows - fine to medium grained, mottled to massive, typical, 3-5% quartz-carbonate stringers, 2-3% biotite-rich bands - tuffa-ceous.	1760: 1760: 1760:	₫.	105.7	105.7 111.0 116.0	5.0 5.3 5.0		tr tr tr	
123.3		- 118.4' - 121.7' - irregular mottled hori zon, light green to brown, 5-7% quartz-carbonate stringers, 1-2% disseminated pyrite.	1760: 1760: 1760:	1-2	118.4	118.4 121.7 123.3	2.4 4.3 1.6		.002 .002 tr	
123.3	210.7	Felsic to Intermediate Tuff - grey to green, fine grained, lami- nated to banded. Modal percent: Quartz 35-40% Feldspar 20-25%								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-31

SHEET NO. 3 of 5

٢	FOOT	AGE				SAMP	LE	-		AS	SAYS	
1	ROM	10	DESCRIPTION	NO.	% SUL PH IDES	FROM	FOOTAGE	TOTAL	3		Au z/ton	
1	23.3	210.7	Cont'd.									
			Amphibole 15-20% Biotite 5-10% Carbonate 1-2% Pyrite tr-3%			 						
7	ļ		2-3% quartz-carbonate veining, pyrite as bands and disseminated grains; foliation at 49° at 166.0′, 48° at 176.0′, 62° at 196.0′, 52° at 210.0′.	7609	tr-3	123.3 126.0 131.0	131.0	2.7 5.0 5.0		-	.002 tr tr	
			- 136.0' - 143.0' - fracturing and silicification with 2-3% quartz-carbonate veining.	7612 7613	tr-3 tr-3 tr-3 tr-3	139.5 143.0	139.5 143.0 146.0 169.0	3.5 3.5 3.0 3.0			tr tr tr tr	
			- 169.0' - 175.0' - fracturing - brecciation and silicifica- tion, 2-3% quartz-carbonate-epidote stringers and fracture fillings.	17616	tr-3 tr-3 tr-3	172.0	172.0 175.0 178.6	3.0 3.0 3.6			.012 tr tr	
			potassic alteration, trace-1% dissemin-	17619	tr-3 tr-3 tr-3	181.0	181.0 184.4 186.0	2.4 3.4 1.6			tr tr tr	
				17623 17623 17624	1-3	191.0 196.0 201.0	191.0 196.0 201.0 206.0 210.7	5.0 5.0 5.0 5.0 4.7			tr tr tr tr tr	
2	10.7	220.7	Mafic Flows - fine grained, typical, 1-2% disseminated pyrite, foliation at 50° to core axis at 216.0'.					: :				
8			- 210.7' - 213.5' - fractured - silicified, 2-3% quartz -c ar- bonate stringers.	17626 17627		210.7 213.5	213.5 216.0	2.8 2.5			tr tr	
5 - TOMONTO - 386:1168			- 216.0' - 220.7' - fracturing - brecciation, partially my- lonitized, 5-7% yellow-green to mauve quartz-carbonate-epidote matrix and stringers.	17628	*	216.0	220.7	4.7			tr	
CANOMOGRES	20.7	227.1	Felsic Quartz Crystal Tuff - white, medium grained quartz crystals in grey, fine grained quartz-sericite matrix, 2-3% quartz-carbonate stringers, 0.5-1% disseminated pyrite.					3.5 2.9			tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-31

SHEET NO. 4 OF

FOO	TAGE	DECOMPAND.			SAMP	E			ASSAYS	
FROM	70	DESCRIPTION	NO.	3, SULPH IDES	FROM	FOOTAGE	TOTAL	7.	Au oz/ton	
227.1	228.9	Felsic to Intermediate Tuff - typical.	17631		227.1	228 .9	1.8		tr	
228.9	232.3	Mafic Flows - medium grained, massive, typical 230.1' - 231.5' - fine grained, banded, 1-2% disseminated	17632	tr-2	228.9	232.3	3.4		tr	
		pyrite.	<u> </u>							
232.3	263.2	Felsic to Intermediate Tuff - 2-3% quartz-carbonate-epidote stringers with trace-1% pyrite, foliation at 45° to core axis at 238.0', fracturing at 43° to core axis at 239.0'.	17634	tr-1 tr-1 tr-1	236.0	236.0 241.0 246.0	3.7 5.0		.008	
		238.0°, Tracturing at 43° to core axis at 239.0°.	17636	tr-1 tr-1	246.0	251.0 254.0	5.0 5.0 3.0		tr tr	
				tr-1	254.0	257.0	3.0		.010	
		- 257.0' - 263.2' - 3-5% quartz-carbonate veining, 0.5-1% pyrrhotite as semi-massive bands up to $\frac{1}{2}$ " wide, trace-1% disseminated pyrite.		tr-2 tr-2	257.0 261.0	261.0 263.2	4.0 2.2		.008 tr	
263.2	264.2	Mafic Flows - fine grained, typical.	7641		263.2	264.3	1.1		tr	
264.2	293.4	Felsic to Intermediate Tuff - typical, foliation at 47° to core axis at 266.0°, 41° at 281.0°.								
		- 264.3' - 273.8' - 3-5% quartz-carbonate stringers, 1-2% disseminated tourmaline.	17642 17643			269.3 273.8	5.0 4.5		tr tr	
		- 284.0' - 286.3' - as above.	7644	1 1		286.3	2.3		tr	
		- 289.7' - 293.4' - mottled, 3-5% composite-banded quartz- carbonate veining, 1-2% disseminated pyrite and pyrrhotite.	7645 17646	1-2		289.7 293.4	3.4 3.7		tr tr	
LANGRIDGES - TOPONTO - 366 :168	346.6	Sheared Mafic Volcanic - dark green to black to grey, fine to medium grained striped banding. Modal percent: Quartz Feldspar Amphibole Carbonate Magnetite Garnet Sheared Mafic Volcanic - dark green to black to grey, fine to describe	7647 7648 7649 7650 7651 7652 17654 17655		296.0 301.0 306.0 311.0 316.0 321.0 326.0	296.0 301.0 306.0 311.0 316.0 321.0 326.0 331.0 334.8	2.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE
HOLE NO. KAS-87A-31 SHEET NO. 5 OF 5

F00"	TAGE	DESCRIPTION			SAMPL				ASSAYS		
FROM	τo	DESCRIPTION	NO.	SUL PH IDES	FROM	FOOTAGE	TOTAL	٠,	pz/Yton		
293.4	346.6	Cont'd. Amphibolitic, disseminated pink porphyroblastic garnets, 3-5% irregular quartz-carbonate stringers and veins, foliation at 43° to core axis at 336.0', fractures at 32° to core axis at 311.0'.									
		- 334.8' - 346.6' - 5-7% irregular quartz-carbonate veins, clean, 2-3% pyrrhotite and pyrite in vol-	17656 17657 17658		334.8 339.8 344.8	339.8 344.8 346.6	5.0 5.0 1.8		tr tr tr		
346.6	421.5	grained, crudely banded to mottled. Modal percent: Quartz Feldspar Hornblende Grunerite Magnetite Fraction of the state o	17660 17661 17662 17663 17664 17666 17667 17669 17670 17671	tr-5 tr-5 tr-5 tr-5 tr-5 tr-5 tr-5 tr-5	346.6 351.0 356.0 361.0 366.0 371.0 376.0 381.0 386.0 391.0 401.0 406.0 411.0	351.0 356.0 361.0 366.0 371.0 376.0 381.0 386.0 391.0 401.0 406.0 411.0 416.0 421.5	4.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr .004 .006 .002 .004 tr tr .004 tr tr		
	444.0	Mafic Flows - fine to medium grained, massive. - 431.0' - 438.5' - fine grained, schistose horizon, 3-5% quartz-carbonate stringers, trace-1% disseminated pyrrhotite.		tr-1 tr-1	421.5 426.0 431.0 436.0 438.5 441.0	426.0 431.0 436.0 438.5 441.0 444.0	4.5 5.0 5.0 2.5 2.5 3.0		tr .002 .002 .002 tr tr		
ANGAIDGES - TORONTO - 986: 196	444.0	E.O.H.							Pha	am	2

NAME OF	PROPERTY	KASAGI	MINNIS LA	⟨E		
HOLE NO.	KAS-87A-32	u	ENGTH	226.0'		
LOCATION	24+02W,	12+50N				
LATITUDE			DEPARTURE		 	
ELEVATION			ZIMUTH	2 <u>10°</u>	 DIP	
	October 11					

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-45.0				
200.0	-43.5				
					_

HOLE NO. KAS-87A-32 SHEET NO. 1 of 1
REMARK SPA786807

SUMMARY LOG

FOO	TAGE	0.5.6.0.8.2.7.1.0.11			5 A M P	LΕ			,	. 5 S A '	r s
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	26	i,	oz/Ton	OZ/TON
0.0	7.5	CASING.									
7.5	120.7	SHEARED MAFIC VOLCANICS AND IRON FORMATION.				:					
		- 7.5' - 82.8' - 10-15% quartz-carbonate veining, 2-5% pyrr- hotite, pyrite.	17674 17686 17687		21.6 31.4 36.3	26.6 36.3 41.0	4.9			.024 .010 .052	
			17691 17692		52.6 56.8	56.8 61.0	4.2 4.2			.052	Check
		- 82.8' - 120.7' - 2-3% quartz-carbonate veining, 2-5% pyrr- hotite, trace-1% pyrite.									·
120.7	226.0	MAFIC FLOWS.					,				
	226.0	E.O.H.									
									[
						:					
1									1		
2								i			
			and description								
LANGRIDGES - 10HON 10 - 380-1188											
			1		1			1			

NAME OF	PROPERTY	KASAGIMINNIS LA	KE			_
		LENGTH				_
		12+50N				_
LATITUDE	·	DEPARTURE				
ELEVATIO	N	AZIMUTH	210°	DIP _	-45°	
		7 FINISHED				_

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	45.0				
200.0	43.5				

HOLE NO.KAS-87A-32HEET NO. 1 OF 2 REMARK \$ A786807

FOO	TAGE	DESCRIPTION			SAMP	L ·E			^	SSA	Y 5	
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE	TOTAL	"	6	oz/Ton	OZ/TON	
0.0 7.5	7.5 120.7	Casing. Mafic Volcanics and Iron Formation (Sheared) - dark green to black										
		to grey, fine to medium grained, striped to mottled. Modal percent: Quartz Feldspar Hornblende 30-35% Grunerite 3-5% Magnetite tr-5%										
		Garnet tr-1% Carbonate 2-3% Pyrrhotite 2-5% Pyrite tr-1% Minor pink porphyroblastic garnets, abundant discordant quartz-										ı
		carbonate veins and stringers with 2-5% pyrrhotite and pyrite as disseminated grains and stringers, foliation at 38° to core axis at 13.0', 35° at 30.0', 53° at 51.0', 65° at 77.0', 61° at 97.0'.										
		- 7.5' - 82.8' - felsic bands with 10-15% magnetite blebs, 10-15% quartz-carbonate veins as composite, banded or massive veins, 2-5% sulphides throughout 31.4' - 36.3' - banded - composite quartz- carbonate vein with 1-3% pyrite stringers, trace tourmaline 52.6' - 56.8' - irregular, mottled quartz-	17681 17682 17683 17684 17674 17685 17687	2-5 2-5 2-5 2-5 2-5 2-5	7.5 10.6 13.6 16.6 21.6 26.6 31.4 36.3	10.6 13.6 16.6 21.6 26.6 31.4 36.3 41.0	3.1 3.0 3.0 5.0 5.0 4.8 4.9 4.7			tr tr .002 .002 .024 tr .010		
		carbonate veining with magnetite, pyrrhotite and tourmaline.	7688 7689 7690 7691 7692	2-5 2-5 2-5	41.0 46.0 48.1 52.6 56.8	46.0 48.1 52.6 56.8 61.0	5.0 2.1 4.5 4.2 4.2			.052 .002 tr tr .018 .012	Ch eck	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-32 SHEET NO. 2 Of 2

FO	OTAGE				SAMPL	E		ASSAYS		
FROM	τo	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	Au oz/top		
7.	5 120.7	Cont'd.	17693 17694 17695 17696	2-5 2-5 2-5	61.0 65.7 69.0 71.0	69.0 71.0 76.0	4.7 3.3 2.0 5.0	.002 .002 tr .004		
		- 82.8' - 120.7' - 2-3% quartz-carbonate stringers, 2-3% disseminated pyrrhotite and trace-1% pyrite as disseminated grains, blebs and fracture coatings.	7697 7698 7699 6001 6002 6003 6004 6005 6006	2-3 2-3 2-3 2-3 2-3 2-3 2-3	76.0 81.0 86.0 91.0 96.0 101.0 106.0 111.0	81.0 86.0 91.0 96.0 101.0 106.0 111.0 120.7	5.0 5.0 5.0 5.0 5.0 5.0	tr tr tr tr tr tr		
120.	7 226.0	Mafic Flows - dark green to black, medium grained, massive. Modal percent: Amphibole 50-55% Plagioclase 40-45% Quartz 1-3% Carbonate Sulphides tr-0.5% Amphibolitic, few widely spaced fractures, disseminated grains and blebs of pyrite and pyrrhotite, foliation at 45° to core axis at	6007	tr	120.7	125.7	5.0	tr		,
		127.5', 46° at 191.0', 58° at 226.0'. - 138.8' - 147.0' - fine grained, schistose, 3-5% quartz-carbonate stringers.	6008 6009 6010	tr	138.8 142.0 169.0	142.0 147.0 173.0	5.0	tr tr tr		
- TORONTO - 366-1168	226.0	- 170.1' - 172.6' - as above. E.O.H.	6011 6012 6013	tr	206.0	191.0 211.0 226.0	5.0	tr tr .002		
LANGRIDGES								John Williams	aa	mO

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-33 LENGTH 206.0'

LOCATION 24+00W, 12+50N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -47°

STARTED October 12/87 FINISHED October 12/87

FOOTAGE	OIP	HTUMIŞA	FOOTAGE	DIP	AZIMUTH
0.0	-47.0	***************************************			
206.0	-41.8				

HOLE NO. KAS-87A-3 SHEET NO. 1 of 1
REMARKS PA786807

SUMMARY LOG

TARIEL		DET 12/87 FINISHED OCTOBER 12/87									
F 0 0 1	TAGE	DESCRIPTION			SAMP	LE			•	SSA	r s
FROM	то	SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	76	*6	oz)Yon	OZ/TON
0.0	5.0	CASING.									
5.0	106.8	SHEARED MAFIC VOLCANICS AND IRON FORMATION 29.0' - 33.0' - quartz-carbonate vein, 1-3% pyrrhotite, pyrite.	6016 6020 6022		13.0 26.0 33.0	16.0 29.0 36.0	3.0 3.0 3.0			.010 .020 .010	
		- 36.0' - 40.0' - as above 84.8' - 87.1' - quartz-carbonate vein, 1-2% pyrite 91.0' - 93.0' - as above.	6023		36.0	40.0	4.0			.036	
06.8	206.0 206.0	MAFIC VOLCANICS. E.O.H.	6046		193.3	197.3	4.0			.018	

NAME OF	PROPERTY	<u>KASA</u>	<u>GIMINNIS LA</u>	KE		
HOLE NO.	KAS-87A	-33	LENGTH	206.01		
LOCATION	24+00W	, 12+50	N	·		
LATITUDE			DEPARTURE			<u> </u>
ELEVATION			AZIMUTH	210°	DIP	_47°
			FINISHED			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-47.0				
206.0	-41.8				
				, .	

HOLE NO. AS - 87A - 33 SHEET NO. 1 OF 2
REMARKS PA786807

FOO	TAGE	DESCRIPTION		SAMPLE				,	SSA	y s		
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	'n	36	oz/Ton	OZ/TON	
0.0	5.0	Casing.										
5.0	106.8	Hornblende 30-35% Grunerite 3-5%	6014 6015 6016 6017 6018 6019 6020		5.0 10.0 13.0 16.0 18.0 21.0 26.0	10.0 13.0 16.0 18.0 21.0 26.0 29.0	5.0 3.0 3.0 2.0 3.0 5.0 3.0			tr tr .010 tr tr .002 .020		
	: •	grains and stringers; foliation at 47° to core axis at 6.0', 42° at 17.0', 61° at 38.0', 58° at 51.0'; fractures at 8° to core axis at 35.5', 45° at 51.0'.										
		 29.0' - 33.0' - massive to banded, discordant quartz-carbon ate veining with 1-3% pyrrhotite and pyrite 	6021 6022		29.0 33.0	33.0 36.0	4.0 3.0			.004		
9011-905 - O 100001 - Capourone -		- 36.0' - 40.0' - as above.	6023 6024 6025 6026 6027 6028 6030 6031 6032		36.0 40.0 43.0 46.0 51.0 56.0 61.0 66.0 71.0	40.0 43.0 46.0 51.0 56.0 61.0 66.0 71.0 74.0	4.0 3.0 5.0 5.0 5.0 5.0 5.0 3.0			.036 .002 .002 .004 tr .002 .002 tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-33

SHEET NO. 2 of 2

FOO	TAGE				SAMPL	-E			ASS	YS.	
FROM	10	DESCRIPTION	NO.	", SUL PH IDES	FROM	FOOTAGE TO	TOTAL	3	oz/	u ton	
5.0	106.8	Cont'd.									
		- 77.0' - 81.0' - 3-5% quartz-carbonate stringers.	6033 6034			81.0 84.8	5.0 3.8		l t		
		- 84.8' - 87.1' - clean quartz-carbonate vein, 1-2% fine grained pyrite on fractures.	6035 6036		84.8 87.1	87.1 91.0	2.3 3.9		t		
		- 91.0' - 93.0' - as above, mottled, 2-3% pyrrhotite in mafic inclusions.	6037 6038 6039 6040 6041		96.0 101.0	93.0 96.0 101.0 104.0 106.8	2.0 3.0 5.0 3.0 2.8		t t t	r r	
106.8	206.0	Mafic Flows - dark green to black, medium grained, massive. Modal percent: Amphibole 50-55% Plagioclase 40-45% Quartz Carbonate] 1-2%									
		Amphibolitic, few widely spaced fractures, foliation at 56° to core axis at 132.0', 52° at 196.5', fractures at 29° to core axis at 116.0'.	6042	1 :	İ	111.0	4.2		t	r	
		- 121.0' - 122.5' - 0.1-foot carbonate stringer, discordant. - 155.4' - 158.4' - 3-5% quartz-carbonate stringers in schis- tose, fine grained horizon.	6043 6044		ł	122.5 158.4	1.5 3.0		.0		
90117	206.0	- 188.8' - 197.3' - as above.	6045 6046 6047 6048		193.3 197.3	193.3 197.3 201.0 206.0	4.5 4.0 3.7 5.0		t .0 t	18	
CANGAILGES - LORINI D - 300-1100	200.0	L.U.n.							A A	Ma	g mo

NAME OF	PROPERTY _	KASAGIMINNIS LAKE			
		LENGTH	226.0'		
		12+50N			
LATITUDE		DEPARTURE .			
ELEVATION		AZIMUTH	150°	DIP	47°
STARTED _	October 13/	87 FINISHED	October 13/	/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	ĐIP	AZIMUTH
0.0	47.0				-
200.0	-38.5				

HOLE NO.KAS-87A-34 SHEET NO.1 OF 1
REMARKS PA786807

SUMMARY LOG

FOOT	AGE			*******	SAMP	LE		ASSAYS					
FROM	то	DESCRIPTION SUMMARY LOG	NO,	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	*6	46	oz/Ton	oz/ton		
0.0	7.0	CASING.											
7.0	112.0	SHEARED MAFIC VOLCANICS AND IRON FORMATION - 5-10% magnetite, 2-5% pyrrhotite, trace-2% pyrite.	6052 6055 6057 6063		21.0 33.5 40.3 66.0	26.0 36.9 45.3 71.0	5.0 3.4 5.0 5.0			.042 .016 .020			
112.0	226.0	MAFIC FLOWS.						ĺ					
	226.0	Е.О.Н.											
								!					
				:									
										į.			

NAME OF	PROPERTY	KASAGIMINNIS	LAKE		
HOLE NO.	KAS-87A-34	LENGTH	226.01		
LOCATION	24+00W,	12+50N			
LATITUDE		DEPARTUR	E		
ELEVATION		AZIMUTH _	150°	DIP	-47°
		3/87 FINISHED			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-47.0				
200.0	-38.5				
				-	

HOLE NO.KAS-87A-34SHEET NO. 1 of 3
REMARKS PA786807

FOO	TAGE	DESCRIPTION		V. S. committee della Maria	SAMP	LE			^	SSAY	s
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	₹6	b	ozAYON	OZ/TON
7.0	7.0 112.0	Casing. Sheared Mafic Volcanics and Iron Formation - dark green to black to grey, fine to medium grained, striped to mottled. Modal percent: Quartz Feldspar 40-45% Hornblende 25-30%	6049 6050 6051 6052	2-5 2-5 2-5	7.0 11.0 16.0 21.0	11.0 16.0 21.0 26.0	4.0 5.0 5.0 5.0			tr tr .002 .042	
		Hornblende 25-30% Magnetite 5-10% Grunerite 3-5% Pyrrhotite 2-5% Carbonate 2-3% Pyrite tr-2% Garnet tr-0.5% 3-5% quartz-carbonate veining with trace-5% pyrrhotite and pyrite, irregular, discordant, banded, clean with mafic inclusions, volcanics with 2-5% pyrrhotite as fine grained blebs and stringers, quartz-rich horizons with 5-10% magnetite blebs, foliation at 42° to core axis at 11.0', 45° at 33.5', 52° at 46.0', 57° at 72.0', 46° at 95.0', 45° at 112.0', fractures at 15° to core axis at	6053 6054		26.0 31.0	31.0 33.5	5.0 2.5			tr tr	
		30.0', 46° at 72.0' 33.5' - 36.9' - banded, irregular quartz-carbonate vein.	6055	2-5	33.5	36.9	3.4			.016	
			6056 6057 6058 6059 6060 6061 6062 6063 6064	2-5 2-5 2-5 2-5 2-5 2-5 2-5	36.9 40.3 45.3 48.3 51.0 56.0 61.0 66.0 71.0	40.3 45.3 48.3 51.0 56.0 61.0 66.0 71.0 76.0	3.4 5.0 3.0 2.7 5.0 5.0 5.0			.002 .020 .002 .002 .002 tr .002 .016 tr	

NAME OF PROPERTY____KASAGIMINNIS LAKE

HOLE NO. KAS-87A-34

_____ SHEET NO. 2 of 3

F00	TAGE				SAMP	_E			ASSAYS	
FROM	то	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	3.	Au oz/ton	
7.0	112.0	Cont'd.	6065 6066 6067	2-5	76.0 81.0 86.0	86.0	5.0 5.0 3.4		tr tr tr	
		- 89.4' - 112.0' - 2-3% fine grained disseminated pyrrhotite blebs, 2-3% quartz-carbonate stringers.	6068 6069 6070 6071 6072	2-5 2-5 2-5	97.0 102.0	93.4 97.0 102.0 107.0 112.0	4.0 3.6 5.0 5.0 5.0		tr .002 tr tr tr	
112.0	226.0	Mafic Flows - dark green to black, medium grained, massive. Modal percent: Amphibole 50-55% Plagioclase 40-45% Quartz 1-2% Carbonate Pyrrhotite tr-2% Amphibolitic, few widely spaced fractures and quartz-carbonate stringers, foliation at 41° to core axis at 132.0', 52° at 168.0', 54° at 202.0', 60° at 226.0'.	6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083	tr tr tr tr tr tr tr	116.0 121.0 126.0 131.0 136.0 141.0 146.0 151.0	116.0 121.0 126.0 131.0 136.0 141.0 146.0 151.0 156.0 161.0	4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr tr tr	
		- 166.0' - 167.9' - fine grained, schistose, 3-5% quartz-car- bonate stringers, trace pyrite.	6084 6085 6086 6087 6088 6089	tr tr tr tr	167.9 171.0 176.0 181.0	167.9 171.0 176.0 181.0 186.0 189.9	1.9 3.1 5.0 5.0 5.0 3.9		tr tr tr tr tr	
		- 189.9' - 191.4' - irregular quartz-carbonate vein, clean.	6090 6091		189.9 191.4		1.5 2.3		tr tr	
LANGHIDGES - TORONTO - 386-1166		- 193.7' - 204.9' - fine grained, schistose, 3-5% quartz-car- bonate, 1-2% pyrrhotite and pyrite, trace-0.5% <u>chalcopyrite</u> .	6092 6093 6094 6095 6096 6097 6098	1-2 1-2 tr tr tr	193.7 198.7 202.4 204.9 207.9 212.9 216.4 219.4		3.0 5.0 3.5 3.0		tr tr tr tr tr tr .002	

NAME OF PROPERTY___KASAGIMINNIS LAKE

HOLE NO. KAS-87A-34 SHEET NO. 3 Of 3

FOO	TAGE				SAMP	.E		<u> </u>		ASSAYS		
FROM	70	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	7.		Au oz/ton	-	
112.0	226.0	Cont'd 222.1' - 224.1' - clean quartz-carbonate vein with trace- 0.5% pyrite on fractures.	6100		222.1					tr		
	226.0	Е.О.Н.										
1166												
LANGRIDGES TORONTO 368-1168									D	Ma	am	2

NAME OF	PROPERTY	KASAGIMINNIS LAKE	
HOLE NO.	KAS-87A-35	LENGTH 505.01	
LOCATION	12+02E,	07+28N	
LATITUDE	-	DEPARTURE	
ELEVATION		AZIMUTH325° DIP	45°
STARTED	October 15	/87 FINISHED October 17/87	_

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-45.0				
200.0	-39.5				
400.0	-36.0				
505.0	-34.2				

HOLE NO.KAS-87A-35_{SHEET NO.}1 of 1
REMARKS PA786835

SUMMARY LOG

FOO	TAGE	DESCRIPTION			SAMP	LE			,	SSA	/ S
FROM	то		NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	ર્જ	16	oz/Hon	OZ/TON
0.0	13.5	CASING.									
13.5	28.9	FELSIC TO INTERMEDIATE TUFF.									
28.9	49.9	FELSIC TUFF.									
49.9	76.9	FELSIC TO INTERMEDIATE TUFF.	į								
76.9	141.4	FELSIC CRYSTAL TUFF.									
141.4	174.3	FELSIC TUFF.									
174.3	217.4	FELSIC TO INTERMEDIATE TUFF.									
217.4	344.9	MAFIC FLOWS.									
344.9	355.0	MAFIC INTRUSIVE.	İ								
355.0	373.7	MAFIC FLOWS.	6272		366.0	370.2	4.2			.016	
			6273		370.2	373.7	3.5			.272 .278	
373.7	375.0	MAFIC INTRUSIVE.									
375.0	401.1	MAFIC VOLCANICS AND IRON FORMATION.	6278		386.0	391.0	5.0			.020	
	li	•	6281		397.0	401.1	4.1			.018	
401.1	403.3	MAFIC INTRUSIVE.									
403.3	433.2	MAFIC FLOWS.						l		. :	
433.2	447.6	FELSIC TUFF.									
447.6	505.0	GREYWACKE.									
401.1 403.3 433.2 447.6	505.0	E.O.H.									
										1	
			H								
1			1								

NAME OF	PROPERTY _	KASAGI	MINNIS L	AKE	 		
HOLF NO.	KAS-87A-35		LENGTH	505.0'			
LOCATION	12+02E,	07+28N					
LATITUDE			DEPARTU	RE	 		
ELEVATION			AZIMUTH	325°	 DIP	45°	
	October 1!						

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-45.0	-			
200.0	-39.5				
400.0	-36,0				
	-34.2				

HOLE NO. KAS-87A-35 SHEET NO. 1 of 6

F001	TAGE	DESCRIPTION			SAMP	L E			A	SSAY	/ S	
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	30	*6	oz)Yon	oz/ton	
0.0 13.5	13.5 28.9	Casing. Felsic to Intermediate Tuff - dark grey to black, fine grained, banded to laminated. Modal percent: Quartz Feldspar Amphibole Chlorite Sericite Biotite Carbonate Garnet Carbonate as fracture fillings, minor brecciated bands to 0.1-foot 1-3% discordant quartz-carbonate stringers, foliation at 28° to core axis across interval.	6201 6202 6203 6204		13.5 16.0 21.0 26.0	16.0 21.0 26.0 28.9	2.5 5.0 5.0 2.9			.002 tr tr tr		
28.9	49.9	Felsic Tuff - light to dark grey to green, fine grained, laminated to banded. Modal percent: Quartz Feldspar Sericite Tremolite Carbonate Pyrite Felsic Tuff - light to dark grey to green, fine grained, laminated 55-60% 55-60% Feldspar Sericite 1-2% Tremolite Carbonate Pyrite Tremolite Tremo	6206 6207 6208	tr-1 tr-1 tr-1 tr-1 tr-1	28.9 31.0 36.0 41.0 46.0	31.0 36.0 41.0 46.0 49.9	1.1 5.0 5.0 5.0 3.9			tr tr tr tr tr		
49.9	76.9	Rhyolitic to rhyodacitic tuff, 3-5% quartz-carbonate stringers and cherty bands - trace tourmaline and garnet, foliation at 32° to core axis at 46.0', irregular fracturing at 50° to core axis at 39.0'. Felsic to Intermediate Tuff - typical, foliation at 32° to core										

NAME OF PROPERTY KASAGIMINNIS LAKE

KAS-87A-35 SHEET NO. 2 Of 6

FOOT	TAGE	DESCRIPTION	f		SAMP	LE			ASSAYS	
ROM	10	DESCRIPTION	NO.	2 SULPH IDES	FROM	FOOTAGE TO	TOTAL		Au pz/ton	
49.9	76.9	Cont'd.								
		axis at 72.0', fractures at 15° to core axis at 62.5'.						1		
		- 49.9' - 53.0' - 2-3% anhedral disseminated porphyroblastic garnets.	6210		49.9	53.0	3.1		tr	
		- 53.0' - 54.6' - fracturing and minor compound dislocations.	6211 6212		53.0 56.0	56.0 60.0	3.0 4.0		tr tr	
			6213 6214 6215 6216 6217		60.0 62.5 65.5 68.0 72.0	62.5 65.5 68.0 72.0 76.9	2.5 3.0 2.5 4.0 4.9		tr tr tr tr tr	
76.9	141.4	Felsic Crystal Tuff - black fine grained groundmass with white medium grained quartz-feldspar crystals, finely laminated to banded.	6218 6219		76.9 96.0	81.0 101.0	4.1 5.0		tr tr	
		Modal percent: Quartz Feldspar Sericite Chlorite Amphibole Carbonate Modal percent: Quartz Feldspar 15-20% 15-20% 3-5% 4mphibole 5-70% 15-20%								
,		Abundant medium grained subhedral quartz-feldspar crystals, 1-3% quartz-carbonate stringers, foliation at 40° to core axis at 96.0' 33° at 116.0', 32° at 141.0', fracturing at 32° to core axis at 139.0'.	,							
		- 117.6' - 129.5' - fracturing and epidotization, quartz- carbonate fracture fillings.	6220 6221 6222 6223		117.6 121.0 126.0 136.4	121.0 126.0 129.5 142.4	3.4 5.0 3.5 5.0		.002 tr tr tr	
41.4	174.3	Felsic Tuff - typical, foliation at 36° to core axis at 166.0'.	6224		141.4	146.0	4.6		tr	
		- 146.0' - 151.2' - fracturing, quartz-carbonate-epidote stringers with 1-2% disseminated tourma-line and trace-0.5% pyrite.		tr5	146.0 148.5 151.2 156.0 161.0	148.5 151.2 156.0 161.0 165.3	4.8		tr tr tr tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-35 SHEET NO. 3 Of 6

FOOT	r A G E	DESCRIPTION			SAMPL			ASSAYS	
FROM	το	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	oz/toi	
141.4	174.3	Cont'd.							
		- 165.3' - 166.3' - 0.1-foot quartz-carbonate-tourmaline vein	6231		165.3 166.3	166.3 168.1	1.0 1.8	tr tr	
:		- 168.1' - 174.3' - quartz-carbonate-epidote fracturing, 1-2% disseminated pyrite.			168.1 171.1	171.1 174.3	3.0 3.2	tr tr	
174.3	217.4	Felsic to Intermediate Tuff - typical, minor quartz crystal tuff, trace-1% disseminated pyrite, foliation at 32° to core axis at 176.0', 30° at 201.0'.	6234	tr-1	174.3	179.3	5.0	tr	
		- 211.7' - 217.4' - 3-5% tourmaline bands, 1-2% quartz-carbonate stringers, chloritic.			211.7 214.4	214.4 217.4		tr tr	
217.4	344.9	Mafic Flows - dark green to black, fine to medium grained, massive to schistose. Modal percent: Amphibole 50-55% Plagioclase 35-40% Quartz Carbonate Pyrrhotite Pyrite] 1-2% Amphibolitic, quartz-carbonate-tourmaline stringers, foliation at 38° to core axis at 236.0', 37° at 238.0', 40° at 272.0', 38° at 303.0', fracturing at 43° to core axis at 231.0', 45° at 236.0', 40° at 238.0', 12° at 321.0', 47° at 323.0'.							
		- 217.4' - 219.4' - 2-3% quartz-carbonate stringers.	6237 6238 6239		217.4 219.4 223.0	219.4 223.0 228.0	3.6	tr tr tr	
		- 228.0' - 230.0' - quartz-carbonate-epidote- <u>tourmaline</u> and <u>tourmaline</u> stringers, trace-1% pyrite and and trace fine grained, disseminated arsenopyrite, chloritic, schistose.	6240 6241 6242		228.0 230.0 234.0	230.0 234.0 238.0	4.0	.006 tr tr	
		- 238.0' - 241.0' - 2-3% quartz-carbonate stringers.	6243 6244		238.0 241.0	241.0 244.8		tr tr	
			6245 6246		244.8 248.0	248.0 250.5		tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-35

SHEET NO. 4 Of 6

F001	TAGE	OETCONOTION.			SAMPL	.E			ASSAYS	
FROM	то	DESCRIPTION	NO.	Z SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	oz/ton	
217.4	344.9	Cont'd. - 263.8' - 269.8' - 2-3% quartz-carbonate stringers.	6247 6248		263.8 266.8	266.8 269.8	3.0 3.0		tr tr	
		- 279.0' - 293.5' - 2-3% quartz-carbonate-epidote or <u>tourma-line</u> - 2-3% pyrrhotite.	6249 6250 6251	2-3 2-3 2-3 2-3	279.0 282.0 286.0 291.0	282.0 286.0 291.0	3.0 4.0 5.0		tr tr tr	
		- 293.5' - 307.5' - 5-7% quartz-carbonate veining, 1-2% disseminated pyrrhotite, pyrite, wispy chlorite-biotite bands.	6254 6255		293.5 296.0 301.0 306.0 307.5 311.0 316.0	306.0 307.5 311.0 316.0	5.0 1.5 3.5 5.0		tr .002 tr .002 tr tr tr	
		- 318.7' - 344.9' - 3-5% quartz-carbonate-tourmaline, trace- 2% tourmaline grains, 0.5-2% pyrrhotite and pyrite, pyrite as stringers and blebs and disseminated grains.		.5-2 .5-2	318.7 321.0				.006 tr	
344.9	355.0	Mafic Intrusive - green to black to white, medium grained, massive Modal percent: Amphibole 40-45% Carbonate 15-20% Chlorite 15-20% Biotite 5-10% Plagioclase 3-5%	6263 6264	.5-2 .5-2 .5-2 .5-2	326.0 331.0 336.0 341.0	336.0 341.0	5.0 5.0		tr tr tr tr	
86		Speckled, medium grained biotite-chlorite flakes in a recrystal- lized, fine grained groundmass, distorted schistose horizons crosscutting intrusive (shearing?) with 10-15% tourmaline, 3-5% pyrite-intermixed and intergrown magnetite blebs, 2-3% quartz- carbonate stringers.	6266 6267 6268	3-5	344.9 348.9 352.0	352.0	3.1		tr tr tr	
355.0	373.7	Mafic Flows - as above (as per 318.7' - 344.9'), foliation at 38° to core axis at 372.0'. - 370.2' - 373.7' - 0.1-foot quartz-carbonate vein with 2-3% pockets and stringers of euhedral pyrite, subparallel to core axis, trace-0.5%	6270 6271 6272	.5-2 .5-2 .5-2 .5-2 .5-2	355.0 358.0 361.0 366.0 370.2	361.0 366.0	3.0 5.0 4.2		tr tr .016 .272 .278	Check

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-35

SHEET NO. 5 of 6

	FOOT	AGE				SAMPL	.E			ASSAYS	
FRO		10	DESCRIPTION	NO.	Z SULPH IDES	FROM	FOOTAGE TO	TOTAL		ozžton	
355	5.0	373.7	Cont'd.								
			disseminated tourmaline.		ŀ						
373	3.7	375.0	Mafic Intrusive - as above, contacts at 52° to core axis at 373.7'	6274		373.7	375.0	1.3		.004	
375	5.0	401.1	to medium grained, crudely banded. Modal percent: Amphibole 35-40% Quartz 25-30% Sericite 15-20% Chlorite 3-5%	6275 6276 6277 6278 6279 6280 6281	.5-1 .5-1 .5-1 .5-1	375.0 378.0 381.0 386.0 391.0 394.0 397.0	378.0 381.0 386.0 391.0 394.0 397.0 401.1	3.0 5.0 5.0 3.0 3.0		tr tr .020 tr tr .018	
			Felsic horizons with disseminated magnetite, mafic horizons - amphibolite with disseminated sulphides and pink porphyroblastic garnets, 1-3% quartz-carbonate stringers with grunerite haloes along contacts, foliaton at 33° to core axis at 381.0', closely spaced fracture set at 68° to core axis at 400.0'.								
401	1.1	403.3	Mafic Intrusive - typical; contacts at 41° to core axis at 401.1', $\overline{58}^\circ$ at $\overline{403.3}^\circ$.	6282		401.1	403.3	2.2		.002	
403	3.3	433.2	Mafic Flows - medium to coarse grained amphibolitic.	6283		403.3	406.0	2.7	ŀ	.004	
366-1168			- 428.9' - 433.2' - 2-3% quartz-carbonate veining, discordant banded.	6284		428.9	433.2	4.3		tr	
11			Fracturing at 48° to core axis at 411.0', 30° at 429.0'.					į			
433 433	3.2	447.6	Felsic Tuff - as above, 1-2% quartz-carbonate stringers, interbed- ded with lower unit near contact, foliation at 45° to core axis at	6285		433.2	436.0	2.8		tr	
S			446.0'.	6286	;	444.6	447.6	3.0		tr	:
447 447	7.6	505.0	Greywacke - dark grey to white, fine grained groundmass as with medium grained eyes, laminated.	6287 6288			451.0 481.0			tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-35

SHEET NO. 6 OF 6

FC	OTAGE	DESCRIPTION			SAMPL					ASSAYS		
FROM	10		NO.	7, SULPH IDES	FROM	FOOTAGE TO	TOTAL			z/ton		
447.	6 505.0	Cont'd.										
		Modal percent: Quartz 30-35% Sericite 15-20% Feldspar 10-15% Carbonate 10-15% Chlorite 5-10% Amphibole 3-5%	6289		502.0	505.0	3.0			tr		
		Feldspar and carbonate as medium grained eyes, probably intermixed epiclastics and pyroclastics, foliation at 38° to core axis at 466.0', 39° at 486.0', 43° at 505.0'.										
	505.0	E.O.H.										
						:						
						<u>.</u>						
						:				į		
8												
8												
באונייניטאט - ניאטאט - 366 : 198								/		Tala	mo	
800									K.IA	unce		

NAME OF	PROPERTY	KASAGIMINNIS LA	Κ <u>Ε</u>		<u>.</u>	_
HOLE NO.	KAS-87A-36	LENGTH	466.01			_
LOCATION	12+00E,	07+30N				
LATITUDE		DEPARTURE				_
ELEVATION		AZIMUTH	360°	DIP	45°	_
		37 FINISHED				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	45.0				
200.0	-42.5				
466.0	-36.8				

HOLE NO. AS-87A-36 SHEET NO. 1 Of 1 REMARKSPA786835

SUMMARY LOG

FOOT	AGE	DESCRIPTION			SAMP	L E			A	SSAY	· S
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	₹,	16	OZ/TON	oz/ton
	11 0	CACANO									
0.0	11.0	CASING.									
11.0	24.8	FELSIC TO INTERMEDIATE TUFF.									
24.8	37.8	FELSIC TUFF.				į.					
37.8	61.3	FELSIC TO INTERMEDIATE TUFF.								l 1	
61.3	123.7	FELSIC CRYSTAL TUFF.									
123.7	208.0	FELSIC TO INTERMEDIATE TUFF.									
208.0	285.8	MAFIC FLOWS.	6342		281.0	285.8	4.8			.014	
285.8	295.0	MAFIC INTRUSIVE.	6343		285.8	290.5	4.7			.036	
295.0	300.7	MAFIC FLOWS.					:				
300.7	340.1	MAFIC VOLCANICS AND IRON FORMATION.	6348		306.0	311.0	5.0			.012	
		· · · · · · · · · · · · · · · · · · ·	6351 6352		321.0		5.0			.020	
340.1	340.6	MAFIC INTRUSIVE.	0352		326.0	331.0	5.0			.010	
340.6	344.1										
344.1		MAFIC VOLCANICS AND IRON FORMATION.									
	346.1	MAFIC INTRUSIVE.]							
346.1	383.5	AMPHIBOLITE.									
383.5	396.0	MAFIC FLOWS.									
396.0	400.3	FELSIC TUFF.									
400.3	423.6	<u>SILTSTONE AND GREYWACKE</u> .]							
423.6	425.9	MAFIC INTRUSIVE.									
425.9	466.0	SILTSTONE AND GREYWACKE.			1						
	466.0	E.O.H.								1	
	-										

NAME OF	PROPERTY	KASAGIMINNIS	LAKE		
HOLE NO.	KAS-87A-36	LENGTH	466.0'		
		07+30N			
LATITUDE		DEPARTUR	ε		
ELEVATIO	N	AZIMUTH _	360°	DIP	-45°
		/87			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	OIP	AZIMUTH
0.0	-45.0				
200.0	-42.5				Î
466.0	-36.8				

HOLE NO. AS-87A-36 SHEET NO. 1 of 5

FOOT	AGE	DESCRIPTION			SAMP	L E			A	5 5 A Y	r s	
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	9,	ૢૢૢૢૢ	OZ/TON	oz/ton	
0.0	11.0	Casing.										
11.0	24.8	Felsic to Intermediate Tuff - dark grey to black, fine grained, banded to laminated. Modal percent: Quartz Feldspar Amphibole Chlorite Sericite Biotite Carbonate Garnet Felsic to Intermediate Tuff - dark grey to black, fine grained, 30-35% 15-20% 15-20% 10-15% 1-3% 1-3% 1-3%	6290 6291 6292		11.0 16.0 21.0	16.0 21.0 24.8	5.0 5.0 3.8			tr tr tr		
24.8	37.8	Carbonate as fracture fillings, 1-3% discordant quartz-carbonate stringers, foliation at 32° to core axis at 11.0'. Felsic Tuff - light to dark grey to green, fine grained, laminated to banded. Modal percent: Quartz 55-60% Feldspar Sericite 75-30% Tremolite 5-10% Carbonate 1-2%	6293 6294 6295		24.8 29.8 34.8	29.8 34.8 37.8	5.0 5.0 3.0			tr tr tr		
37.8	61.3	axis at 46.0' 49.9' - 50.5' - rock flour and fragments.	6296 6297 6298 6299 6300 6301 6302		37.8 42.8 46.0 49.9 50.5 55.5 58.5	42.8 46.0 49.9 50.5 55.5 58.5 61.3	5.0 3.2 3.9 0.6 5.0 3.0 2.8			tr tr tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-36 SHEET NO. 2 Of 5

FOO	TAGE	DESCRIPTION			SAMPL	.E			ASSAYS	
FROM	70	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE	TOTAL	3	oz/ton	
61.3	123.7	Felsic Crystal Tuff - black fine grained groundmass with white medium grained quartz-feldspar crystals, finely laminated to banded. Modal percent: Quartz 65-70% Feldspar Sericite 15-20% Chlorite 3-5% Amphibole 3-5% Carbonate tr-2% Abundant medium grained, subhedral quartz-feldspar crystals, 1-3%	6303 6304 6305 6306 6307 6308		61.3 66.0 71.0 76.0 81.0 86.0	71.0 76.0 81.0 86.0	4.7 5.0 5.0 5.0 5.0 3.0		tr tr tr tr tr	
		quartz-carbonate stringers, foliation at 32° axis at 61.5', 32° at 86.0', 33° at 116.0'. - 89.0' - 111.7' - brecciated-fractured with silicification and epidotization, 1-2% quartz-tourmaline stringers.	6309 6310 6311 6312 6313 6314 6315 6316		96.0 101.0 106.0 109.0 111.7 116.0	92.0 96.0 101.0 106.0 109.0 111.7 116.0 121.0 123.7	3.0 4.0 5.0 5.0 3.0 2.7 4.3 5.0 2.7		tr tr tr tr tr tr tr	
123.7	208.0	Felsic to Intermediate Tuff - dark grey to black, laminated to banded, typical, foliation at 34° to core axis at 140.0', 21° at 176.0', 31° at 196.0', fracturing at 45° to core axis at 155.5'. - 132.8' - 133.5' - quartz-tourmaline veining, discordant.	6318 6319 6320 6321			132.8 136.0	5.0 4.1 3.2 4.8		tr tr	
- 366-1168		- 140.8' - 142.5' - as above with trace-1% pyrite.	6322 6323 6324	tr-1	140.8 142.5 146.0	142.5 146.0 150.7	1.7 3.5 4.7		tr tr tr tr	
LANGRIDGES - TORONTO - 366-1168		- 150.7' - 151.7' - as above 153.5' - 155.5' - as above with epidote and tourmaline bands.	6325 6326 6327 6328 6329 6330		150.7 155.5 160.5 165.5 170.5 173.5	160.5 165.5 170.5 173.5	4.8 5.0 5.0 5.0 3.5 3.5		tr tr tr .002 tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-36

SHEET NO. 3 of 5

F001	TAGE	DESCRIPTION	,		SAMPL	LE			ASSAYS	
FROM	70	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	•	Au oz/ton	
123.7	208.0	Cont'd 177.0' - 178.0' - 0.1-foot, concordant quartz vein with tourmaline band.	6331 6332 6333 6334 6335 6336		177.0 181.0 186.0 191.0 196.0 201.0 206.0	181.0 186.0 191.0 196.0 201.0 206.0 208.0	4.0 5.0 5.0 5.0 5.0 2.0		tr tr tr tr tr tr	
208.0	285.8	Mafic Flows - dark green to black, fine grained schistose to medium grained, massive. Modal percent: Amphibole 45-50% Plagioclase 40-45% Quartz Carbonate Pyrrhotite 1-2% Pyrite tr-0.5% Amphibolitic, 1-3% quartz-carbonate stringers, sulphides as fine disseminated grains, foliation at 34° to core axis at 226.0', 38° at 267.0'.	5401		211.0	211.0 216.0 246.0	3.0 5.0 5.0		tr tr tr	
		- 273.7' - 285.8' - 2-3% pyrrhotite in medium grained mas- sive flows, last 3.0 feet distorted near contact with mafic intrusive, 5-7% quartz-tourmaline veining - 1-2% pyrite, chlorite schist on contact.	6341		276.0	276.0 281.0 285.8	2.3 5.0 4.8		tr tr .014	
285.8	295.0	Mafic Intrusive - green to black to white, medium grained, massive. Modal percent: Amphibole 40-45% Carbonate 15-20% Chlorite 15-20% Biotite 5-10% Plagioclase 3-5% Speckled, medium grained biotite-chlorite grains in a recrystallized fine grained groundmass, contacts at 73° to core axis at 285.8', 80° at 295.0'.		1-2 1-2	285.8 290.5	290.5 295.0	4.7 4.5		.036 tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-36

____ SHEET NO. 4 of 5

F	OOTAGE	DESCRIPTION			SAMPI	_		ASSAY	5	
FRO	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	oz/to	n	
295	.0 300.7	<u>Mafic Flows</u> - as per 273.7' - 285.8'.		2-3 2-3	295.0 298.0	298.0 300.7	3.0 2.7	.004 tr		
300	.7 340.1	Mafic Volcanics and Iron Formation - black to green to grey, fine to medium grained, crudely banded. Modal percent: Amphibole 35-40% Quartz 25-30% Sericite 10-15% Chlorite 3-5% Garnet 1-3% Pyrrhotite Pyrite 1-3% Magnetite 1-2% Carbonate 1-2%	6348 6349 6350 6351 6352 6353	1-3 1-3 1-3 1-3 1-3	300.7 306.0 311.0 316.0 321.0 326.0 331.0 336.0	306.0 311.0 316.0 321.0 326.0 331.0 336.0 340.1	5.0 5.0 5.0 5.0	.002 .012 tr tr .020 .010 .004		
		Magnetite and garnet disseminated in felsic bands, pyrrhotite and pyrite as disseminated grains in mafic volcanic, 1-3% discordant quartz-carbonate stringers with grunerite haloes, foliation at 33° to core axis at 308.0', 28° at 336.0'. - 300.7' - 308.0' - 1-3% quartz-tourmaline - 1-2% pyrite stringers.								
340	.1 340.6	Mafic Intrusive - typical.	6355		340.1	340.6	0.5	.002		
340	.6 344.1	Mafic Volcanics and Iron Formation - typical.	6356		340.6	344.1	3.5	tr		
344	.1 346.1	Mafic Intrusive - typical, with coarse grained corroded pseudo- morphs of chlorite after pyroxene, contacts at 48° to core axis.	6357		344.1	346.1	2.0	tr		
346	.1 383.5	Amphibolite - dark green to black, coarse grained, mottled to massive. Modal percent: Amphibole 50-55% Plagioclase 40-45% Amphibolitic texture, few widely spaced fractures.	6358 6359		346.1 380.0	351.0 383.5		tr		
383	396.0	Mafic Flows - fine to medium grained, typical, 1-2% pyrite as		1	383.5	387.0		tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-36

___ SHEET NO. 5 of 5

F001	TAGE	OCCUPATION:			SAMPL				ASSAY\$	
FROM	то	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	**	oz/ton	
383.5	396.0	Cont'd.								
]		fracture coatings, fractures at 51° to core axis at 383.5'.	6361 6362	1-2	387.0 390.3	390.3 393.0	3.3 2.7		.002 tr	1
		- 385.0' - 387.0' - quartz vein with 1-2% disseminated pyrite and pyrrhotite in inclusions of mafic volcanic or as stringers.	6363	1-2	393.0	396.0	3.0		tr	
		- 388.3' - 390.3' - as above.								
		- 390.3' - 396.0' - 3-5% banded, quartz-carbonate-tourmaline stringers - 1-2% disseminated pyrrhotite.								
396.0	400.3	<u>Felsic Tuff</u> - typical, interbedded with siltstones near contact.	6364		396.0	400.3	4.3		tr	
400.3	423.6	Siltstone and Greywacke - dark grey to white to brown, siltstones well laminated - bedded, greywacke laminated with abundant	6365		400.3	405.3	5.0		tr	
		medium grained eyes in fine grained groundmass. Modal percent: Quartz 30-35% Sericite 15-20% Biotite 15-20% Feldspar 10-15% Carbonate 5-10%	6366		418.6	423.6	5.0		tr	
		Feldspar, quartz and carbonate eyes in fine grained biotite-quartz or quartz-sericite matrix, finely laminated, foliation at 38° to core axis at 406.0'.								
423.6	425.9	$\frac{\text{Mafic Intrusive}}{37^{\circ} \text{ at } 423.6^{\circ}}$ - typical, contact at 56° to core axis at 425.9',	6367	<u>'</u>	423.6	425.9	2.3		tr	
425.9	466.0	Siltstone to Greywacke - as above, foliation at 41° to core axis at 456.0', 35° at 466.0', fractures at 48° to core axis at 446.0'.	6368	3	425.9	430.9	5.0		tr	
98.		- 440.7' - 444.7' - 2-3% quartz-carbonate veining.	6369 6370		440.7 444.7	444.7 449.0	4.0 4.3		tr tr	
- 10HOT - 1		- 449.0' - 452.7' - 1-2% quartz-carbonate stringers infilling fractures.	6371 6372		449.0 461.0	452.7 466.0	3.7 5.0		tr tr	
LANGHIDGES - TORONTO - 366-1168	466.0	E.O.H.							An	dans

NAME OF	PROPERTY	KASAGIMINNI	S LAKE		
HOLE NO.	KAS-87A-37	LENGTH_	526.0'		
LOCATION	12+00E, ()7+30N			
ELEVATION		AZIMUTH	30°	DIP	45°
STABLED	October 19/8	37	October	20/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-45.0				
200.0	-41.3				
400.0	-38.5				
526.0	-36.8				

HOLE NO. A.S. – 87A – 37 SHEET NO. 1 Of 1
REMARKS PA786835

SUMMARY LOG

F 0 0 1	TAGE		I		SAMP	LE		ASSAYS					
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	76	6	oz/Ton	oz/ton		
0.0	12.0	CASING.		lacksquare									
12.0	23.3	FELSIC TO INTERMEDIATE TUFF.			İ								
23.3	36.0	FELSIC TUFF.									i	ļ	
36.0	44.5	FELSIC TO INTERMEDIATE TUFF.										ļ	
44.5	68.5	FELSIC TUFF.									1		
68.5	131.9	FELSIC CRYSTAL TUFF.	1										
131.9	246.6	FELSIC TO INTERMEDIATE TUFF.									.		
246.6	289.6	MAFIC FLOWS.										l	
289.6	295.5	MAFIC INTRUSIVE.	I									r	
295.5	308.0	MAFIC FLOWS.										İ	
308.0	1	MAFIC INTRUSIVE.											
310.2	347.6	MAFIC FLOWS.										l	
	356.4	MAFIC INTRUSIVE.										ĺ	
356.4	459.3	MAFIC FLOWS.	6449		456.3	459.3	3.0			.052 .048	Chack	İ	
459.3	477.9	FELSIC_TUFF.								.048	Check	İ	
477.9	523.0	SILTSTONE.								1		ĺ	
523.0	526.0	MAFIC FLOWS.											
	526.0	E.O.H.										l	
523.0]]		I										
			I										
			1		1				}	1	1	1	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO.
LOCATION
LATITUDE
LATITUDE
LEVATION
STARTED October 19/87 FINISHED October 20/87

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-45.0				
200.0	-41.3				
400.0	-38.5				
526.0	-36.8				

HOLE NO. AS-87A-37 SHEET NO. 1 OF 5

F 0 0 1	AGE	DESCRIPTION	SAMPLE					A	SSAY	s		
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	76	16	OZ/TON	OZ/TON	
0.0	12.0	Casing.										
12.0	23.3	Felsic to Intermediate Tuff - dark grey to black, fine grained, banded to laminated. Modal percent: Quartz Feldspar Ja0-35% Amphibole 15-20% Chlorite 15-20% Sericite 10-15% Biotite 3-5% Carbonate 1-3% Garnet tr-2% Carbonate as fracture fillings, 1-3% discordant quartz-carbonate	6373 6374 6375		12.0 16.0 21.0	16.0 21.0 23.3	4.0 5.0 2.3			tr tr tr		
23.3	36.0	stringers, foliation at 29° to core axis at 15.0'. Felsic Tuff - light to dark grey to green, fine grained, fine gained, laminated to banded. Modal percent: Quartz 55-60% Feldspar Sericite Jericite 5-10% Carbonate 1-2% Pyrite tr-1%	6377	tr-1 tr-1 tr-1	26.0	26.0 31.0 36.0	2.7 5.0 5.0			tr tr tr		
36.0	44.5	Rhyolitic to rhyodacitic tuff, 2-3% quartz-carbonate stringers, cherty bands - trace tourmaline and garnet. Felsic to Intermediate Tuff - typical, 2-3% garnet, 1-2% quartz-carbonate stringers, foliation at 27° to core axis at 36.5', fractures at 35° to core axis at 36.5'.	6379 6380		36.0 41.0	41.0 44.5	5.0 3.5			tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-37

SHEET NO. 2 of 5

	FOOT	AGE	0.550,000.000			SAMPI				ASS	SAYS	
F	ROM	τo	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	`.	oz	Au /ton	
	44.5	68.5	Felsic Tuff - as above, 2-3% quartz-carbonate stringers, folia- tion at 31° to core axis at 56.0'.	6381 6382 6383 6384 6385		44.5 49.5 54.5 59.5 64.5	49.5 54.5 59.5 64.5 68.5	5.0 5.0 5.0 4.0			tr tr tr tr	
	68.5	131.9	Felsic Crystal Tuff - black, fine grained groundmass with white medium grained quartz-feldspar crystals, finely banded to laminated. Modal percent: Quartz Feldspar 65-70% Sericite 15-20% Chlorite 3-5% Amphibole 3-5% Carbonate tr-2%	6386 6387 6388 6389 6390 6391 6392 6393 6394		68.5 71.0 76.0 81.0 86.0 91.0 96.0 101.0 106.0	71.0 76.0 81.0 86.0 91.0 96.0 101.0 106.0 109.0 111.7	2.5 5.0 5.0 5.0 5.0 5.0 5.0 2.0 2.7			tr tr tr tr tr tr tr tr tr tr	
1	31.9	246.6	Abundant medium grained subhedral quartz-feldspar crystals, 2-3% quartz-carbonate and quartz-tourmaline stringers, foliation at 30° to core axis at 79.0', 21° at 116.0', fracture at 36° to core axis at 79.0'. - 111.7' - 128.4' - fractured, silicified with fine grained epidote, 0.5-1% fine pyrite films on fractures. Felsic to Intermediate Tuff - finely banded, as above, foliation.	6396 6397 6398 6399 6400	.5-1 .5-1 .5-1	111.7 116.0 121.0 126.0 128.4	116.0 121.0 126.0 128.4 131.9	4.3 5.0 5.0 2.4 3.5			tr tr tr tr tr	
LANGRIDGES - TORONTO - 366-1168	31.9	240.0	Felsic to Intermediate Tuff - finely banded, as above, foliation at 28° to core axis at 144.0', 35° at 176.0', 30° at 211.0', 36° at 246.0'. - 144.0' - 151.7' - minor fracturing and brecciation, quartz-epidote-carbonate fracture fillings.	6401 6402 6403 6404 6405 6406 6409 6410		131.9 136.0 141.0 144.0 151.7 156.0 161.0 166.0 169.0	136.0 141.0 144.0 147.0 151.7 156.0 161.0 166.0 171.9	4.1 5.0 3.0 3.0 4.7 4.3 5.0 5.0 3.0 2.9			tr tr tr tr tr tr tr tr	

HOLE NO. KAS-87A-37 SHEET NO. 3 of 5

FOOT	AGE				SAMPL	. E		ASSAYS			
FROM	70	DESCRIPTION	ND.	% SUL PH IDES	FROM	FOOTAGE TO	TOTAL			I	
131.9	246.6	Cont'd.									
		- 171.9' - 173.0' - banded to discordant, quartz-tourmaline and quartz-carbonate stringers.	6411 6412		171.9 173.0	173.0 176.0			tr tr		
1		- 176.0' - 178.0' - as above.	6413	1-2	176.0	181.0	5.0		tr		
		- 180.0' - 181.0' - 0.1-foot quartz-tourmaline stringer with 1-2% pyrite bands.	6414		181.0	184.0	3.0		tr		
		- 184.0' - 185.0' - as above.	6415 6416 6417 6418	1	184.0 186.0 216.0 241.6	186.0 191.0 221.0 246.6	5.0 5.0		tr tr tr		
246.6	289.6	Mafic Flows - dark green to black, fine to medium grained, massive to weakly schistose. Modal percent: Amphibole 50-55% Plagioclase 35-40% Quartz Carbonate] 1-3% Pyrrhotite] 1-2% Amphibolitic, 1-3% quartz-carbonate stringers, foliation at 28° to core axis at 264.0', fractures at 61° to core axis at 264.0'.									
		- 246.6' - 256.0' - minor brecciation with mauve coloured quartz-carbonate infilling.	642	1-2 1-2 1-2 1-2			5.0 3.0	:	tr tr tr tr		
		- 262.9' - 269.0' - 3-5% quartz-carbonate veining.	6424 6425 6426 6426	3 1-2 4 1-2 5 1-2 6 1-2 7 1-2 8 1-2 9 1-2	262.9 266.0 269.0 274.0 279.0 284.0 287.0	266.0 269.0 274.0 279.0 284.0 287.0 289.6	3.0 5.0 5.0 5.0 3.0		tr tr tr tr tr		
289.6	295.5	Mafic Intrusive - green to black fine grained groundmass with medium grained black phenocrysts.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-37

SHEET NO. 4 OF 5

F001	TAGE				SAMPL	.E		ASSAYS			
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL		Au Dz/ton		
289.6	295.5	Cont'd. Modal percent: Amphibole 40-45% Carbonate 15-20% Chlorite 15-20% Biotite 5-10%									
		Plagioclase Speckled, medium grained biotite-chlorite flakes in a recrystal-lized fine grained groundmass, contacts at 60° to core axis, fractures at 53° to core axis.	6430 6431		289.6 292.6		3.0 2.9		tr tr		
295.5	308.0	Mafic Flows - atypical, fine to medium grained, schistose, 2-3% quartz-carbonate vein, 1-2% biotite bands near lower contact with intrusive.	6432 6433 6434		295.5 300.5 305.5	305.5	5.0 5.0 2.5		tr tr tr		
308.0	310.2	Mafic Intrusive - as above, contact at 42° to core axis at 308.0', 52° at 310.2'.	6435		308.0	310.2	2.2		tr		
310.2	347.6	Mafic Flows - medium grained, typical, chloritic near lower intrusive contact. - 311.3' - 313.8' - 3-5% irregular quartz-carbonate stringers with 1-2% pyrite.	6437		310.2 313.8 316.0 321.0 326.0 331.0 346.0 346.0	316.0 321.0 326.0 331.0 336.0 341.0 346.0	3.6 2.2 5.0 5.0 5.0 5.0 5.0		tr tr tr tr .002 tr tr		
347.6	356.4	Mafic Intrusive - as above, with coarse grained corroded chlorite pseudomorphs after pyroxene, contact at 50° to core axis at 347.6' 40° at 356.4'.	6445 6446		347.6 351.6	351.6 356.4	5.0 4.8		tr tr		
356.4	459.3	Mafic Flows - fine to medium grained. - 356.4' - 417.8' - fine grained, schistose 356.4' - 366.2' - 3-5% quartz-carbonate veining with 1-2% pyrrhotite and pyrite. - 417.8' - 451.9' - medium grained, massive.	6447 6448	1-2 1-2	356.4 361.4	361.4 366.2	4.8		.004 tr		
!		- 451.9' - 459.3' - fine grained, schistose.	6449		456.3	459.3	3.0		.052 .048	Check	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-37

____ SHEET NO. 5 of 5

ſ	FOOT	OOTAGE DESCRIPTION				SAMPL	. E		ASSAYS				
1	FROM	το	DESCRIPTION	NO.	2 SULPH IDES	FROM	FOOTAGE	TOTAL	•	oz	Yton /		
	356.4	459.3	Cont'd. Foliation at 25° to core axis at 381.0', 29° at 397.0', 30° at 436.0', 30° at 459.3'.										
	459.3	477.9	Felsic Tuff - typical, light grey, fine grained, massive to slightly banded near sediment contact.	6450 6451			464.3 477.9	5.0 5.0			tr		
	477.9	523.0	Siltstone - grey to brown, fine grained, laminated to banded. Modal percent: Quartz Feldspar Biotite Carbonate Amphibole Siltstone - grey to brown, fine grained, laminated to banded. 45-50% 30-35% 5-10% Amphibole										
			1-2% discordant quartz-carbonate-tourmaline stringers, foliation at 25° to core axis at 481.0', 30° at 516.0'.										
			- 477.9' - 483.2' - schistose, sericitic, 1-2% pyrite films on fractures, 1-2% quartz-carbonate stringers.	6452 6453	1-2 1-2	477.9 480.9			:		tr tr		
-			- 483.2' - 486.0' - minor silicification, 2-3% quartz-carbon- ate stringers.	6454 6455 6456		483.2 501.0 518.0	506.0	5.0			tr tr tr		
	523.0	526.0	Mafic Flows - fine grained, schistose, foliation at 32° to core axis at 525.0'.	6457		523.0	526.0	3.0			tr		
		526.0	E.O.H.										
- 366-1166											ļ		
ORONTO -													
LANGRIDGES - TORONTO - 366-1168										Dr.	dan	no	

NAME OF	PROPERTY	KASAGIMINNIS L	AKE	***	
HOLE NO	. <u>KAS-87A-38</u>	LENGTH	436.01		
LOCATION	128+00E,	28+00N			
LATITUDE		DEPARTURE			
ELEVATIO	N	87 FINISHED	180°	DIP _	-49°
STARTED	October 22/	87 FINISHED	October 0	23/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-49				
200.0	-48				
436.0					

HOLE NO. PA769512

SUMMARY LOG

AGE							7				
A G E	DESCRIPTION			SAMP				,	SSA		
то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	ઝં	પ્ર	oz/Yon	OZ/TON	
18.0	CASING.										
191.0	FELSIC TO INTERMEDIATE TUFF.					İ					
200.9	MAFIC TUFF.	ı									
211.7	SULPHIDE FACIES, BANDED IRON FORMATION.	H				_					l
217.3	OXIDE FACIES BANDED IRON FORMATION.	ı									l
227.2	FELSIC TO INTERMEDIATE TUFF.										l
228.3	OXIDE FACIES BANDED IRON FORMATION.					<u> </u>					l
373.5	FELSIC TO INTERMEDIATE TUFF.					ł					l
382.7	OXIDE SULPHIDE FACIES, BANDED IRON FORMATION.	1		'					1		l
387.7	MAFIC TO INTERMEDIATE TUFF.										
390.7	FELSIC CRYSTAL TUFF.										ĺ
436.0	FELSIC TO INTERMEDIATE TUFF 406.0' - 436.0' - 3-5% pyrite.								į.		
436.0	E.O.H.		}								
			-		<u>.</u>	ļ				:	
l		#	1	1						:	
		1							ļ		
ļ							1		ŀ		
											ĺ
											ĺ
	•										
		1				ļ					
	18.0 191.0 200.9 211.7 217.3 227.2 228.3 373.5 382.7 387.7 390.7 436.0	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. 382.7 OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. 390.7 FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 5436.0 FELSIC TO INTERMEDIATE TUFF. 5436.0 FELSIC TO INTERMEDIATE TUFF.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. 390.7 FELSIC CRYSTAL TUFF. FELSIC TO INTERMEDIATE TUFF. - 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. 382.7 OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. 390.7 FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. - 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. 0XIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. 390.7 FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 3887.7 OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 3890.7 FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 3887.7 OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 3890.7 FELSIC TO INTERMEDIATE TUFF 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. 382.7 OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. 390.7 FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. 382.7 OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. 390.7 FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF 406.0' - 436.0' - 3-5% pyrite.	18.0 CASING. 191.0 FELSIC TO INTERMEDIATE TUFF. 200.9 MAFIC TUFF. 211.7 SULPHIDE FACIES, BANDED IRON FORMATION. 217.3 OXIDE FACIES BANDED IRON FORMATION. 227.2 FELSIC TO INTERMEDIATE TUFF. 228.3 OXIDE FACIES BANDED IRON FORMATION. 373.5 FELSIC TO INTERMEDIATE TUFF. 382.7 OXIDE SULPHIDE FACIES, BANDED IRON FORMATION. 387.7 MAFIC TO INTERMEDIATE TUFF. 390.7 FELSIC CRYSTAL TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF. 436.0 FELSIC TO INTERMEDIATE TUFF.

NAME	OF	PROPERTY	KASAGIMINNIS L	AKE			
HOLE	NO.	KAS-87A-38	LENGTH				
LOCAT	ION	128+00E,	28+00N				
LATITE	UDE		DEPARTURE				
ELEVA	TION		AZIMUTH	180°	DIP .	-49°	
START	ED_	October 22/8	7 FINISHED	October 0	23/87		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-49°				
200.0	-48°				
436.0	-44°				

HOLE NO. KAS-87A-38 SHEET NO. 1 OF 6

F001	AGE	DESCRIPTION			SAMP	LE		ASSAYS				
FROM	то		NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	ч ў	ъ	oz)Hon	oz/ton	
0.0	18.0 191.0	Casing. Felsic to Intermediate Tuff - dark to light grey, fine to medium grained, schistose. Modal percent: Quartz Feldspar] 55-66%		1023	rnom		101%					
		Chlorite 15-20% Sericite 5-10% Amphibole 3-5% Biotite 2-3% Carbonate 1-2% Pyrite tr-1%										
		Common horizons of felsic quartz crystal tuff, silicification around fractures and quartz-carbonate stringers variable texture, laminated to nearly massive to banded dependant on proportion of medium grained crystals, 1-3% quartz-carbonate-trace tourmaline, biotite and pyrite. Foliation at 25° to core axis at 25.0', 50° at 34.0', 40° at 48.0', 45° at 76.0', 40° at 135.0', 42° at 165.0', 45° at 187.0', fracturing at 72° to core axis at 34.0', 59° at 96.0'.										
100 - 300 -		- 18.0' - 36.0' - fractured, 3-5% quartz-carbonate stringers with 1-2% pyrite as disseminated grains and stringers, limonitic in upper 10 feet.	5403 5404 5405 5406	1-2 1-2 1-2 1-2 tr-1 tr-1		21.0 26.0 31.0 36.0 51.0 60.0	5.0			tr tr tr tr tr		
0. 1 01011		- 60.0' - 61.0' - banded quartz-carbonate vein, clean.	5410	tr tr-1 tr-1 tr-1	66.0	61.0 66.0 71.0 76.0	5.0 5.0			tr tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-38 SHEET NO. 2 Of 6

	F001	AGE				SAMPI	LΕ			ASSAYS	
	FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL		Au pz/ton	
	18.0	191.0	Cont'd. - 76.0' - 106.0' - 1-2% finely disseminated pyrite.	5413 5414 5415 5416	1-2 tr-1 tr-1 tr-1 tr-1	76.0 81.0 86.0 91.0 96.0	81.0 86.0 91.0 96.0 101.0			tr tr tr tr tr	
			- 107.4' - 109.6' - irregular quartz-carbonate stringer sub- parallel to core axis, 1-2% pyrite films on fractures.	5419	tr-1	106.0 111.0 116.0	111.0 116.0 121.0	5.0 5.0 5.0		tr tr tr	
×			- 123.0' - 124.0' - 0.3-foot carbonate vein, irregular, gradational contacts.	5421	tr-1	121.0	126.0	5.0		tr	
1.			- 127.2' - 128.2' - banded quartz-carbonate vein, clean.	5422	tr-1	126.0	131.0	5.0		tr	
A CONTRACTOR OF THE PARTY OF TH	•		- 133.0' - 134.5' - 2-3% quartz-carbonate stringers.	5424 5425 5426 5427 5428	tr-1 tr-1 tr-1 tr-1 tr-1	131.0 136.0 141.0 146.0 151.0 156.0 159.0	136.0 141.0 146.0 151.0 156.0 159.0 162.0	5.0 5.0 5.0 5.0 5.0 3.0		tr tr tr tr tr tr	
	į		- 162.0' - 163.0' - 0.2-foot quartz-carbonate vein, banded.	5430	tr-1	162.0	166.6	4.6	1	tr	
	<u>.</u>		- 166.6' - 167.9' - irregular quartz-carbonate stringers with minor potassic alteration and pink potash feldspar and coarse grained muscovite grains and plates.	5432	tr-1	167.9	167.9 171.9 176.9	1.2 5.0 5.0		tr tr tr	
70 306-1168			- 176.9' - 191.0' - 2-5% quartz-carbonate stringers, percentage inceases downhole.	5435	tr-1	176.9 181.0 186.0	181.0 186.0 191.0	4.1 5.0 5.0		tr .002 .002	
LANGRIDGES - TORONTO	191.0	200.9	Mafic Tuff - dark green to white to brown, fine grained, poorly banded. Modal percent: Amphibole 30-35% Plagioclase 20-25% Quartz 10-15% Chlorite 5-10%				200.9	5.0 4.9		tr tr	

NAME OF PROPERTY___KASAGIMINNIS LAKE

HOLE NO. KAS-87A-38 SHEET NO. 3 Of 6

Modal percent: Quartz Carbonate Chlorite Pyrite Pyrite Aagnetite Cherty-banded quartz-carbonate with wispy chlorite bands and fine grained banded to medium grained disseminated pyrite, banding at 43° to core axis at 201.0¹. 211.7 217.3 Oxide Facies, Banded Iron Formation - dark grey to black to white to green to pink, fine with coarse grained porphyroblasts, well-banded to laminated. Modal percent: Hornblende Magnetite Quartz Quartz Carbonate 1 20-25% Carbonate Cruporite 2541 3-5 208.5 5541 3-5 208.5 5541 3-5 208.5 5442 5442 5443 211.7	FO	TAGE	DETCRIPTION			SAMPL	- E		ASSAYS			
Biotite 5-10% Carbonate 3-5% Pyrite tr-2% Wispy chlorite-biotite bands with fine to medium grained disseminated pyrite. 200.9 211.7 Banded Iron Formation, Sulphide Facies - light to dark grey, fine to medium grained, banded. Modal percent: Quartz Carbonate Chlorite 15-20% Pyrite 3-5% Magnetite 2-3% Pyrrhotite 0.5-2% Garnet trace Cherty-banded quartz-carbonate with wispy chlorite bands and fine grained banded to medium grained disseminated pyrite, banding at 43° to core axis at 201.0¹. 211.7 217.3 Oxide Facies, Banded Iron Formation - dark grey to black to white to green to pink, fine with coarse grained porphyroblasts, well-banded to laminated. Modal percent: Hornblende 30-35% Magnetite 20-25% Quartz Carbonate] 20-25% Gruperite 3.5%	FROM	το	DESCRIPTION	NO.			FOOTAGE	TOTAL		oz/ton		
Pyrite tr-2% Wispy chlorite-biotite bands with fine to medium grained disseminated pyrite. 200.9 211.7 Banded Iron Formation, Sulphide Facies - light to dark grey, fine to medium grained, banded. Modal percent: Quartz Carbonate Chlorite Pyrite Aggnetite Pyrrhotite Garnet Cherty-banded quartz-carbonate with wispy chlorite bands and fine grained banded to medium grained disseminated pyrite, banding at 43° to core axis at 201.0'. 211.7 217.3 Oxide Facies, Banded Iron Formation - dark grey to black to white to green to pink, fine with coarse grained porphyroblasts, well-banded to laminated. Modal percent: Hornblende Magnetite Quartz Carbonate Gruperite Grup	191.	200.9	Biotite 5-10%									
nated pyrite. Banded Iron Formation, Sulphide Facies - light to dark grey, fine to medium grained, banded. S540 S5			Pyrite tr-2%									
to medium grained, banded. Modal percent: Quartz Carbonate Chlorite Pyrite Pyrite Agnetite Pyrrhotite Garnet Cherty-banded quartz-carbonate with wispy chlorite bands and fine grained banded to medium grained disseminated pyrite, banding at 43° to core axis at 201.0'. 211.7 217.3 Oxide Facies, Banded Iron Formation - dark grey to black to white to green to pink, fine with coarse grained porphyroblasts, well-banded to laminated. Modal percent: Hornblende Magnetite Quartz Quartz Quartz Carbonate Prince is a 5540 S541 S541 S541 S541 S541 S541 S541 S541	200	211 7	nated pyrite.	5430	1-5	200. 9	204.9	4.0		tr		
Pyrite 3-5% Magnetite 2-3% Pyrrhotite 0.5-2% Garnet trace Cherty-banded quartz-carbonate with wispy chlorite bands and fine grained banded to medium grained disseminated pyrite, banding at 43° to core axis at 201.0'. 211.7 217.3 Oxide Facies, Banded Iron Formation - dark grey to black to white to green to pink, fine with coarse grained porphyroblasts, well-banded to laminated. Modal percent: Hornblende 30-35% Magnetite 20-25% Quartz Carbonate Grunerite 3-5%	200.		to medium grained, banded. Modal percent: Quartz Carbonate] 65-70%	5540	3-5	204.9	208.9	4.0		.002 tr		
grained banded to medium grained disseminated pyrite, banding at 43° to core axis at 201.0'. 211.7 217.3 Oxide Facies, Banded Iron Formation - dark grey to black to white to green to pink, fine with coarse grained porphyroblasts, well-banded to laminated. Modal percent: Hornblende 30-35% Magnetite 20-25% Quartz Carbonate 3-5%			Pyrite 3-5% Magnetite 2-3% Pyrrhotite 0.5-2%									
to green to pink, fine with coarse grained porphyroblasts, well-banded to laminated. Modal percent: Hornblende 30-35% Magnetite 20-25% Quartz Carbonate 30-25%			grained banded to medium grained disseminated pyrite, banding at									
Magnetite 20-25% Quartz Carbonate 3.5%	211.	217.3	to green to pink, fine with coarse grained porphyroblasts, well- banded to laminated.	5442 5443		211.7 214.7	214.7 217.3	3.0 2.6		.002 tr		
Grupovito 3.5%			Magnetite 20-25% Quartz 3 20-25%									
Cherty quartz-carbonate bands interbedded with magnetite bands and chlorite-amphibole bands with coarse grained garnet bands and grains, banding at 40° to core axis at 215.0'.			Grunerite 3-5% Chlorite 3-5%									
F1 3,												
217.3 227.2 <u>Felsic to Intermediate Tuff</u> - typical. 5444 tr 217.3 5445 tr 221.6 5446 tr 225.6	217.	227.2	Felsic to Intermediate Tuff - typical.	5445	tr	217.3 221.0 225.0	221.0 225.0 227.2	3.7 4.0 2.2		tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-38

_____ SHEET NO. 4 Of 6

	FOOT	AGE		SAMPLE					ASSAYS			
1	FROM	10	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE	TOTAL	:	0.7	Au /ton	
ł					IDES	FRUM	 ''	10146		72	7 (011)	
	227.2	228.3	Oxide Facies, Banded Iron Formation - as above with no garnet-amphibole bands.	5447	tr	227.2	228.3	1.1			tr	
	228.3	373.5	Felsic to Intermediate Tuff - foliation at 47° to core axis at 235.0', 50° at 249.0', 47° at 278.0', 45° at 286.0', 50° at 318.0', 50° at 344.0', 48° at 362.0'.									
			- 228.3' - 252.7' - typical, 2-3% discordant quartz-carbonate stringers.	5448 5449 5450 5451 5452 5453	tr tr tr tr	231.0 236.0 241.0 246.0	231.0 236.0 241.0 246.0 251.0 252.7	2.7 5.0 5.0 5.0 5.0 1.7			tr tr tr tr tr tr	
			- 252.7' - 265.4' - fractured-brecciated, 2-3% quartz-carbon - ate-epidote stringers.	5454 5455 5456	tr	252.7 256.0 261.0	256.0 261.0 265.4	3.3 5.0 4.4			tr tr tr	
			- 265.4' - 281.9' - typical, 3-5% banded quartz-carbonate veins and stringers with 1-2% banded to disseminated pyrite.	5457 5458 5459 5460	1-2 1-2	265.4 269.4 274.4 279.4	269.4 274.4 279.4 281.9	4.0 5.0 5.0 2.5			tr tr tr tr	
			- 281.9' - 301.4' - typical, 1-2% quartz-carbonate stringers.	5461 5462 5463 5464	tr tr	281.9 286.4 291.4 296.4	286.4 291.4 296.4 301.4	4.5 5.0 5.0 5.0			tr tr tr tr	
			- 301.4' - 311.0' - fractured, minor potassic alteration and and epidotization.	5465 5466		301.4 306.0	306.0 311.0	4.6 5.0			tr tr	
LANGRIDGES - TORONTO - 366-1168			line-carbonate veinig with epidote, chlo-	5467 5468 5469	tr	311.0 314.2 317.2	314.2 317.2 320.7	3.2 3.0 3.5		1 1	tr tr tr	
S - TOMO			- 320.7' - 326.4' - typical.	5470 5471		320.7 323.7	323.7 326.4	3.0 2.7			tr tr	
NGPIDGE			- 326.4' - 362.0' - fractured-brecciated, 3-5% quartz-carbon- ate-epidote stringers and fracture fill-				331.0 336.0	4.6 5.0		1	tr tr	
3				Ì								

NAME OF PROPERTY___KASAGIMINNIS_LAKE

HOLE NO. KAS-87A-38 SHEET NO. 5 of 6

FOOT	rage	DECONDATION			SAMPL	. E			ASSAYS	
FROM	10	DESCRIPTION	NO. SULPH FOOTAGE					٠,	oz Žton	
228.3	373.5	Cont'd. ings, chlorite-carbonate matrix in brec- ciated zones, pink to orange potassic alteration, trace-1% pyrite.	5475 5476 5477 5478	tr-1 tr-1 tr-1 tr-1	336.0 341.0 346.0 351.0 356.0 359.0	341.0 346.0 351.0 356.0 359.0 362.0	5.0 5.0 5.0 3.0		tr tr tr tr tr .002	
		- 362.0' - 369.1' - typical.	5480 5481		362.0 366.0	366.0 369.1			tr tr	
		- 369.1' - 373.5' - felsic crystal tuff, typical.	5482	tr	369.1	373.5	4.4		tr	
373.5	382.7	Oxide-Sulphide Facies, Banded Iron Formation - typical, no garnets, 5-7% pyrrhotite and pyrite - or - 15-20% magnetite, 3-5% quartz-carbonate stringers up to 0.1-foot, irregular, discordant banding at 52° to core axis at 378.0', fractures at 38° to core axis.			373.5 378.5	378.5 382.7			.002	
382.7	387.7	Mafic to Intermediate Tuff - brown to green to white to black, fine grained, banded to laminated. Modal percent: Chlorite Biotite Januartz Januart	5485	tr	382.7	387.7	5.0		.002	
387.7	390.7	Felsic Crystal Tuff - typical.	5486	tr	387.7	390.7	3.0		tr	
390.7	436.0	Felsic to Intermediate Tuff - atypical dark to light grey to green to brown, fine grained, banded. Modal percent: Quartz Feldspar Biotite Chlorite Amphibole Carbonate Modal percent: Quartz Feldspar Biotite Chlorite Amphibole Carbonate 10-15%								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-87A-38 SHEET NO. 6 Of 6

FOO	TAGE		П		SAMP	E		AS	SAYS	
FROM	τo	DESCRIPTION	NO.	7. SULPH	FROM	FOOTAGE	TOTAL	OZ	Ayon .	
390.7	436.0	Cont'd.								
		1-2% quartz-tourmaline stringers, carbonate on fractures, foliation at 51° to core axis at 392.0', 57° at 400.0', 47° at 411.0', 56° at 431.0'.								
		- 390.7' - 394.7' - 2-3% pyrite, minor fracturing and brec- ciation.	5487	2-3	390.7	394.7	4.0		.002	
		- 394.7' - 406.0' - trace-1% pyrite.	5489	tr-1	394.7 397.7 401.0	397.7 401.0 406.0	2.3		.004 tr .002	
		- 406.0' - 436.0' - 3-5% banded to disseminated to aggre- gated, fine to medium grained pyrite.	5491 5492 5493 5494 5495 5496	3-5 3-5 3-5 3-5	406.0 411.0 416.0 421.0 426.0 431.0	411.0 416.0 421.0 426.0 431.0 436.0	5.0 5.0 5.0 5.0		tr .004 .008 .014 tr .004	
201: - 00-01 -	436.0	E.O.H.								
						į			Adl	damo

NAME OF PROPERTY	KASAGIM	INNIS
HOLE NO. KAS-87A-39	LENGTH	407 feet
LOCATION L120+00E. 15	+00N	·
LATITUDE	_ DEPARTURE _	
ELEVATION	AZIMUTH	180° DIP -45°
STARTED October 25, 1987	EINISHED	October 28, 1987

FOOTAGE	DIP	AZIMUTH	FOOTAGE	ĐIP	AZIMUTH
0 .	-44.0				
2071	-39.0				
4071	-36.5				

HOLE NOKAS-87A-398HEET NO. 1 of 1 REMARKS Pa 769516

SUMMARY LOG

F001	TAGE	DESCRIPTION			SAMP	L E		ΓΤ	<u> </u>	SSA	y s	
FROM	то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	76	×	oz/TON	OZ/TON	
0.0	50.0	CASING										
50.0	149.7	INTERMEDIATE FLOWS			ļ				i			
149.7	317.5	FELSIC TUFF	6481	3-5	292.5	297.5	5.0			.020		
317.5	319.4	FELSIC QUARTZ-FELDSPAR PORPHYRY SILL										
319.4	407.0	FELSIC TUFF										
	407.0	END OF HOLE										
						!						
											ĺ	
										<u> </u>		
		•										

NAME OF	PROPERTY	KASAGIM		
			407 feet	· · · · · · · · · · · · · · · · · · ·
LOCATION	L120+00E,	15+00N		
LATITUDE	•	DEPARTURE _		
ELEVATION		AZIMUTH	180° DIP	-44*
STARTED	October 25, 198	7 FINISHED	October 28, 19	87

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0	-44.09				
2071	-39.0				
4071	-36.5				

HOLE NOKAS-87A-398HEET NO. 1 of 3

FOO	TAGE	DESCRIPTION			SAMP	LE		ASSAYS				
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	36	*		OZ/TON	
0.0	50.0	CASING										
50.0	149.7	INTERMEDIATE FLOWS - dark grey, massive with minor green laminae, fine grained to aphanitic.		0,5-2 0,5-2	50.0 77.0	55.0 82.0	5.0 5.0			tr.		
		Average Modes										
		Amphibole 40 - 45%. Plagioclase 40 - 45%. Quartz 3 - 5%. Carbonate trace - 1%. Garnet 1 - 2%. Pyrite 0.5 - 2%.										
		Common garnet-chlorite schist and 1-2% quartz it carbonate stringers and bands, anhedral - subhedral porphyroblastic garnets, foliation at 70° to core axis at 52.0°, 72° at 87.0°, 69° at 106.5, 63° at 127.0°, 67° at 147.0; fracturing subparallel to core axis.										
		- 50.0' to 107.1' - fine grained, typical.									ļ	
		- 107.1' to 121.4' - 3-5% coarse grained, anhedral garnets.	6460	-	107.1		4.9			tr.	1	
		- 107.8' to 108.6' - clean quartz vein.	6461 6462	-	112.0 117.0		5.0 4.0			tr.	1	
		- 121.4' to 128.1' - fine grained, typical.	0402		117.0	121.0	9.0			1		
		- 128.1 to 136.4 - trace garnets, abundant, medium grained amphi- bole grains, minor fractures - dislocations.	6463 6464		128.1 132.0	132.0 136.4	3.9 4.4			tr.		
		- 136.4' to 140.5' - 3-5% garnets, as above.	6465	-	136.4	140.5	4.1			tr.		
		- 140.5' to 149.7' - fine grained, 1-2% pyrite as stringers and fracture fillings.			140.5 145.0		4.5 4.7			tr. tr.		

NAME OF PROPERTY KASAGIMINNIS

FOOT	TAGE				SAMPL	.E .			ASSAYS		
FROM	10	DESCRIPTION	NO.	3 SULPH		FOOTAGE			OZ TON	GZ TON	
49.7	317.5	FELSIC TUFF - dark grey, fine grained, schistose groundmass with or without medium to coarse grained pink porphyroblasts.		IDES	FROM	70	TOTAL				
		Average Modes Quartz 50 - 55% Feldspar 15 - 20% Chlorite 10 - 15% Garnet 1 - 10%									
		Pyrite 1 - 3% Carbonate trace - 0.5%									
		Anhedral medium to coarse grained pink garnet porphyroblasts in some sections especially within chlorite bands, fine grained disseminated pyrite, pyrite frequently as cores of, or mantles around garnets and as films along fractures, trace arsenopyrite as cores in minor tourmaline aggregates, 1-3% irregular, discordant quartz veining; foliation at 62° to core axis at 156.0°, 71° at 177.0°, 69° at 187.0°, 60° at 201.0°, 71° at 264.0°, 70° at 292.0°, 71° at 307.0°.	6468 6469 6470 6471 6472	1-3 1-3 1-3 1-3	152.0 157.0 162.0 167.0 172.0	176.0	5.0 5.0 5.0 5.0		tr. tr. tr. tr. tr. tr.		
		- 149.7' to 178.6' - 5-10% coarse grained garnets 178.6' to 289.8' - 2-5% medium grained garnets 232.6' to 234.4' - graphitic horizon, flaky graphite with 1-2% pyrite blebs, 3-5% quarts i carbonate stringers and blebs.	6475 6476	1-2 1-2 -	176.0 197.0 228.0 232.6 234.4 252.0	232.6 234.4 237.0	5.0 4.6 1.8 2.6		.016 tr. tr. tr.		
		- 289.8' to 297.5' - 5-10% garnet, as above, 3-5% fine grained pyrite blebs, 2-3% quartz stringers.	6480	3-5	289.8	292.5	2.7		tr.		
		- 297.5' to 317.5' - sericitic, well foliated, 1-2% garnet, abun- dant medium grained sericite pseudomorphs after plagioclase.	6481 6482 6483 6484 6485	- -	292.5 297.5 302.5 307.5 312.5	302.5 307.5 312.5	5.0 5.0 5.0		.020 .002 tr. tr.		
i7.5	319.4	FELSIC QUARTZ-FELDSPAR PORPHYRY SILL - white, medium grained phenocrysts in dark grey, fine grained groundmass, massive, porphyritic.		0.5-1	317.5	319.4	1.9		tr.		

KASAGIMINNIS

HOLE NO. KAS-87A-39 SHEET NO. 3 of 3

F001	AGE		1		SAMP	LE			ASSAYS	
FROM	70	DESCRIPTION	NO.	7, SULPH		FOOTAGE			OZ TON	GI TON
HOM	10		-	IDES	FROM	70	TOTAL		U/ TON	U2 10M
		Average Modes Quartz								
		Pyrite as fracture coatings, medium grained subhedral plagioclase and quartz phenocrysts in fine grained groundmass of chlorite-muscovite and quartz-feldspar, contacts at 73° to core axis.								
9.4	407.0	FELSIC TUFF - typical, as above.						!		
		- 319.4° to 329.0° - 2-3% disseminated pyrite.	6487 6488		319.4	324.0 329.0	4.6 5.0		tr.	
		- 329.0° to 330.0° - 0.5° quartz vein with trace epidote and pyrite.	6489		329.0		1.0		tr.	
		- 348.0° to 369.0° - 2-3% quartz veining with 1-3% pyrite films on fractures.	6490 6491	1-3 1-3		352.0 357.0	5.0 5.0		tr.	
				1-3 1-3	357.0		5.0 5.0		tr.	
ŀ			6494	1-3	367.0	372.0	5.0		tr.	
	ļ			1-3 1-3		377.0 382.0	5.0 5.0		tr.	
				1-3 1-3	382.0 387.0	387.0 390.6	5.0 3.6		tr.	
		- 390.6° to 392.0° - coarse grained quartz vein 1-2% coarse grained pink-brown garnets and biotite on contacts, 0.5-1% pyrite as films on fractures.	6499	1-3	390.6 392.0	392.0 397.0	1.4		tr. tr.	
		Foliation at 72° - 78° to core axis across interval.]		! 		
	407.0	END OF HOLE							And	m
	į								que de	

NAME OF	PROPERTY	KASAGIM	<u>INNIS</u>		
HOLE NO.	KAS-87A-40	LENGTH	437_1	eet	
LOCATION	L16+00W, 1	5+25N			
LATITUDE		_ DEPARTURE _			
ELEVATION	l	AZIMUTH	180°	DIP	- 59°
CTARTED.	December 12, 1983	7	December	14. 198	7

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZIMUTH
0 -	59.0°				
200* -	56.0°				
437	51.0°				

HOLE NOKAS-87A-4 (SHEET NO. 1 of 1 REMARKS Pa 786809

SUMMARY LOG

AGE	DESCRIPTION SUMMARY LOG		SAMPLE					A S S A Y S Au Au				
то		NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	¥,				
15.0	CASING											
131.9	MAFIC FLOWS											
146.4	INTERMEDIATE FLOWS											
185.5	MAFIC TO INTERMEDIATE FLOWS											
188.1	CHERTY-FELSIC TUFF											
331.6	FELSIC TO INTERMEDIATE TUFF											
339.3	MAFIC FLOWS								:			
372.7	FELSIC TO INTERMEDIATE TUFF			<u> </u>]					
377.0	FELSIC TUFF							ļ				
403.4	AMPHIBOLITE											
437.0	SHEARED - SILICIFIED MAPIC VOLCANICS AND IRON FORMATION					2.5			.095		check check	
437.0	END OF HOLE	4064 4065		427.0	429.5	2.5 2.5 2.5 2.5			.051		check	
	15.0 131.9 146.4 185.5 188.1 331.6 339.3 372.7 377.0 403.4 437.0	15.0 CASING 131.9 MAFIC FLOWS 146.4 INTERMEDIATE FLOWS 185.5 MAFIC TO INTERMEDIATE FLOWS 188.1 CHERTY-FELSIC TUFF 331.6 FELSIC TO INTERMEDIATE TUFF 339.3 MAFIC FLOWS 372.7 FELSIC TO INTERMEDIATE TUFF 403.4 AMPHIBOLITE 437.0 SHEARED - SILICIFIED MAPIC VOLCANICS AND IRON FORMATION	TO SUMMARY LOG NO. 15.0 CASING 131.9 MAFIC FLOWS 146.4 INTERMEDIATE FLOWS 185.5 MAFIC TO INTERMEDIATE FLOWS 188.1 CHERTY-FELSIC TUFF 331.6 FELSIC TO INTERMEDIATE TUFF 339.3 MAFIC FLOWS 372.7 FELSIC TO INTERMEDIATE TUFF 403.4 AMPHIBOLITE 403.4 SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION 4062 4063 4064	TO SUMMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMAR	TO SUMMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SUMARY LOG NO. SU	TO SUMMARY LOG NO. SUPPLIFICAN SUMMARY LOG NO. SUPPLIF FROM TO 15.0 CASING 131.9 MAFIC FLOWS 146.4 INTERMEDIATE FLOWS 188.1 CHERTY-FELSIC TUFF 331.6 FELSIC TO INTERMEDIATE TUFF 339.3 MAFIC FLOWS 372.7 FELSIC TO INTERMEDIATE TUFF 377.0 FELSIC TUFF 403.4 AMPHIBOLITE 437.0 SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION 4062 422.0 424.5 427.0 429.5 427.0 429.5 432.0 424.5 427.0 429.5 432.0 429.0 429.5 432.0 429.0	TO SUMMARY LOG NO. SHE'S FROM TO TOTAL 15.0 CASING 131.9 MAFIC FLOWS 146.4 INTERMEDIATE FLOWS 188.1 CHERTY-FELSIC TUFF 331.6 FELSIC TO INTERMEDIATE TUFF 339.3 MAFIC FLOWS 372.7 FELSIC TO INTERMEDIATE TUFF 377.0 FELSIC TUFF 403.4 AMPHIBOLITE 437.0 SHEARED - SILICIFIED MAPIC VOLCANICS AND IRON FORMATION 4062 422.0 424.5 2.5 4063 424.5 427.0 2.5 4064 427.0 429.5 2.5 4065 429.5 332.0 2.5 4066 427.0 429.5 2.5 4065 429.5 322.0 2.5 4066 427.0 429.5 2.5 4065 429.5 322.0 2.5 4066 427.0 429.5 2.5 4065 429.5 322.0 2.5 4067 429.5 322.0 2.5 4067 429.5 420.0 2.5 4067 420.0 2.5 4067 420.0 2.5 4067 420.0 2.5 4067 420.0 2.5 4067 420.0 2.	TO SUMMARY LOG NO. SUMMARY LOG NO. SUMMARY LOG TOTAL 15.0 CASING 131.9 MAPIC FLOWS 146.4 INTERHEDIATE FLOWS 188.1 CHERTY-FELSIC TUFF 331.6 PELSIC TO INTERMEDIATE TUFF 337.0 FELSIC TO INTERMEDIATE TUFF 403.4 AMPHIBOLITE 437.0 SHEARED - SILICIFIED MAPIC VOLCANICS AND IRON FORMATION SUMMARY LOG NO. SUP FROM TO TOTAL FROM TO TOTAL V A MAPIC FLOWS 406.2 422.0 424.5 2.5 427.0 2.5 4063 424.5 427.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5 4065 429.5 432.0 2.5	TO SUMMARY LOG NO. SUEST FROM TO TOTAL % %	TO SUMMARY LOG NO. SUE FROM TO TOTAL & COZ/TON 15.0 CASING 131.9 MAFIC FLOWS 146.4 INTERMEDIATE FLOWS 188.1 CHERTY-FELSIC TUFF 331.6 FELSIC TO INTERMEDIATE TUFF 337.0 FELSIC TO INTERMEDIATE TUFF 403.4 AMPHIBOLITE 437.0 SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION A062 422.0 424.5 2.5 .095 .166 4063 427.0 429.5 2.5 .0014 4063 427.0 429.5 2.5 .0014 4063 427.0 429.5 2.5 .0014 4067 434.5 437.0 2.5 .014	NO. Size From NO. Size From TO TOTAL NO. Size From TO TOTAL NO. Size From TO TOTAL NO. Size From TO TOTAL NO. Size From TO TOTAL NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total NO. Size Total No. Size Total No. Size Total No. Size Total No. Size Total No. Size No. No. Size No. No. No. Size No. No	

NAME OF	PROPERTY	<u>Kasagi</u>	<u>MINNIS</u>		
HOLE NO.	KAS-87A-40	LENGTH	437	feet	
LOCATION	L16+00W.	15+25N		****	
LATITUDE	•	DEPARTURE .			
ELEVATION	·	AZIMUTH	180°	DIP _	-59°
STARTED_	December 12, 1	987 FINISHED	Decemb	oer 14, 198	7

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZIMUTH
0	59.0				
200°	.56.0°				
437	51.0°				

HOLE NO.KAS-87A-49HEET NO. 1 OF 6

FOO	TAGE	DESCRIPTION	SAMPLE					ASSAYS Au					
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE	TOTAL	36	*6	OZ/TON			
0.0	15.0	CASING											
15.0	131.9	MAFIC FLOWS - dark green to black, medium grained, massive.	4001	tr.	15.0	20.0	5.0			<.002			
		Average Modes	:										
		Amphibole 45 - 507. Plagioclase 40 - 457. Albite 2 - 37. Quartz Carbonate 1 - 27. Epidote 1 - 27. Pyrite trace Amphibolitic, with slight foliation, cleavage trace in some horizons; 2-3% quartz ± carbonate ± epidote stringers and interflow sediments; common disseminated anhedral albite grains; foliation at 45° to core axis at 82.0', 40° at 112.0'; fractures at 47° to											
		core axis at 32.0°, 22° and 48° at 95.0°.											
		 - 68.0° to 73.0° - 1-2% quartz-tourmaline stringers with tourmaline as stringers and disseminated grains. 	4002		68.0	73.0	5.0			K.002			
		- 120.4' to 131.9' - irregular to en echelon, carbon			120.4		5.0			k.002			
			4004 4005		125.4 129.4		4.0 2.5			<.002 <.002			
131.9	146.4	INTERMEDIATE FLOWS - dark grey, fine grained, crudely banded to schistose.	4006 4007 4008	<u>-</u>	131.9	136.9 141.9	5.0 5.0 4.5			<.002 <.002 <.002			

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-87A-40 SHEET NO. 2 of 6

Average Modes Plagioclase 50 - 557. Amphibole 30 - 357. Chlorite 3 - 57. Quartz Carbonate 1 - 27. 2-37. quartz i carbonate stringers, wispy chlorite bands, epidote infilling of irregular fractures, minor sericite and amphibolitic zones; foliation at 47° to core axis at 144.0°; fracture at 50° to core axis at 144.0°. 146.4 185.5 MAFIC TO INTERMEDIATE FLOWS - green-black, fine grained, schistose. Average Modes Amphibole 40 - 457. Plagioclase 35 - 407. Chlorite 5 - 107. Albite 1 - 37. Quartz Carbonate 1 - 27. Wispy chlorite bands, irregular quartz i carbonate stringers; irregular anhedral albite grains; closely spaced quartz-carbonate filled fractures at 53° to core axis; crude schistosity at 40° - 45° to core axis.	FOOTAGE	05000000000			SAMP	LE				ASSAYS Au	Au	
Average Hodes Plagioclase 50 - 55% Amphibole 30 - 35% Chlorite 3 - 5% Quartz Carbonate 1 - 2% 2-3% quartz t carbonate stringers, wispy chlorite bands, epidote infilling of irregular fractures, minor sericite and amphibolitic zones; foliation at 47° to core axis at 144.0°; fracture at 50° to core axis at 144.0°. 146.4 185.5 MAFIC TO INTERHEDIATE FLOWS - green-black, fine grained, schistose. Average Hodes Amphibole 40 - 45% Plagioclase 35 - 40% Chlorite 5 - 10% Albite 1 - 3% Quartz Carbonate 1 1 - 2% Wispy chlorite bands, irregular quartz t carbonate stringers; irregular anhedral albite grains; closely spaced quartz-carbonate filled fractures at 53° to core axis; crude schistosity at 40° - 45° to core axis.	FROM TO	DESCRIPTION	NO.					٠,	٠,			
- 167.0' to 168.5' - quartz ± carbonate veining, trace pyrite. - 181.5' to 185.5' - quartz ± carbonate ± tourmaline veins up to 0.9 feet wide, minor pyrite bands, fracturing with quartz ± carbonate infillings. - 181.5' to 185.5' - quartz ± carbonate infillings. - 181.5' to 185.5' - quartz ± carbonate ± tourmaline veining, tracturing with quartz ± carbonate infillings. - 181.5' to 185.5' - quartz ± carbonate ± tourmaline veining, tracturing vide veining, tracturing vide veining, tracturing veining	146.4 185.5	Plagioclase 50 - 557. Amphibole 30 - 357. Chlorite 3 - 57. Quartz Carbonate Epidote 1 - 27. 2-37. quartz ± carbonate stringers, wispy chlorite bands, epidote infilling of irregular fractures, minor sericite and amphibolitic zones; foliation at 47° to core axis at 144.0°; fracture at 50° to core axis at 144.0°. MAFIC TO INTERMEDIATE FLOWS - green-black, fine grained, schistose. Average Modes Amphibole 40 - 457. Plagioclase 35 - 407. Chlorite 5 - 107. Albite 1 - 37. Quartz Carbonate 1 - 27. Wispy chlorite bands, irregular quartz ± carbonate stringers; irregular anhedral albite grains; closely spaced quartz-carbonate filled fractures at 53° to core axis; crude schistosity at 40° - 45° to core axis. - 167.0° to 168.5° - quartz ± carbonate veining, trace pyrite. - 181.5° to 185.5° - quartz ± carbonate ± tourmaline veins up to 0.9 feet wide, minor pyrite bands,	4009	tr.	167.0	168.5	1.5			<.002		(check

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-874-40 SHEET NO. 3 Of 6

F001	TAGE	DESCRIPTION			SAMPL	E			ASSAYS	Au	
FROM	10	DESCRIPTION	NO.	T. SULPH	FROM	FOOTAGE	TOTAL	٦,	OZ TOM	OZ TON	
185.5	188.1	CHERTY-FELSIC TUFF - light grey, fine grained, slight schistosity, generally massive.	4011	3-5	185.5	188.1	2.6		<.002		
188.1	331.6	Quartz 60 - 65%. Sericite 20 - 25%. Pyrite 3 - 5%. Carbonate 3 - 5%. Cherty blue-grey quartz; irregular blebs and stringers of pyrite. FELSIC TO INTERMEDIATE TUFF - green to grey, fine grained, banded to laminated. Average Modes Quartz 40 - 45%. Sericite 20 - 25%. Chlorite 15 - 20%. Amphibole 5 - 10%. Carbonate 1 - 3%. Pyrite trace - 1%		tr-1			3.0 1.5		<.002 <.002		
		Composition varies gradationally from rhyolite to dacite; carbonate as bands and disseminated grains; 1-3% quartz ± carbonate stringers minor fracturing throughout with quartz ± carbonate ± epidote infillings; pyrite as disseminated euhedral grains, fracture coatings blebs and stringers; spotty hematite staining and fracture coatings				, :					
ļ		- 188.1 to 237.0 - felsic to intermediate tuff.		[ĺ	ŀ			į i		
		- 227.0° to 237.0° - hematite stain, 2-3% quartz ± carbonate ± epidote stringers.		tr-1 tr-1	227.0 232.0		5.0 5.0		<.002 <.002		
		- 237.0' to 241.3' - intermediate tuff, highly fractured.	4016	tr-1	237.0	241.3	4.3		<.002		
		- 241.3 to 244.3 - felsic to intermediate tuff, 2-3% carbonate stringers.	4017	tr-1	241.3	244.3	3.0		<.002		
	ł	- 244.3' to 254.8' - felsic tuff.			}						
		- 244.3° to 250.0° - highly fractured, 3-5% quartz i carbonate stringers.		tr-1 tr-1	1	247.0 250.0	2.7 3.0		<.002 <.002	<.002	(check)

NAME OF PROPERTY_____KASAGIHINNIS
HOLE NO. ___KAS-87A-40______ SHEET NO. ___4 of 6______

- 254.8' to 257.4' - intermediate, 0.5-1% py 2-3% quartz ± carbonate - 257.4' to 259.8' - felsic - 259.8' to 260.7' - intermediate - 260.7' to 267.6' - felsic to intermediate - 267.6' to 268.1' - intermediate - 268.1' to 331.6' - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; mino - 278.1' to 279.8' - quar	e stringers. , trace-3% pyrite as s, disseminated grains; th quarts ± carbonate ±	4021 4022 4023 4024 4025	tr-1 tr-1 tr-1 tr-1	250.0 254.8 259.8 260.7 264.2	254.8 259.8	4.8 5.0 0.9 3.5 3.4	7	-,	<.002 .002</.002</.002</th <th>GZ TON</th> <th></th>	GZ TON	
2-37. quartz ± carbonate - 257.4' to 259.8' - felsic - 259.8' to 260.7' - intermediate - 260.7' to 267.6' - felsic to intermediate - 267.6' to 268.1' - intermediate - 268.1' to 331.6' - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; mino	e stringers. , trace-3% pyrite as s, disseminated grains; th quarts ± carbonate ±	4020 4021 4022 4023 4024 4025	tr-1 tr-1 tr-1 tr-1 tr-1	250.0 254.8 259.8 260.7 264.2	254.8 259.8 260.7 264.2	4.8 5.0 0.9 3.5	*	5	<.002 <.002	GZ TON	
2-37. quartz ± carbonate - 257.4' to 259.8' - felsic - 259.8' to 260.7' - intermediate - 260.7' to 267.6' - felsic to intermediate - 267.6' to 268.1' - intermediate - 268.1' to 331.6' - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; mino	e stringers. , trace-3% pyrite as s, disseminated grains; th quarts ± carbonate ±	4021 4022 4023 4024 4025	tr-1 tr-1 tr-1 tr-1	254.8 259.8 260.7 264.2	259.8 260.7 264.2	5.0 0.9 3.5			<.002		
2-37. quartz ± carbonate - 257.4' to 259.8' - felsic - 259.8' to 260.7' - intermediate - 260.7' to 267.6' - felsic to intermediate - 267.6' to 268.1' - intermediate - 268.1' to 331.6' - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; mino	e stringers. , trace-3% pyrite as s, disseminated grains; th quarts ± carbonate ±	4021 4022 4023 4024 4025	tr-1 tr-1 tr-1 tr-1	254.8 259.8 260.7 264.2	259.8 260.7 264.2	5.0 0.9 3.5			<.002		
2-37. quartz ± carbonate - 257.4' to 259.8' - felsic - 259.8' to 260.7' - intermediate - 260.7' to 267.6' - felsic to intermediate - 267.6' to 268.1' - intermediate - 268.1' to 331.6' - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; mino	e stringers. , trace-3% pyrite as s, disseminated grains; th quarts ± carbonate ±	4022 4023 4024 4025	tr-1 tr-1 tr-1 tr-1	259.8 260.7 264.2	260.7 264.2	0.9 3.5		<u>-</u>	<.002		
- 259.8' to 260.7' - intermediate - 260.7' to 267.6' - felsic to intermediate - 267.6' to 268.1' - intermediate - 268.1' to 331.6' - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; minor	s, disseminated grains; th quarts i carbonate i	4023 4024 4025	tr-1 tr-1 tr-1	260.7 264.2	264.2	3.5			ł		
- 260.7° to 267.6° - felsic to intermediate - 267.6° to 268.1° - intermediate - 268.1° to 331.6° - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; mino	s, disseminated grains; th quarts i carbonate i	4023 4024 4025	tr-1 tr-1 tr-1	260.7 264.2	264.2	3.5		:	ł		
- 267.6' to 268.1' - intermediate - 268.1' to 331.6' - felsic to intermediate, bands, stringers, blebs variable fracturing with epidote infilling; minor	s, disseminated grains; th quarts i carbonate i	4024 4025	tr-1 tr-1	264.2					<.002		
- 268.1 to 331.6 - felsic to intermediate, bands, stringers, blebs variable fracturing wit epidote infilling; mino	s, disseminated grains; th quarts i carbonate i	4025	tr-1	ľ	267.6	3.4					
bands, stringers, blebs variable fracturing wit epidote infilling; mino	s, disseminated grains; th quarts i carbonate i								<.002		
bands, stringers, blebs variable fracturing wit epidote infilling; mino	s, disseminated grains; th quarts i carbonate i			267.6	269.1	1.5			<.002		
variable fracturing wit epidote infilling; mino	th quarts ± carbonate ±		tr-3	269.1	273.1	4.0			<.002		
-	or notassic alteration.	4027	tr-3	273.1	278.1	5.0			<.002		
- 278.1' to 279.8' - quar	ne because attenderious		ļ ļ								
	rtz vein, milky white,	4028	-	278.1	279.8	1.7			<.002	<.002	chec
hematite fracture filli	ing, trace tourmaline,	4029		279.8	283.0	3.2			<.002		
fracturing at 12° to co	ore axis.	4030	-	283.0	286.0	3.0			<.002		
- 286.0° to 293.0° - 1-3%	L disseminated pyrite,	4031	1-3	286.0	289.5	3.5			<.002		
highly fractured.		4032	1-3	289.5	293.0	3.5			<.002		
- 294.7° to 296.4° - frac	ctured - silicified	4033	1 - 1	293.0	296.4	3.4			<.002		
minor crosscutting, myl	ionite horizon.	4034	1 1	296.4	301.4	5.0			<.002		
		4035		301.4		2.6			<.002		
- 304.0° - 306.0° - as pe	er 286.0° to 293.0°.	4036	1 1	304.0	306.0	2.0			<.002	002	chac
- 311.0 to 313.0 - ouer	rty veining, silicified.		• .							. 002	CHEC
						5.0			<.002		
		4040	-	318.0	323.0	5.0			<.002		
Foliation - banding at 40° to core axis at 1	188.5', 49° at 207.0',			323.0	328.0	5.0			<.002		
45° at 219.0°, 47° at 227.0°, 39° at 274.0°, 316.5°, 51° at 330.0°.	, 50° at 297.0°, 51° at	4042	-	328.0	331.6	3.6			<.002		
MAFIC FLOWS - typical, fine grained, few wid	dely spaced fractures.	4043	tr.	331.6	334.5	2.9			<.002		
- 334.5' to 339.3' - quar	rtz-tourmaline vein.	4044	1-2	334.5	339.3	4.8			<.002		
		ļ									
	- 311.0' to 313.0' - quanti-2% disseminated tours Foliation - banding at 40° to core axis at 145° at 219.0', 47° at 227.0', 39° at 274.0'; 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few wide at 1-2% disseminated pyriting garnets, inclusions of	- 311.0' to 313.0' - quartz veining, silicified, 1-2% disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 45° at 219.0', 47° at 227.0', 39° at 274.0', 50° at 297.0', 51° at 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-2% disseminated pyrite, 1-2% irregular pink garnets, inclusions of silicified, carbonati-	- 311.0' to 313.0' - quartz veining, silicified, 1-2% disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 45° at 219.0', 47° at 227.0', 39° at 274.0', 50° at 297.0', 51° at 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-2% disseminated pyrite, 1-2% irregular pink garnets, inclusions of silicified, carbonati-	- 311.0' to 313.0' - quartz veining, silicified, 1-2% disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 45° at 219.0', 47° at 227.0', 39° at 274.0', 50° at 297.0', 51° at 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-2% disseminated pyrite, 1-2% irregular pink garnets, inclusions of silicified, carbonati-	- 311.0' to 313.0' - quartz veining, silicified, 1038 - 4038 - 4039 - 4040 - 4040 - 4040 - 4040 - 4040 - 4040 - 4041 - 4040 - 4041 - 4041 - 4041 - 4041 - 4041 - 4041 - 4041 - 4041 - 4041 - 4042 - 4044 - 4042 - 4044 - 4042 - 4044 - 40	- 311.0' to 313.0' - quartz veining, silicified, 1-2% disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 4041 - 323.0 328.0 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-2% disseminated pyrite, 1-2% irregular pink garnets, inclusions of silicified, carbonati-	- 311.0' to 313.0' - quartz veining, silicified, 1-2% disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 45° at 219.0', 47° at 227.0', 39° at 274.0', 50° at 297.0', 51° at 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-2% disseminated pyrite, 1-2% irregular pink garnets, inclusions of silicified, carbonati-	- 311.0' to 313.0' - quartz veining, silicified, 1-2% disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 45° at 219.0', 47° at 227.0', 39° at 274.0', 50° at 297.0', 51° at 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-2% disseminated pyrite, 1-2% irregular pink garnets, inclusions of silicified, carbonati-	- 311.0' to 313.0' - quartz veining, silicified, 1-2% disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 45° at 219.0', 47° at 227.0', 39° at 274.0', 50° at 297.0', 51° at 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-2% disseminated pyrite, 1-2% irregular pink garnets, inclusions of silicified, carbonati-	- 311.0' to 313.0' - quartz veining, silicified, 4038 - 311.0 313.0 2.0 313.0 2.0 313.0 2.0 313.0 318.	- 311.0' to 313.0' - quartz veining, silicified, 1-27. disseminated tourmaline in host rock. Foliation - banding at 40° to core axis at 188.5', 49° at 207.0', 4041 - 323.0 318.0 323.0 5.0 4040 - 318.0 323.0 5.0 316.5', 51° at 219.0', 47° at 227.0', 39° at 274.0', 50° at 297.0', 51° at 316.5', 51° at 330.0'. MAFIC FLOWS - typical, fine grained, few widely spaced fractures. - 334.5' to 339.3' - quartz-tourmaline vein, 1-27. disseminated pyrite, 1-27. irregular pink garnets, inclusions of silicified, carbonati-

NAME OF PROPERTY KASAGIMINNIS

HOLE NO. KAS-87A-40 SHEET NO. 5 of 6

F00	TAGE	DESCRIPTION			SAMPI				ASSAYS		
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	 ٦,	OZ TOM	GZ TON	
339.3	372.7	FELSIC TO INTERMEDIATE TUFF - as above, foliation - banding at 50° to core axis at 347.0°, 60° at 366.0°.	4045	-	339.3	342.3	3.0		<.002		
		- 365.9' to 372.7' - 2-3% quartz-tourmaline stringers, 1-2% disseminated pyrite throughout		1-2 1-2		369.9 372.7	4.0 2.8		<.002 <.002		
372.7	377.0	FELSIC TUFF - bluish-grey to brown, fine grained, banded.	4048	-	372.7	377.0	4.3	l 	<.002		
		Average Modes			i						l
		Quartz 35 - 40% Sericite 20 - 25% Chlorite 20 - 25% Amphibole 5 - 10%									
		Cherty, brown sericite-chlorite bands, narrow quartz-tourmaline veins at top of section, banding at 52° to core axis.									
377.0	403.4	AMPHIBOLITE - dark green to dark grey, medium grained, massive to slightly schistose.	4049 4050 4051 4052	1-2 1-2	377.0 382.0 387.0 392.0	382.0 387.0 392.0 397.0	5.0 5.0 5.0 5.0		<.002 <.002 <.002 .003		
		Average Hodes Amphibole Plagioclase	4052		397.0				<.002		
		Quartz 2 - 3% Carbonate 2 - 3%						[]]		
		Pyrite 1 - 2%									
		Amphibolitic, pyrite as fracture coatings, disseminated grains; quartz and carbonate stringers ± 1-2% pyrite, pyrrhotite; fractures at 40° and 15° to core axis; foliation at 52° to core axis at 397.0°.									
		- 399.8' to 403.4' - 2-3% pyrite, 1-2% pyrrhotite.	4054	3-5	399.8	403.4	3.6		.003		

NAME OF PROPERTY_____KASAGIMINNIS

SHEET NO. 6 of 6 HOLE NO. ____KAS=874=40_____ SAMPLE ASSAY5 FOOTAGE DESCRIPTION FOOTAGE 2 SUL PH FROM 02 TO0 GZ TON FROM TOTAL IDES 403.4 437.0 SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION - dark green to dark grey, fine to medium grained, crudely banded. Average Modes 40 - 45% Ouartz 20 - 25% Amphibole 5 - 10% Sericite Chlorite 3 - 5% Grunerite Garnets Magnetite Pyrrhotite 1 Pyrite Felsic Bands - quartz, sericite, carbonate, magnetite, Mafic Bands - amphibole, chlorite, garnet, pyrrhotite, pyrite disseminated throughout, especially in quartz 2 carbonate stringers and as fracture coatings. Pyrrhotite, magnetite and grunerite occur exclusive of each other; disseminated fine to medium grained porphyroblastic garnets disseminated throughout. Grunerite occurs as haloes around quartz i carbonate stringers. <.002 - 403.4° to 405.8° - iron formation, 1-2% pyrrho-4055 1-2 403.4 405.8 2.4 4056 1-2 405.8 408.8 3.0 <.002 tite, fine grained garnets. 4057 408.8 2.2 <.002 1-2 411.0 - 405.8° to 413.5° - amphibolitic, mafic volcanic, 4058 411.0 2.5 <.002 1-2 413.5 1-2% pyrrhotite, pyrite. <.002 4059 413.5 417.0 3.5 <.002 - 413.5' to 437.0' - iron formation and volcanics 4060l 417.0 419.5 2.5 <.002 intermixed. 4061 419.5 422.0 2.5 .095 .121 4062 422.0 424.5 2.5 1-2 - 415.9' to 416.2' - quartz vein, 2-3% pyrite 2.5 .166 .185 4063 1-2 424.5 427.0 stringers. .041 | Check .051 .049 4064 427.0 429.5 2.5 .014 4065 429.5 432.0 2.5 1-2 4066 2.5 .008 432.0 434.5 1-2 2.5 .017 4067 1-2 434.5 437.0 437.0 END OF HOLE

NAME OF PROPERTY	KASAGIM	INNIS
HOLE NOKAS-87A-41	_ LENGTH	607 feet
LOCATION L16+00W. 16	+25N	
LATITUDE	DEPARTURE _	
ELEVATION	AZIMUTH	180° DIP63°
STARTED December 14, 198	7 FINISHED	December 17, 1987

FOOTAGE	DIP	HTUMESA	FOOTAGE	DIP	AZIMUTH
0	-63.0°				
	-58.5°				
	-57.5°				
607'	-50.0°				

HOLE NO. KAS-87A-41 SHEET NO. 1 of 2
REMARKS _____ Pa 786809

SUMMARY LOG

F 0 0 1	TAGE	DESCRIPTION			SAMP	LE			^	SSAI	/ S	
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	ૠ	36	OZ/TON	oz/ton	
0.0	12.0	CASING										
12.0	86.2	FELSIC TO INTERMEDIATE TUFF							E			
86.2	102.8	MYLONITE										
.02.8	105.0	FELSIC TO INTERMEDIATE TUFF										
05.0	111.0	MYLONITE										
11.0	120.6	FELSIC TO INTERMEDIATE TUFF										
20.6	335.8	MAPIC FLOW										
35.8	337.4	GRAPHITIC SCHIST								į		
37.4	433.3	FELSIC TO INTERMEDIATE TUFF										
33.3	435.3	MAFIC FLOWS										
	464.9	FELSIC TO INTERMEDIATE TUFF										
64.9 70.7 611.0 621.6	470.7	FELSIC TUFF										
70.7	511.0	FELSIC TO INTERMEDIATE TUFF										
11.0	521.6	SILICIFIED FELSIC TO INTERMEDIATE TUFF										
21.6	534.2	MAFIC FLOWS							 			

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-87A-41 SHEET NO. 2 of 2

SAMPLE ASSAYS

F00	TAGE	OSCOPIOZNON	T		SAMPL					ASS AYS Au	Au	
FROM	70	DESCRIPTION	NO.	% SUL PH		FOOTAGE		-,	Γ -,	02 700	GT LON	[
534.2	601.8	SHEARED-SILICIFIED MAFIC VOLCANICS AND IRON FORMATION	4154 4166 4167		534.2 577.0	537.0 581.2 582.4	2.8 4.2 1.2			.016 .026		check)
601.8	607.0	MAFIC FLOWS	4107		201.2	302.4	1.2			.000	.032	cneck)
	607.0	END OF HOLE										
					1			İ			_	
						·						
						·						
											,	
									į	:		

NAME OF	PROPERTY	KASAGIM	INNIS		
HOLE NO.	KAS-87A-41	LENGTH	607 feet		
LOCATION	L16+00W, 16	+25N			
LATITUDE		DEPARTURE .			
ELEVATION		AZIMUTH	180°	DIP	-63°
STARTED	December 14, 19	87 FINISHED	December 17	, 1987	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	63.0				
200	58.5*				
400	57.5°				
607	50.0				

HOLE NO. KAS-87A-41 SHEET NO. 1 of 8
REMARKS PA 786809

001	TAGE	DESCRIPTION	Ī		S A M P	LE		l l		SSAY	s
ROM	то	DESCRIPTION	NO.	SUL PHI-	FROM	FOOTAGE TO	TOTAL	*	*6	oz/TON	oz/TON
0.0	12.0	CASING									
2.0	86.2	FELSIC TO INTERMEDIATE TUFF - dark grey to dark green, fine grained banded.									
		Average Modes									
		Quartz 30 - 35% Plagioclase 30 - 35% Sericite 30 - 35% Amphibole 15 - 20% Chlorite 5 - 10%									
	,	Banded to laminated, zones of intense fracturing with potassic alteration, quartz ± carbonate and quartz ± tourmaline stringers and veins.									
		- 13.9' to 14.9' - 0.4' quartz ± tourmaline vein, highly fractured.	4068	-	13.9	14.9	1.0			k.002	
		 - 23.5° to 24.5° - quartz ± tourmaline vein, banded, fractured with potassic alteration. 	4069 4070		23.5 24.5	24.5 26.0	1.0 1.5			k.002 k.002	
		- 26.0° to 28.3° - irregular banded quartz ± tourma- line vein.	4071	-	26.0	28.3	2.3			k.002	
		- 30.8' to 32.3' - banded quartz t carbonate t potash feldspar veining.	4072	-	28.3	32.3	5.0			k.002	
		- 47.0° to 49.2° - quartz ± tourmaline ± potash feldspar stringers, fracturing with minor dis- locations.	4073	-	47.0	49.2	2.2			k.002	
		- 67.5' to 70.0' - banded quartz t tourmaline vein with chlorite, sericite inclusions.	4074	•	67,5	70.0	2.5			.003	

NAME OF PROPERTY____KASAGIHINNIS

HOLE NO. ... KAS-874-41 SHEET NO. ___ 2 of 8 SAMPLE ASSAYS FOOTAGE Au_ DESCRIPTION FOOTAGE 3 SULPH FROM TO 02 TOM FROM TOTAL IDE S 4075 -- 76.3' to 78.1' - quartz-potash feldspar stringers. 76.3 79.5 3.2 <.002 79.5 - 79.5' to 81.0' - minor quartz i tourmaline strin-81.5 2.0 .002 4077 <.002 81.5 86.2 4.7 gers, narrow cryptocrystalline chert bands. Foliation at 42° to core axis at 13.0', 33° at 35.0', 37° at 47.0', 40° at 62.0', 35° at 74.5'. 86.2 89.2 3.0 <.002 86.2 102.8 MYLONITE - orange-red to grey to bright green, fine grained, lamin-<.002 4079 89.2 92.0 2.8 ated. 92.0 97.0 5.0 <.002 4080 -Average Modes Potash Feldspar 45 - 50% 30 - 35% Quartz Sericite 5 - 7% 3 - 5% Chlorite . . Carbonate Chlorite as fine laminae, highly fractured, foliation - lamination at 39° to core axis. 97.0 99.5 2.5 <.002 - 97.0' to 99.5' - chloritic, black to bright green, 4081 <.002 < .002 (check) 99.5 3.3 speckled with biotite grains, 5-10% epidote. 4082 102.8 4083 102.8 105.0 2.2 <.002 102.8 105.0 FELSIC TO INTERMEDIATE TUFF - as above. 4084 105.0 109.0 4.0 .002 105.0 111.0 MYLONITE - as above. <.002 109.0 111.0 2.0 4085 <.002 4086 111.0 115.0 4.0 111.0 FELSIC TO INTERMEDIATE TUFF - as above, fractured, minor chert 120.6 4087 115.0 118.0l 3.0 <.002 bands. <.002 4088 118.0 120.6 2.6 120.6 335.8 MAFIC FLOWS - dark green, fine to medium grained, massive to slight ly foliated, amphibolitic, 1-3% quartz ± carbonate and carbonate stringers, trace-1% pyrite as stringers, blebs, disseminated grains. 4089 1-2 120.6 <.002 - 120.6' to 123.3' - light green, carbonatized, 123.3 2.7 closely spaced fractures with quartz ± carbonate infillings and 1-2% pyrrhotite and pyrite blebs.

NAME OF PROPERTY____KASAGIMINNIS

HOLE NO. KAS-874-41 SHEET NO. 3 of 8

70	- 128.8' to 132.0' - 2-3% quartz veining, 2-3% pyrite. - 167.5' to 172.5' - 3-5% irregular carbonate veins and stringers. - 189.5' to 190.0' - quartz vein, hematite stained, trace garnet. - 197.0' to 198.0' - 0.5 foot quartz ± carbonate vein, banded, trace-0.5% pyrite. - 250.7' to 267.0' - quartz ± carbonate vein,	4091 4092	•	128.8 167.5 189.5	172,5 190.0	5.0		*	41002 TON<.002<.002<.002	AU 02 TON	(check)
	 pyrite. 167.5 to 172.5 - 3-5% irregular carbonate veins and stringers. 189.5 to 190.0 - quartz vein, hematite stained, trace garnet. 197.0 to 198.0 - 0.5 foot quartz ± carbonate vein, banded, trace-0.5% pyrite. 	4091 4092	2-3	128.8 167.5 189.5	132.0 172.5 190.0	3.2 5.0			<.002	<•002	check)
	 pyrite. 167.5 to 172.5 - 3-5% irregular carbonate veins and stringers. 189.5 to 190.0 - quartz vein, hematite stained, trace garnet. 197.0 to 198.0 - 0.5 foot quartz ± carbonate vein, banded, trace-0.5% pyrite. 	4091 4092	•	167.5 189.5	172,5 190.0	5.0			<.002	<•002(check
	and stringers. - 189.5' to 190.0' - quartz vein, hematite stained, trace garnet. - 197.0' to 198.0' - 0.5 foot quartz ± carbonate vein, banded, trace-0.5% pyrite.	4092	•	189.5	190.0					<-002	check
	trace garnet 197.0' to 198.0' - 0.5 foot quartz ± carbonate vein, banded, trace-0.5% pyrite.					0.5		:	<.002		1
	vein, banded, trace-0.5% pyrite.	4093	tr-0.5	407.0							
	- 250.7' to 267.0' - quartz ± carbonate vein.			197.0	198.0	1.0	Ì		<.002		
		4094	-	250.7	253.7	3.0			<.002		1
	banded, 10-20% carbonate, inclusions of chlorite,	4095	-	253.7	257.0	3.3	i	i	<.002		l
	amphibole and trace tourmaline, 22° to subparallel	4096	-	257.0	262.0	5.0	[<.002		i
	to core axis.	4097		262.0	267.0	5.0	ł		<.002		l
	- 280.0° to 283.5° - 2-3% quartz i carbonate veining 1-2% tourmaline bands.	4098	-	280.0	283.5	3.5			<.002		
	- 283 51 to 280 11 - tuff armidaly handed 3-59	4000		283 5	287 0	2 5	Ī		< 002		l
1	· · · · · · · · · · · · · · · · · · ·							}		<.001	Chec
1							l				1
]	ļ			1
],						_		i			l
l	• • • • • • • • • • • • • • • • • • • •						•				i
	1-2% Carbonace.						1	Ì			l
							I	ĺ	F		t
Ţ	= 311.5° to 313.5° = fractured with quarte + carbon=						l	ļ			l
	ate infillings.										
1	- 315.4' to 316.5' - carbonatized flows.							}			ĺ.
							1	1		<.002	(chec
								ĺ	4		ĺ
Ì							1]			
	infillings.						ł		ľ		
18 63	7.0', 47° at 212.0'; fractures at 62° to core axis at 130.0', at 157.0', 50° at 187.0', 55° at 222.0', 17° and 50° at 274.0',	4113	•	331.6	335.8	4.2			<.002	<.002	(chec
	18 63	- 280.0° to 283.5° - 2-3% quartz ± carbonate veining 1-2% tourmaline bands. - 283.5° to 289.1° - tuff, crudely banded, 3-5% biotite. - 289.1° to 305.1° - irregular fractures with quartz ± carbonate infilling, 0.1 foot irregular green feldspar stringer with 1-2% disseminated pyrite, 1-2% carbonate. - 311.5° to 313.5° - fractured with quartz ± carbon-	- 280.0° to 283.5° - 2-3% quartz ± carbonate veining 1-2% tourmaline bands. - 283.5° to 289.1° - tuff, crudely banded, 3-5% biotite. - 289.1° to 305.1° - irregular fractures with quartz ± carbonate infilling, 0.1 foot irregular green feldspar stringer with 1-2% disseminated pyrite, 1-2% carbonate. - 311.5° to 313.5° - fractured with quartz ± carbonate infillings. - 315.4° to 316.5° - carbonatized flows. - 324.0° to 335.8° - fractured, quartz ± carbonate infillings. Foliation at 40° to core axis at 130.0°, 33° at 160.0°, 37° at 187.0°, 47° at 212.0°; fractures at 62° to core axis at 130.0°, 63° at 157.0°, 50° at 187.0°, 55° at 222.0°, 17° and 50° at 274.0°,	- 280.0° to 283.5° - 2-3% quartz t carbonate veining 1-2% tourmaline bands. - 283.5° to 289.1° - tuff, crudely banded, 3-5% 4099 - 4100 - 4100 - 4101 1-2 t carbonate infilling, 0.1 foot irregular green feldspar stringer with 1-2% disseminated pyrite, 1-2% carbonate. - 311.5° to 313.5° - fractured with quartz t carbonate infillings. - 315.4° to 316.5° - carbonatized flows. - 324.0° to 335.8° - fractured, quartz t carbonate infillings. Foliation at 40° to core axis at 130.0°, 33° at 160.0°, 37° at 187.0°, 47° at 212.0°; fractures at 62° to core axis at 130.0°, 63° at 157.0°, 50° at 187.0°, 55° at 222.0°, 17° and 50° at 274.0°,	- 280.0' to 283.5' - 2-3% quartz ± carbonate veining 1-2% tourmaline bands. - 283.5' to 289.1' - tuff, crudely banded, 3-5% 4099 - 283.5 biotite. - 289.1' to 305.1' - irregular fractures with quartz ± carbonate infilling, 0.1 foot irregular green feldspar stringer with 1-2% disseminated pyrite, 1-2% carbonate. - 311.5' to 313.5' - fractured with quartz ± carbonate infillings. - 315.4' to 316.5' - carbonatized flows. - 324.0' to 335.8' - fractured, quartz ± carbonate infillings. - 324.0' to 335.8' - fractured, quartz ± carbonate infillings. Foliation at 40° to core axis at 130.0', 33° at 160.0', 37° at 187.0', 47° at 212.0'; fractures at 62° to core axis at 130.0', 63° at 157.0', 50° at 187.0', 55° at 222.0', 17° and 50° at 274.0',	- 280.0' to 283.5' - 2-3% quartz ± carbonate veining 1-2% tourmaline bands. - 283.5' to 289.1' - tuff, crudely banded, 3-5% 4099 - 283.5 287.0 biotite. - 289.1' to 305.1' - irregular fractures with quartz ± carbonate infilling, 0.1 foot irregular green feldspar stringer with 1-2% disseminated pyrite, 1-2% carbonate. - 311.5' to 313.5' - fractured with quartz ± carbonate infillings. - 315.4' to 316.5' - carbonatized flows. - 324.0' to 335.8' - fractured, quartz ± carbonate infillings. Foliation at 40° to core axis at 130.0', 33° at 160.0', 37° at 187.0', 47° at 212.0'; fractures at 62° to core axis at 130.0', 63° at 157.0', 50° at 187.0', 55° at 222.0', 17° and 50° at 274.0',	- 280.0' to 283.5' - 2-3% quartz ± carbonate veining 4098 - 280.0 283.5 3.5 1-2% tourmaline bands. - 283.5' to 289.1' - tuff, crudely banded, 3-5% 4099 - 287.0 289.1 210 - 289.1' to 305.1' - irregular fractures with quartz 4101 1-2 289.1 292.1 3.0 1-2% carbonate infilling, 0.1 foot irregular green 4102 1-2 295.1 300.1 305.1 5.0 305.1 306.1	- 280.0° to 283.5° - 2-3% quartz ± carbonate veining 1-2% tourmaline bands. - 283.5° to 289.1° - tuff, crudely banded, 3-5% 4009 - 287.0 289.1 2.1 - 289.1° to 305.1° - irregular fractures with quartz ± carbonate infilling, 0.1 foot irregular green feldspar stringer with 1-2% disseminated pyrite, 1-2% carbonate. - 311.5° to 313.5° - fractured with quartz ± carbonate infillings. - 315.4° to 316.5° - carbonatized flows. - 324.0° to 335.8° - fractured, quartz ± carbonate infillings. Foliation at 40° to core axis at 130.0°, 63° at 157.0°, 50° at 187.0°, 55° at 222.0°, 17° and 50° at 274.0°,	- 280.0' to 283.5' - 2-3% quartz ± carbonate veining 1-2% tourmaline bands. - 283.5' to 289.1' - tuff, crudely banded, 3-5% 4009 - 283.5 287.0 3.5 biotite. - 289.1' to 305.1' - irregular fractures with quartz ± carbonate infilling, 0.1 foot irregular green feldspar stringer with 1-2% disseminated pyrite, 1-2% carbonate. - 311.5' to 313.5' - fractured with quartz ± carbonate infillings. - 315.4' to 316.5' - carbonatized flows. - 324.0' to 335.8' - fractured, quartz ± carbonate infillings. Foliation at 40° to core axis at 130.0', 33° at 160.0', 37° at 187.0', 47° at 212.0'; fractures at 62° to core axis at 130.0', 63° at 157.0', 50° at 187.0', 55° at 222.0', 17° and 50° at 274.0',	- 280.0' to 283.5' - 2-3% quartz ± carbonate veining 4098 - 280.0 283.5 3.5 3.5 3.5 1-2% tourmaline bands. - 283.5' to 289.1' - tuff, crudely banded, 3-5% 4009 - 287.0 289.1 2.1 3.0 - 287.0 289.1 2.1 3.0 - 287.0 289.1 2.1 3.0 3.5 4.002 4100 - 287.0 289.1 2.1 3.0 3.5 4.002 4100 - 287.0 289.1 2.1 3.0 3.5 4.002 4100 - 287.0 289.1 2.1 3.0 3.5 4.002 4101 1-2 289.1 2.1 3.0 3.	- 280.0' to 283.5' - 2-3% quartz ± carbonate veining 1-2% tourmaline bands. - 283.5' to 289.1' - tuff, crudely banded, 3-5% 4009 - 287.0 289.1 2.1 289.1 2.1 289.1' to 305.1' - irregular fractures with quartz 1-2 289.1 2.1 295.1 3.0 4002 4103 1-2 295.1 3.0 4002 4103 1-2 295.1 3.0 4002 4103 1-2 295.1 3.0 4002 4105 1-2% carbonate. - 311.5' to 313.5' - fractured with quartz ± carbonate infillings. - 315.4' to 316.5' - carbonatized flows. - 324.0' to 335.8' - fractured, quartz ± carbonate infillings. Foliation at 40° to core axis at 130.0', 47° at 212.0'; fractures at 62° to core axis at 130.0', 63° at 157.0', 50° at 187.0', 55° at 222.0', 17° and 50° at 274.0', 63° at 157.0', 50° at 187.0', 55° at 222.0', 17° and 50° at 274.0', 63° at 157.0', 55° at 222.0', 17° and 50° at 274.0', 4000 2 4100 1 283.5 3.5 - 283.5

HOLE NO. KAS-87A-41 SHEET NO. 4 of 8

FOO	TAGE	DESCRIPTION.			SAMPL	.E	-		ASSAYS		
FROM	10	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE	TOTAL	 3	OZ TOM	62 TON	
335.8	337.4	GRAPHITIC SCHIST - grey to white to buff, fine grained, schistose.	4114	3-5	335.8				tr.		
		Average Modes Quartz 45 - 50% Sericite 20 - 25% Graphite 10 - 15% Carbonate 3 - 5% Pyrite 3 - 5%									
		Deformed - distorted foliation, wispy banding, pyrite as stringers and blebs.									
337.4	433.3	FELSIC TO INTERMEDIATE TUFF - typical, banding at 42-46° to core axis.]							
		- 347.8° to 350.4° - 0.3 foot quartz ± carbonate stringer, 1-5% disseminated potash feldspar throughout zone.	4115	-	347.8	350.4	2.6		tr.		
		- 362.0° to 366.0° - 0.4 foot quartz ± carbonate veining with trace potash feldspar, garnet and chlorite inclusions.	4116	-	362.0	366.0	4.0		tr.		
		- 371.3' to 375.8' - finely laminated tuff, common lapilli, pervasive potassic alteration, minor epidote bands, abundant fractures with quarts ± carbonate infillings.	4117	•	371.3	375.8	4.5		tr.		
		- 375.8 to 419.0 - 3-5% carbonate bands, eyes,		0.5-3		379.3	3.5		tr.		
1		and fracture fillings, 0.5-3% disaeminated pyrite,		0.5-3		382.8	3.5		tr.		
	!	1-3% disseminated potash feldspar grains, hematite fracture coatings.		0.5-3 0.5-3		387.8 392.8	5.0 5.0		tr.		
		rracture coatrigs.		0.5-3		397.8	5.0	1	tr.		
İ				0.5-3		402.8	5.0		tr.	1	
			4124	D.5-3	402.8	407.0	4.2		tr.		
	İ			0.5-3		412.0	5.0	1	tr.		
	j			D.5-3		417.0	5.0 2.0		tr.		
]	- 419.0' to 429.0' - highly fractured, 10-15%		3-5	417.0 419.0	419.0 424.0	5.0		tr.		
]		quartz ± carbonate ± epidote, 1.0 foot quartz ±		3-5	424.0		5.0	l	tr.	İ	
		tourmaline vein, irregular, 3-5% pyrite as dis- seminated grains in tourmaline and coarse grained blebs in quartz.									

LANGRIDGES - TORONTO - 366-1168

HOLE NO. KAS-874-41 SHEET NO. 5 of 8

FOOT	AGE	OFFICIAL			SAMPL	Æ				ASSAYS	
FROM	70	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL		7,	02 100	GZ TON
		- 429.0° to 433.3° - as per 375.8° to 419.0°.	4130	0.5-3	429.0	433.3	4.3		; - - -	.002	
433.3	435.5	MAFIC FLOWS - dark green, fine grained, massive.	4131	tr-0.5	433.3	435.5	2.2			tr.	
]	Average Modes									
		Amphibole Plagioclase Carbonate 2 - 3%] 		
		Epidote 1 - 2%. Pyrite trace - 0.5%									
		Few widely spaced fractures, carbonate and epidote as fine grained stringers.									
435.5	464.9	FELSIC TO INTERMEDIATE TUFF - typical, foliation at 47° to core		1-3 1-3		438.5 442.0				tr.	
		axis at 457.0°, 1-3% pyrite as disseminated grains and stringers, 1-3% quartz ± carbonate and carbonate stringers.	4133	1-3	436.3	442.0	3.5			tr.	
		- 442.0° to 443.7° - highly fractured to brecciated, quartz ± carbonate ± epidote infillings, trace-17 pyrite.								tr.	
	ļ	- 451.5' to 453.0' - carbonatized, 20-25% fine to medium grained potash feldspar, fractures with	4136 4137		451.5 453.0	453.0 457.0				tr.	
		carbonate infillings.	4138	1	457.0	462.0 464.9			l	tr.	
464.9	470.7	FELSIC TUFF - light grey, fine grained, banded.	4140	1 .	464.9	467.7	2.8 3.0			tr.	
		Average Hodes						1			
		Quartz 60 - 65% Sericite 30 - 35% Chlorite 3 - 5%									
		Pyrite trace							ł		
		Chlorite as wispy bands, narrow zones of tourmaline blebs - mottled with 1-2% pyrite, foliation at 52° to core axis at 468.0° .									
470.7	511.0	FELSIC TO INTERMEDIATE TUFF - trace-3% pyrite as disseminated grains, stringers and fracture coatings.									

GRIDGES - TORONTO - 366-1

HOLE NO. KAS-874-41 SHEET NO. 6 of 8

F001	TAGE				SAMPI	E				ASSAYS		
FROM	10	DESCRIPTION	NO.	3 SULPH	FROM	FOOTAGE	TOTAL		٦.	OZ TON	G2 TON	
				100.5	7.00	 "- 	IUIAL					···
		- 470.7' to 472.7' - banded quarts ± tourmaline wein	4142	1-2	470.7	472.7	2.0			tr.	Ì	
						477.0	4.3			tr.		
]	ated pyrite, chlorite and amphibole inclusions,	4144	tr-3	477.0		5.0			tr.		
		minor vuggy epidote-carbonate bands. 2-3% carbon-		tr-3						tr.		
]	ate fracture fillings.	4146	tr-3	487.0	492.0	5.0			tr.	l	
		- 509.0' to 511.0' - 3-5% irregular quartz veining with epidote-amphibole inclusions.	4147	-	509.0	511.0	2.0			tr.		
		Foliation at 51° to core axis at 497.0°.					-					
511.0	521.6	SILICIFIED FELSIC TO INTERMEDIATE TUFF - increasing silica content	4148	-	511.0	515.0	4.0			.002		
		down hole, foliation at 44° to core axis at 519.0°.	4149			519.0				tr.	- 1	
		- 519.0' to 521.6' - round irregular plagioclase metacrysts, intense potassic alteration (pink) along chloritic fractures parallel to core axis, sharp contact at 521.6'.	4150	-	519.0	521.6	2.6			tr.		
	İ	snarp contact at 521.0 .										
521.6	534.2	MAFIC FLOWS - typical, 3-5% quartz i carbonate veining - stringers,	4151	tr.	521.6	526.6	5.0	i		tr.		
		trace-0.5% disseminated pink garnets, trace pyrite and pyrrhotite,			526.6	531.6	5.0			.002		
		minor bands of felted amphibole, foliation at 52° to core axis at 525.0°.	4153	tr.	531.6	534.6	2.6			•002		
534.2	601.8	SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION - dark grey to dark green to pink, fine to medium grained, massive to poorly banded and mottled.										
		Average Modes										
		Quartz 30 - 35% Amphibole 20 - 25% Plagioclase 15 - 20% Garnet 2 - 5% Hagnetite trace - 5% Carbonate 1 - 3% Pyrrhotite 1 - 3% Pyrite 1 - 2% Potash Feldspar 1 - 2%										

NAME OF PROPERTY____KASAGIMINNIS

HOLE NO. ___KAS-874-41______ SHEET NO. ____7 of 8

FOOT	TAGE	DECEMBER			SAMP	LE		[ASSAYS	Αu	
FROM	τo	DESCRIPTION	NO.	", SULPH	FROM	FOOTAGE	TOTAL		7.	OZ TON	62 TON	
601.8	607.0		4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170	2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5	534.2 537.0 538.9 542.0 552.0 557.0 561.0 563.9 577.5 577.0 581.2 582.4 587.0 592.0	537.0 538.9 542.0 547.0 552.0 557.0 561.0 563.9 570.9 573.5 577.0 581.2 582.4 587.0 592.0 597.0	2.8 1.9 3.1 5.0 5.0 4.0 2.9 4.0 3.0 2.6 3.5 4.2 1.2 4.6 5.0 5.0 4.8			.016 tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		check)

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-87A-41 SHEET NO. 8 Of 8

F001	TAGE	055000000000			SAMPI					ASSAY S Au		
	70	DESCRIPTION	NO.	S AULPH		FOOTAGE			1	02 100		
FROM	10			IDES	FROM	TO	TOTAL	<u> </u>	,	02 TOM	GZ TON	
		- 604.0' to 604.7' - fine grained, mottled, 3-5% magnetite as disseminated grains.										
		- 604.7' to 607.0' - fine to medium grained, massive, abundant sericitized plagioclase grains, 1-2% quartz ± carbonate stringers.	4173	-	604.7	607.0	2.3			.008		
		Foliated at 60° to core axis at 607.0°.]							
	607.0	END OF HOLE		ł					İ			
								}			 	
		,										
]								
				}					ļ			
]			
									0	M	MA	M
	İ								1 /			

NAME OF	PROPERTY	KASAGIM	INNIS		
HOLE NO.	KAS-88-1	LENGTH	650	feet	
LOCATION	L12+00W.	16+29N			
		DEPARTURE _			
ELEVATION		AZIMUTH	180°	_ DIP	-58°
		988 FINISHED			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZMUTH
0 -	58.0°				
200°	53.0				
4001	51.0°				
600'	44.0				

HOLE NO. KAS-88-1 SHEET NO. 1 of 2
REMARKS Pa 786809, 786810
SUMMARY LOG

F 0 0 1	T A G E	0.5.5.0.1.2.1.0.11	Ī		SAMP	LE			,	S 5 A 1	/ S	
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	ж	oz/ton	oz/TON	
0.0	22.0	CASING										
22.0	45.3	FELSIC TO INTERMEDIATE TUFF				! !						
45.3	50.2	FELSIC CRYSTAL TUFF										
50.2	63.7	INTERBEDDED FELSIC TO INTERMEDIATE TUFF AND FELSIC CRYSTAL TUFF										
63.7	67.6	MAFIC DYKE										
67.6	74.9	FELSIC TO INTERMEDIATE TUFF										
74.9	83.7	MAFIC DYKE										
83.7	97.0	FELSIC TO INTERMEDIATE TUFF										
97.0	102.5	MAFIC DYKE										
102.5	128.2	INTERMEDIATE TUFF					1					
128.2	129.4	MAFIC DYKE				Ì						
129.4	142.4	INTERMEDIATE TUFF										
142.4	151.8	MYLONITE										
142.4 151.8 285.0	285.0	MAFIC FLOWS										
285.0	301.3	MAFIC TO INTERMEDIATE TUFF						'				
301.3	323.1	MAFIC FLOWS										

NAME OF PROPERTY KASAGIMINNIS

HOLE NO. ______ SHEET NO. _____ 2 of 2

F00	TAGE	05500:57-1			SAMPL			<u> </u>		ASSAYS	An	
FROM	10		NO.	% SULPH		FOOTAGE		<u> </u>		02 700	GZ TON	
FROM	324.2 326.2 356.8	BANDED IRON FORMATION INTERMEDIATE TUFF MAFIC FLOWS INTERBEDDED FELSIC TO INTERMEDIATE TUFF AND FELSIC CRYSTAL TUFF INTERMEDIATE TUFF SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION MAFIC FLOWS END OF HOLE	4249 4251 4255 4256 4257 4258 4262 4263	IDES		FOOTAGE TO	TOTAL		5	.016 .028 .160 .026 .106 .044 .080 .160	.172 .114 .084	check) check) check) check)

NAME OF	PROPERTY	KASAGI	MINNIS			
HOLE NO.	KAS-88-1	LENGTH	650	feet		
LOCATION	L12+00W1	6+29N				
LATITUDE		DEPARTURE .			·-··	
ELEVATION		AZIMUTH	180*	DIP _	-58°	
STARTED	January 8, 1988	FINISHED	January	10. 1988		_

FOOTAGE	ÐIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-58.0°				
200°	-53.0				
400	-51.0°				
600*	-44.0				

HOLE NO. KAS-88-1 SHEET NO. 1 of 9
REMARKS Pa 786809, 786810

F 0 0 1	TAGE	DESCRIPTION			SAMP	LE			A	5 5 A Y	S	
FROM	то	JE JON 17 1 1 ON .	NO.	SUE PH	FROM	FOOTAGE TO	TOTAL	ν,	ж	OZ/TON		
0.0	22.0	CASING										
22.0	45.3	laminated.	4174 4175	tr.	22.0 27.0	27.0 32.0	5.0 5.0			tr.		
		Average Modes	4176 4177 4178	tr.	32.0 37.0 42.0	37.0 42.0 45.3	5.0 5.0 3.3			tr. tr. tr.		
		Quartz Plagioclase Amphibole Potash Feldspar 2 - 3% Epidote 2 - 3% Chlorite 1 - 2% Carbonate 1 - 2% Pyrite trace										
		Finely banded to laminated, variable band composition, highly fractured with zones of weak to pervasive potassic alteration and epidotization; 1-2% quartz i carbonate stringers; foliation at 42° to core axis at 25.0°, 50° at 39.0°; fracturing at 55° to core axis at 25.0°.						•				
45.3	50.2	medium grained irregular white quartz crystals, poorly foliated.	4179		45.3	50.2	4.9			tr.		
45.3		Quartz 45 - 50% Plagioclase 30 - 35% Potash Feldspar 5 - 10% Chlorite 3 - 5%								3		

KASAGIMINNIS NAME OF PROPERTY____

HOLE NO. KAS-88-1 SHEET NO. 2 of 9

F001	TAGE	DESCRIPTION			SAMPL	-E	'			ASSAYS	
FROM	τo	DESCRIPTION	NO.	2 SULPH IDES	FROM	FOOTAGE	TOTAL	•	7.	OZ TOM	UZ TON
50.2	63.7	10-15% quartz clasts and 3-5% feldspar clasts, 1-2% quartz stringers, foliated at 46° to core axis. INTERBEDDED FELSIC TO INTERMEDIATE TUFF AND FELSIC CRYSTAL TUFF -		tr-1		55.2	5.0			tr.	
		80:20; typical, narrow crystal tuff bands, highly fractured, pervasive epidote and potassic alteration, trace-1% disseminated pyrite.		tr-1 tr-1		60.2 63.7	5.0 3.5			tr.	
63,7	67.6	MAFIC DYKE - dark green to black to white, massive, fine to medium grained.	4183	tr-2	63.7	67.6	3.9			tr.	
		Average Modes Plagioclase 30 - 35% Amphibole 30 - 35% Chlorite 15 - 20% Biotite 3 - 5% Carbonate 3 - 5% Pyrite trace - 2%				·					
	:	Equigranular texture, sericitic fractures, sharp discordant contacts at 32° to core axis at 63.7°, 38° at 67.6°.							:		
67.6	74.9	FELSIC TO INTERMEDIATE TUFF - typical, minor potassic alteration, 5-10% fine grained, disseminated sericitized plagioclase grains, 2-3% fine quartz ± carbonate stringers, 2-3% fine grained pyrite, foliation - banding at 42° to core axis at 72.0°.	4184 4185	2-3 2-3		71.1 74.9	3.5 3.8			tr.	
74.9	83.7	MAFIC DYKE - typical with medium grained pseudomorphs of chlorite after pyroxene, trace pyrite, contacts at 40° to core axis at 83.7°, 44° at 74.9°.	4186 4187		74.9 79.9		5.0 3.8			tr.	
83.7	97.0	FELSIC TO INTERMEDIATE TUFF - as per 67.6 to 74.9, foliation - banding at 50 to core axis at 92.0.	4188 4189 4190	tr.	83.7 87.0 92.0	87.0 92.0 97.0	3.3 5.0 5.0			tr. tr.	
97.0	102.5	MAFIC DYKE - as above with 3-5% potassic alteration, trace pyrite, contacts at 45° to core axis at 97.0', 55° at 102.5', cleavage at 50° to core axis at 99.0'.	4191 4192		97.0 100.0		3.0 2.5			tr.	

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-88-1 SHEET NO. 3 of 9

F00	TAGE	DESCRIPTION			SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	NO.	3 SULPH		FOOTAGE		-	1 .	OZ TON	GZ TON	
	128.2	INTERMEDIATE TUFF - dark greenish-grey, fine grained, poorly	4193			107.0				tr.		
		banded. Average Modes	4194 4195			110.0 113.0				tr.		
		Quartz 25 - 307. Plagioclase 25 - 307. Amphibole 15 - 207. Chlorite 10 - 157. Carbonate 1 - 37. Epidote 1 - 27.										
		Small zones of intense fracturing with carbonate infill; 1-2% quartz ± carbonate stringers; foliation at 44° to core axis at 112.0°, 52° at 127.0°.										
		- 113.0' to 117.0' - narrow highly fractured zones with 10-15% epidote-carbonate infill.	4196		113.0	117.0	4.0			tr.		
128.2	129.4	MAFIC DYKE - typical, contacts at 43° to core axis at 128.2°, 45° at 129.4°.	4197	tr.	128.2	129.4	1.2			tr.		
129.4	142.4	INTERMEDIATE TUFF - as above, foliation at 49° to core axis at	4198			134.0			ł	tr.		
		137.0° 138.0° to 142.4° - 10-15% epidote-carbonate infilling of fractures.	4199 4200		134.0 138.0					tr.		
142.4	151.8	MYLOHITE - dark grey to orangy-pink, fine grained, foliated. Average Modes	4201 4202	B	142.4 147.0	147.0 151.8				tr.	į	
		Quartz 45 - 50%. Potash Feldspar 20 - 25%. Plagioclase/Sericite 15 - 20%. Chlorite 3 - 5%. Carbonate 1 - 2%. Parting - cleavage along chloritic laminae at 45° - 50° to core axis.										

NAME OF PROPERTY____KASAGIHINNIS

F001	FAGE				SAMP	LE		}		ASSAYS	
FROM	10	DESCRIPTION	NO.	SUL PH		FOOTAGE		<u> </u>	٠,	DJ TON	GI TON
				1005	FROM	70	TOTAL	<u> </u>		31 700	-
51.8	285.0	MAFIC FLOWS - dark green to black, fine to medium grained, massive.									
}		Average Modes									
		Amphibole 40 - 45%									
		Plagioclase 40 - 45%									ļ
		Epidote 2 - 5% Quartz		l i)	Ì	}	}	1 1	1
Į		Carbonate 2 - 5%		1 1					ļ		
İ		Pyrite trace - 3%									
		Massive to amphibolitic, 2-5% quartz i carbonate stringers with		1 1				1	}		
J		tourmaline-pyrite, 1-3% disseminated pyrite in some horizons;		1 1							
]		quartz ± carbonate ± epidote interflow; competent few widely spaced fractures.]]		Ì		Ì]		
		- 151.8' to 155.6' - fine grained, massive, cleavage at 45° to core	4203	ا ۔۔ ا	151 0	155 6	3.8				
		axis.	4203	"	131.0	155.6	3.6			tr.	
		- 155.6' to 162.3' - fine grained, highly fractured, 3-5% quartz ±	4204	tr.	155.6	159.1	3.5	1	Ì	tr.	
		carbonate ± epidote fracture fill, stringers 3-7% carbonate.	4205	tr.	159.1	162.3	3.2			tr.	
		- 162.3' to 171.2' - fine grained, 1-3% quartz i carbonate string-	4206	tr.	162.3	167.0	4.7	ļ	ļ	tr.	
1		ers, 2-3% disseminated pyrite blebs, cleavage								tr.	
1	1	at 60° to core axis at 169.0°.							ĺ		1
ŀ		- 171.2' to 178.1' - fine grained, discordant irregular tourmaline-								tr.	
		pyrite bands with quartz-rich haloes, 3-5% coarse grained pyrite fracture fillings and disseminated blebs, cleavage - fracture at 45° - 48° to core axis.	4209	3-5	175.0	178.1	3.1			tr.	
}		- 178.1' to 210.0' - amphibolitic, medium grained, 5-10% carbonate-	4210	1-2	190.2	193.5	3.3	}	}	.002	
İ		epidote interflow, narrow quartz stringers	4211	1-2	193.5	197.0	3.5			.044	
1					197.0			}]	tr.]
1		narrow zones of sericitized plagioclase, foliation - cleavage at 50° - 54° to core axis				207.0		l		tr.	
			4414	1-4	207.0	210.0	3.0			tr.	
		- 210.0 to 219.9 - fine to medium grained, massive.								,	
İ	ļ	- 219.9' to 222.5' - fine grained, silicified, 2-3% coarse grained pyrite, pyrrhotite blebs, 2-3% tourmaline bleb		2-3	219.9	222.5	2.6	1		tr.	

HOLE NO. KAS-88-1 SHEET NO. 5 of 9

FOO'	TAGE	DETCONOTION			SAMPI	Æ			ASSAYS		
FROM	70	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	-,	02 TON	GE TON	
		- 222.5' to 249.2' - amphibolitic, medium grained, minor wispy albite grains, 1-27 quartz i carbonate string- ers.									
		- 249.2' to 251.0' - fine grained, schistose, 5-10% carbonate, foliation at 53° to core axis.	4216		249.2	251.0	1.8		tr.		
		- 251.0' to 261.5' - as per 222.5' to 249.2'.									
		- 261.5' to 265.1' - banded, 2-3% wispy biotite, 3-5% quartz ± carbonate stringers-veins (banded), banding - foliation at 47° to core axis.	4217		261.5	265.1	3.6		tr.		
		- 265.1 to 285.0 - amphibolitic, coarse grained.									
		- 269.5' to 271.0' - 0.4 foot schistose horizon with banded quartz i carbonate stringers-veins				271.0			tr.		
ļ		foliation at 40° to core axis.	4219		282.0	285.0	3.0		tr.		
285.0	301.3	MAFIC TO INTERMEDIATE TUFF - dark green, fine grained, poorly banded									
		Average Modes				-					
		Amphibole 45 - 50%. Sericite 20 - 25%. Biotite 5 - 10%. Quartz 5 - 7%. Chlorite 3 - 5%. Carbonate 1 - 3%.									
		Alternating quartz-sericite and amphibole bands, 1-2% quartz ± carbonate stringers, wispy biotite bands throughout, foliation - banding at 48° to core axis at 292.0°, 52° at 301.3°.									
301.3	323.1	MAFIC FLOWS - typical, massive, few widely spaced fractures.		ļ ļ							
		- 301.3' to 303.8' - fracturing with quartz ± carbonate infilling and epidote alteration haloes.	4220		301.3	303.8	2.5		tr.		
		- 321.1' to 323.1' - as above.	4221		321.1	323.1	2.0		tr.		

NAME OF PROPERTY KASAGIMINNIS
HOLE NO. KAS-88-1 SHEET NO. 6 of 9

F001	TAGE	DESCRIPTION			SAMPL	_				ASSAYS		
FROM	10	DESCRIPTION	NO.	. SULPH		FOOTAGE			-	OZ TON	OZ TON	
FROM	10			IDE S	FROM	TO	TOTAL			02 10M	02 10M	
323.1	324.2	BANDED IRON FORMATION - black to green, fine grained, well banded.	4222	2-3	323.1	324.2	1.1			tr.		
		Average Modes					-			•		
		Amphibole 30 - 35%						:				
		Quartz 25 - 30%	1 1			ĺ]	1	
		Magnetite 20 - 25%										
1		Carbonate 5 - 7%										
		Pyrrhotite 2 - 3%			ļ							
		Typical oxide facies iron formation; 5-10% of amphibole is grunerite; pyrrhotite as wispy bands; banding at 50° to core axis.										
324.2	326.2	INTERMEDIATE TUFF - typical, foliation - banding at 50° to core axis.						,				
326.2	356.8	MAFIC FLOWS - typical, few widely spaced fractures, 1-3% quartz ± carbonate ± epidote stringers, trace pyrite, fracture at 45° to core axis at 344.0°, cleavage at 60° to core axis at 345.0°.										
		- 353.4° to 356.8° - 1-2% quartz i carbonate with 2-3% coarse grained pyrite blebs.	4223	2-3	353.4	356.8	3.4			tr.		
356.8	477.4	INTERBEDDED FELSIC TO INTERMEDIATE TUFF AND PELSIC CRYSTAL TUFF - 80:20; typical.										
		- 356.8' to 428.0' - predominantly felsic to intermediate.					:					
		- 356.8° to 358.6° - distorted banding,	4224		356.8	358.6	1.8			tr.		
- 1		5-15% carbonate.	4225	- 1	358.6	362.0	3.4			tr.		
			4226		362.0	367.0	5.0			tr.		
		- 367.0' to 385.6' - weak potassic and epidote	4227		367.0	372.0	5.0			tr.		
		alteration, 1-3% quartz i carbonate stringers,	4228	j	372.0	377.0	5.0			tr.		
1		minor fracture - breccia zones, carbonate-	4229	1	377.0	382.0	5.0			tr.		
		hematite coatings on fractures.	4230		382.0	385.6	3.6			tr.		
			4231		385.6	389.0	3.4			tr.		
			4232			392.0	3.0			tr.		
]	ſ		4233		392.0	397.0	5.0			tr.	Ì	
l		- 413.3° to 414.8° - banded, quartz vein, 1-2%	4234			414.8	1.5			tr.		
		potash feldspar, trace garnet, chlorite- amphibole inclusions, banding at 61° to core								·		
•	1	axis.	1							1	l i	

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-88-1 SHEET NO. 7 of 9

FOO	TAGE	DESCRIPTION			SAMP	_				ASSAYS		
FROM	10		NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	٠.	7.	OZ TON	G2 TON	
	1			11111						†		
		- 417.5° to 427.0° - 3-5% quartz ± carbonate	4235		417.5	422-0	4.5		1	tr.		}
		veining ± trace tourmaline, trace-0.5% pyrite,						1		tr.		
		pyrrhotite, chalcopyrite, biotite, chlorite	1		10000	1						
		inclusions, 1-2% potash feldspar.		ļ					ļ			
		- 428.0' to 451.4' - felsic crystal tuff,										
		- 437.0° to 438.0° - 5-10% epidote.	4237		437.0	438.0	1.0		ļ	tr.		
	1 1	·	4238	1	438.0	442.0	4.0			tr.		
	1 1	- 442.0° to 451.4° - highly fractured with		tr.		447.0				tr.		
		epidote fracture fill, moderate - pervasive	4240	tr.	447.0	451.4	4.4			tr.		
	1 1	potassic alteration, trace pyrite.]]		•	}			
		- 451.4° to 477.4° - interbedded tuffs, 1-2% quartz ± carbonate										
		veining, trace-0.5% pyrite.	1									
		- 462.0° to 465.0° - 3-5% quartz ± carbonate veining.	4241		462.0	465.0	3.0			tr.		
		- 473.0° to 477.4° - fractured, 2-3% quartz	4242		473.0	477.4	4.4		i	tr.		
	\	veining, 3-5% carbonate throughout.	1	1				1	1			
		Foliation - cleavage at 51° to core axis at 365.0°, 44° at 374.0°, 56° at 388.0°, 58° at 428.0°, 53° at 452.0°, 62° at 467.0°, 64° at 487.0°.					<u>.</u>					
477.4	526.8	INTERMEDIATE TUFF - atypical, greenish-grey, poorly banded, trace	4243	tr.	477.4	482.4	5.0]	tr.		
	1	pyrite, few widely spaced fractures, may represent a welded tuff,						i	1			
		1-2% quartz ± carbonate stringers, foliation at 53° to core axis at 517.0'.	4244	tr.	502.0	507.0	5.0	1		tr.		
		- 517.5' to 519.5' - 1-2% quartz ± tourmaline	4245	tr.	517.5	519.5	2.0	ļ	ĺ	tr.		ŀ
		stringers.	1		32773	, , , , ,	200					}
		- 519.5° to 526.8° - strong chloritic cleavage	4246	tr.	519.5	523.5	4.0	l		tr.		1
		at 70° to core axis, 1-2% carbonate stringers.			523.5			i		tr.		ł
	1		''''		0			•	I			1
26.8	598.0	SHEARED SILICIFIED MAFIC VOLCANICS AND IRON FORMATION - dark grey					·	Ī				
26,8		to dark green, fine to medium grained, poorly banded.										l
	1							ļ	<u> </u>			
								ł]			
]			1								
	1 1		ŀ						!	l		l
]		l					1				

NAME OF PROPERTY KASAGIMINNIS
HOLE NO. KAS-88-1 SHEET NO. 8 of 9

F001	TAGE	DECONOTION			SAMPL	.E				ASSAYS	Àμ	
ROM	70	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	7,	-,	OZ TON	DZ TON	<u> </u>
		Average Modes Quartz 25 - 30% Amphibole 20 - 25% Plagioclase 10 - 15% Grunerite 5 - 10% Magnetite 3 - 5% Carbonate 3 - 5% Pyrrhotite 2 - 5% Pyrite 2 - 3%		1963	780		IOM					
		Variable textures, banded to amphibolitic, banded to disseminated medium grained porphyroblastic pink garnets in amphibole bands, magnetite as fine disseminated grains exclusive of wispy pyrrhotite bands or grunerite haloes around quartz i carbonate stringers, pyrite as stringers and fracture coatings; foliation at 70° to core axis at 527.0', 52° at 537.0', 62° at 556.0', 67° at 587.0'; fracture - cleavage at 28° to core axis at 528.0', 40° at 537.0', 23° at 576.0', 20° at 587.0'.										
		- 526.8' to 546.7' - Mafic Volcanic, fine to medium grained, non-magnetic, 3-5% banded quartz ± carbonate veins 1-2% disseminated pyrite, pyrrhotite.	4249 4250 4251	1-2 1-2	541.8	531.8 536.8 541.8 546.7	5.0 5.0 5.0 4.9			.016 .002 .028		
		- 546.7' to 567.0' - Volcanics and Iron Formation, 3-5% quartz ± carbonate stringers with grunerite haloes, discordant to foliation, 3-5% pyrite stringers wispy pyrrhotite blebs.	4252 4253 4254 4255 4256 4257 4258	3-5 3-5 3-5 3-5	546.7 550.0 553.0 556.0 559.0 562.0 564.5	550.0 553.0 556.0 559.0 562.0 564.5 567.0	3.3 3.0 3.0 3.0 3.0 2.5			tr. tr. .160 .026 .106	.172	ĺ
		- 567.0' to 574.1' - Amphibolitic Volcanic, medium grained, trace garnet, trace sulphides, minor magnetic zones.	4259	tr.	567.0 570.5	570.5 574.1	3.5 3.6			.002 tr.		
		- 574.1' to 577.4' - Volcanics and Iron Formation, as above.	4261	3-5	574.1	577.4	3.3			tr.		
		- 577.4' to 586.0' - Volcanics and Iron Formation, siliceous, 3-5% pyrite as disseminated grains, blebs and stringers along quartz ± carbonate ± chlorite fractures, non-magnetic.	4262 4263 4264	3-5	577.4 580.0 583.0	580.0 583.0 586.0	2.6 3.0 3.0			.080 .160 .076	.084 .160 .082	ch

NAME OF PROPERTY_____KASAGIMINNIS HOLE NO. KAS-88-1 SHEET NO. 9 of 9

FOO	TAGE				SAMPL	. E				ASSAYS		_
FROM	70	DESCRIPTION	NO.	% SULPI	FROM	FOOTAGE TO	TOTAL	•	· .	02 70H	GZ TON	
		- 586.0° to 598.0° - Volcanics and Iron Pormation, magnetic, trace garnets, 2-5% quartz stringers and veins with grunerite haloes, 2-5% magnetite.	4265 4266 4267 4268		586.0 589.0 592.0 595.5	595.5	3.0 3.5			.008 tr. .002		
98.0	650.0	MAFIC FLOWS - fine grained, schistose to medium grained, amphibol- itic, 1-3% pyrite as fracture coatings, stringers and disseminated grains, 1-3% quartz ± carbonate stringers, minor tourmaline- biotite-pyrite bands and 3-5% medium grained potash-feldspar grains and alteration along fractures; foliation at 64° to core axis at 617.0°, 62° at 622.0°, 70° at 646.0°; fractures at 20° to core axis at 617.0°, 20° at 645.0°.	4270 4271 4272 4273 4274 4275 4276 4277	1-3 1-3 1-3 1-3 1-3	598.0 603.0 608.0 612.0 617.0 622.0 627.0 632.0 637.0 642.0	617.0 622.0 627.0 632.0 637.0 642.0	5.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0			tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.		
	650.0	END OF HOLE	4279	1-3	647.0	650.0	3.0			tr.		
									M	Wale .	mo	

NAME OF	PROPERTY	KASAGIM	INNIS		
HOLE NO.	KAS-88-2	LENGTH	492	feet	
LOCATION	L12+00W.	15+22N			
LATITUDE	•	DEPARTURE _			
ELEVATION	·	AZIMUTH	180°	DIP _	-56°
STARTED	January 11.	1988 EINIGHED	January	12. 1988	

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0	-56.0°	-			
2001	.55.0°				
4251	-50.0°				

HOLE NO. KAS-88-2 SHEET NO. 1 of 1 REMARKS Pa 786809, 786810

SUMMARY LOG

FOO	TAGE	DESCRIPTION			SAMF	LE			,	S S A '	Y S Au	
FROM	то	SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	%	*6		oz/ton	
0.0	25.0	CASING										
25.0	238.0	MAFIC FLOWS						į				
238.0	319.8	FELSIC TO INTERMEDIATE TUFF										
319.8	321.8	MAFIC FLOW			:							
321.8	365.0	FELSIC TO INTERMEDIATE TUFF								•		
365.0	421.9	INTERMEDIATE FLOWS										
421.9	431.5	MAFIC FLOWS										
431.5	492.0 492.0	MAFIC FLOWS END OF HOLE	4354 4355 4356 4361 4362 4363 4364 4366		441.5 444.5 459.5 462.5 465.5 468.5	441.5 444.5 447.5 462.5 465.5 468.5 472.5 478.0	5.0 3.0 3.0 3.0 3.0 4.0 3.0			.012 .030 .064 .022 .268 .106 .100	.286 .108 .098	(check) (check) (check) (check)

NAME OF	PROPERTY	KASAGI	MINNIS		
HOLE NO.	KAS-88-2	LENGTH	492 fee	t	
LOCATION	L12+00W,	15+22N			
LATITUDE	<u> </u>	DEPARTURE			
ELEVATION		AZIMUTH	180°	DIP	-56*
STARTED	January 11, 198	8 FINISHED	January 12.	1988	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-56.0°				
200*	-55.0°				
425*					

HOLE NO. KAS-88-2 SHEET NO. 1 OF 6
REMARKS PA 786809, 786810

FOO	TAGE	DESCRIPTION			SAMP	LE			A	S S A Y	/ S	
FROM	то		NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	36	ж		oz/ton	
0.0	25.0	CASING										
25.0	238.0	MAFIC FLOWS - dark green to black, fine to medium grained, massive.										
		Average Modes										i
		Amphibole Plagioclase Quartz Carbonate 2 - 5% Pyrite trace - 2% Chalcopyrite trace										İ
:		Fine grained, massive flows with 1-2% quartz i carbonate stringers, 1-2% disseminated pyrite, trace chalcopyrite, medium grained, banded, amphibolitic flows with 3-5% quartz i carbonate stringers.						,				
		- 25.0° to 40.9° - fine grained flows.										
		- 25.0° to 27.0° - banded quartz vein with mafic fragments as inclusions.		tr. 1-2	25.0 27.0	27.0 32.0	2.0 5.0			tr.		
		- 32.0' to 33.5' - 0.5 foot quartz vein with 0.5- 1% pyrite and silicified volcanic inclusions.		0.5-1 0.5-1		37.0 40.9	5.0 3.9			tr.		
		- 40.9° to 98.4° - medium grained flows.	4284 4285 4286 4287 4288 4289		40.9 44.0 47.0 52.0 57.0 62.0	44.0 47.0 52.0 57.0 62.0 64.2	3.1 3.0 5.0 5.0 5.0 2.2			tr. tr. tr. tr.		
		- 64.2° to 68.1° - highly fractured - brecciated, 1-3% quartz ± carbonate fracture fillings.	4290 4191 4192		64.2 68.1 72.0	68.1 72.0 77.0	3.9 3.9 5.0			tr. tr. tr.		

NAME OF PROPERTY____KASAGIMINNIS

HOLE NO. KAS-88-2

____ SHEET NO. _____ 2 of 6

FOOT	TAGE	DESCRIPTION			SAMPL	. E				ASSAYS		
FROM	то	DESCRIPTION	NO.	≒ ŠULPH IDES	FROM	FOOTAGE TO	TOTAL	~.	٠.	02 TON	GZ TON	
			4293		77.0	82.0	5.0			tr.		
			4294	-	82.0	87.0	5.0	l	•	tr.		
			4295		87.0	92.0	5.0	ł		.002		
			4296		92.0	96.0	4.0	ĺ		tr.		
			4297		96.0	98.4	2.4			tr.		
		- 98.4 to 103.3 - fine grained flows, 3-5% quartz ± carbonate stringers.	4298		98.4	103.3	4.9			tr.		
		- 103.3° to 127.0° - medium grained, amphibolite.	4299		103.3	107.0	3.7			tr.		
		- 127.0' to 133.6' - mafic tuff, 5-7% biotite bands, 3-5% quartz	4300			130.0	3.0	1		tr.		
		and carbonate bands, carbonate stringers, banding at 50° to core axis.	4301		130.0	133.6	3.6			tr.		
		- 133.6' to 202.3' - coarse grained amphibolite, few widely spaced fractures.										
		- 141.5' to 146.5' - irregular mottled quartz- plagioclase veining.	4302		141.5	146.5	5.0			tr.		
		- 152.0° to 157.0° - as above.	4303		152.0	157.0	5.0		:	tr.	ŀ	
		- 172.0' to 177.0' - irregular, quartz veining.	4304		172.0	177.0	5.0			tr.		
			4305		177.0	182.0	5.0		}	tr.		
		- 182.0' to 187.0' - banded carbonate veining, quartz ± carbonate fracture fillings.	4306		182.0	187.0	5.0			tr.		
;		- 202.3' to 229.7' - medium grained flows, 1-3% quartz ± carbonate stringers, trace-1% disseminated pyrite and pyrrhotite.										
		- 202.3° to 204.8° - fracturing with cherty	4307	tr-1	202.3	204.8	2.5			tr.	1	
		quartz i carbonate fracture infillings and stringers.	4308		204.8					tr.		
		- 207.0' to 209.0' - schistose horizon, 2-3%	4309		207.0	209.0	2.0			tr.		
		irregular quartz i carbonate stringers.	4310		209.0	212.0	3.0			tr.		
			4311		212.0	217.0	5.0]	tr.	į	
		·	4312		217.0	222.0	5.0			tr.		
			4313 4314		222.0	227.0 229.7	5.0 2.7			tr.		
		- 229.7° to 238.0° - fine grained flows, 1-3% quartz ± carbonate	4314		229.7					.002		
:		stringers, trace-1% disseminated pyrite and pyrrhotite.	4313			233.0						

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-88-2 SHEET NO. 3 of 6

F00	TAGE				SAMPL	. E			ASSAYS		
FROM	τo	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	٦.	OZ TON	OZ TON	
		- 233.0° to 238.0° - distorted, irregular frac- tures with carbonate infillings. Foliation - banding averages 48.45° to core axis; fractures vary	4316		233.0	i			tr.		
238.0	319.8	from 46° to 68° to core axis and average 51°. FELSIC TO INTERMEDIATE TUFF - dark grey to greenish-grey, fine grained, laminated to banded.									
		Average Modes Quartz 35 - 40% Plagioclase 25 - 30% Amphibole 15 - 20% Chlorite 3 - 5% Carbonate 2 - 5% Pyrite trace - 1%									
		Variability in composition and grain size of bands, 1-3% quartz ± carbonate stringers throughout; foliation - banding at 58° to core axis at 245.0°, 55° at 257.0°, 47° at 271.0°, 53° at 297.0°, 55° at 304.0°. - 241.0° to 243.0° - irregular quartz veining, trace garnet, 5-10% carbonate.	4318	tr-1 tr-1 tr-1	241.0		2.0		tr. tr.		
		- 245.6' to 253.1' - discordant quartz veins, trace sulphides, 0.4 foot amplitude slump fold at top of section. - 263.0' to 273.5' - 2-3% quartz ± carbonate stringers, 1-3% disseminated pyrite, schistose	4321 4322 4323 4324	tr-1 tr-1 1-3	253.1 258.0 263.0	249.1 253.1 258.0 263.0 268.0 270.5	3.5 4.0 4.9 5.0 5.0		tr. tr. tr. tr. tr.		
		1-5% carbonate. - 277.8' to 282.4' - 2-3% quarts ± carbonate stringers, trace tourmaline, highly fractured with epidote-carbonate infillings.	4326 4327 4328 4329 4330	1-3 tr-1 tr.	270.5 273.5 277.8 282.4 283.6	273.5 277.8 282.4 283.6 288.0 289.3	3.0 4.3 4.6 1.2 4.4		tr. tr. tr. tr. tr.		
		 289.3' to 294.1' - banded quartz-carbonate- tourmaline veining, 1-3% disseminated pyrite and pyrrhotite. 	4332 4333	1-3 tr-1 tr-1	289.3 294.1	294.1 299.1	4.8 5.0 1.9		tr. tr.		

HOLE NO. KAS-R8-2 SHEET NO. 4 of 6

HOLE NO. ___KAS-88-2 SAMPLE ASSAYS FOOTAGE DESCRIPTION FOOTAGE 07 100 FROM GZ FON TOTAL - 301.0' to 302.7' - 0.1 foot massive pyrrhotite 4335 3-5 301.0 305.5 4.5 tr. -carbonate band, 3-5% pyrrhotite-pyrite throughout. - 303.9' to 305.5' - 3-5% quartz veining. 319.8 321.8 MAFIC FLOW - amphibolitic, medium grained, highly fractured, 3-5% 4336 319.8 321.8 2.0 tr. quartz i carbonate stringers. 321.8 365.0 FELSIC TO INTERMEDIATE TUFF - typical, 2-3% quarts i carbonate 327.0 4337 321.8 tr. 5.2 tr. veining ± trace tourmaline and pyrite, foliation at 52° to core 4338 327.0 332.0 5.0 tr. tr. axis across section, fractures at 50° to core axis at 354.0°, 45° 4339 tr. 332.0 337.0 5.0 tr. at 337.01. 4340 tr. 337.0 342.0 5.0 tr. 4341 342.0 347.0 tr. 5.0 tr. 4342 tr. 347.0 352.0 5.0 tr. 4343 tr. 352.0 357.0 5.0 tr. 4344 tr. 357.0 362.0 5.0 tr. 4345 tr. 362.0 365.0 3.0 tr. 365.0 421.9 INTERMEDIATE FLOWS - greyish-green, fine grained, massive to 4346 0.5-1 365.0 369.0 4.0 tr. banded. 4347 0.5-1 369.0 374.0 5.0 tr. 4348 0.5-1 374.0 379.0 5.0 tr. Average Modes 4349 0.5-1 379.0 384.0 5.0 tr. Plagioclase 45 - 50%Amphibole 35 - 40%Chlorite Ouartz Carbonate] Pyrite trace - 17 Foliation - cleavage averages 50° to core axis. - 365.0° to 384.0° - weakly carbonatized. 0.5-1% pyrite. 4350 tr-1 | 417.0 | 421.9 4.9 tr. 421.9 431.5 MAFIC FLOWS - amphibolitic, typical, 2-3% quartz i carbonate vein- 4351 421.9 426.5 4.6 tr. tr. ing, closely spaced fractures with quartz t carbonate infilling. 4352 tr. | 426.5 | 431.5 5.0

HDGES - TORONTO - 366-116

NAME OF PROPERTY______ KASAGIMINNIS

HOLE NO. ____ KAS=88=2 _____ SHEET NO. ____ 5 of 6

F001	TAGE				SAMPL	Æ		ľ		ASSAYS	Au	
FROM	το	DESCRIPTION	NO.	3 SULPN	FROM	FOOTAGE	TOTAL	;	·,	OZ TON	OZ TON	
431.5	481.2	SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION - dark grey to dark green, fine to medium grained, poorly banded. Average Modes Quartz 35 - 40% Amphibole 25 - 30% Plagioclase 10 - 15% Garnet trace - 5% Magnetite 3 - 5%										
		Pyrite Pyrite Carbonate Carbonate 1 - 3% Grunerite 1 - 2% Variable textures from fine grained banded to coarse grained amphibolitic, fine grained disseminated magnetite occurs exclusive of wispy pyrrhotite or grunerite haloes around quartz ± carbonate stringers, banding - foliation at 52° to core axis at 432.5°, 57° at 461.0°, 55° at 475.5°, 50° at 479.0°; fracture - cleavage at 22° to core axis at 467.0° and 475.5°, 26° at 479.0°.		The state of the s								
		- 431.5' to 441.5' - Mafic Volcanic, mottled to striped banding, 1-3% quartz ± carbonate stringers, trace-0.5% disseminated pyrite.			431.5 436.5		5.0 5.0			tr.		
		- 443.5 to 472.5 - Mafic Volcanics and Iron Formation, 2-5% garnet, pink porphyroblasts, narrow zones of 5-7% pyrite as stringers, blebs and disseminated grains.	4355 4356 4357 4358 4359 4360 4361	5-7 5-7 5-7 5-7 5-7	441.5 444.5 447.5 450.5 453.5 456.5	444.5 447.5 450.5 453.5 456.5 459.5 462.5	3.0 3.0 3.0 3.0 3.0 3.0			.030 .064 .006 .004 tr. tr.	• 056	(che
		- 472.5' to 475.0' - Siliceous Mafic Volcanics, mottled to massive, 3-5% disseminated magnetite, trace-1% pyrite fracture coatings and disseminated grains.	4362 4363 4364	5-7 5-7 5-7	462.5 465.5 468.5	465.5 468.5 472.5 475.0	3.0 3.0 4.0 2.5			.268 .106 .100 .002	.286 .108 098	che

NAME OF PROPERTY_____KASAGIMINNIS

F00	TAGE	DESCRIPTION			SAMPL	. E				ASSAYS	_Au	
FROM	to	DESCRIPTION	HO.	SULPH IDES	FROM	FOOTAGE	TOTAL	٠,	, ·	OZ TON	OZ TON	
ا		- 475.0° to 481.2° - Mafic Volcanics with bands of Iron Formation, 5-7% disseminated magnetite, irregular quarts stringers in mafic volcanics with 3-5% disseminated pyrrhotite blebs.	4366 4367	3-5	475.0	478.0				.056	• 062	(check
81.2	492.0	MAFIC FLOWS - medium grained, massive, few widely spaced fractures, narrow zones of sericitized plagioclase and medium grained potash feldspar grains at flow boundaries; widely spaced quartz ± carbonate veins, ± 2-3% disseminated pyrite blebs; foliation at 38°-42° to core axis.		:								
		- 482.6° to 483.2° - banded quartz ± carbonate vein.	4368 4369	tr.		483.2 486.8	2.0 3.6		<u> </u>	tr.		
		- 486.8' to 488.8' - irregular quartz vein with 2-3% pyrite.	4370 4371			488.8 492.0	2.0 3.2			tr.		
	492.0	END OF HOLE										
				i i								
į										M	Ma	ms
								<u> </u>	7	The state of the s		

NAME OF	PROPERTY	KASAGIN	INNIS		
HOLE NO.	KAS-88-3	LENGTH	692 fee	<u>t</u>	
LOCATION	L8+00W.	16+28N	·		
LATITUDE		DEPARTURE			
ELEVATION		AZIMUTH	180°	DIP _	-60°
STARTED	January 12, 19	988 FINISHED	January 18.	1988	

FOOTAGE	DIP	AZMUTH	FOOTAGE	OIP	AZIMUTH
0 •	60.0°				
2001	58.0*				
400'	50.0				
692					

HOLE NO. KAS-88-3 SHEET NO. 1 OF 2
REMARKS PA 786810

SUMMARY LOG

FOO	TAGE	DESCRIPTION	SAMPLE SOUTHER						SSA `	Y S		
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	76	*6	oz/ton	OZ/TON	
0.0	91.0	CASING										
91.0	220.3	FELSIC TO INTERMEDIATE TUFF										
220.3	246.9	INTERMEDIATE FLOWS							!			
246.9	248.6	MYLONITE										
248.6	253.0	MAFIC DYKE										1
253.0	254.3	MYLONITE										Ì
254.3	257.8	MAFIC DYKE										
257.8	269.4	INTERMEDIATE FLOWS										
269.4	462.7	MAFIC FLOWS										ĺ
462.7	530.2	FELSIC TO INTERMEDIATE TUFF									*	
530.2	531.3	MAFIC FLOWS										. 1
531.3	547.3	FELSIC TO INTERMEDIATE TUFF										.
547.3	577.7	FELSIC TO INTERMEDIATE FLOWS										
577.7	580.3	QUARTZ-FELDSPAR PORPHYRY										
580.3	619.4	AMPHIBOLITE										
		,							l			
					-							į

NAME OF PROPERTY____KASAGIMINNIS

HOLE NO. ____KAS-88-3 _____ SHEET NO. ____ 2 of 2

FOOTAGE		DESCRIPTION		SAMPLE					A5SAYS Au Au				
FROM	10	SUMMARY LOG	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL		",	02 TON	OZ TON		
619.4	665.9	SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION	4487		622.4	625.4	3.0			.014			
			4491 4492 4497		634.4 637.4 652.2	640.2 655.2	2.8 3.0			.062 .088 .070	•088	(check) (check) (check)	
665.9	692.0	MAFIC FLOWS	4500 4501		661.2					.036			
	692.0	END OF HOLE			:	; ;	ľ						
									:				
							:						

NAME OF	PROPERTY _		KASAGI	MINNIS			
HOLE NO.	KAS-88-3	<u></u>	LENGTH	6	92 £	eet	
LOCATION	L8+00W,	16+2	8N				
LATITUDE	·		DEPARTURE				
ELEVATION			AZIMUTH	180°		DIP	-60°
STARTED	January 12.	1988	EINIGHED	January	18.	1988	

FOOTAGE	DIP	AZ MUTH	FOOTAGE	DiP	AZIMUTH
0	60.0				
200*					
400	50.0°				
6921	38.0				

HOLE NO. KAS-88-3 SHEET NO. 1 Of 8
REMARKS PA 786810

FOO	TAGE	DESCRIPTION	SAMPLE						A	SSAY	5	
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL.	*6	×	OZ/TON	oz/ton	
0.0	91.0	CASING										
91.0	220.3	FELSIC TO INTERMEDIATE TUFF - dark grey, fine grained, laminated to banded.										!
		Average Modes										
		Plagioclase 30 - 35% Quartz 25 - 30% Amphibole 25 - 30% Carbonate 1 - 2% Pyrite trace - 1% Epidote 0.5 - 1% Potash Feldspar 0.5 - 1%										
		Variable compositional proportions of bands, zones of fracturing and minor brecciation, foliation - banding at 40° to core axis at 93.0°, 141.0°, and 191.0°; fracture - cleavage at 52° to core axis at 93.0°, 61° at 124.0°, 60° at 139.0°, 30° at 189.0°, fractures at 10° to core axis at 110.0°.										
		- 125.5° to 126.2° - banded quartz-potash-feldspar vein, clean.	4372		125.5	127.0	1.5			tr.		
			4373 4374	tr.	143.6 147.0	147.0 151.2			!	tr. tr.		
		- 151.2' to 154.0' - fractured - brecciated, 3-5% pink dolomite infilling angular fractures, carbonatized, irregular - gradational contacts, 0.5-1% pyrite.	4375 4376	0.5-1	151.2 154.0	154.0 157.0	-			tr. tr.		
		- 157.0' to 158.0' - pervasive potassic alteration, 3-5% carbonate fracture fillings.	4377 4378		157.0 158.0	158.0 162.3				tr.		

NAME OF PROPERTY____KASAGIMINNIS

HOLE NO. __KAS-88-3 ____ 5H

SHEET	NO	2 c	١f	8

FOOTAGE	DECORPTION			SAMPI	LE			,	ASSAY S Au	
FROM TO	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	.,	7.	0 Z TON	401 10
	- 162.3' to 167.3' - banded quartz ± carbonate veining, 0.5-1% pyrite on contacts.		0.5-1		167.3	5.0 3.7			tr.	
	- 171.0' to 192.8' - highly fractured, pervasive	4381		171.0	175.0	4.0			tr.	
	potassic-epidote alteration.	4382 4383		175.0 178.0	178.0 181.0 186.0	3.0 3.0 5.0			tr.	
		4384 4385 4386		181.0 186.0 189.0	189.0 192.8	3.0 3.8			tr. tr.	
		4387 4388		192.8 198.0	198.0 203.0	5.2 5.0	1		tr.	
	- 203.0° to 208.0° - 2-3% quarts ± carbonate vein- ing, highly fractured, 3-5% carbonate fracture fillings, trace-0.5% pyrite.		tr-0,5		208.0	5.0			tr.	
	- 216.5° to 217.0° - potassic alteration, chloritic fractures at 8° to core axis.	4390		216.5	220.3	3.8			tr.	
	- 219.7° to 220.3° - quartz-epidote stringers, 1-2% carbonate.									
20.3 246.9	INTERMEDIATE FLOWS - dark greyish-green, fine grained, foliated.									
	Average Modes	;								
	Amphibole 35 - 40% Plagioclase 25 - 30% Quartz 15 - 20% Chlorite 5 - 10% Carbonate trace - 2%									
i	Weakly - moderately silicified and carbonatized, foliation at 41° to core axis at 220.3°, 45° at 227.0°.								:	
	- 230.5' to 232.0' - 5-7% carbonate, finely disseminated.	4391 4392		230.5 232.0	232.0 235.8	1.5 3.8			tr. tr.	
	- 235.8° to 238.0° - irregular - banded quartz veining, 2-3% potash-feldspar and epidote	4393 4394 4395		235.8 238.0 242.0	238.0 242.0 246.9	2.2 4.0 4.9			tr. tr. tr.	

HOLE NO. KAS-88-3 SHEET NO. 3 of 8

FOO	TAGE	DESCRIPTION	SAMPLE				ASSAYS Au					
FROM	70	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL		٠,	02 100	02 TON	
246.9	248.6	MYLONITE - light grey to red, fine grained, foliated. Average Modes	4396	0.5-1	246.9	248.6	1.7			tr.		
248.6	253.0	Plagioclase Sericite Quartz Potash-Feldspar 3 - 5%. Chlorite 3 - 5%. Pyrite 0.5 - 1%. Strong imposed chloritic foliation at 48° to core axis, disseminated pyrite throughout. MAFIC DYKE - dark green to black to white, fine to medium grained, massive. Average Modes Amphibole 65 - 70%. Chlorite 15 - 20%. Carbonate 5 - 7%. Potash-Feldspar 2 - 3%.	4397		248.6	253.0	4.4			tr.		
		Medium grained chlorite pseudomorphs after pyroxene in fine grained groundmass, cleavage at 55° to core axis, irregular contacts.										
253.0	254.3	MYLONITE - brecciated, 3-5% disseminated pyrite, chloritic fracture fillings, 1-2% carbonate.	4398	3-5	253.0	254.3	1.3			tr.		
254.3	257.8	MAFIC DYKE - typical, limonite coatings, brecciated contact at 257.8, contact at 42° to core axis at 254.3, cleavage at 50° to core axis.	4399		254.3	257.8	3.5			tr.		
257.8	269.4		4400 4401		257.8 262.0	262.0 264.5				tr. tr.		
	ļ	- 264.5° to 267.0° - brecciated - mylonitic, 5-10% carbonate, 3-5% epidote.	4402		264.5	267.0	2.5			tr.		

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. ___KAS-88-3___

SHEET NO. 4 of 8

FOO'	TAGE	DECORPTION	SAMPLE					ASSAYS	,,,,,,		
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	7	OZ TON	GZ TON	
		- 267.0° to 269.4° - weakly carbonatized, narrow bands with 2-3% disseminated magnetite grains, 2-5% banded pyrite.	4403	2-5	267.0	269.4	2.4		tr.		
269.4	462.7	MAFIC FLOWS - dark green to dark greenish-grey, fine to medium grained, massive to foliated.									
		Average Modes							į		
		Amphibole 40 - 45% Plagioclase 35 - 40% Quartz 5 - 10% Carbonate 2 - 3% Potash-Feldspar 1 - 2% Pyrite trace - 1%									
		Variable textures, fine grained massive to fine grained schistose (carbonatized) to medium grained amphibolitic, foliation at 50° to core axis at 273.0°, 288.0° and 385.5°, 52° at 427.0°, 55° at 446.5°, 58° at 462.7°, cleavage at 23° to core axis at 302.0°, 45° at 315.0°, and 460.0°, 35° at 427.0°.									
		- 269.4° to 274.7° - fine grained, massive, 2-3% disseminated pyrite.		2-3 2-3	269.4 272.0	272.0 274.7			tr.		
		- 274.7' to 330.0' - medium grained, amphibolitic, numerous discordant carbonate-epidote bands, stringers, 0.5-1% disseminated pyrite.	4407 4408		279.7 284.7	279.7 284.7 289.7 294.7	5.0 5.0 5.0 5.0		tr. tr. tr.		
		- 319.7° to 330.0° - schistose, 3-5% quartz ± carbonate stringers, weak potassic alteration 1-2% disseminated pyrite.	4410 4411 4412 4413	0.5-1 0.5-1 0.5-1 0.5-1	294.7 299.7 304.7 309.7	299.7 304.7 309.7 314.7	5.0 5.0 5.0 5.0		tr. tr. tr.		
i :		- 330.0° to 378.5° - altered amphibolite, moderate to pervasive	4415 4416 4417	1-2 1-2 1-2 1-2 tr-2	314.7 319.7 324.7 327.7 330.0	319.7 324.7 327.7 330.0 335.0	5.0 5.0 3.0 2.3 5.0		tr. tr. tr. tr.		
		potassic alteration, 20-35% potash-feldspar groundmass, chloritized amphibole grains,	4419	tr-2	335.0	340.0 345.0	5.0 5.0		tr.		

LAWGRIDGES - TORONTO - 386-1166

NAME OF PROPERTY____KASAGIMINNIS

HOLE NO. KAS-88-3 SHEET NO. 5 of 8

FOOT	FAGE	DESCRIPTION			SAMPI	LE				ASSAYS		
FROM	10	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL			OZ TON	GZ TON	
		5-10% epidote, 2-5% carbonate, highly fractured					5.0	1	1	tr.		
İ		to massive, trace-2% disseminated pyrite, irreg					5.0			tr.		
		ular fracture sets at 45° to 60° to core axis.			357.0					tr.		
ì		- 345.5' to 347.0' - loss of core.		tr-2				Ì	}	tr.	1	
				tr-2	367.0		5.0			tr.		
[tr-2			4.0	1	1	tr.	1	
	1		•	tr-2	376.0		2.5	l	i	tr.		
Ī		- 378.5' to 404.5' - fine grained banded to foliated equivalent of		tr-2		382.0 387.0	3.5 5.0			tr.		
į		330.0' to 378.5'.			1		5.0		Į	tr.	. (
j		- 401.2* to 404.5* - loss of core.		tr-2	387.0		5.0		ł	tr.		
l				tr-2		401.2	4.2	I		tr.		
Į		- 404.5 to 462.7 - weak to moderate carbonatization, closely			404.5	407.0	2.5		ļ .	tr.		
i		spaced fracture cleavage with quartz ± carbon-					5.0			tr.		
		ate infillings, 0.5-2% disseminated potash-			412.0	417.0	5.0			tr.		
ŀ		feldspar grains, trace-1% disseminated pyrite.			417.0		5.0		ţ	tr.		
ł		remobal Brathol crace-in atagementer blosses			422.0		5.0		l	tr.		
- 1	ľ				427.0	1	5.0			tr.		
- 1					432.0				ŀ	tr.		
ŀ					437.0				l	tr.		
]					442.0		5.0			tr.		
1			4442	0.5-2	447.0	452.0	5.0	1	1	tr.		
- 1			4443	0.5-2	452.0	457.0	5.0			tr.		
	' I		4444	0.5-2	457.0	460.0	3.0		l	tr.		
}			4445	0.5-2	460.0	462.7	2.7			tr.		
62.7	530.2	FELSIC TO INTERMEDIATE TUFF - typical, highly fractured horizons with 10-15% carbonate-epidote infillings, weak potassic alteration, foliation at 59° to core axis at 477.0°, 66° at 492.5°, 69° at 507.0°, 63° at 529.5°.										
		- 462.7° to 465.7° - distorted foliation, 2-3% pyrite as dissemin- ated grains and stringers.	4446	2-3	462.7	465.7	3.0			.002		
- 1	Į	- 465.7' to 495.1' - fractured with quartz t carbonate t epidote	4447	tr.			5.0			.002		
ļ	}	infillings.	4448	tr.	470.7	475.7				tr.		
1			4449	tr.	475.7				l	.002		
l	į		4450	1	480.7	484.7	4.0			tr.		
l	Į		4451	tr.	484.7	487.0	2.3			tr.		
İ			1]						
ļ	ļ		•	{					ļ	į		
- 1	}				l	1		l]		

HOLE NO. KAS-88-3 SHEET NO. 6 of 8

- 487.0° to 489.5° - 3-5% quartz ± carbonate veining, banded, 1-2% disseminated pyrite and pyrrhotite. - 495.1° to 530.2° - thickly handed, few widely spaced fractures, weakly carbonatized, trace-0.5% pyrite. - 504.5° to 511.8° - minor tourmaline bands and 2-3% medium grained rounded plagioclase grains.	4453 4454 4455 4456 4457 4458	tr. tr-0.5 tr-0.5	489.5 492.5	492.5 495.1 500.1	3.0 2.6	•	5	tr.	GZ TON
veining, banded, 1-2% disseminated pyrite and pyrrhotite. - 495.1' to 530.2' - thickly handed, few widely spaced fractures, weakly carbonatized, trace-0.5% pyrite. - 504.5' to 511.8' - minor tourmaline bands and	4453 4454 4455 4456 4457 4458	1-2 tr. tr. tr-0.5 tr-0.5	487.0 489.5 492.5 495.1	489.5 492.5 495.1 500.1	2.5 3.0 2.6			tr.	
pyrrhotite. - 495.1' to 530.2' - thickly handed, few widely spaced fractures, weakly carbonatized, trace-0.5% pyrite. - 504.5' to 511.8' - minor tourmaline bands and	4453 4454 4455 4456 4457 4458	tr. tr-0.5 tr-0.5	492.5 495.1	495.1 500.1	2.6				
weakly carbonatized, trace-0.5% pyrite 504.5' to 511.8' - minor tourmaline bands and	4455 4456 4457 4458	tr-0.5 tr-0.5	495.1	500.1				CI.	
- 504.5' to 511.8' - minor tourmaline bands and	4457 4458	1		504.5	4.4			tr. tr.	
2-3% medium grained rounded pregrounds gamma			504.5	508.0 511.8				tr.	
		tr-0.5 tr-0.5	511.8	513.2 516.5	1.4			tr.	
	4462		519.8		5.0			tr. tr.	
MAFIC FLOWS - typical, medium grained, amphibolitic, massive.	i I							tr.	
FELSIC TO INTERMEDIATE TUFF - as per 495.1 to 530.2, foliation								tr.	
at 62° to core axis at 539.0°, 60° at 544.0°; cleavage at 47° to core axis at 537.5°.	4467	tr-0.5	541.3	544.3	3.0			.002	
PRICTO TO TUMPNENTIME PLOUS and the second of the second of	1 1			\ \ \					
schistose to massive.	4470	tr-1	552.0	557.0	5.0			tr.	
Average Modes	4472	tr-1	562.0	567.0	5.0			tr. tr.	
Plagioclase 30 - 35%			572.0 575.0					tr.	
Amphibole 20 - 25% Chlorite 20 - 25%				ļ					
Tourmaline 1 - 3% Carbonate 1 - 2%									
Pyrite trace - 1% Gradational change from greyish-green to buff-grey with 30-35%									
sericite, pyrite as disseminated grains, quartz t tourmaline veining throughout; foliation at 64° to core axis at 557.0°, 60° at 577.0°.									
١	at 62° to core axis at 539.0°, 60° at 544.0°; cleavage at 47° to core axis at 537.5°. FELSIC TO INTERMEDIATE FLOWS - greyish-green, fine grained, schistose to massive. Average Modes Plagioclase 30 - 35% 30 - 25%	MAFIC FLOWS - typical, medium grained, amphibolitic, massive. FELSIC TO INTERMEDIATE TUFF - as per 495.1' to 530.2', foliation at 62° to core axis at 539.0', 60° at 544.0'; cleavage at 47° to core axis at 537.5'. FELSIC TO INTERMEDIATE FLOWS - greyish-green, fine grained, schistose to massive. Average Modes Plagioclase 30 - 35% 4474 4475	MAFIC FLOWS - typical, medium grained, amphibolitic, massive. FELSIC TO INTERMEDIATE TUFF - as per 495.1' to 530.2', foliation at 62° to core axis at 539.0', 60° at 544.0'; cleavage at 47° to core axis at 537.5'. FELSIC TO INTERMEDIATE FLOWS - greyish-green, fine grained, schistose to massive. Average Modes Plagioclase 30 - 35% 4472 4473 4474 4474 4474 4474 4474 4474 4474 4474 4474 4475	### HAFIC FLOWS - typical, medium grained, amphibolitic, massive. ###################################	### HAFIC FLOWS - typical, medium grained, amphibolitic, massive. ###################################	### MAFIC FLOWS - typical, medium grained, amphibolitic, massive. ###################################	### HAFIC FLOWS - typical, medium grained, amphibolitic, massive. ###################################	MAFIC FLOWS - typical, medium grained, amphibolitic, massive. FELSIC TO INTERMEDIATE TUFF - as per 495.1' to 530.2', foliation at 62° to core axis at 539.0', 60° at 544.0'; cleavage at 47° to core axis at 537.5'. FELSIC TO INTERMEDIATE FLOWS - greyish-green, fine grained, schistose to massive. PLASIC TO INTERMEDIATE FLOWS - greyish-green, fine grained, schistose to massive. Average Hodes Plagioclase 30 - 35%. Amphibole 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 20 - 25%. Chlorite 30 - 36%. Gradational change from greyish-green to buff-grey with 30-35%. Sericite, pyrite as disseminated grains, quartz t tourmaline veining throughout; foliation at 64° to core axis at 557.0', 60°	MAFIC FLOWS - typical, medium grained, amphibolitic, massive. FELSIC TO INTERMEDIATE TUFF - as per 495.1' to 530.2', foliation at 62° to core axis at 537.5'. FELSIC TO INTERMEDIATE FLOWS - greyish-green, fine grained, schistose to massive. FELSIC TO INTERMEDIATE FLOWS - greyish-green, fine grained, schistose to massive. Average Modes Plagioclase 30 - 357. Amphibole 20 - 257. Chlorite 20 - 257. Chlorite 20 - 257. Quartz 5 - 107. Tourmaline 1 - 37. Carbonate 1 - 27. Pyrite trace - 17. Gradational change from greyish-green to buff-grey with 30-357. sericite, pyrite as disseminated grains, quartz t tourmaline verining throughout; foliation at 64° to core axis at 557.0', 60°

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. _______ SHEET NO. _____ 7 of 8

F001	TAGE	DESCRIPTION			SAMPI	. E			ASSAYS		
FROM	τo	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	٠,	OZ TON	GZ TON	
577.7	580.3	QUARTZ-FELDSPAR PORPHYRY - grey to white, fine to medium grained, porphyritic.	4476	-	577.7	580.3	2.6		tr.		
580.3	619.4	Quartz 35 - 40% Plagioclase 35 - 40% Muscovite 1 15 - 20% Massive to porphyritic with medium grained plagioclase grains in quartz-plagioclase groundmass, anastomosing sericite-muscovite bands in central part of zone, weak foliation at 60° to core axis. Amphibolite - dark green to dark grey, medium to coarse grained, massive to banded. Average Modes Amphibole 45 - 50% Plagioclase 45 - 50% Quartz 1 - 2% Carbonate Biotite trace	4477 4478 4479	-	580.3 585.3 588.5	585.3 588.5 591.9	5.0 3.2 3.4		tr. tr. tr.		
619.4	665.9	Amphibolitic; feathery amphibole in fine grained plagioclase, minor zones of quartz ± carbonate veining, widely spaced fracture - cleavage at 40° to core axis. - 580.3' to 591.9' - banded to schistose. - 597.0' to 607.0' - 3-5% quartz ± carbonate veining, clean. SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION - black to dark green, fine to medium grained, banded.	4480 4481 4482 4483 4484 4485 4486 4487	1-2	591.9 597.0 602.0 607.0 612.0 617.0 619.4 622.4 625.4 628.4	602.0 607.0 612.0 617.0 619.4	5.0 5.0 5.0 5.0 2.4 3.0 3.0		tr. tr. tr. tr. tr. tr. tr. tr.		

LANGRIDGES - TORONTO - 366-1168

KASAGIMINNIS NAME OF PROPERTY____

HOLE NO. KAS-88-3

SHEET NO. 8 of 8

F001	AGE	DESCRIPTION			SAMPL	E			ASSAYS	Au	
FROM	τo	DESCRIPTION	NO.	2 SULPW	FROM	FOOTAGE	TOTAL	 	02 TOM	UZ TON	
		Average Modes Amphibole Quartz Plagioclase Magnetite 3 - 5% Grunerite 3 - 5% Garnet 2 - 5% Carbonate 1 - 2% Pyrite 1 - 3%	4491 4492 4493 4494 4495 4496 4497	1-2 1-2 1-2 3-5 1-2 1-2 1-2 1-2 1-2 1-2	631.4 634.4 637.4 640.2 643.2 646.2 652.2 655.2 655.2 661.2	634.4 637.4 640.2 643.2 649.2 652.2 655.2 658.2 661.2	3.0 3.0 2.8 3.0 3.0 3.0 3.0 3.0 3.0		tr062 .088 tr002 tr. tr079 tr. tr036	• 088	(check) (check)
		Variable composition and textures from medium grained amphibolitic to fine grained banded, garnet porphyroblasts disseminated through amphibole bands, magnetite occurs as fine disseminated grains in felsic bands, pyrrhotite occurs as wispy grains in amphibole-rich bands, grunerite occurs as haloes around quarts i carbonate stringers (2-3%) which are discordant to foliation, pyrite occurs as disseminated grains and fracture coatings, foliation - banding averages 60° to core axis, quartz i carbonate stringers at 40-50° to core axis, cleavage at 30-35° to core axis. - 640.2' to 640.8' - siliceous horizon, cherty, 3-5% disseminated pyrite blebs.	4300	1-2	001.2	903.7	701		•030		
665.9	692.0	MAFIC FLOWS - dark green to black, fine grained, massive, 1-2% disseminated pyrite, 2-3% irregular quarts i carbonate stringers with 2-3% pyrite. END OF HOLE	4502 4503 4504 4505	1-3 1-3 1-3 1-3 1-3	665.9 670.9 675.9 680.9 685.9 690.9	670.9 675.9 680.9 685.9 690.9 692.0	5.0 5.0 5.0 5.0 5.0		.010 tr. tr. tr. tr.		
								G	A	Eda	m

NAME OF	PROPERTY	KASAG	<u>IMINNIS</u>		
HOLE NO.	KAS-88-4	LENGTH	494 fe	et	
LOCATION	L8+00W.	15+25N			
		DEPARTURE			
ELEVATION		AZIMUTH	180°	DIP _	-53.5°
STABLED	January 18.	1988	January 23.	1988	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-53.5°				
200	-49.5°				
4471	-44.0°				

HOLE NO. <u>KAS-88-4</u> SHEET NO. <u>1 of 1</u>

REMARKS <u>Pa 786810</u>

SUMMARY LOG

F 0 0 1	TAGE	DESCRIPTION			5 A M P	LE			,	SSA	y s
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	36	*		oz/ton
0.0	94.5	CASING									
94.5	255.4	MAFIC FLOWS							ĺ		
55.4	257.4	BANDED IRON FORMATION									
57.4	282.7	MAFIC FLOWS									
82.7	387.0	FELSIC TO INTERMEDIATE TUFF									
87.0	389.3	GRANITE DYKE									
89.3	430.8	AMPHIBOLITE									
30.8	465.3	MAFIC FLOWS									
65.3	488.0	MAFIC VOLCANICS AND LEAN IRON FORMATION	4584		465.3	470.0	4.7			.020	
88.0	494.0	MAFIC FLOWS	l								
	494.0	END OF HOLE					,				
i											
								Ŋ			!

NAME OF	PROPERTY	KASAGI	HINNIS		
HOLE NO.	KAS-88-4	LENGTH	494	feet	
LOCATION	L08+00W.	15+25N			
LATITUDE	·	DEPARTURE .			
ELEVATION		AZIMUTH	180°	DIP	-53.5°
STARTED_	January 18,	1988 FINISHED	January	23, 1988	

FOOTAGE	OIP	AZ IMUTH	FOOTAGE	DIP	AZIMUTH
0	-53.5°				
200°	-49.5°				
447	-44.0				

HOLE NO. KAS-88-4 SHEET NO. 1 Of 7
REMARKS PA 786810

F 0 0	TAGE	DESCRIPTION			SAMP	LE		ASSAYS Au				
FROM	то	DESCRIPTION	ΝО.	SUL PH-	FROM	FOOTAGE TO	TOTAL	16	Ж		OZ/TON	
0.0	94.5	CASING					·					
4.5	255.4	MAFIC FLOWS - dark green to black, fine grained, massive to medium grained, amphibolitic.										
		Average Modes										
		Amphibole Plagioclase Quartz Carbonate Epidote Pyrite Carbonate 1 - 2% Pyrite Carbonate 1 - 2% Pyrite Carbonate Carbonate 1 - 2% Carbonate Carbo										
		Variable textures, fine grained flows foliated, wispy albite grains disseminated throughout, epidote-rich interflow bands.										
		- 94.5' to 202.4' - medium grained, amphibolitic, foliation at 60° to core axis at 106.0', 53° at 120.0', 58° at 139.0', 52° at 157.0', 50° at 164.0', cleavage at 65° to core axis at 109.0', 45° at 142.0'.										
		- 94.5' to 97.7' - fracture subparallel to core axis, 3-5% disseminated pyrite, quartz t carbonate infilling.	4507	3-5	94,5	97.7	3.2			tr.		
		- 137.0° to 141.0° - 3-5% quartz ± carbonate veining, 0.5-1% disseminated pyrite.	4508	0.5-1	137.0	141.0	4.0			tr.		
		- 156.3' to 158.1' - as above.	4509	3-5	156.3	161.3	5.0			tr.		
į		- 162.0° to 165.7° - 7-10% banded quartz ± carbon ate veining, clean.	4510 4511		161.3 165.7		4.4 2.7		1	tr.		

NAME OF PROPERTY____ KASAGIMINNIS

HOLE NO. KAS-88-4 SHEET NO. 2 of 7

F001	r a GE	DESCRIPTION	SAMPLE				AŞSAY Ş Au					
ROM	το	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	-	٦.	02 TON	GZ TON	
								1				
		- 168.4' to 202.4' - greenish-buff, irregular	4512		168.4					tr.		
		carbonate veining with 3-5% fine grained	4513		172.0	177.0				tr.		
		feldspar.	4514		177.0	182.0		İ		tr.		l
			4515		182.0				i	tr.		
			4516		187.0				ļ	tr.		
			4517		192.0	196.0			İ	tr.	ļ	į
i			4518		196.0			i	f	tr.		
			4519		199.0		3.4 5.0	1	1	tr.	ľ	
		- 202.4' to 255.4' - fine grained, poorly banded to foliated,	4520		202.4		5.0		İ	tr.	ļ	
		foliation at 62° to core axis at 215.0°,	4521 4522		207.4 212.4		5.0	1	ŀ	tr.	1	
		228.5', 242.0', 1-5% quarts i carbonate strin- gers and veins, brown to light green amphibole			217.4		4.0	1]	tr.		
		inclusions.	4524		221.4		5.0	1		tr.		
		inclusions.	4525		226.4		5.0	1	Į.	tr.		
			4526		231.4		5.0		1	tr.		
J	J		4527		236.4		5.0]	tr.	ļ	
			4528		241.4	246.4	5.0			tr.		
			4529		246.4		5.0			.004		
			4530		251.4		3.0			tr.		
55.4	257.4	BANDED IRON FORMATION - black to olive green to white, fine grained, laminated.	4531		255.4	2574	3.0			tr.		
		Average Modes							į			
ĺ		Grunerite 50 - 55%				1 1		ĺ				
		Magnetite 35 - 40%				l :				1 1		
		Quartz 5 - 7%						1	i	1	· •	ł
j		Carbonate 3 - 5%								1		ŀ
- 1	ĺ	Pyrite 2 - 37.						1				
}		Banding at 68° to core axis, sharp contacts, finely laminated	i]				1		l
ŀ		grunerite-magnetite with coarser quartz, carbonate bands and							ŀ			
		disseminated pyrite bands.						1				
Į	}	areacutuated bytice pands						ł	l			
57.4	282.7	MAFIC FLOWS - typical, fine grained, variable carbonatization, foliated at 60° at 258.0', 50° at 267.0', 60° at 278.0', 57° at 282.5'.										
ļ								1				
1						1				•		1

HOLE NO. KAS-88-4 SHEET NO. 3 of 7

FOO	TAGE	DESCRIPTION			SAMPL	. E		ASSAYS					
FROM	10	DESCRIPTION	NO.	& SULPH		FOOTAGE		7	7	07 700	GZ TON		
ROM	10			IDES	FROM	10	TOTAL	<u> </u>		02 100	02 104		
		- 257.4° to 262.5° - typical, fine grained, 1-2% quartz ± carbonate stringers, trace pyrite.	4532	tr.	257.4	262.5	5.1			tr.			
		- 262.5' to 279.7' - weakly carbonatized, 2-3% quarts ± carbonate stringers.	4533	tr.	262.5	267.0	4.5			tr.			
	\	- 267.0° to 268.0° - irregular quartz stringer	4534				1.0		1	tr.			
		subparallel to core axis.	4535		1					tr.			
			4536						ļ	tr.			
	1		4538						İ	tr.	1		
		- 279.7° to 282.7° - highly carbonatized, 3-5% quartz i carbonate stringers, 5-7% disseminated carbonate, 2-3% disseminated tourmaline with 2-3% pyrite as atringers, disseminated grains, and aggregates with tourmaline.	·	2-3	279.7	282.7	3.0			tr.			
2.7	387.0	FELSIC TO INTERMEDIATE TUFF - dark purplish-grey to greyish-green,		ĺ		!		,					
		fine grained, banded to schistose.											
		Average Modes											
		Amphibole											
		Sericite		l	İ				ŀ	1	ļ		
		Quartz 5 - 10%		l		ŀ			ł		1		
		Tourmaline 3 - 5%						1	l				
	1	Carbonate 5 - 10%		ļ		l			i				
	1	Epidote 1 - 2%		1	}	1			1	1			
		Pyrite 2 - 3%							1				
		5-10% quartz-tourmaline and tourmaline veining, tourmaline as disseminated needles, blebs, aggregates and bands ± 1-5% pyrite, volcanics partially altered to chlorite-amphibole-carbonate-quarts, highly fractured, foliation - banding averages 61.3° to core axis, cleavage at 31° to core axis at 347.0°, 20° at 351.0°.											
		- 282.7' to 286.5' - schistose, 5-7% carbonate, 2-3% potash felds- par, 3-5% irregular quarts ± carbonate ± tourmaline stringers, 3-5% finely disseminated pyrite.		3-5	282.7	286.5	3.8			tr.			

CORP. TOBOALT SAC. 1469

NAME OF PROPERTY KASAGIMINNIS
HOLE NO. KAS-88-4 SHEET NO. 4 of 7

FOO	TAGE	OSCONINTION	SAMPLE						ASSAYS		
ROM	10	DESCRIPTION	NO.	3 SULPH		FOOTAGE		7.	7.	OZ TON	OZ TON
			 	IDES	FROM	70	TOTAL	<u> </u>	<u> </u>	 	
	i :	- 286.5' to 295.7' - banded to laminated, weak alteration, trace	4541	tr.	286.5	291.5	5.0	l		tr.]
		pyrite, 1-2% quartzicarbonate stringers,	4542		291.5	295.7	4.2	1	1	tr.	l i
		fracturing, 2-3% carbonate.]	7.2			"	
		- 295.7' to 300.9' - banded - schistose as per 282.7' to 286.5'.		3-5	295.7	298.2	2.5			tr.	
	1 1			3-5	298.2	300.9	2.7	1	ì	tr.	1
		- 300.9° to 305.0° - banded, 2-3% quartz i carbonate stringers, trace tourmaline, trace pyrite.	4545	tr.	300.9	305.0	4.1			tr.	
		- 305.0° to 319.7° - highly fractured, with quartz ± carbonate,	4546	2-5	305.0	309.0	4.0	}	İ	tr.	i l
		carbonate and quartz-tourmaline stringers,	4547	1	309.0	312.0				tr.	
		2-5% pyrite, 5-7% carbonate.	4548		312.0	1 1				tr.	
	1	•••	4537		315.0	317.4	2.4			tr.	i
		- 317.4' to 319.7' - quartz-tourmaline vein,	4549		317.4	319.7	2.3		1	tr.	
		2-3% carbonate, 3-5% tourmaline as stringers	l	ł				1	1		
	1	with 1-2% pyrite, contacts at 30° to core axis	1	1	!			1	1	1	
		at 317.4', 20° at 319.7°.									
		- 319.7' to 378.5' - banded, fine grained, 2-3% disseminated,	4550	tr-2	319.7	322.5	2.8			tr.	
)	medium grained potash feldspar, 1-2% quartz-	4551	tr.	322.5	327.5	5.0	1	1	tr.]
		tourmaline veining.	4552	tr.	327.5	332.5	5.0	ł		tr.	
	l	- 321.5' to 322.5' - 0.2 foot banded quarts-	4553	tr.	332.5	337.5	5.0			tr.	<u> </u>
	1	tourmaline vein with 1-2% pyrite stringers.	4554		337.5	342.5	5.0	j	1	tr.]
		•	4555	1		347.5	5.0	1		tr.	
]	- 327.0' to 332.0' - 208 feet ground core.	4556		347.5	352.5	5.0		ļ	tr.	
	l i		4557		352.5	357.5	5.0	1	j	tr.	1
	!		4558		357.5	362.5	5.0	l		tr.	
			4559		362.5	367.8	5.3	1	l	tr.	i i
	1	- 367.8' to 370.4' - banded quartz i tourmaline	4560			370.4	2.6	1	1	tr.	1
		vein, trace pyrite.	4561		370.4		4.0			tr.	
			4562			378.5	4.1			tr.	
		- 378.5' to 387.0' - banded, fine grained, highly fractured,	4563		378.5	382.0	3.5	1	1	tr.	1
		chlorite-carbonate infilling of fractures, orange potash feldspar mantled fractures,	4564	tr.	382.0	387.0	5.0	l		tr.	
	1 [0.2 foot quartz vein at end of section.	1	1				ĺ		1	
		o.2 foot quartz verm at end of section.	1	•	1			1		1	}
.0	389.3	GRANITIC DYKE - white to pink, fine grained, highly fractured to	4565	tr.	387.0	389.3	2.3		1	tr.	
		brecciated.						Į.	1		
	i		1]		1			
]			ļ		
								1	1		

NAME OF PROPERTY KASAGININNIS

HOLE NO. KAS-88-4 SHEET NO. 5 of 7

FOOTAGE	FOOTAGE DESCRIPTION			SAMP	LE		ASSAY S Au					
FROM TO	DESCRIPTION	NO.	S SUL PH	FROM	FOOTAGE	TOTAL	-,	7	OZ TON	GZ TON		
389.3 430	Average Modes Plagioclase Potash Feldspar Quartz Epidote Anastomosing epidote fracture fillings with hematite staining, trace pyrite. AMPHIBOLITE - dark green to pink to white, massive - amphibolitic, coarse grained. Average Modes Amphibole Amphibole Amphibole Plagioclase Potash Feldspar Quartz Carbonate Potash Feldspar Carbonate Associated Solution Average Modes Amphibole Quartz Carbonate Potash Feldspar Carbonate Associated Solution Average Modes Amphibole											
430.8 465	Possibly an intrusive, foliation at 72° to core axis at 390.0°, cleavage at 33° to core axis at 406.0°. - 389.3° to 391.8° - altered, crudely banded, 5-10% epidote, 5-10% carbonate. - 417.2° to 430.8° - highly fractured - brecciated, decreasing towards lower contact, 15-20% carbonate limonite staining, 2-3% pyrite, contact at 430.8° at 34° to core axis. MAFIC FLOWS - dark green-black, fine grained, foliated.		tr. tr. tr. tr. tr. 2-3 2-3	391.8 396.8 401.8 406.8 411.8 414.8 417.2	396.8 401.8 406.8 411.8 414.8 417.2 422.2 427.2	5.0 5.0 5.0 3.0 2.4 5.0			tr. tr. tr. tr. tr. tr. tr. tr. tr. tr.			

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. ___KAS-88-4 _____ SHEET NO. ____6 of 7

FOOTAGE	OF CONDITION			SAMPI	LE				ASSAYS	
FROM TO	DESCRIPTION	NO.	SUL PHIDES	FROM	FOOTAGE 10	TOTAL	•	**	0 / TON	GI TON
465.3 488.0	Amphibole 30 - 35%. Plagicclase 30 - 35%. Chlorite 5 - 10%. Quartz 3 - 5%. Epidote 1 - 2%. Highly altered zones - epidotized with 60-70% epidote, 25-30%. quartz. - 430.8 to 440.9 - weak - moderate carbonatization, 1-2% epidote. - 440.9 to 461.5 - up to 60% epidote, weak - moderate carbonatisation, faulted - distorted. - 442.2 to 442.8 - banded quartz i carbonate veining, epidotized volcanic inclusions, 2-3% pyrite. - 461.5 to 465.3 - 60-65% epidote, 20-25% quartz, 5-10% carbonate veining, ruddy brown hematite fracture coatings, 1-2% fine grained pyrrhotite and medium grained pyrite. Foliation at 42° to core axis at 431.0 , 33° at 439.0 , 46° at 450.0 , 42° at 459.0 , cleavage at 18° to core axis at 464.0 . MAFIC VOLCANICS AND LEAN IRON FORMATION - black to dark green to buff to grey, fine grained, poorly banded. Average Modes Amphibole 35 - 40%. Quartz 20 - 25%. Sericite Plagicclase Grunerite 2 - 3%.	4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589	tr-3 tr. tr. tr. tr-2 tr-2 tr-2 tr-2 tr-2 tr-2	430.8 435.8 440.9 445.9 450.9 455.9 458.9 461.5	435.8 440.9 445.9 450.9 455.9 461.5 465.3	5.0 5.1 5.0 5.0 3.0 2.6 2.8			.020 tr. tr. tr. tr. tr.	

KASAGIMINNIS

HOLE NO. _______ SHEET NO. ____ 7 of 7

F00	AGE				SAMP	. E				ASSAYS	
FROM	10	DESCRIPTION	NO.	's SUL PH		FOOTAGE		, 1		02 TON	62 TON
#88.0	494.0 494.0	Garnets Magnetite 0.5 - 27. Pyrite 1 - 27. Pyrrhotite trace - 17. 1-27. quartz i carbonate stringers with disseminated garnets and grunerite haloes, variable textures, foliation at 51° to core axis at 486.0°, 54° at 467.0°, cleavage at 31° to core axis at 467.0°, 45° at 469.0°. MAFIC FLOWS - 1-27. disseminated pyrite blebs, stringers, foliation at 53° to core axis at 488.0°, 45° at 494.0°. END OF HOLE		1005	FROM	491.0	3.0		5	tr.	61 TON
									Ja	Hale	em

NAME OF	PROPERTY	KASAGI	MINNIS		
	KAS-88-5			feet	
LOCATION	L04+00W.	15+96N			
LATITUDE	•	DEPARTURE _			
ELEVATION		AZIMUTH	180°	DIP _	-60°
STARTED _	January 23, 198	8 FINISHED	January 2	9, 1988	

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	HTUMESA
0	-60.0				
200°	-58.0°				
400°	-54.0				
600°	-49.0				

SUMMARY LOG

F001	TAGE	DESCRIPTION			SAMP	LE			A	SSAY	/ S	
FROM	то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	ж	OZ/TON	OZ/TON	
0.0	138.0	CASING										
138.0	164.0	FELSIC TO INTERMEDIATE TUFF										1
164.0	166.8	FELSIC CRYSTAL TUFF								<u>.</u>	İ	
166.8	221.6	FELSIC TO INTERMEDIATE TUFF										
221.6	240.9	INTERMEDIATE TUFF AND SILTSTONE										
240.9	298.3	FELSIC TO INTERMEDIATE TUFF								,		
298.3	302.5	MYLONITE										
302.5	317.9	FELSIC TO INTERMEDIATE TUFF										•
317.9	482.1	MAFIC FLOWS								Ī		
482.1	483.2	MAFIC DYKE								:		
483.2	487.9	MAFIC LOWS										
487.9	541.6	FELSIC TO INTERMEDIATE TUFF								<u> </u>		
541.6	570.3	INTERBEDDED FELSIC TO INTERMEDIATE TUFF										
570.3	589.2	FELSIC TO INTERMEDIATE TUFF										
589.2	612.0	INTERMEDIATE FLOWS										
612.0	626.8	FELSIC TUFF										
				•	•	, ,	'	•	,	,	'	,

HOLE NO. KAS-88-5 SHEET NO. 2 of 2

F001	TAGE	DETADDET ON	7			SAMPL					ASSAY S		
FROM	10	DESCRIPTION SUMMARY LOG		NO.	2 SUL PH		FOOTAGE			٦.	02 TON	GZ TON	
FRUM	'0	SUMMART LOO			10E5	FROM	70	TOTAL	<u> </u>		02 100	02 10	
			- 1						!	.			1
626.8	657.0	MAFIC VOLCANICS AND IRON FORMATION	- 1	4710		642.4	645.4	3.0			.090	i	ļ
			- 1]		- 14,5	- 4		1		1	
	657.0	END OF HOLE - Hole lost; redrilled as KAS-88-5A			i i				ŀ				
İ			- }							(
			ı]				ł	İ			
	1		I							1	ļ ļ	1	
	l i											l	
			ŀ							ł		1	
			J							l .	1		
			į						1		[[ł	
			•							İ			
			I		ļi				[l			
	ļ ļ						-			ł			
	1								ŀ				
										ļ]		
										1	1		
			I						į .	l .			
			ŀ										
i									Į.	ł			
				į					i				
į			l		1 1				l				
			1						l	1]	
										ļ			
			1									[[
ļ	1		ı		l i					l	1	ll	l
											l		ı
	l l		ı]							i l	ı
			ı						i	Ī			i
		•							Į	!		l l	Į
			j						1	1			i
			1						l	l	[į
			1										i
			J										į
			}						1]]	ĺ
			j		İ					ĺ			i
	1		1)				1	1	}	i i	i

NAME OF	PROPERTY	KASAGIM	INNIS		
HOLE NO.	KAS-88-5	LENGTH	657	7 feet	
LOCATION	L04+00W,	15+96N			
LATITUDE		DEPARTURE _			
ELEVATION		AZIMUTH	180°	OIP _	-60°
STARTED	January 23. 1	988 511151155	January	29 1988	l

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-60.0°				
2001	-58.0°				
400	-54.0°				
6001	-49.0				

FOO	TAGE	DESCRIPTION			5 A M P	LE			A	SSAY	7 5
FROM	то	J	NO.	SUL PHI	FROM	FOOTAGE TO	TOTAL	x	*	OZ/TON	oz/ton
0.0	138.0	CASINC									
138.0	164.0	FELSIC TO INTERMEDIATE TUFF - dark grey to greyish-green, fine grained, laminated to banded.	4593 4594 4595	tr.	143.0	143.0 148.0 152.0	5.0 5.0 5.0			tr. tr. tr.	
		Average Modes	4596				2.1			tr.	
		Quartz 40 - 45% Plagioclase-Sericite 35 - 40% Amphibole 5 - 10% Chlorite 3 - 5% Carbonate 1 - 2% Pyrite trace									
		Few widely spaced fractures, foliation - banding at 58° to core axis at 141.0°, 53° at 153.5°, 45° at 164.0°, cleavage at 35° to core axis at 144.0°, 45° at 154.1°.									
		- 154.1° to 164.0° - moderate potassic alteration, 2-3% carbonate fracture fillings.	4597 4598		154.1 159.0		4.9 5.0		-	tr.	
164.0	166.8	FELSIC CRYSTAL TUFF - dark grey-white, fine to medium grained, banded.	4599	tr.	164.0	166.8	2.8			tr.	
Š		Average Modes									
LANGRIDGES TORONTO 386-1186		Quartz 45 - 507. Plagioclase 40 - 457. Amphibole 2 - 37. Carbonate 1 - 27.									

HOLE NO. KAS-88-5 SHEET NO. 2 of 8

FOOT	AGE	DESCRIPTION			SAMP				ASSAYS	
FROM	то	DESCRIPTION	NO.	3 SUL PH IDES	FROM	FOOTAGE	TOTAL	3,	OZ TOM	62 TON
		5-7% medium grained, rounded quartz and plagioclase crystals - grains in poorly sorted groundmass, foliation at 45° to core axis at 166.8°.								
166.8	221.6		4600 4601		166.8 171.8		5.0 4.3		tr. tr.	
				tr. tr. tr.		183.0 187.0	3.4 3.5 4.0 5.0 5.0		tr. tr. tr. tr.	
			4608 4609 4610	tr. tr. tr-2	202.0 207.0 211.5	207.0 211.5 216.5	5.0 4.5 5.0 5.1		tr. tr. tr.	
221.6	240.9	grained, laminated.	4613 4614	0.5-1 0.5-1	221.6 226.6 231.6 236.6	231.6 236.6	5.0 5.0 5.0 4.3		tr002 tr010	
		Amphibole 35 - 40% Biotite 15 - 20% Quartz 20 - 25% Carbonate 5 - 10% Chlorite 3 - 5% Pyrite 0.5 - 1%								
		Well laminated siltstone, interbedded to intermixed with intermediate tuff, fracturing with quartz i carbonate i trace tourmaline and trace-2% pyrite stringers and banded veins; foliation at 45° to core axis at 224.0°, 35° at 232.0°.							; ,	

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-88-5 SHEET NO. 3 of 8

F001	AGE	OFFICE DAY ON			SAMPI	. E			·	ASSAY S		
FROM	10	DESCRIPTION	NO.	2 SULPH		FOOTAGE				02 TON		
FHOM				IDES	FROM	70	TOTAL	",		02 104	GZ TON	
240.9	298.3	FELSIC TO INTERMEDIATE TUFF - narrow epidotized sections with 2-3%	4616	tr.	240.9	244.0	3.1			tr.		
240.7	270.3	quartz ± carbonate stringers, minor quartz ± tourmaline bands,	4617			247.0			l	tr.		
			4618			252.0				tr.		
- 1	İ	trace-0.5% pyrite, foliation at 46° to core axis at 241.5°, 45° at			252.0	257.0	5.0	1		tr.		
1		252.0', 47° at 272.0', 51° at 287.0', 48° at 297.0', cleavage at	4619 4620		257.0	262.0	5.0			tr.	}	
	i	50° to core axis at 261.0°, 45° at 283.0°.			ľ		5.0			tr.		
	1		4621		262.0	267.0	5.0					
	1		4622		267.0	272.0				tr.		
			4623		272.0		5.0			tr.	ĺ	
	1	- 297.9' to 298.3' - quartz vein, trace pyrite,	4624		277.0	282.0	5.0			tr.		
	- 1	trace-0.5% tourmaline.	4625		282.0		5.0			tr.		
	ŀ	1	4626		287.0	292.0	5.0			tr.		
- 1	}		4627	•	292.0	295.0	3.0			tr.		
ı	- 1		4628	tr.	295.0	298.3	3.3			tr.		
298.3	302.5	MYLONITE - pink to grey, fine grained, foliated.	4629		298.3	302.5	4.2			tr.		
į		Average Hodes										
		Quartz 35 - 407. Plagioclase-Sericite 30 - 357. Potash Feldspar 15 - 207. Chlorite 3 - 5%										
		1-2% quartz stringers, chlorite along plane of cleavage - foliation irregular contacts, foliation at 59° to core axis at 298.5°, 55° at 302.0'.										
02.5	317.9	FELSIC TO INTERMEDIATE TUFF - typical, foliation at 50° to core axis, cleavage at 40° to core axis at 311.0°.							į			
j		- 302.5° to 303.0° - banded quartz vein, minor	4630	tr.	302.5	307.5	5.0			tr.		
j		volcanic inclusions, trace pyrite.	4631				5.0	l		tr.	ĺ	
Ì	1		4632		312.5	315.0	2.5			tr.		
ļ			4633				2.9			tr.		
17.9	482.1	MAFIC FLOWS - dark green to black, fine to medium grained, massive.										
ļ												
	Į.									ļ !		

HOLE NO. KAS-88-5 SHEET NO. 4 of 8

FOOT	AGE	DESCRIPTION	1		SAMPL	.E				ASSAYS		
FROM	τo	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE TO	TOTAL	7.		OZ TOM	62 TON	
1		Average Modes	1									
		Amphibole 50 - 55%				'		•	\			
]		Plagioclase 40 - 45%						1				
ļ		Quartz Carbonate 1 - 2%						l				
		Disseminated wispy albite grains in amphibolitic flows, foliation at 52° to core axis at 322.0', 47° at 330.9', 57° at 345.5°, 61° at 353.0', 46° at 367.5', 52° at 387.0', 50° at 406.5', 47° at 427.0', 58° at 446.5', 50° at 463.5'.										
		- 317.9' to 368.6' - fine grained, banded to massive.	4634		317.9	322.9	5.0		ł	tr.		
i			4635		322.9	327.9	5.0			tr.		
		- 327.9' to 330.9' - discordant quartz veining	4636	tr.	327.9	330.9	3.0			tr.	İ	
]		at 37° and 70° to core axis.	4637	tr.	330.9 335.9	335.9 340.9	5.0 5.0	Ì]	tr.	1	
ļ			4638 4639	tr.	340.9	345.9	5.0	ł		tr.	ļ	
1			4640	tr.	345.9	349.9	4.0]	1	.004		
- 1			4641	tr.	349.9	353.9	4.0	l	ļ	tr.		
i			4642		353.9	357.0	3.1		1	tr.		
- 1		- 357.0' to 359.5' - 0.4 foot quarts ± carbonate		3-5	357.0	359.5	2.5			tr.	. 1	
- 1		vein, 3-5% pyrrhotite as feathery blebs in	4644	tr.	359.5	364.5	5.0	l	İ	tr.	1	
	l	volcanics.	4645	tr.	364.5	368.6	4.1	ļ .		tr.	l	
İ		- 368.6 to 444.7 - fine grained, schistose, few fractures.	4646		368.6	372.0	3.4			tr.		
			4647		372.0	377.0	5.0		1	tr.		
Į			4648		377.0	382.0	5.0	l	l	tr.	l	
			4649	tr.	382.0	387.0	5.0	1	1	tr.		
			4650 4651		387.0 392.0	392.0 397.0	5.0 5.0			tr.	ĺ	
•			4652		397.0	402.0	5.0	ļ	1	.006		
1	ļ		4653		402.0	407.0	5.0	,	1	.002	1	
ŀ			4654		407.0	412.0	5.0			tr.		}
1			4655		412.0	417.0	5.0	l		tr.		ı
ļ			4656		417.0	422.0	5.0			tr.		Į
l			4657	tr.	422.0	427.0	5.0	1	1	tr.		ı
l		111 71 117 71	4658		427.0	432.0	5.0	l		tr.		ı
ľ		- 444.7' to 463.7' - fine grained, banded to massive, 2-3% quartz ± carbonate stringers.	4659	tr.	432.0	437.0	5.0			tr.		ı
.		i carbonate stringers.	4660	tr.	437.0	442.0	5.0	1		tr.		í
1			•	1]		1]		1 1	i

NAME OF PROPERTY KASAGIMINNIS

HOLE NO. KAS-88-5 SHEET NO. 5 Of 8

F001	r AGE	DESCRIPTION			SAMPL	_ E			ASSAYS	
FROM	tο	DESCRIPTION	NO.	3 SUL PH IDES	FROM	FOOTAGE TO	TOTAL	٠,	02 TON	GZ TON
		- 444.7' to 450.9' - 5-7% biotite bands, fracturing, minor epidote bands, 2-3% pyrrhotite in last 0.5 feet. - 463.7' to 482.1' - medium grained, amphibolitic, few fractures.	4662	tr. tr-3 tr-3 tr. tr. tr. tr.	442.0 444.7 447.7 450.9 455.9 460.9 463.7 467.7	444.7 447.7 450.9 455.9 460.9 463.7 467.7 472.7	2.7 3.0 3.2 5.0 5.0 2.8 4.0 5.0		tr. tr. tr. tr. tr. tr. tr. tr.	
		 481.8' to 482.1' - well banded biotite and quartz ± carbonate. 	4670		477.7	482.1	3.4		tr.	
482.1	483.2	MAFIC DYKE - light green to black, fine to medium grained, porphyritic. Average Modes	4671		482.1	483.2	1.1		tr.	
		Amphibole								
		Medium grained chlorite pseudomorphs after pyroxene in fine grained groundmass, contacts at 58° to core axis.								
483.2	487.9	MAFIC FLOWS - as per 463.7° to 482.1°, 1-2% quartz ± carbonate stringers, 0.5-1% pyrite as stringers and disseminated grains, foliation at 50° to core axis at 287.0°, 53° at 490.5°, 58° at 502.0°.	4672	0.5-1	483.2	487.9	4.2		tr.	
487.9	541.6	FELSIC TO INTERMEDIATE TUFF - 3-5% ground core, foliation at 58° to core axis at 508.0°, 60° at 512.0° - 541.6°.						1		
		- 487.9' to 510.7' - highly fractured, weakly carbonatized.	4673 4674 4675 4676 4677	tr. tr.	492.9 497.9	492.9 497.9 502.9 507.9 510.7	5.0 5.0 5.0		tr. tr. tr. tr.	

HOLE NO. KAS-88-5 SHEET NO. 6 of 8

FOO	TAGE				SAMP	LE				ASSAYS Au	
FROM	то	DESCRIPTION	NO.	2. SULPH	FROM	FOOTAGE			٦,	OZ TON	02 TON
		- 510.7' to 528.6' - highly fractured, 5-10% epidote-carbonate	4678	tr.		515.7	5.0			tr.	
		fracture fillings.	4679 4680	tr.	515.7 520.7	520.7 524.7	5.0 4.0			tr.	
		- 528.6' to 541.6' - coarsely banded, 3-5% irregular - rounded, medium grained quartz eyes.	4681 4682 4683	tr.	528.6 532.6	537.6	5.0 5.0		i	tr. tr. tr.	
541.6	570.3	INTERBEDDED FELSIC AND INTERMEDIATE TUPP - foliation at 48° to core	4684 4685							tr.	
		axis at 554.0', 52° at 558.0', 60° at 564.0', 62° at 589.0', cleavage at 40° to core axis at 554.0', 42° at 559.0'.	4686 4687	tr.	546.5 550.7	550.7 553.7	3.8 3.0			tr. tr.	
		- 556.7° to 558.3° - 10-15% tourmaline bands.	4688 4689			556.7 560.8				tr.	
		- 560.8' to 565.8' - 2-3% irregular quartz ± carbonate stringers with 1-2% pyrite.	4690 4691	1		565.8 570.3				tr.	
570.3	589.2	FELSIC TO INTERMEDIATE TUFF - atypical, 2-5% quartz ± tourmaline veining.	4692	tr.	570.3	575.3	5.0			tr.	
		- 576.5' to 577.3' - clean quartz vein.	4693 4694	tr.	579.3	584.0	4.7			tr. tr.	
		- 586.5° to 589.3° - 1-3 foot quartz ± carbon- ate ± tourmaline vein, 3-5% tourmaline bands in host with 0.5-1% disseminated pyrite.		tr. 0.5-1	584.0 586.5					tr.	
589.2	612.0	INTERMEDIATE FLOWS - light green, fine grained, massive to foliated few fractures.	4698	tr-0.5	589.2 594.2 599.2	594.2 599.2 604.2				tr. tr.	
		Average Modes	4700	tr-0.5		609.2	5.0			tr.	
		Amphibole 30 - 35% Plagioclase 30 - 35% Quartz 25 - 30% Pyrite trace - 0.5%									
		1-2% quartz ± carbonate stringers, pyrite as fine disseminated grains, foliation at 56° to core axis at 597.0°, 52° at 612.0°.						j j			
							 	ļ			

HOLE NO. KAS-88-3 SHEET NO. 7 of 8

SAMPLE ASSAYS FOOTAGE DESCRIPTION FOOTAGE SULPH NO. FROM τO OZ TON 02 TON FROM TOTAL 612.0 626.8 FELSIC TUFF - black to grey, fine grained, banded to massive. Average Modes Quartz 40 - 45% Plagioclase-Sericite 35 - 40%Chlorite 5 - 10% Amphibole 3 - 5% Few fractures or quartz i carbonate stringers, wispy - crenulated 4702 612.0 617.0 5.0 tr. tr. chlorite bands, foliation at 50° to core axis at 617.0°. 4703 617.0 622.0 5.0 tr. tr. - 624.2' to 625.5' - irregular quartz ± carbonate 4704 2-3 622.0 626.8 4.8 tr. veining with amphibole inclusions, 2-3% pyrite, 2-3% tourmaline bands. MAFIC VOLCANICS AND IRON FORMATION - black to dark green to grey, 626.8 657.0 fine to medium grained, banded, sheared and silicified. Average Modes Amphibole 30 - 35720 - 25% Plagioclase Ouartz 20 - 25% Carbonate 2 - 5% Magnetite 2 - 5% 1 - 27 Pyrite 0.5 - 17 Grunerite Pyrrhotite trace - 2% Garnet trace Variable textures from massive to foliated mafic volcanics to poorly banded lean iron formation, foliation at 60° to core axis at 630.0', 645.0', 654.5'; cleavage at 25° to core axis at 649.0'. - 626.8' to 647.9' - mafic volcanic, 2-3% quartz i carbonate 4705 1-2 626.8 630.0 .002 3.2 veining, 1-2% disseminated pyrite. 4706 1-2 630.0 633.0 3.0 tr. 4707 1-2 633.0 636.0 3.0 tr. 4708 1-2 636.0 639.4 3.4 tr. 4709 1-2 639.4 642.4 3.0 tr.

LANGHBGES -- TORONTO -- 366-1168

KASAGIMINNIS. NAME OF PROPERTY____

HOLE NO. KAS-88-5 SHEET NO. 8 of 8

Γ	F001	AGE	DESCRIPTION			SAMPL					ASSAYS Au		
F	FROM	70	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	٠,	7	07 TON	62 TON	
			- 647.9' to 657.0' - banded mafic volcanic and iron formation, 1-2% wispy pyrrhotite blebs, 2-5% disseminated magnetite grains, 2-5% quarts i carbonate stringers with grunerite haloes, 1-2% pyrite as disseminated grains or fracture coatings, trace garnets.	4711 4712	1-2 1-2 2-4 2-4	642.4 645.4 647.9 652.0	645.4 647.9 652.0 654.5 657.0	3.0 2.5 4.1 2.5			.090 .002 tr. tr.		
		657.0	END OF HOLE - Hole lost; redrilled as KAS-88-5A										
		-											
										į			
6-1166			· · · · · · · · · · · · · · · · · · ·		·								
LINNGHIDGES - TONONTO - 356-1168									(Æ.	Ma	amo	ì

NAME () F	PROPERTY	KASA	GIMINNIS LA	AKE			
HOLE N	10.	KAS-88-5A		LENGTH	687.01			
		04+06W,						
ELEVAT	101			AZIMUTH	180°	DIP _	-59°	
		January						

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZIMUTH
0.0	-59.0				
200.0	-58.5				
400.0					
600.0	-42.5				

HOLE NO. KAS-88-5ASHEET NO. 1 of 1
REMARKS PA786810

SUMMARY LOG

F 0 0 1	TAGE		ı		SAMP	LE			,	SSA	1 5	
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	રહ	*6	oz/Yon	OZ/TON	
0.0	136.0	CASING.										
136.0	163.5	FELSIC TO INTERMEDIATE TUFF.	1]							
163.5	166.0	FELSIC CRYSTAL TUFF.	l		1							
166.0	190.3	FELSIC TO INTERMEDIATE TUFF.			İ					j		
190.3	301.8	INTERBEDDED FELSIC TO INTERMEDIATE TUFF AND SILTSTONE.						;		ļ		
301.8	307.6	MYLONITE.		•								
307.6	324.4	FELSIC TO INTERMEDIATE TUFF.								ŀ		
324.4	389.7	MAFIC FLOWS.	•		1					ł		
389.7	392.9	FAULT BRECCIA.		1						1		
392.9	481.5	MAFIC FLOWS.	i									
481.5	485.0	MAFIC DYKE.										
485.0	493.5	MAFIC FLOWS.										
493.5	539.1	FELSIC TO INTERMEDIATE TUFF.										
539.1	574.0	INTERBEDDED MAFIC FLOWS AND FELSIC CRYSTAL TUFF.				:						
574.0	584.2	FELSIC TO INTERMEDIATE TUFF.										
584.2	611.5	INTERMEDIATE FLOWS.			1							
	672.4	SILICIFIED - SHEARED MAFIC VOLCANICS AND IRON FORMATION.	4838		654.9	657.9	3.0			.016		
672.4	687.0	MAFIC FLOWS.						ŧ			1	
	687.0	E.O.H.										
672.4												
								1				
									1			

NAME OF	PROPERTY	KAS	AGIMINNIS L	AKE		
	KAS-88-5A					
	04+60W,					
LATITUDE	·		DEPARTURE			·
ELEVATIO	N		AZIMUTH	180°	DIP	_59°
	January 29					

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-59.0				
200.0	-58.5				
400.0	49.0			_	
600.0					

HOLE NO. KAS-88-5A NEET NO. 1 of 8
REMARKS PA786810

F 0 0	TAGE	DESCRIPTION			5 A M P	LE			,	S 5 A 1	/ S
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	16	*6	oz/Yon	oz/TON
0.0	136.0	Casing.									
136.0	163.5	Felsic to Intermediate Tuff - dark to light grey to green, fine grained, laminated to banded. Modal percent: Quartz Plagioclase-sericite Amphibole Potash Feldspar Carbonate 15-20% 1-3%									
		Gradual composition changes from felsic to intermediate, weak to moderate potassic alteration especially along quartz-carbonate stringers, folition at 52° to core axis at 137.0', 50° at 147.0', 45° at 157.0', cleavage at 30° to core axis at 137.0', 42° at 147.7', 50° at 157.5'.									
		- 148.5' - 151.0' - quartz veining, discordant, irregular contacts, trace disseminated arsenopyrite trace-0.5% pyrite.	4715 4716	tr5 tr	148.5 151.0	151.0 153.3	2.5 2.3			tr .004	
			4717 4718 4719	tr	153.3 157.3 160.3	157.3 160.3 163.5	4.0 3.0 3.2			tr tr tr	
163.5	166.0	Felsic Crystal Tuff - light grey to white, fine to medium grained, banded. Modal percent: Quartz 45-50% Plagioclase 3-40-45% Chlorite 3-5%	4720		163.5	166.0	2.5			tr	
		Medium grained quartz and plagioclase eyes in fine grained ground- mass, 1-2% quartz-carbonate stringers, foliation at 47° to core axis at 164.0'.									

NAME OF PROPERTY_KASAGIMINNIS LAKE

HOLE NO. KAS-88-5A

SHEET NO. 2 of 8

F001	FAGE	DESCRIPTION			SAMPI	LE			ASSAYS	
FROM	10	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL		oA4on	GZ TON
166.0	190.3	Felsic to Intermediate Tuff - typical, foliation at 47° to core axis at 171.0', cleavage at 70° and 23° to core axis at 171.0'.	4721		166.0	168.2	2.2	ļ	tr	
		around quartz-carbonate stringers.	4722 4723 4724 4725		168.2 171.2 174.8 177.4	174.8	3.0 3.6 2.6 3.6		tr tr tr tr	
		- 181.0' - 183.5' - as above, fracturing with carbonate-epi- dote infillings.	4726 4727		181.0 183.5	183.5	2.5 3.8		tr tr	
		- 187.3' - 190.3' - as above.	4728		187.3	190.3	3.0		tr	
190.3	301.8	Interbedded Felsic to Intermediate Tuff and Siltstone - grey to green to brown, fine grained, banded to laminated. Modal percent: Plagioclase 25-30% Quartz 25-30% Amphibole 15-20% Chlorite 5-7% Biotite 2-5% Carbonate 2-5% Epidote 1-3%								
		Siltstone consists of 10-15% biotite, 5-10% carbonate, siltstone predominates at top of section decreasing downward. Foliation at 41° to core axis at 196.5', 43° at 218.8', 47° at 244.5', 45° at 250.0' to 301.8', cleavage at 44° at 196.5', 43° at 207.0', 42° at 223.0', 18° at 236.0'.								
		- 190.3' - 195.5' - siltstone, fracturing, 5-20% carbonate. - 194.7' - 195.5' - banded composite quartz-carbonate veining, trace-0.5% pyrite.	4729 4730		190.3 194.7		4.4 3.2		tr tr	
		- 195.5' - 197.9' - tuff, typical.					٤.			
		- 197.9' - 202.9' - siltstone, 3-5% quartz veining, 2-3% disseminated pyrite.	4731	2-3	197.9	202.9	5.0		.002	
		- 202.9' - 218.8' - tuff, 1-3% pyrite, 1-2% quartz-carbonate stringers with epidote.	4733 4734	1-3 1-3	202.9 207.9 212.9 215.9	212.9 215.9	5.0 5.0 3.0 2.9		tr tr tr tr	

ANGRIDGES - CTOROTT - 346.1346

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-88-5A

SHEET NO. 3 OF 8

F001	FAGE	DESCRIPTION			SAMPL	E			ASSAY S		
FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU oz Tom	GZ TON	
190.3	301.8	Cont'd.			1						
		bonate veining, 1-3% pyrite.	4736 4737 4738		223.8		5.0 5.0 3.5		tr .002 tr		
		ture-breccia zones.	4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751	1-3 1-3 1-3 1-3 1-3 2-3 1-3 1-3 tr-1 tr-1	232.3 236.6 240.9 244.9 249.9 254.9 258.9 261.7 263.4 268.4 272.7 277.7 282.7	236.6 240.9 244.9 249.9 254.9 258.9 261.7 263.4 268.4 272.7 277.7 282.7 287.7	4.3 4.0 5.0 5.0 4.0 2.8 1.7 5.0 4.3 5.0 5.0		tr tr tr tr tr tr tr tr		
301.8	307.6	Mylonite - pink to grey, fine grained, foliated.	4754 4755 4756	tr	291.4 296.4 301.8 304.8	296.4 301.8 304.8 307.6	5.0 5.4 3.0 2.8		tr tr tr tr		
307.6	324.4	Chlorite coatings on cleavage at 42° to core axis, sharp contacts. Felsic to Intermediate Tuff - typical, foliation at 50° to core axis at 317.5', cleavage at 45° to core axis at 317.0', 324.4', trace-0.5% pyrite, chalcopyrite, 2-3% quartz-carbonate-epidote	4757 4758 4759 4760	tr tr		312.0 317.0 322.0 324.4			tr tr tr tr		
324.4	389.7	Mafic Flows - dark green to black, fine to medium grained, massive.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-88-5A

SHEET NO 4 Of 8

FOOT	AGE	DESCRIPTION			SAMPI	E			ASSAY S		
FHOM	Ţυ	DESCRIPTION	NO	" SULPH IDES	FROM	FOOTAGE 10	TOTAL		AU	OZ TON	
324.4	389.7	Cont'd. Modal percent: Amphibole 45-50% Plagioclase 40-45% Quartz Carbonate 2-5% Epidote 1-2%									
			4761 4762 4763 4764 4765 4766	tr-3 tr-3 tr-3 tr-3 tr-3 tr-3 tr-3 tr-3	324.4 327.2 332.0 337.0 342.0 347.0 352.0 357.0 362.0 365.0 369.5 372.7	337.0 342.0 347.0 352.0 357.0 362.0 365.0 369.5	2.8 4.8 5.0 5.0 5.0 5.0 5.0 3.0 4.5 3.2 5.2		tr tr tr tr tr tr tr tr		
		- 377.9' - 379.3' - banded quartz-carbonate veining, trace magnetite, pyrite. - 379.3' - 389.7' - fine grained, schistose, 3-5% quartz-carbonate veining. Foliation at 50° to core axis at 327.0', 49° at 337.0', 52° at 356.0', 46° at 363.5', 52° at 377.0'.	4773 4774 4775	tr	377.9 380.9 385.9	380.9 385.9 389.9	3.0 5.0 4.0		tr tr tr		
389.7 392.9	392.9 481.5	fragments, 60-70% epidote, 15-20% carbonate, 5-10% quartz, fine grained quartz-carbonate matrix around volcanic fragments up to 0.2 feet, 50:50 matrix to fragments between 390.7' - 391.5', epidotization of volcanics, trace pyrite and arsenopyrite in matrix foliated at 55° to core axis. Mafic Flows - typical as above, foliation at 50° to core axis at	4776 4777 4778 4779	tr	389.7 392.9 397.0 402.0	397. 0	4.1 5.0 5.0		tr tr tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-88-5A SHEET NO 5 OF 8

F00	TAGE	DESCRIPTION			SAMP	E		ASSAY S	
FROM	10	DESCRIPTION	NO.	" SULPH IDES	FROM	FOOTAGE 70	TOTAL	AU OZ TON	DZ TON
392.9	481.5	Cont'd.	4780 4781		407.0 412.0	412.0 417.0		tr tr	
		massive, silicified, 2-5% quartz-carbon- ate stringers.	4782 4783 4784 4785 4786 4787 4788		417.0 422.0 427.0 432.0 437.0 442.0 447.0	432.0 437.0 442.0 447.0	5.0 5.0 5.0 5.0 5.0	tr tr .002 tr tr tr	
		- 452.2' - 462.1' - 2-3% biotite bands.	4789 4790 4791 4792	1-2	452.2 457.2 462.1 465.1	457.2 462.1 465.1 470.3		tr tr tr tr	
		tures.	4793 4794 4795		470.3 475.3 478.5		3.2	tr tr tr	
481.5	485.0	Mafic Dyke - dark green to black, fine to medium grained, porphyritic. Modal percent: Amphibole 45-50% Plagioclase 15-20% Chlorite 15-20% Biotite 5-7% Carbonate 2-3% Medium grained chlorite and biotite pseudomorphs after pyroxene phenocrysts, contacts at 34° to core axis at 481.5', 49° at 485.0'	4796		481.5	485.0	3.5	tr	
485.0	493.5	Mafic Flows - typical, fine grained, foliation at 53° to core axis at 491.0', cleavage at 33° at 491.0'. - 485.0' - 487.2' - 3-5% quartz-carbonate, 1-2% pyrrhotite,	4797 47 9 8		485.0 488.5	488. 5 493. 5		tr tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-88-5A SHEET NO. 6 OF 8

F001	AUE	OF COMPANY.	1		SAMP	LE		ASSAY	•
FROM	10	DESCRIPTION	NO	" SULPH	FROM	FOOTAGE	TOTAL	 . Au	GZ TON
493.5	539.1	Felsic to Intermediate Tuff - dark purplish grey to grey-green, fine grained, laminated to banded. Modal percent: Quartz 25-30% Plagioclase 3 25-30% Carbonate 10-15% Amphibole 5-10% Biotite 5-7% Chlorite 3-5% Epidote 2-3%	4799 4800 4801		493.5 498.5 503.5	498.5	5.0 5.0 5.0	tr tr tr	
		Carbonate and biotite as bands, quartz-carbonate fracture fill- ings, intermixed siltstone and felsic to intermediate tuff, foliation at 60-65% to core axis.							
		silicification, fractured and brecciated, 1-2% carbonate, trace-0.5% pyrite.	4803 4804 4805 4806	tr5 tr5 tr5 tr5	508.5 512.0 515.9 519.0 523.0 526.4	512.0 515.9 519.0 523.0 526.4 530.2	3.5 3.9 3.1 4.0 3.4 3.8	tr tr tr tr tr	
			4808 4809		530.2 534.7	534.7 539.1	4.5 4.4	tr tr	
539.1	574.0	Interbedded Mafic Flows and Felsic Crystal Tuff - typical, foliation at 60° to core axis at 549.5', 62° at 572.0'.							
			4810 4811		539.1 544.1	544.1 549.5	5.0 5.4	tr tr	
		- 545.3' - 548.5' - felsic tuff.							
		- 548.5' - 549.5' - flows, fine grained.			1				
		- 549.5' - 554.5' - felsic tuff.	4812		549.5	554.5	5.0	tr	
		to core axis.	4813 4814 4815	1	554.5 559.5 564.5	564.5	5.0 5.0 3.2	tr .002 tr	
		- 567.7' - 572.0' - felsic tuff.	4816		567.7	572.0	4.3	tr	
		- 572.0' - 574.0' - flows.	4817]	572.0	574.0	2.0	tr	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-88-5A SHEET NO. 7 Of 8

F00	TAGE	DESCRIPTION			SAMP	LE		 	ASSAYS	
FROM	10	DESCRIPTION	ИО	* SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	o ¿ Au	UZ FON
574.0	584.2	Felsic to Intermediate Tuff - typical, foliation at 68° to core axis at 574.0', 62° at 582.0'. - 574.0' - 578.5' - 2-3% banded quartz-carbonate veining, trace pyrite.	4818 4819 4820	tr	574.0 578.5 581.5	581.5	4.5 3.0 2.7		tr tr tr	
584.2	611.2	Intermediate Flows - light green, fine grained, massive. Modal percent: Amphibole 35-40% Plagioclase 35-40% Quartz 15-20% Carbonate 1-2% Pyrite tr-0.5%								
		Few fractures or quartz-carbonate stringers, foliation at 68° to core axis at 574.0', 62° at 582.0'. - 584.2' - 587.2' - 2-3% disseminated pyrrhotite, trace-0.5% pyrite.	4822 4823 4824 4825	tr5 tr5 tr5 tr5	584.2 587.2 592.0 597.0 602.0 607.0	592.0 597.0 602.0 607.0	3.0 4.8 5.0 5.0 5.0 4.5		tr tr tr .002 tr	
611.5	672.3	Felsic Tuff - typical, foliation at 60° to core axis at 621.5'.	4827 4828	tr tr	611.5 616.5	616.5 622.3	5.0 5.8		.002 tr	
672.3	672.4	Silicified - Sheared Mafic Volcanics and Iron Formation - black to dark green to dark grey, fine - medium grained. Modal percent: Amphibole 25-30% Plagioclase 15-20% Quartz 15-20% Magnetite 5-10% Grunerite 5-7% Garnet 2-5% Carbonate 1-3% Pyrrhotite tr-3% Pyrrhotite tr-3% Pyrite tr-2% Variable textures, mafics amphibolitic, medium grained to fine grained, banded with cherty-magnetite rich bands, foliation at 60° to core axis at 624.0', 69° at 633.5', 70° at 658.0', 69° at 667.0', 70° at 671.0'.								

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-88-5A SHEET NO. 8 of 8

F00	TAGE	DESCRIPTION		SAMPLE					ASSAYS				
FHOM	10	DESCRIPTION		SULPH	FROM	FOOTAGE TO	TOTAL			o.₄A₩,	GZ TÜN		
622.3	672.4	Cont'd.											
		- 622.3' - 632.3' - volcanics, medium grained, amphibolitic, trace-1% pyrrhotite and pyrite blebs, 1-2% biotite bands near lower contact.	4829 4830	tr-1 tr-1	622.3 627.3	627.3 632.3	5.0 5.0			.006 tr			
		- 632.3' - 643.3' - volcanics, fine grained, 3-5% quartz-car- bonate stringers, trace-1% pyrite, pyr- rhotite.	4832	tr-1	632.3 637.3 640.3	640.3	5.0 3.0 3.0			tr .002 tr			
		- 643.3' - 654.9' - cherty, fine grained, iron formation, 2-5% magnetite, 10-15% fine grained, euhedral feldspar laths, 1-2% quartz- carbonate stringers 653.8' - 654.2' - poorly banded, 15-20% magnetite, 10-15% grunerite.	4834 4835 4836 4837	tr tr	643.3 646.3 649.3 652.1	652.1	3.0 3.0 2.8 2.8			tr tr .002 tr			
			4839 4840 4841 4842	2-5 2-5 2-5 2-5	657.9 660.9 663.9	660.9 663.9 666.9 669.9	3.0 3.0 3.0 3.0 3.0 2.5			.016 .002 .006 tr .002 tr			
672.4	687.0	Mafic Flows - fine grained, 2-5% carbonate stringers, 1-2% disseminated pyrite and pyrrhotite, minor cherty bands with 2-3% magnetite, foliation at 60° to core axis at 687.0°, cleavage at 23° to core axis at 686.0°.	4845	1-2	677.4	677.4 682.4 687.0	5.0 5.0 4.6			tr tr .002			
٥	687.0	Е.О.Н.											
									G.	Des	lan	J	
									G	A	Apple	Malan	

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO.
LOCATION
LATITUDE

ELEVATION

February 3/88

KASAGIMINNIS LAKE

LENGTH 537.0¹

DEPARTURE

AZIMUTH 180° DIP 47°

February 6/88

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	47.0				
200.0	43.5				
425.0	41.0				
537.0	40.0				

HOLE NO. KAS-88-6 SHEET NO. 1 of 2
REMARKS PA786810

SUMMARY LOG

F 0 0	TAGE	DESCRIPTION SUMMARY LOG		SAMPLE					ASSAYS			
FROM	ŦO		NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	16	16	OZ/TON	oz/ton	
0.0	153.8	CASING.										
153.8	161.6	FELSIC TO INTERMEDIATE TUFF.										
161.6	179.5	MAFIC FLOWS.	-						ļ			
179.5	188.0	MAFIC DYKE.				1						
188.0	276.8	MAFIC FLOWS.				}			İ			
276.8	277.9	BANDED IRON FORMATION.			1	1						
277.9	279.2	MAFIC DYKE.										
279.2	316.0	MAFIC FLOWS.										
316.0	347.4	FELSIC TO INTERMEDIATE TUFF.				=						
347.4	376.0	FELSIC CRYSTAL TUFF.										
376.0	447.0	INTERBEDDED INTERMEDIATE FLOWS AND TUFFS.										
447.0	521.5	SHEARED -SILICIFIED MAFIC VOLCANICS AND IRON FORMATION.	4935		488.9	491.3	2.4			.020		
			4936		491.3	494.3	3.0			.194	Check	
			4937		494.3	497.3	3.0			.196	Check	
					l					.446	Check	
			4938		497.3	500.3	3.0			.164	Check	
			4939		500.3	503.3	3.0			.060	Check	
			4940		503.3	507.3	4.0			.068	Check	
			4941	i	507.3	507.3 511.3	4.0			.030		
	:		4943 4944		514.8 518.3	518.3 521.5	3.5 3.2	Ì		.014		
			7777		310.3	321.5	3.2				Check	
			4945		521.5	524.5	3.0		1	.040		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-88-6 SHEET NO 2 OF 2

FOO	TAGE	DESCRIPTION			SAMPL					ASSAY S	
FROM	10	DESCRIPTION	NO	SULPH	FROM	FOOTAGE 10	TOTAL		-	uz fon	GZ TON
	521.5	CONT'D.	4946			527.5				.068	
521.5	537.0	MAFIC FLOWS.		<u> </u>				ļ		.064	Check
	537.0	E.O.H.									
							:				
				:							
]							

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO.
LOCATION 04+00W, 15+00N

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180° DIP -47°

STARTED February 3/88 FINISHED February 6/88

FOOTAGE	DIP	AZMUTH	FOOTAGE	DIP	AZIMUTH
0.0	47.0				
200.0	43.5				
425.0	41.0				
537.0	40.0				

HOLE NO. KAS-88-6 SHEET NO. 1 OF 7
REMARKS PA786810

LOGGED BY R. Higginson

FOO	TAGE	DESCRIPTION			SAMP	LE			A	SSAY	· s	
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	76	ૠ	oz/Yon	oz/ton	
0.0	153.8	Casing.										
153.8	161.6	Felsic to Intermediate Tuff - dark to light grey, fine grained, banded to laminated. Modal percent: Quartz 30-35% Plagioclase 30-35% Sericite 30-35% Amphibole 15-20% Chlorite 3-5% Biotite 2-3% Carbonate 1-2% Gradational to abrupt compositional variations, foliation at 55° to core axis at 155.0', 58° at 161.6', cleavage at 38° to core axis	4853 4854		153.8 158.8	158.8 161.6	5.0 2.8			tr tr		
161.6	179.5	at 155.0'. Mafic Flows - black to dark green, fine to medium grained, massive. Modal percent: Amphibole 45-50% Plagioclase 40-45% Quartz 2-3% Carbonate 1-2% Pyrite trace Few widely spaced fractures, foliation at 50° to core axis at	4855 4856 4857 4858	tr tr	171.6	166.6 171.6 176.6 179.5	5.0 5.0 5.0 2.9			tr tr tr tr		
179.5	188.0	164.5', 59° at 177.0'. Mafic Dyke - black to dark green, fine to medium grained, porphy-	4859 4860		179.5 184.0	184.0 188.0	4.5 4.0			tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE
HOLE NO KAS-88-6 SHEET NO. 2 Of 7

F 00	TAGE				SAMPL	E			ASS AYS	•
FROM	10	DESCRIPTION	но	" SULPH		FOOTAGE		. [AU OZ TON	GZ TON
		Cont'd.		IDES	FROM	TO	TOTAL			
179.5	188.0									
		Fine grained amphibole groundmass with subhedral chlorite-biotite pseudomorphs after pyroxene phenocrysts, cleavage at 50° to core axis at 187.0', contacts at 42° to core axis.							į	
		- 180.2' - 180.5' - schistose mafic volcanic inclusion with 3-5% pyrite blebs.								
188.0 	276.8	Mafic flows - fine to medium grained, massive, amphibolitic, foliation varies from 58° to 65° to core axis, cleavage varies from 32° to 38° to core axis.								
		- 188.0' - 190.0' - fine grained, schistose, 3-5% dissemin- ated pyrite, 3-5% carbonate.	4861	3-5	188.0	190 .0	2.0		tr	
		- 190.0' - 194.3' - fine grained, highly fractured to brec- ciated, 3-5% quartz-carbonate-epidote fracture fillings with 2-3% pyrite, 1-2% coarse hematite grains and stringers.	4862	2-3	190.0	194.3	4.3		tr	
		- 194.3' - 196.7' - fine grained, banded, 3-5% quartz-carbon- ate stringers.	4863	tr	194.3	196.7	2.4		tr	
		- 196.7' - 203.2' - medium grained, amphibolite, minor potas- sic alteration along quartz-carbonate infilled fractures.	4864 4865	tr tr	196.7 200.2	200.2 203.2	3.5 3.0		tr tr	
		- 203.2' - 206.4' - fine grained, 5-7% carbonate bands, 1-3% pyrite 204.3' - 204.9' - mafic dykelet typical contacts at 60° to core axis.	4866	1-3	203.2	206.4	3.2		tr	
		- 206.4' - 214.3' - fine grained, poorly banded 2-3% quartz- carbonate stringers, minor potassic alteration.	4867 4868		206.4 210.4	210.4 214.3	4.0 3.9		tr tr	
		- 214.3' - 266.7' - medium to coarse grained amphibolite, 1-2% quartz-carbonate stringers.	4869 4870		214.3 218.0	218.0 222.0	3.7 4.0		tr tr	
		tremolite stringers 239.9' - 240.2' - 5-7% granular pyrite-	4871 4872 4873 4874	tr tr	222.0 227.0 232.0 237.0	227.0 232.0 237.0	5.0 5.0 5.0 5.0		tr tr tr	

NAME OF PROPERTY____KASAGIMINNIS LAKE

HOLE NO KAS-88-6

SHEET NO. 3 OF 7

F001	FAGE				SAMPL	.Е			ASSA YS		
FROM	10	DESCRIPTION	NO	- SULPH	FROM	FOOTAGE TO	TOTAL	•	o z Albin	UZ TON	
188.0	276.8	Cont'd.									
			4875 4876 4877 4878 4879	tr tr tr	242.0 247.0 252.0 257.0 262.0	252.0 257.0 262.0	5.0 5.0 5.0		tr tr tr tr tr		
		- 266.7' - 276.8' - fine grained, 1-2% quartz-carbonate stringers, trace pyrite.	4880 4881 4882	tr	267.0 272.0 276.8		4.8		tr tr tr		
276.8	277.9	Banded Iron Formation - light to dark grey, fine grained, banded to schistose. Modal percent: Quartz 45-50% Magnetite 25-30% Sericite 5-10% Carbonate 3-5% Amphibole 3-5%									
		Well banded at 60° to core axis, increasing magnetite downhole, fine grained quartz-magnetite, 1-2% pyrite blebs, 0.1-foot quartz-tourmaline stringer at lower contact, sericite schist in upper 0.6 feet with 3-5% quartz-carbonate stringers, 2-3% disseminated magnetite.									
277.9	279.2	Mafic Dyke - typical, massive, contacts at 55° to core axis.	4883		277.9	279.2	1.3		tr		
279.2	316.0	Mafic Flows - typical, fine to medium grained, foliation at 52° to core axis at 280.0', 60° at 307.0', 51° at 313.0', fracture cleavage at 36-40° to core axis.									
		- 279.2' - 296.9' - fine grained, schistose, 1-2% pyrite, 2-5% quartz-carbonate stringers.	4884 4885 4886 4887	1-2 1-2	279.2 282.9 287.9 292.9	282.9 287.9 292.9 296.9	5.0 5.0		tr tr tr tr		
		- 296.9' - 305.5' - medium grained, amphibolitic.	4888 4889		296.9 301.9	301.9 305.5			tr tr		
i		- 305.5' - 316.0' - fine grained, banded - schistose as above.	4890 4891		305.5 310.0				tr tr		

NAME OF PROPERTY KASAGIMINNIS LAKE
HOLE NO. KAS-88-6 SHEET NO. 4 OF 7

FOO:	TAGE	DESCRIPTION			SAMPI		-		 ASSAYS		
FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL	٠	o Ayon	GZ TON	
279.2	316.0	Cont'd.	4892	1-2	313.0	316.0	3.0		tr		
316.0	347.4	Felsic to Intermediate Tuff - tyical, foliation at 59° to core axis at 327.0', 62° at 346.5'.	4893	tr	316.0	321.0	5.0		tr		
		- 322.3' - 322.5' - quartz-tourmaline stringer, tourmaline infilling fractures, trace pyrite.	4894 4895 4896	tr	321.0 326.0 331.0	331.0	5.0	!	tr tr tr		
		- 335.3' - 339.0' - 2-3% quartz-carbonate-epidote fracture fillings.	4897 4898 4899	1	335.3 339.0 344.0	344.0	5.0		tr tr tr		
347.4	376.0	Felsic Crystal Tuff - light grey, fine to medium grained, banded. Modal percent: Quartz 45-50% Plagioclase Sericite 3-5% Chlorite 3-5% Medium grained quartz and plagioclase eyes in fine grained groundmass, minor fracturing with potassic alteration, quartz-carbonate	4900 4901 4902 4903 4904 4905		347.4 351.9 356.4 361.4 366.4 371.4	356.4 361.4 366.4 371.4	4.5 5.0 5.0 5.0		tr tr tr tr tr		
376.0	447.0	epidote fracture fillings, foliation at 60° to core axis. - 373.5' - 374.0' - intermediate flow, see below. Interbedded Intermediate Flows and Tuff - flows: dark green, fine									
,,,,,		grained, massive. Tuffs: light green, fine grained, banded. Modal percent: Amphibole 25-30% Plagioclase 25-30% Quartz 20-25% Chlorite 10-15% Carbonate 1-2% Pyrite tr-0.5% Angular to rounded, fine to medium grained plagioclase-quartz eyes									
:		and 2-5% irregular chlorite bands in tuffs, flows, massive with 1-2% quartz-carbonate stringers, foliation at 60° to core axis at 376.0', 59° at 387.0', 70° at 397.0', 63° at 417.0', 66° at 429.5'.									

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO KAS-88-6 SHEET NO. 5 OF 7

F00	TAGE	DESCRIPTION			SAMPL				ASSAYS		
FROM	70	DESCRIPTION	но	" SULPH!	FROM	FOOTAGE 10	TOTAL	*	ه.Ay	GZ TON	
376.0	447.0	Cont'd. - 376.0' - 383.3' - flows.			376.0		3.0		tr		
ļ		- 383.3' - 395.8' - tuff. - 383.3' - 390.3' - 3-5% irregular quartz- carbonate stringers.	4908 4909			383.3 386.8 390.3 395.8	4.3 3.5 3.5 5.5		tr tr tr tr		
		- 395.8' - 397.8' - flows. - 397.8' - 399.0' - tuff.	4911	tr5	395.8	399.0	3.2		tr		
		- 399.0' - 401.8' - flows.	4912	tr5	399.0	401.8	2.8		tr		
		tite, 2-3% quartz-carbonate stringers, trace-1% pyrite 441.7'- 447.0' - pervasive potassic alteration, abundant medium grained potash feldspar laths.	4914 4915 4916 4917 4918 4919 4920 4921	tr-1 tr-1 tr-1 tr-1 tr-1 tr-1 tr-1	409.6 412.7 417.7 422.7 427.7 432.7	406.5 409.6 412.7 417.7 422.7 427.7 432.7 437.7 441.7	4.7 3.1 3.1 5.0 5.0 5.0 5.0 4.0 5.3		tr tr tr tr tr tr tr		
447.0	521.5	Sheared - Silicified Mafic Volcanics and Iron Formation - black to dark green to grey, fine to medium grained, banded. Modal percent: Hornblende 25-30% Plagioclase 25-30% Quartz 15-20% Magnetite 5-10% Grunerite 3-5% Garnet 3-5%							ļ		
		Variable textures from finely banded quartz-magnetite to coarsely banded amphibole-quartz-carbonate to amphibolitic-massive, fracture-cleavage at 30-36° to core axis, foliation at 52° to core axis, banding at 64-70° to core axis.		:							
		- 447.0' - 465.1' - amphibolitic, 0.5-1%, pyrite as fracture coatings, 0.5-1% pyrrhotite, 1-3% quartz-carbonate stringers.			452.0	452.0 457.0 460.6	5.0 5.0 3.6		tr tr .002		

NAME OF PROPERTY KASAGIMINNIS LAKE

HOLE NO. KAS-88-6

SHEET NO. 6 OF 7

FOOT	FAGE	DESCRIPTION			SAMPL	.E		,	ASSAYS	
мона	10	DESCRIPTION	ИО	SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU 02 YUN	GZ TON
447.0	521.5	or laminae, 10-15% grunerite as fine dis- seminated grains and as haloes around quartz-carbonate stringers. - 465.1' - 467.9' - 1-2% magnetite.	4927		460.6 465.1 467.9 470.9 473.9 476.9 479.9 482.9 485.9 488.9	467.9 470.9 473.9 476.9	3.0 3.0 3.0 3.0 3.0 3.0		tr tr tr .002 .002 .002 tr	
		- 491.3' - 500.8' - chert, poorly banded - massive 3-10% pyr- rhotite as irregular blebs and wispy bands 491.3' - 499.1' - 5-10% pyrrhotite, 0.1- foot massive band 499.1' - 500.8' - change from pyrrhotite to magnetite.	4937	5-10 5-10 5-10		497.3	3.0		.436 .446 .164	Check Check Check
		- 500.8' - 503.3' - mafic volcanic, silicified, 3-5% pyrrho- tite, pyrite,as disseminated grains and blebs, change from pyrrhotite to pyrite downhole, 1-2% quartz-carbonate stringers	4939	3-5	500.3	503.3	3.0		.060	Check
		- 503.3' - 511.3' - interbedded mafic volcanics and iron for- mation, well laminated chert-magnetite bands alternate with poorly banded chert- amphibole-garnet-carbonate, 3-5% wispy pyrrhotite blebs, 3-5% disseminated, fine grained, pink garnets.	4940 4941		503.3 507.3	507.3 511.3			.026	
		with 5-15% quartz-carbonate stringers	4942 4943 4944	3-5	511.3 514.8 518.3	518.3	3.5		.002 .014 .068 .062	Check
521.5	537.0	Mafic flows - typical, fine grained, 3-5% quartz-carbonate stringers, 1-3% biotite bands, 1-2% pyrrhotite blebs.	4945 4946	1-2 1-2	521.5 524.5				.040 .068 .064	Check

NAME OF PROPERTY____KASAGIMINNIS LAKE

HOLE NO KAS-88-6

SHEET NO. 7 of 7

FOC	T AGE				SAMPL	.Ε			ASSAYS		
FROM	10	DESCRIPTION	но	" SULPH	FROM	FOOTAGE	TOTAL		AU	GZ TON	
521.5	537.0	Cont'd. - 521.5' - 527.0' - silicified sections with 1-2% dissemin- ated pyrrhotite blebs, minor iron forma- tion bands with 3-5% grunerite and 2-3%	4947 4948	1-2	527.5 532.0	532.0			.010		
	537.0	tion bands with 3-5% grunerite and 2-3% magnetite. E.O.H.	4740		932.0	537.0	5.0		.002		
LANGRIDGES - TORONTO - 386-1168								J	W	da	m0

.

NAME OF	PROPERTY	KASAGIN	INNIS		
HOLE NO.	KAS-88-7	LENGTH	637 fe	et	
LOCATION	L04+00E.	15+25N			
		DEPARTURE .			
ELEVATION		AZIMUTH	180°	DIP _	-46.5°
STARTED	February 6. 19	988 FINISHED	February 9	1988	

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZMUTH
0	46.50				
200	42.0				
400*	37.5				
600	36.5				

HOLE NO. KAS-88-7 SHEET NO. 1 of 1
REMARKS PA 786836. 786835

SUMMARY LOG

LOGGED BY R. Higginson

F 0 0 1	TAGE				SAMI	LE			A	SSA	/ 5
FROM	то	DESCRIPTION SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE	TOTAL	ĸ	×	OZ/TON	OZ/TON
0.0	83.5	CASING									
83.5	270.8	FELSIC TO INTERMEDIATE TUFF									
270.8	441.4	MAFIC FLOWS AND TUFF - 85:15									
441.4	466.3	FELSIC TO INTERMEDIATE TUFF								:	
466.3	469.8	MAFIC DYKE									
469.8	474.9	FELSIC TUFF									
474.9	484.2	INTERBEDDED MAFIC FLOWS AND FELSIC TUFF - 50:50									
484.2	486.8	MAFIC DYKE									
486.8	511.1	FELSIC TUFF					-				
511.1	584.9	MAFIC PLOWS - AMPHIBOLITE							 		
	632.3	SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION	13774 13775 13776 13777	2-5	594.0	592.0 594.0 597.0 601.6	4.1 2.0 3.0 4.6			.030 .232 .026	
632.2	637.0	MAFIC FLOWS				612.7	2.6			.032	
632.2	637.0	END OF HOLE								į	

NAME OF	PROPERTY	KASAGIM	INNIS		
HOLE NO.	KAS-88-7	LENGTH	637	feet	
LOCATION	L04+00E.	15+25N			·
LATITUDE	•	DEPARTURE _			
ELEVATION		AZIMUTH	180°	_ DIP _	-46.5°
STABLED	February 6.	1988 EINIGHED	February	9. 1988	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	46.5°				
2001	42.0°				
4001	·37.5°		4		
6001	-36.5°				

HOLE NO. KAS-88-7 SHEET NO. 1 of 7 REMARKS PA 786836, 786835

LOGGED BY R. Higginson

FOO	TAGE	DESCRIPTION			SAMP	LΕ			¢	SSA'	' S
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	%	*6	,	oz/ton
0.0 83.5	83.5	CASING PELCIC TO INTERMEDIATE TURB deals to Make and Advanced	4040		09.8	87.0	2 5				
83.3	270.8	laminated to banded.	4949 4950 4951	tr-1 tr-1	87.0 92.0	87.0 92.0 97.0	3.5 5.0 5.0			tr. tr.	
		Average Modes Quartz 30 - 35%	4952 4953 4954	tr-1	102.0	102.0 107.0 112.0	5.0 5.0 5.0			tr. tr.	
E .	:	Plagioclase 30 - 35% Sericite 35 - 20%	4955 4956 4957	tr-1 tr-1	112.0 117.0	117.0 122.0 127.0	5.0 5.0 5.0			tr. tr.	
		Chlorite 3 - 5%. Biotite 2 - 3%.	4958 4959	tr-1	127.0 132.0	132.0 137.0	5.0 5.0			tr.	
		Carbonate 1 - 2% Gradational to abrupt compositional variations, 1-3% quartz ± carbonate stringers, 1-3% carbonate ± epidote fracture fillings, trace-1% pyrite as fracture coatings, foliations at 58° - 69° to core axis across section; fracture - cleavage at 27° - 38° to core	4960 4961 4962 4963 4964	tr-1 tr-1 tr-1	137.0 141.0 146.0 151.0 156.0	141.0 146.0 151.0 156.0 161.0	4.0 5.0 5.0 5.0 5.0			tr. tr. tr. tr.	
7 10 10 10 10 10 10 10 10 10 10 10 10 10		axis 84.4° to 85.5° - 3-5% quartz veining.									
LANGRIDGES - TORONTO - 366-1168		mylonitized narrow zones, 2-3% pyrite as		2-3 2-3 2-3 tr-1 tr-1	169.0 172.0 177.0 182.0 187.0	166.0 169.0 172.0 177.0 182.0 187.0 192.0	5.0 3.0 3.0 5.0 5.0 5.0 5.0			tr. tr. tr. tr. tr. tr. tr. tr.	

HOLE NO. KAS-88-7 SHEET NO. 2 OF 7

SAMPLE **ASSAYS** FOOTAGE Au. DESCRIPTION FOOTAGE ". SUL PH FROM TO ٠. 0 2 TON GZ TON TO TOTAL 1065 FROM - 197.9' to 198.1' - quarts vein, 2-3% pyrite 4973 200.9 2-3 197.0 3.9 tr. as fracture coatings. - 200.9' to 202.4' - weakly carbonatized. 4974 tr-1 200.9 205.9 5.0 tr. 4975 tr-1 205.9 208.6 2.7 tr. - 208.6' to 214.9' - brecciated, carbonate-4976 208.6 211.6 3.0 tr. tr. 4977 211.6 214.9 3.3 epidote fracture fillings, trace pyrite. tr. tr. - 216.9' to 217.6' - quartz vein, 2-3% potash 4978 214.9 217.6 tr. tr. feldspar grains, 1-2% tourmaline. 4979 217.6 222.6 5.0 tr. tr. 4980 222.6 227.6 5.0 tr. tr. - 230.9' to 231.1' - breccia, as above. 4981 227.6 232.6 5.0 tr. tr. 4982 tr. 232.6 237.6 5.0 .002 4983 237.6 242.6 tr. tr. 4984 242.6 247.6 tr. tr. 4985 247.6 252.6 5.0 tr. tr. 4986 257.6 5.0 .002 tr. 252.6 257.6 262.6 5.0 tr. 4987 tr. - 264.6' to 265.3' - breccia, as above. 4988 262.6 267.0 4.4 tr. tr. 270.8 - 267.0 to 269.6 - breccia, as above. 267.0 3.8 13701 tr. tr. - 269.6' to 270.8' - 0.5-2% magnetite, poorly banded, 0.3 foot breccia zone at bottom. 270.8 441.4 MAFIC FLOWS AND TUFF - 85:15, black to dark green, fine grained, flows - massive; tuffs - banded. Average Modes Amphibole LANGRIDGES - TORONTO -- 366-1168 Plagioclase Quartz Carbonate Pyrite Pyrrhotite Chalcopyrite trace Foliation at 68° - 74° to core axis.

NAME OF PROPERTY_____KASAGIMINNIS

HOLE NO. KAS-88-7 SHEET NO. 3 of 7

F001	TAGE	DESCRIPTION			SAMPL	.E	_	ASSAY S Au			
ROM	10	DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE TO	TOTAL		•	02 TON	GZ TON
							'				
			13702		270.8	275.8	5.0	1		tr.	
		ated wispy albite, 2-3% epidote-rich interflow	13703	tr.	275.8	280.8	5.0	ł		tr.	
			13704	1 1		285.7	4.9		l	tr.	
			13705			291.0	5.3			tr.	
			13706		291.0	296.0	5.0	i		tr.	
			13707		296.0	301.0	5.0			tr.	
			13708			306.0	5.0			tr.	
		- 306.0' to 307.0' - 2-3% pyrrhotite stringers.	13709	2-3	306.0	309.0	3.0		1	tr.	
		- 309.0' to 317.5' - tuff, 3-5% biotite.	13710	tr.	309.0	313.0	4.0			tr.	
1	į		13711		313.0	317.5	4.5			tr.	
			13712		317.5	319.7	2.2		1	tr.	İ
			13713	tr.	319.7	322.7	3.0		1	tr.	
i			13714			325.4	2.7		1	tr.	
1			13715		325.4	330.4	5.0	[Į	tr.	
			13716		330.4	335.4	5.0]	tr.	
i		chalcopyrite, 1-3% biotite.	13717		335.4	340.4	5.0			tr.	
			13718		340.4	345.4	5.0		ł	tr.	
			13719		345.4	350.4	5.0			tr.	
			13720		350.4	355.4	5.0	!	1	tr.	
1			13721		355.4	360.4	5.0		}	tr.	
			13722		360.4	365.4	5.0			tr.	
			13723		365.4	370.4	5.0		Ì	tr.	
			13724	tr.	370.4	375.4	5.0	l '	1	tr.	
			13725	tr.	375.4	380.4	5.0			tr.	
			13726		380.4	385.4	5.0		ŀ	tr.	
			13727			390.4	5.0	İ	ŀ	tr.	
			13728			393.4	3.0			tr.	
			13729			397.q	3.6		1	tr.	
-			13730			401.1	4.1		ł	tr.	
ł			13731		401.1	404.1	3.0			tr.	
ļ		- 404.1' to 441.4' - flows, fine grained, 1-3% quartz ± carbonate,				409.1	5.0			tr.	
- 1		trace-0.5% pyrite, pyrrhotite.		tr-0.5		414.1	5.0		i	tr.	
				tz-0.5		419.1	5.0			tr.	
				tr-0.5		424.1	5.0			tr.	
				tr-0.5		427.q	2.9			tr.	
				tr-0.5			3.0			tr.	
		, the state of th		tr-0.5			2.4			tr.	
				tr-0.5		437.4	5.0		ŀ	tr.	
ı			13740	tr-0.5	437.4	441.4	4.0		l	tr.	1

NAME OF PROPERTY KASAGIMINNIS

HOLE NO. KAS-88-7 SHEET NO. 4 08 7

F001	AGE	OFFICE IN THE STATE OF THE STAT			SAMP	E				ASSAYS		
FROM	το	DESCRIPTION	NO.	SUL PH		FOOTAGE			Γ.	OZ TON	GE TON	Ι
ном	10			IDES	FROM	10	TOTAL	•	,	02 100	UZ TON	ļ
41.4	466.3	FELSIC TO INTERMEDIATE TUFF - atypical, 5-7% biotite, 3-5% carbon-	13741		441.4			,	[tr.		ŀ
- 1	ŀ	ate ± epidote, foliation at 70° to core axis at 452.0°.	13742		446.4	451.4	5.0		l	tr.		
- 1	l		13743		451.4	455.9	4.5		1	tr.	i	
	ŀ	- 455.9' to 456.7' - large mafic volcanic clast.	13744		455.9	460.9	5.0			tr.		
	1		13745		460.9	466.3	5.4			tr.		
66.3	469.8	MAFIC DYKE - dark green to black, fine to medium grained, massive.	13746		466.3	469.8	3,5			tr.		
		Average Hodes										
		Amphibole 55 - 60%				i						
l	1	Plagioclase 15 - 20%										
		Chlorite 10 - 15%										
ŀ		Carbonate 3 - 5%				l			!			
		Potash Feldspar 1 - 2%				•			i			
j	.	Pyrite 0.5 - 1%										
	Ì	Medium grained chlorite pseudomorphs after pyroxene phenocrysts in]			
- 1		a fine groundmass, pyrite as fracture coatings, potash feldspar as										
i	1	alteration around 1-2% quartz i carbonate stringers, contacts at				i						
		63° to core axis at 466.3°, 40° at 469.8°.										
69.8	474.9	FELSIC TUFF - light grey, fine grained, banded.	3747	1-2	469.8	474.9	5.1			tr.		
		Average Modes										
l		Quartz 45 - 50%				ĺ			ł	}		
1		Plagioclase 40 - 45%									1	
ŀ		Chlorite 3 - 5%				ł	i					
l	1	0 EN	i i						1			l
j		2-5% quartz-plagioclase eyes, 2-3% quartz-tourmaline veins, 1-2%]			
l		pyrite, foliation at 72° to core axis at 474.0°.							l		,	l
74.9	404 0	THE PROPERTY WAS TO BE OUG AND DREST OF MINDS OF A SO AS ASS								Ì		
/4.7	484.2	INTERBEDDED MAFIC FLOWS AND FELSIC TUFF - 50:50, 15-20% quarts-	3748	tr-1	474.9					tr.		
- 1		tourmaline veining, trace-1% pyrite, foliation at 70° to core axis	F3749	tr-1	479.9	484.2	5.3			tr.		l
I	i	at 483.8°.										
I	j											
ł	j											
1	Ì]			.			Ì]		1
1										-		l
- 1	j		1			I			1	1	1	ļ

NAME OF PROPERTY KASAGIMINNIS
HOLE NO. KAS-88-7 SHEET NO. 5 of 7

SAMPLE FOOTAGE ASSAYS DESCRIPTION FOOTAGE 3 SULPH NO. FROM TO OZ TON GZ TON TOTAL FROM to 484.2 486.8 MAFIC DYKE - typical, contacts at 55° to core axis at 486.8°, 63° h 375d 484.2 486.8 2.6 tr. at 484.2". 486.8 511.1 FELSIC TUFF - typical, foliation at 66° to core axis at 497.0°, 13751 486.8 5.0 491.8 tr. 68° at 507.0°, 74° at 511.1°. h3752 491.8 496.8 5.0 tr. h3753 496.8 501.8 5.0 tr. 13754 506.8 5.0 501.8 tr. 13755 506.8 511.1 4.3 tr. 511.1 584.9 MAFIC FLOWS - AMPHIBOLITE - medium to coarse grained, amphibolitic 13756tr-0.5 511.1 516.1 5.0 tr. 1-3% quartz i carbonate stringers, 1-2% wispy albite grains. 113757kg-0.5 516.1 521.1 5.0 tr. trace-0.5% pyrrhotite, chalcopyrite; foliation at 58° to core 13758tr-0.5 521.1 526.1 5.0 tr. axis at 546.0', 72° at 567.5'. 13759tr-0.5 526.1 531.1 5.0 tr. 1376qtr-0.5 536.1 5.0 531.1 tr. 13761tr-0.5 536.1 541.1 5.0 tr. 113762tr-0.5 541.1 546.1 5.0 tr. 13763tr-0.5 5.0 546.1 551.1 tr. h 3764 tr-0.5 551.1 554.6 3.5 .002 13765tx-0.5 554.6 557.2 2.6 tr. 13766tr-0.5 5.0 557.2 562.2 tr. 13767tx-0.5 562.2 567.2 5.0 tr. 13768tr-0.5 567.2 570.7 3.5 tr. 13769tr-0.5 570.7 572.8 2.1 tr. - 572.8 to 584.9 - 1-5% pyrrhotite and pyrite as 1377d 1-5 5.0 572.8 577.8 tr. fine to coarse grained blebs, trace chalcopyrite. 13771 1-5 577.8 581.3 3.5 tr. 13772 1-5 584.9 3.6 .002 581.3 584.9 632.3 SHEARED - SILICIFIED MAFIC VOLCANICS AND IRON FORMATION - black to dark green to grey, fine to medium grained, banded to massive. Average Modes Amphibole 20 - 25% 20 - 25% Plagioclase 20 - 25% Ouartz Grunerite 5 - 7% Garnet trace - 3% 2 - 3% Carbonate

LANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY______KASAGIMINNIS
HOLE NO. __KAS-88-7______ SHEET NO. _____6 of 7______

FOOTAGE FROM TO		DESCRIPTION			SAMPL	. E		ASSAYS Au			
			NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	- 1	•	OZ TON	GZ TON
		Magnetite 2 - 5% Pyrrhotite 2 - 5% Pyrite 1 - 2%									
		Interbedded amphibolitic mafic volcanics and banded to laminated iron formation, magnetite occurs exclusive of pyrrhotite, pyrite occurs as fracture coatings, grunerite as haloes around quarts ± carbonate stringers, foliation at 64° - 70° to core axis.					į				
		- 584.9' to 592.0' - iron formation, banded, 2-5% magnetite as fine to medium grained blebs, 2-3% garnet, 2-3% quartz ± carbonate stringers.	13773 13774		584.9 587.9		3.0 4.1			.002 .030	
		- 592.0' to 594.0' - chert-amphibole, massive, 2-5% pyrrhotite as disseminated grains and 1/16" stringer subparallel to core axis, 2-3% carbonate.	13775	2-5	592.0	594.0	2.0			.232	
		- 594.0' to 601.6' - iron formation, as above, 1-3% quartz ± carbonate stringers.	13776		594.0	597.0	3.0			.026	
		- 600.2° to 601.6° - 2-5% pyrrhotite as wispy blebs and bands.	13777		597.0	601.6	4.6			.032	
į		- 601.6' to 604.4' - mafic volcanics, fine grained, 2-3% quarts is carbonate stringers, trace-1% pyrite as disseminated grains and fracture fillings.	13778	2-5	601.6	604.4	2.8			.002	
		- 604.4' to 610.1' - iron formation, 5-7% medium grained garnets, 1-2% quartz i carbonate stringers, trace pyrite and pyrrhotite, 3-7% magnetite.	13779 13780		604.4 607.4		4.0 2.7			tr. .002	
		- 610.1' to 612.7' - mafic volcanics and iron formation, banded, 3-5% magnetite, trace-1% pyrrhotite and pyrite.	13781	tr-1	610.1	612.7	2.6			•046	
		- 612.7° to 632.3° - mafic volcanics, fine to medium grained, amphibolitic, 2-5% magnetite.	13782		612.7	617.4	4.7			tr.	
		- 617.4° to 618.2° - quartz vein, volcanic inclusions with 1-2% medium grained magnetite blebs.	13783 13784		617.4 622.4		5.0			tr. tr.	
		- 627.7' to 628.7' - iron formation, as per 584.9' to 592.0', 0.5-1% pyrrhotite.	13785	0.5-1	627.4	632.3	4.9			tr.	

KASAGIMINNIS NAME OF PROPERTY____ HOLE NO. KAS-88-7 SHEET NO. 7 of 7

F001	AGE	DESCRIPTION			SAMPI					ASSAYS	
FROM	то	DESCRIPTION	NO.	3, SUL PH		FOOTAGE		.,		02 TON	OZ TON
		- 631.7' to 632.3' - as above.		IDES	FROM	fo	TOTAL				
32.3	637.0	MAFIC FLOWS - fine grained, 1-3% disseminated magnetite, 0.5-1% pyrite fracture coatings, fracture - cleavage at 30° to core axis at 635.0°.	13786	0.5-1	632.3	637.0	4.7			tr.	
	637.0	END OF HOLE									
									: !		
									4	All	dan

APPENDIX D

ASSAY CERTIFICATES

P.O. BOX 187.

Certificate of Analysis

Page 1 of 2

3180 (Corrected)

March 2, 1988

SAMPLE(S) OF:

Core (88)

RECEIVED: September 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10001	Trace	10023	0.020
2	Trace	4 .	0.078 - 0.074
3	Trace	5	0.040
4	Trace	6	Trace
5	Trace	7	·Trace
6	Trace	8	Trace
7	Trace	.9	Trace
8	Trace	10030	0.006
9	Trace	1	0.026
10010	Trace	2	0.014
1	0.010 .	3	Trace
2	0.002*	4	Trace
3	Trace	· 5	Trace
4	0.014	6	Trace
5	Trace	7	Trace
6	Trace	8	Trace
7	0.030	9	Trace
8	0.020	10040	Trace
9	0.012	1	Trace
10020	0.010	2	Trace
1	0.028	3	Trace
2	Trace	4	Trace

Estimated

SECONDANCE WITH LONG-ESTABLISHED NORTH-TENICAN CUSTOM UNLESS IT IS SPECIFICALLY STATED HERMISE GOLD AND SEVER VALUES REPORTED ON THE SHEETS HAVE NOT LEEN ADJUSTED TO COMPEN-THE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY FROCESS.

HAILEYBURY, ONTARIO

Certificate of Analysis

Page 2 of 2

3180 (Corrected)

DATE:

March 2, 1988

SAMPLE(S) OF: Core (88)

RECEIVED: September 1987

MAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10045	Trace	10067	0.168 - 0.174
6	Trace	8	0.120 - 0.122
7	Trace	9	0.004
8	0.006	10070	Trace
9	Trace	1	Trace
10050	Trace	2	0.064 - 0.060
1	Trace	3	Trace
2	Trace	4	0.004
3	Trace	5	0.182 - 0.168
4	Trace	6	0.018
5	Trace	7	0.058 - 0.056
6	Trace	8	Trace
7	Trace	9	Trace
8	Trace	10080	Trace
9	Trace	1	Trace
10060	Trace	2	Trace
1	Trace	3	Trace
2	Trace	4	Trace
3	0.014	5 , ,	Trace
4	0.002	6	Trace
5	Trace	7	Trace
6	Trace	- 8	Trace

IN COMPANY WITH LOUNGESTABLISHED NORTH AMERICAN CUSTOM UNLESS IT IS SPECIFICALLY STATED OTHERWISE SOUL AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

3197

DATE:

September 24, 398

SAMPLE(S) OF:

Core (48)

RECEIVED:

September 1987

SAMPLE(S) FROM:

Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10089	0.006	10113	Trace
10090	Trace	4	0.002*
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
2 3 4 5 6 7 8 9	0.016	10120	Trace
7	0.020	1	Trace
8	0.054 - 0.054	2	Trace
9	0.068 - 0.062	3	Trace
10100	0.036	4	0.020
1	0.014	4 5	Trace
2	Trace	6	Trace
3	Trace	7	0.008
4	Trace	8	Trace
5	Trace	9	0.018
6	Trace	10130	0.020
7	Trace	1	0.016
2 3 4 5 6 7 8 9	Trace	2	Trace
9	Trace	3	Trace
10110	Trace		Trace
7	Trace	4 5	Trace
2	Trace	6	Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

De

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

3196

DATE:

September 24, 1987

SAMPLE(S) OF:

Core (35)

RECEIVED:

September 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Au oz.	Ag ppm
10137	Trace	1.2
8	Trace	1.8
9	Trace	1.6
10140	Trace	1.2
i	Trace	1.4
	Trace	0.6
3	Trace	0.4
4	0.014	1.2
5	Trace	0.2
6	Trace	0.4
Ž	Trace	0.2
2 3 4 5 6 7 8	Trace	ND
9	Trace	0.6
10150	Trace	0.8
ĺ	Trace	1.2
	Trace	0.4
2 3 4 5 6 7 8 9	0.028	0.6
4	Trace	1.0
5	0.040	1.0
6	Trace	0.4
7	0.058 - 0.054	0.6
8	0.002	0.4
9	Trace	0.6
10160	Trace	1.0
1	0.018	1.2
	0.002	1.0
3	0.048	1.8
4	0.016	1.2
5	0.002	1.4
2 3 4 5 6 7 8	Trace	0.8
7	0.062 - 0.062	0.8
8	Trace	1.0
9	0.012	0.8
10170	0.022	1.0
1	0.028	0.4

NOTE: ND denotes not detected.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON MESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3381

DATE:

October 13, 1987

SAMPLE(S) OF:

Core (46)

RECEIVED: October, 1987

- 0.064

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

14 се 02 04 сe се ce ce ce 02 * ce 24 сe ce ce се

Sample No.	<u>Au oz</u> .	Sample No.	Au oz.
10172	0.022	10195	Trace
3	0.006	6	Trace
4	Trace	7	Trace
5	Trace	8 9	Trace
4 5 6 7	Trace	9	Trace
	Trace	10200	Trace
8	Trace	1	0.066
9	0.002 *	2	0.014
10180	Trace	3	Trace
ו	0.016	4	0.002
2	Trace	5	0.004
2 3 4 5 6 7 8 9	Trace	2 3 4 5 6 7	Trace
4	0.012		Trace
5	0.020	8 9	Trace
6	0.002 *		Trace
7	0.026	10210	Trace
8	Trace	1	0.002
	Trace	2	Trace
10190	Trace	3	0.024
1	Trace	4	Trace
2	Trace	2 3 4 5 6 7	Trace
2 3 4	Trace	6	Trace
4	Trace	7	Trace

Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-LATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3387

DATE:

October 14, 1987

SAMPLE(S) OF:

Core (54)

RECEIVED:

October, 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Au oz.	Sample No.	Au oz.
10218	Trace	10245	0.002
9	Trace	6	Trace
10220	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	10250	Trace
2 3 4 5 6 7	Trace	j	Trace
5	Trace	2	Trace
6	Trace	3	0.010
	Trace	2 3 4 5 6 7	Trace
8 9	Trace	5	Trace
	Trace	6	Trace
10230	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
2 3 4 5 6 7	Trace	10260	Trace
4	Trace	1	Trace
5	0.002 *	2	Trace
6	Trace	2 3 4 5 6 7	Trace
7	Trace	4	Trace
8	Trace	5	Trace
9	Trace	6	0.014
10240	Trace	7	0.004
1	0.022	8	Trace
2	Trace	9	Trace
2 3 4	Trace	10270	Trace
4	Trace	1	Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

3287 (Corrected)

March 2, 1988

SAMPLE(S) OF:

Core (221)

RECEIVED:

October 1987

SAMPLE(S) FROM: Mr. Geoff Lumby, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

ample No.	Oz. Gold	Sample No.	Oz. Gold	Sample No.	Oz. Gold
2981	Trace	10289	Trace	10326	Trace
2	Trace	10290	Trace	7	Trace
3	Trace	ו	Trace	8	Trace
4	Trace	2	Trace	9	Trace
5	Trace	3	Trace	10330	Trace
6	0.002*	4	0.002*	1	Trace
7	Trace	5	0.002*	2	Trace
ઠ	Trace	6	Trace	3	0.002*
9	Trace	7	Trace	4	Trace
3990	Trace	8	Trace	5	Trace
1	Trace	9	Trace	6	Trace
2	Trace	10300	Trace	7	Trace
2	Trace	1	Trace	8	Trace
4	Trace	2	0.014	18001	Trace
ŗ	Trace	3	Trace	2	Trace
6	Trace	4	Trace	3	Trace
7	0.002*	5	Trace	· 4	Trace
8	Trace	6	Trace	5	0.0021
9	Trace	7	Trace	5 6 7	0.002
3000	Trace	8	Trace	7	0.002
10272	Trace	9	Trace	8	Trace
ı	Trace	10310	Trace	9	0.002
4	Trace	1	Trace	18010	Trace
5	Trace	2	Trace	1	Trace
. 6	Trace	3	īrac e	2	0.004
7	Trace	4	0.010	3	Trace
8	Trace	5	īrace	4 ·	Trace
9	Trace	6	0.002	5	Trace
10280	Trace	7	race	6	. 0.034
	Trace	8	Trace	7	Trace
2	Trace	9	Trace	8	Trace
3	0.002*	10320	Trace	9	0.002
4	0.002*	1	Trace	18020	Trace
5	Trace	Ž	0.008	i	Trace
6	Trace	3	0.012	2	Trace
7	Trace	4	0.062	3	Trace
8	Trace	5	0.028	4	Trace

Estimated

CONTRACTOR WITH LANAGESTABLISHED NORTH CONTRACTOR CANDID STATED CONTRACTOR OF PARTICIPATION OF THE STATED OF THE STATED OF THE STATE OF

P.O. BOX 187.

Certificate of Analysis

NO.

3318

DATE:

October 6, 1987

SAMPLE(S) OF:

Core (46)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. R Higginson, Geocanex Ltd.

PROJECT: **Kasagiminnis**

Sample No.	Oz. Gold	-	Sample No.	Oz. Gold
10339	Trace		10362	0.008
10340	0.006		3	0.018
1	Trace		4	0.050
2	0.002*		5	0.010
3	Trace		6	0.008
4	0.002*		7	Trace
5	Trace		8	0.002*
6	0.146 -	0.142	9	0.012
7	Trace		10370	0.002*
8	0.002*		1	0.004
9	0.004		2	Trace
10350	0.004		3	Trace
1	0.006		4	0.004
2	Trace		- 5	0.024
3	0.002*		6	0.030
4	Trace	Por insupersal filter of the above of between the second of the control of the co	7	0.002
5	Trace	A Commence of the Commence of	8	Trace
6	Trace		9	Trace
/	Trace	in the second of	10380	Trace
8 9	0.002*	The first the same will be a second of the same with the same will be a second of the same will be a se	: <u>!</u>	Trace
•	Trace	المحمد المرابع بعدم بمصافح النفي الأراث الأراث المرابع المرابع المرابع المرابع المرابع المرابع المرابع المرابع	2	Trace
10360	0.002*		3	Trace
i	0.002*	The second secon	4	Trace
		$\frac{1}{2}$. The second contract of the contra	a •	
* Estimated	1	والمهودي المفروقين بيدانو ليوا فددد سموا	• •	
E 3 C I III Q C C C	•	and the same of th	-	
		Production of the Contract of	w.ł	

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

3326

DATE:

October 7, 1987

SAMPLE(S) OF:

Core (72)

RECEIVED: October 1987

SAMPLE(S) FROM:

Mr. Rob Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Au oz.	Sample No.	Au oz.	Sample No.	Au oz.
1 0385	0.002*	10409	0.092	10433	0.016
6	Trace	10410	0.048	4	Trace
7	Trace	1	0.002*	5	Trace
8	Trace	2	0.030	6	Trace
9	Trace	3	Trace	7	0.002*
10390	Trace	4	Trace	8	Trace
_ 1	Trace	5	Trace	9	Trace
2	0.002*	6	Trace	10440	Trace
3	Trace	7	Trace	1	Trace
4	Trace	8	Trace	2	Trace
5	Trace	9	Trace	3	Trace
6	Trace	10420	Trace	4	Trace
7	Trace	1	Trace	5	Trace
8	0.002*	2	Trace	6	0.012
9	Trace	3	Trace	7	Trace
10400	0.002*	4	Trace	8	Trace
1	0.010	5	Trace	10450	0.002*
2	0.010	6	Trace	1	0.002*
3	0.002*	7	0.002*	2	Trace
4	Trace	8	Trace	3	Trace
5	Trace	9	Trace	4	Trace
6	0.004	10430	Trace	5	Trace
7	0.002*	1	Trace	E San San San San San San San San San San	Trace
8	0.036	2		44 miles 7	Trace

Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM. UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3356

DATE:

October 9, 1987

SAMPLE(S) OF:

Core (97)

RECEIVED: October 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Au oz.	Sample No.	Au oz.	Sample No.	Au oz.
10458	Trace	10490	0.002*	10523	Trace
9	Trace	J	Trace	4	0.002*
10460	Trace	2	Trace	5	Trace
1	Trace	3	Trace	6	Trace
2	Trace	4	Trace	7	Trace
3	Trace	5	Trace	8	Trace
4	Trace	6	Trace	9	Trace
5	Trace	7	Trace	10530	Trace
_ 6	Trace	8	Trace	1	Trace
7	Trace	9	Trace	2	Trace
8	Trace	10500	Trace	3	Trace
9	Trace	1	Trace	4	Trace
10470	Trace	2	Trace	5	Trace
ן	Trace	3	Trace	6	Trace
2	Trace	4	Trace	7	Trace
3	0.002*	5	Trace	8	Trace
4	0.010	6	Trace	9	Trace
5	Trace	7	Trace	10540	Trace
6	0.080 - 0.086	8	Trace	1	Trace
7	0.018	9	Trace	2	Trace
8	0.002*	10510	Trace	3	Trace
9	0.014	1	Trace	4	Trace
10480	0.032	2	Trace	5	Trace
1	Trace	3	Trace	6	Trace
2	0.034	4	Trace	7	Trace
_ 3	0.004	5	0.002*	8	Trace
4	Trace	6	Trace	9	Trace
5	Trace	7	Trace	10550	0.002*
6	Trace	8	Trace	1	Trace
7	Trace	9	Trace	2	Trace
8	0.002*	10520	Trace	3	Trace
9	Trace	1	Trace	4	Trace
_		2	0.002*	•	

Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

D

P.O. BOX 187.

HAILEYBURY, ONTARIO

Certificate of Analysis

3342 (Corrected) 10.

March 2, 1988

SAMPLE(S) OF:

Core (37)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. Rob Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold
10555	Trace
	Trace
6 7	Trace
8	Trace
9	Trace
10560	Trace
1	Trace
2 3 4 5 6 7	Trace
3	Trace
4	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	Trace
10570	Trace
j	Trace
2 3 4 5 6 7	Trace
3	Trace
4	Trace
5	Trace
6	0.002*
7	Trace
8	Trace
9	Trace
10580	Trace
1	Trace
2	Trace
3	Trace
4	Trace
5	Trace
Ď	Trace Trace
2 3 4 5 6 7 8	
8 9	Trace Trace
	Trace
10590	0.044
1	V.V44

Estimated

IN CLORHANCE WITH LONG-ESTABLISHED NORTH AMERICAN CULTOM COLLECT IT IS SPECIFICALLY STATED OTHERWISE LOLD AND SILVER VALUES REPORTED ON THESE SHELTS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSLES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3449

DATE: October 22, 1987

SAMPLE(S) OF: Core (4)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz. Gold
10592	Trace
3	Trace
4	Trace
5	Trace

N ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

Certificate of Analysis

NO. 3442

DATE: October 22, 1987

SAMPLE(S) OF:

Rock (53)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT:

Kasagiminnis

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10596	Trace	10622	Trace
7	0.014	3	Trace
8	Trace	4	Trace
9	Trace	5	Trace
10600	Trace	6	Trace
1	Trace	7	Trace
2	Trace	8	Trace
3	Trace	9	Trace
4	Trace	10630	Trace
5	0.002*	1	Trace
6	0.002*	2	Trace
7	Trace	2	Trace
8	0.002	4	Trace
9	Trace	5	Trace
10610	0.002*	6	Trace
1	0.002*	7	Trace
2	Trace	8	Trace
3	0.004	9	Trace
4	0.002*	10640	Trace
5	Trace	1	Trace
6	0.002	2	Trace
7	Trace	3	Trace
8	Trace	4	Trace
9	Trace	5	Trace
10620	Trace	6	Trace
1	Trace	7	Trace
		8	0.014

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3355

DATE:

October 9, 1987

SAMPLE(S) OF:

Core (88)

RECEIVED:

October 1987

SAMPLE(S) FROM:

Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Au oz.	Sample No.	Au oz.	Sample No.	Au oz.
10649	0.010	10678	Trace	10708	Trace
1 0650	Trace	9	Trace	9	Trace
1	Trace	10680	Trace	10710	Trace
2	Trace	1	Trace	1	Trace
3	0.002*	2	Trace	2	Trace
4	0.020	3	Trace	3	Trace
<u> </u>	0.002*	4	Trace	4	Trace
6	Trace	5	Trace	5	Trace
7	Trace	6	Trace	6	Trace
8	Trace	7	Trace	7	Trace
9	Trace	8	Trace	8	Trace
10660	Trace	9	Trace	9	Trace
1	Trace	10690	Trace	10720	Trace
2	Trace	1	Trace	1	Trace
3	0.012	2	Trace	2	Trace
4	Trace	3	Trace	3	Trace
5	0.002*	4	Trace	4	Trace
6	0.002*	5	Trace	5	Trace
7	Trace	6	Trace	6	Trace
8	Trace	7	Trace	7	0.002
9	Trace	8	Trace	8	Trace
10670	Trace	9	Trace	9	Trace
_ 1	Trace	10700	Trace	10730	Trace
_ 2	Trace	1	Trace	1	0.004
3	Trace	2	Trace	2	Trace
4	0.002*	3	Trace	3	Trace
	Trace	4	Trace	4	0.012
5 6 7	Trace	5	Trace	5	0.006
7	Trace	6	0.002*	6	Trace
		7	Trace		

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-JATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3437

DATE: October 21, 1987

SAMPLE(S) OF: Core (91)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis

ample No.	Au Oz.	Sample No.	Au Oz.	Sample No.	Au Oz.
10736	Trace	10767	Trace	10799	Trace
8	Trace	8	Trace	10800	Trace
9 9	Trace	9	Trace	1	Trace
0740	Trace	10770	Trace	2	Trace
1	Trace	1	Trace	3 .	Trace
2	Trace	2	Trace	4	Trace
3	Trace	3	Trace	5	Trace
4	Trace	4	Trace	7	Trace
<u> </u>	Trace	5	Trace	8	0.008
6	Trace	6	Trace	9	Trace
7	Trace	7	Trace	10810	Trace
8	Trace	8	Trace	1	0.002*
9	Trace	9	Trace	2	Trace
0750	Trace	10780	Trace	3	Trace
1	Trace	1	Trace	4	Trace
2	Trace	3	Trace	5	Trace
3	Trace	4	Trace	6	Trace
4	Trace	5	0.028	7	Trace
5	Trace	6	0.008	8	Trace
6	Trace	7	Trace	9	Trace
7	Trace	8	Trace	10820	Trace
8	Trace	9	Trace	1	Trace
9 9	Trace	10790	Trace	2	Trace
0760	Trace	1	Trace	3	Trace
1	Trace	2	Trace	4	Trace
<u> </u>	Trace	3	Trace	5	0.002
3	Trace	4	Trace	6	Trace
4	Trace	5	Trace	7	Trace
	Trace	6	Trace	8	Trace
5 6	Trace	7	Trace	9	Trace
		8	Trace		

Estimated

N ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3474

DATE: October 23, 1987

SAMPLE(S) OF: Core (23)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.
10830
1
2 3
4
5
1 2 3 4 5 6 7
8 9
10840
1 2 3 4 5 6 7
4
5
6 7
8 9
9 10850
10030
1 2

Trace Trace Trace Trace Trace Trace Trace Trace 0.002* Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace Trace

Oz Gold

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-BATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3477

DATE: October 23, 1987

SAMPLE(S) OF: Core (92)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. Janes Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz Gold	Sample No.	Oz Gold	SampleNo.	Oz Gold
10853	Trace	10884	Trace	10915	Trace
4	Trace	5	Trace	6	Trace
5	Trace	6	Trace	7	Trace
6	Trace	7		8	Trace
7	Trace	8		9	Trace
8	Trace	9	Trace	10920	Trace
9	0.002*	10890	Trace	1	Trace
10860	Trace	1	Trace	2	Trace
1	Trace			3	Trace
2	Trace			4	Trace
3	Trace	4	Trace	5	Trace
	Trace		Trace	6	Trace
5	Trace	6	Trace	7	Trace
	Trace		Trace	8	Trace
	Trace		Trace	9	Trace
	Trace	9	Trace	10930	Trace
-	Trace	10900	Trace	1	Trace
10870	Trace	1	Trace		Trace
1	Trace	2			Trace
2	Trace	3			Trace
		4	Trace		Trace
					Trace
		6			Trace
6					Trace
				-	Trace
8				10940	Trace
•		10910		1	Trace
10880		1			Trace
1					Trace
2				4	Trace
3	Trace	4	Trace		
	10853 4 5 6 7 8 9 10860 1 2	10853	10853	10853 Trace 10884 Trace 4 Trace 5 Trace 5 Trace 6 Trace 6 Trace 7 Trace 7 Trace 8 Trace 7 Trace 9 Trace 8 Trace 9 Trace 9 0.002* 10890 Trace 1 Trace 1 Trace 1 Trace 2 Trace 1 Trace 3 Trace 2 Trace 4 Trace 3 Trace 5 Trace 4 Trace 6 Trace 7 Trace 8 Trace 7 Trace 1 Trace 8 Trace 1 Trace 9 Trace 1 Trace 1 Trace 2 0.002* 2 Trace 7	10853

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3532

DATE: October 27, 1987

SAMPLE(5) OF: Core (90)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz Gold	Sample No.	Oz Gold	Sample No.	Oz Gold
9506	Trace	95 Ž 6	Trace	9566	Trace
7	0.006	7	0.002*	7	Trace
8	Trace	8	Trace	8	Trace
9	Trace	9	Trace	9	Trace
9510	Trace	9540	Trace	9570	Trace
1	Trace	1	Trace	ı	Trace
_ 2	Trace	2	Trace	2	Trace
3	Trace	3	Trace	3	Trace
4	Trace	4	Trace	4	Trace
5	Trace	5	0.002*	5	Trace
6	Trace	6	Trace	6	Trace
7	Trace	7	Trace	7	Trace
- 8	Trace	8	Trace	. 8	Trace
9	Trace	9	Trace	9	Trace
9520	Trace	9550	Trace	9580	Trace
1	Trace	1	Trace	1	Trace
2	Trace	2	Trace	2	Trace
3	Trace	3	Trace	3	Trace
4	Trace	4	Trace	4	Trace
5	Trace	5	Trace	5	Trace
6	Trace	6	Trace	6	Trace
7	Trace	7	Trace	7	Trace
8	Trace	8	Trace	8	Trace
9	Trace	9	Trace	9	Trace
9530	Trace	9560	Trace	9590	0.002*
1	Trace	1	Trace	1	Trace
2	Trace	2	Trace	2	Trace
3	0.002	3	Trace	3	Trace
4	Trace	4	Trace	4	Trace
5	Trace	5 ·	Trace	5	Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

walk

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON MESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINE INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

3509

DATE:

October 26, 1987

SAMPLE(S) OF:

Core (63)

RECEIVED:

October 1987

SAMPLE(S) FROM:

Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagimminis Lake

ample No.	Oz. Gold	Sample No.	Oz. Gold	Sample No.	Oz. Gold
9501	Trace	10959	Trace	10980	Trace
2	Trace	10960	Trace	ì	Trace
3	Trace	1	Trace	2	Trace
4	Trace	2	Trace	3	Trace
5	Trace	3	Trace	4	Trace
9699	Trace	4	Trace	5	Trace
9700	Trace	5	Trace	6	Trace
10945	Trace	6	Trace	7	Trace
6	Trace	7	Trace	8	Trace
7	Trace	8	Trace	9	Trace
8	Trace	9	Trace	10990	Trace
9	Trace	10970	Trace	1	Trace
10950	Trace	1	Trace	2	Trace
. 1	Trace	2	Trace	3	Trace
2	Trace	3	Trace	4	Trace
3	Trace	4	Trace	5	Trace
4	Trace	5	Trace	6	Trace
1 5	Trace	6	Trace	7	Trace
6	Trace	7	Trace	8	Trace
- 7	Trace	8	Trace	ğ	Trace
, 8	Trace	9	Trace	11000	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3508

DATE: October 26, 1987

SAMPLE(S) OF:

Core (86)

RECEIVED: October 1987

SAMPLE(S) FROM: James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz Gold	Sample No.	Oz Gold	Sample No.	Oz Gold
9596	Trace	9625	0.004	9654	Trace
9597	Trace	6	0.002*	5	Trace
8	Trace	7	Trace	6	Trace
8 9	Trace	8	Trace	7	Trace
9600	Trace	9	Trace	8	Trace
1	Trace	9630	Trace	9	Trace
2	Trace	1	Trace	9660	Trace
3	Trace	2	Trace	1	Trace
4	Trace	3	Trace	2	Trace
5	Trace	4	Trace	3	Trace
6	Trace	5	Trace	4	Trace
7	Trace	6	Trace	5	Trace
8	Trace	7	Trace	6	Trace
9	Trace	8	0.002*	7	Trace
9610	Trace	9	Trace	8	Trace
1	Trace	9640	Trace	9	Trace
2	Trace	9641	Trace	9670	Trace
3	Trace	2	Trace	1	Trace
4	Trace	3	Trace	2	Trace
5	Trace	4	Trace	3	Trace
6	Trace	5	Trace	4	Trace
7	Trace	6	Trace	5	Trace
8	Trace	7	Trace	6	Trace
9	Trace	8	Trace	7	Trace
9620	Trace	9	Trace	8	Trace
1	Trace	9650	Trace	9	Trace
2	Trace	1	Trace	9680	Trace
3	Trace	2	Trace	l	0.004
4	0.006	3	Trace		

^{*} Estimated

TN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON MHESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3510

DATE: October 26, 1987

SAMPLE(S) OF: Core (17)

RECEIVED: October 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz Gold
9682	Trace
3	Trace
4	0.020
5	0.012
6	0.168 - 0.154
7	0.136 - 0.130
8	0.130 - 0.126
9	Trace
9690	0.016
1	0.012
2	0.100 - 0.098
3	Trace
4	Trace
5	Trace
6	Trace
7	0.002*
8	Trace
•	11 400

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis Page 1 of 2

NO. 3594 DATE:

November 2, 1987

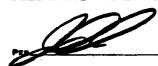
SAMPLE(S) OF:

Core (216)

RECEIVED:

November 1987

Mr. James Pierce, Geocanex Ltd. SAMPLE(S) FROM:


PROJECT: Kasagimminnis Lake

ample No.	Au oz.	Sample No.	Au oz.	Sample No.	Au oz.
1301	0.028	9721	Trace	9757	Trace
2	0.024	2	Trace	.8	Trace
3	0.341**	3	Trace	9	Trace
_ 4	0.010	4	Trace	9760	Trace
5 6	0.002*	5	Trace	1	Trace
	Trace	6	Trace	2	Trace
7	Trace	7	Trace	3	Trace
8	Trace	8	Trace	4	Trace
9	Trace	9	Trace	5	Trace
1310	Trace	9730	Trace	6	Trace
a 1	0.006	1	Trace	7	0.002*
2	Trace	2	Trace	8	0.002*
3	0.002*	3	Trace	9	Trace
_ 4	Trace	4	Trace	9770	Trace
5	Trace	5	Trace	1	0.002*
6	Trace	6	Trace	2	Trace
9701	Trace	7	Trace	3	Trace
2	Trace	8	Trace	4	Trace
3	Trace	9	Trace	5	Trace
4	0.002*	9740	Trace	6	Trace
_ 5	Trace	1	Trace	7	Trace
6	Trace	2	0.002*	8	Trace
7	Trace	3	Trace	9	Trace
8	Trace	4	Trace	9780	Trace
9	Trace	5	Trace	1	Trace
9710	Trace	6	Trace	2	Trace
_ ำ	Trace	7	Trace	3	Trace
2	Trace	8	Trace	4 .	Trace
3	Trace	9	Trace	5	Trace
4	Trace	9750	Trace	6	Trace
5	Trace	1	Trace	7	Trace
6	Trace	2	Trace	8	Trace
7	Trace		Trace	9	Trace
8	Trace	4	Trace	9790	Trace
9	Trace	5	Trace	i	0.006
9720	Trace	6	Trace	Ž	Trace

Checked

Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT :5 SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 2

NO. 3594

DATE:

November 2, 1987

SAMPLE(S) OF:

Core (216)

RECEIVED:

November 1987

SAMPLE(S) FROM:

Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagimminnis Lake

ample No.	Au oz.	Sample No.	Au oz.	Sample No.	Au oz.
9793	Trace	9829	Trace	9865	Trace
4	Trace	9830	Trace	6	Trace
5	Trace	1	0.004	7	Trace
= 6	0.002	2	Trace	8	Trace
7	Trace	3	Trace	9	Trace
8	Trace	4	0.002	9870	Trace
9	0.002	5	Trace	1	0.002
9800	Trace	6	Trace	2	Trace
j	Trace	7	Trace	3	Trace
2	Trace	8	Trace	. 4	Trace
3	0.002*	9	Trace	5	Trace
4	0.008	9840	0.002*	5 6 7	Trace
- 5	0.006	}	Trace	7	Trace
6	Trace	2	0.010	8	Trace
7	Trace	3	0.002*	9	0.002*
8	0.028	4	0.002*	9880	Trace
9	0.042	5	Trace	1	Trace
9810	Trace	6	Trace	2	Trace
ן	Trace	7	Trace	3 4 5 6 7	Trace
2	Trace	8	Trace	4	Trace
3	Trace	9	Trace	5	Trace
4	Trace	9850	Trace	6	Trace
5	Trace	1	Trace		Trace
6	Trace	2	0.002*	8	Trace
7	Trace	3	Trace	9	Trace
8	Trace	4	Trace	9890	Trace
9	Trace	5	Trace	1	Trace
9 820	Trace	6	Trace	2	Trace
l	Trace	7	Trace	3 4	Trace
_ 2	Trace	8	0.014	4	Trace
3	0.002*	9	Trace	5	Trace
4	Trace	9860	Trace	5 6 7	Trace
5	0.002*	Ţ	0.016	7	Trace
6	0.002*	2	Trace	8 9	Trace
7	0.002*	3	Trace	9	Trace
8	Trace	4	Trace	9900	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

3515

DATE:

October 26, 1987

SAMPLE(S) OF:

Core (6)

RECEIVED:

October 1987

SAMPLE(S) FROM:

Geocanex Ltd.

KAS. L.

Sample No.	Oz. Gold	Oz. Gold	(Metallic) Oz. Gold
10161	Trace	Trace	Trace
10163	Trace	Trace	Trace
10165	0.002*	0.002*	Trace
10167	Trace	Trace	Trace
10171	Trace	Trace	Trace
10172	Trace	Trace	Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

W W

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 3487

DATE:

October 23, 1987

SAMPLE(S) OF:

Core (7)

RECEIVED:

October 1987

SAMPLE(S) FROM:

Mr. R. Higgisnon, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

0.8 0.4 0.4 0.4 0.2

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

DATE: November 6, 1987

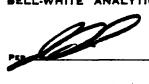
SAMPLE(S) OF:

NO. 3644

Core (167)

RECEIVED: November 1987

SAMPLE(S) FROM:


Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz Gold	Sample No.	Oz Gold
9901	Trace	9935	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
5 6	Trace	9940	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	3	Trace
9910	Trace	4	Trace
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5 6	Trace	9	Trace
6	Trace	9950	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	3	Trace
9920	Trace	4	Trace
1	Trace	5	Trace
2	0.008	6	Trace
2 3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
5 6	Trace	99 60	Trace
7	Trace	1	0.002*
8	0.006	2	0.002
9	Trace	3	Trace
9930	Trace	4	Trace
1	Trace	5	0.044
2	Trace	6	Trace
2 3 4	Trace	7	0.002*
4	Trace	8	Trace

* Estimated

N ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 2

NO. 3644

DATE: November 6, 1987

SAMPLE(S) OF: Core (167)

RECEIVED: Novem

November 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT: Kasagiminnis

Sample No.	Oz Gold	Sample No.	Oz Gold	Sample No.	Oz Gold
9969	Trace	1339	Trace	1371	Trace
9970	0.068	1340	Trace	2	Trace
1	0.164-0.176	1	0.002	3	Trace
2	0.062	2	Trace	4	Trace
3	Trace	3	Trace	5	Trace
4	Trace	4	Trace	6	Trace
5	Trace	5	Trace	7	Trace
6	0.002*	6	Trace	8	Trace
7	Trace	7	Trace	9	Trace
8	0.010	8	Trace	1380	Trace
1317	0.002	9	Trace	1	0.002
8	Trace	1350	Trace	2	Trace
9	Trace	1	Trace	3	0.012
1320	Trace	2	Trace	4	Trace
1	Trace	3	Trace	5	Trace
2	Trace	4	Trace	6	Trace
3	Trace	5	Trace	7	Trace
4	Trace	6	0.002*	8	Trace
5	Trace	7	Trace	9	Trace
6	Trace	8	Trace	1390	Trace
7	Trace	9	Trace	1	Trace
8	Trace	1360	Trace	2	Trace
9	Trace	1	Trace	3	Trace
1330	Trace	2	Trace	4	Trace
1	Trace	3	Trace	5	Trace
2	Trace	4	Trace	6	Trace
3	Trace	5	Trace	7	0.014
4	Trace	6	Trace	8	Trace
5	Trace	7	Trace	9	Trace
6	0.012	8	Trace	1400	Trace
7	Trace	9	Trace	17700	Trace
8	Trace	1370	Trace		

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM. UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

3659 NO.

DATE:

November 10, 1987

SAMPLE(S) OF:

Core (300)

RECEIVED: November 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
1401	Trace	1431	Trace
	Trace		Trace
3	Trace	3	Trace
4	Trace	4	Trace
5	Trace	5	Trace
2 3 4 5 6 7	Trace	2 3 4 5 6 7 8 9	Trace
7	Trace	7	Trace
8 9	Trace	8	Trace
9	Trace		Trace
1410	Trace	1440	Trace
1	Trace	1	Trace
2 3	Trace	2 3 4 5 6 7	Trace
	Trace	3	Trace
4	Trace	4	Trace
4 5 6 7	Trace	5	0.002*
6	Trace	6	Trace
7	Trace	•	Trace
8	Trace	1448	Trace
9	Trace	9	0.004
1420	Trace	1450	Trace
1	Trace	1	Trace
2 3 4 5 6 7	Trace	2 3 4 5 6 7	Trace
3	Trace	3	Trace
4	Trace	4	Trace
5	Trace	5	Trace
6	Trace	6	Trace
	Trace	7	Trace
8	Trace	8 9	Trace
9	Trace		Trace
1430	Trace	1460	Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

The second second

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-BATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 5

3659

DATE:

November 10, 1987

SAMPLE(S) OF:

Core (300)

RECEIVED:

November 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
1461	Trace	1491	Trace
	Trace	2	Trace
2 3 4 5 6 7	Trace	3 4 5 6 7	Trace
4	Trace	4	Trace
5	Trace	5	Trace
6	Trace	6	0.012
7	Trace	7	Trace
8 9	Trace	· 8 9	Trace
9	Trace		Trace
1470	Trace	9979	Trace
Ì	Trace	9980	Trace
2	Trace	1	Trace
3	Trace	2	Trace
4	Trace	3	0.018
2 3 4 5 6 7	Trace	2 3 4 5 6 7	Trace
6	Trace	5	0.010
7	0.006	6	0.024
8	0.002	7	0.032
9	Trace	8	Trace
1480	· Trace	9	Trace
1	0.002*	9990	Trace
2	0.002*	1	Trace
2 3 4 5 6 7	Trace	2	Trace
4	Trace	3 4 5 6 7	Trace
5	Trace	4	Trace
6	Trace	5	Trace
7	0.002*	6	Trace
1488	Trace	7	Trace
9	Trace	8 9	Trace
1490	Trace	9	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

Certificate of Analysis

Page 3 of 5

November 10, 1987

SAMPLE(S) OF:

3659

NO.

Core (300)

RECEIVED:

DATE:

November 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10000	Trace	17530	Trace
17501	Trace	1	Trace
2	0.002*	2	Trace
3	Trace	3	Trace
4	Trace	4	Trace
5	Trace	5	Trace
6	Trace	3 4 5 6 7	Trace
7	Trace	7	Trace
8	0.002	8 9	Trace
9	0.002*	9	Trace
17510	0.002*	17540	Trace
1	0.002*	1	0.002
2	0.002	2	Trace
2 3	0.004	3	Trace
4	Trace	3 4 5 6 7	Trace
5	0.010	5	Trace
5 6 7	Trace	6	Trace
7	0.002*		0.010
8 9	Trace	8 9	0.008
9	Trace		0.002
17520	0.004	17550	Trace
1	Trace	l	Trace
2	Trace	2	Trace
2 3	0.002	3	Trace
4	0.004	4	Trace
5	Trace	5	Trace
5 6 7	Trace	2 3 4 5 6 7	Trace
	Trace	7	Trace
8 9	Trace	8 9	Trace
9	Trace	9	Trace

Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

N ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-GATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 4 of 5

NO. 3659 DATE:

November 10, 1987

SAMPLE(S) OF:

Core (300)

RECEIVED:

November 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold
17560	Trace
1,000	Trace
ż	Trace
2 3 4 5 6 7	0.006
Δ	Trace
5	Trace
6	0.008
7	0.006
8	Trace
9	0.012
17570	Trace
•	0.008
1	Trace
2 3 4 5 6 7 8 9	
3 A	Trace
4	0.002
5	Trace
5	0.002
/	Trace
8	Trace
	Trace
17580	Trace
1	Trace
2	0.002*
3	Trace
4	Trace
5	Trace
6	Trace
2 3 4 5 6 7 8 9	Trace
8	Trace
9	Trace

Sample No.	Oz. Gold
17590 1 2 3 4 5	Trace Trace Trace 0.002* Trace
7 8 9	Trace Trace Trace Trace Trace
17600 1 2 3 4 5	Trace Trace Trace Trace Trace 0.002*
6 7 8 9 17610	0.002* Trace 0.002* Trace Trace
1 2 3 4 5 6 7 8 9	Trace Trace Trace Trace 0.012 Trace Trace
8 9	Trace Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-BATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

Oprtificate of Analysis Page 5 of 5

3659 NO.

DATE:

November 10, 1987

SAMPLE(S) OF:

Core (300)

RECEIVED: November 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

Kasagiminnis Lake PROJECT:

Sample No.	Oz. Gold
17620	Trace
	Trace
2	Trace
3	Trace
1 2 3 4 5 6 7 8	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	Trace
17630	Trace
1	Trace
2 3 4 5 6 7 8	Trace
3	Trace
4	<u>0</u> .008
5	Trace
6	Trace
7	Trace
	0.010
9	0.008
17640	Trace
j	Trace
2	Trace
2 3 4 5 6 7 8 9	Trace
4	Trace
ე 	Trace
0 7	Trace Trace
ν Ω	Trace
0	Trace
7	וומנט

Sample No.	Oz. Gold
17650	7
17650	Trace
1	Trace
2	Trace
2 3 4	Trace
4	Trace
5 6 7	Trace
6	Trace
	Trace
8	Trace
9	Trace
17660	Trace
	Trace
2	0.004
3	0.006
1 2 3 4	0.002*
5	0.004
5 6 7 8 9	Trace
7	Trace
8	0.004
9	Trace
17670	Trace
1	Trace
2	Trace
3	Trace
17675	Trace
6	0.002*
17675 3 17675 6 7	0.002*
8	0.002*
9	Trace
17680	Trace

Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

N ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

NO. 3703

DATE:

November 12, 1987

SAMPLE(S) OF:

Core (120)

RECEIVED:

November 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold
6001	Trace
	Trace
3	Trace
4	Trace
5	Trace
2 3 4 5 6 7 8	Trace
7	Trace
8	Trace
9	Trace
6010	Trace
1	Trace
2	Trace
3	0.002*
1 2 3 4 5 6 7 8	Trace
5	Trace
<u>6</u>	0.010
/	Trace
	Trace
9	0.002*
6020	0.020
1	0.004
2	0.010
3	0.036
4	0.002*
5	0.002*
1 2 3 4 5 6 7	0.004
8	Trace 0.002*
9	0.002*
6030	Trace
0030	rrace

Sample No.	Oz. Gold
603]	Trace
2	Trace
2 3 4 5	Trace
4	Trace
5	Trace
6 7 8	Trace
7	Trace
8	Trace
9	Trace
6040	Trace
1	Trace
2	Trace
3	Trace
1 2 3 4 5 6 7	0.002*
5	Trace
6	0.018
7	Trace
8	Trace
9	Trace
6050	Trace
	0.002*
2	0.042
3	Trace
4	Trace
5	0.016
6	0.002*
7	0.020
1 2 3 4 5 6 7 8 9	0.002*
9	0.002*
6060	0.002

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 2

NO. 3703

DATE:

November 12, 1987

SAMPLE(S) OF:

Core (120)

RECEIVED:

November 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
6061	Trace	6091	Trace
2	0.002*	2	Trace
3	0.016	3 4 5 6 7	Trace
4	Trace	4	Trace
5	Trace	5	Trace
6 7	Trace	6 .	Trace
	Trace	7	Trace
8	Trace	8 9	0.002*
9	0.002*	9	Trace
6070	Trace	6100	Trace
Ì	Trace	17674	0.024
2	Trace	17681	Trace
3	Trace	2	Trace
4	Trace	3	0.002*
5	Trace	2 3 4 5 6 7	0.002*
6	Trace	5	Trace
7	Trace	6	0.010
8	Trace	. 7	0.052 - 0.0
9	Trace	8	0.002*
6080	Trace	9	Trace
1	Trace	17690	Trace
2	Trace	1	0.018
2 3	Trace	2	0.012
4	Trace	3	0.002*
5	Trace	4	0.002
6	Trace	5	Trace
6 7	Trace	2 3 4 5 6 7 8 9	0.004
8	Trace	7	Trace
9	Trace	8	Trace
6090	Trace	9	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

3728 NO.

DATE:

November 16, 1987

SAMPLE(S) OF:

Core (141)

RECEIVED: November 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
5401	Trace	6235	Trace
6201	0.002*	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	6240	0.006
5 6 7	Trace	1	Trace
7	Trace	2	Trace
	Trace	3	Trace
8 9	Trace	4	Trace
6210	Trace	4 5 6	Trace
1	Trace	6	Trace
Ź	Trace	7	Trace
3	Trace	8	Tarce
2 3 4 5 6 7	Trace	9	Trace
5	Trace	6250	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	Trace	2 3	Trace
9	Trace	4	0.002
6220	0.002*	5	Trace
1	Trace	5 6 7	0.002*
2	Trace		Trace
2 3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	6260	0.006
6	Trace	1	Trace
7	Trace	2	Trace
8	Trace	3	Trace
9	Trace	4	Trace
6230	Trace	2 3 4 5 6 7 8 9	Trace
1	Trace	6	Trace
2	Trace	7	Trace
2 3 4	Trace	8	Trace
4	Trace	9	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 2

NO. 3728

DATE:

November 16, 1987

SAMPLE(S) OF:

Core (141)

RECEIVED:

November 1987

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

ample No.	Oz. Gold	Sample No.	Oz. Go
6270	Trace	6306	Trace
1	Trace	7	Trace
2	0.016	8	Trace
2 3 4 5 6 7	0.278**	9	Trace
4	0.004	6310	Trace
5	Trace	1	Trace
6	Trace	2	Trace
7	Trace	2 3 4	Trace
8	0.020	4	Trace
9	Trace	5	Trace
6280	Trace	5 6	Trace
1	0.018	7	Trace
2	0.002*	8	Trace
3	0.004	9	Trace
3 4	Trace	6320	Trace
5	Trace	1	Trace
5 6 7	Trace	2	Trace
7	Trace	2 3	Trace
8	Trace	4	Trace
9	Trace	5	Trace
6290	Trace	5 6	Trace
1	Trace	7 .	Trace
2	Trace	8	0.002
3	Trace	9	Trace
4	Trace	6330	Trace
2 3 4 5 6 7	Trace	1	Trace
6	Trace	2	Trace
7	Trace	3	Trace
8	Trace	3 4 5 6	Trace
9	Trace	5	Trace
6300	Trace	6	Trace
1	Trace	7	Trace
2	Trace	8	Trace
2 3 4 5	Trace	9	Trace
4	Trace	6340	Trace
5	Trace		

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Certificate of Analysis

3793 NO.

DATE:

November 20, 1987

SAMPLE(S) OF: Core (100)

RECEIVED: November 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geochaex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Au oz.	Sample No.	Au oz.	Sample No.	Au oz.
5402	Trace	5435	0.002*	5468	Trace
3	Trace	6	0.002*	9	Trace
4	Trace	7	Trace	5470	Trace
= 5	Trace	8	Trace	1	Trace
5 6	Trace	9	Trace	2	Trace
7	Trace	5440	0.002*	3	Trace
– 8	Trace	ן	Trace	4	Trace
ğ	Trace	2	0.002*	5 6	Trace
5410	Trace	3	Trace	6	Trace
1	Trace	4	Trace	7	Trace
2	Trace	5	Trace	8	Trace
2 3	Trace	5 6 7	Trace	9	0.002*
- 4	Trace	7	Trace	5480	Trace
5	Trace	8	Trace	1	Trace
6	Trace	9	Trace	2	Trace
■ j	Trace	5450	Trace	3 4	0.002*
8	Trace	1	Trace	4	0.002*
9	Trace	2	Trace	5 6 7	0.002*
5420	Trace	3 4	Trace	6	Trace
1	Trace	4	Trace		0.002*
= 2	Trace	5	Trace	8	0.004
3	Trace	6	Trace	9	Trace
1 2 3 4	Trace	5 6 7	Trace	5490	0.002*
<u> </u>	Trace	8	Trace	٦	Trace
6	Trace	9	Trace	2	0.004
7	Trace	5460	Trace	2 3	0.008
8	Trace	1	Trace	4 5	0.014
3 9	Trace	2	Trace	5	Trace
5430	Trace	3	Trace	6	0.004
7 3730	Trace	4	Trace	7	Trace
_ 2	Trace	5	Trace	6497	Trace
1 3	Trace	ĕ	Trace	8	Trace
3 4	Trace	7	Trace	ğ	Trace
7	11 400	•		6500	Trace

Estimated

ACCORDANCE WITH LONG-ESTABLISHED NORTH
AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED
OTHERWISE GOLD AND SILVER VALUES REPORTED ON
MESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTE FOR LOSSES AND GAINS INHERENT IN THE FIRE
ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

NO. 3797

DATE:

November 23, 1987

SAMPLE(S) OF:

Core (156)

RECEIVED:

November 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

		PROJECT:	Kasagiminnis Lake
Sample No.	Oz. Gold	Sample No.	Oz. Gold
6341	Trace	6380	Trace
2	0.014	1	Trace
3	0.036	2	Trace
4	Trace	3	Trace
5	0.004	4	Trace
5 6	Trace	5	Trace
7	0.002	6	Trace
8	0.012	7	Trace
9	Trace	8	Trace
6350	Trace	9	Trace
1	0.020	6390	Trace
. 2	0.010	1	Trace
3	0.004	2	Trace
4	0.006	3	Trace
5	0.002	4	Trace
6	Trace	5	Trace
7	Trace	6	Trace
8	Trace	7	Trace
9	Trace	8	Trace
6360	Trace	9	Trace
ן	0.002*	6400	Trace
2	Trace	1	Trace
3	Trace	2	Trace
4	Trace	3	Trace
5	Trace	4	Trace
6	Trace	5	Trace
7	Trace	6	Trace
8	Trace	7	Trace
9	Trace	8	Trace
6370	Trace	9	Trace
j	Trace	6410	Trace
2	Trace	1	Trace
3	Trace	2	Trace
4	Trace	3 4	Trace
5	Trace	4	Trace
6	Trace	5 6 7	Trace
6 7	Trace	6	Trace
8 9	Trace		Trace
_ 9	Trace	· 8	Trace

* Estimated

ACCORDANCE WITH LONG-ESTABLISHED NORTH
AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED
OTHERWISE GOLD AND SILVER VALUES REPORTED ON
THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTE FOR LOSSES AND GAINS INHERENT IN THE FIRE
ASSAY PROCESS.

HAILEYBURY, ONTARIO

Certificate of Analysis

Page 2 of 2

3797 NO.

November 23, 1987

SAMPLE(S) OF:

Core (156)

RECEIVED:

November 1987

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

			PROJECT:	Kasagiminnis Lake
	Sample No.	Oz. Gold	Sample No.	Oz. Gold
	6430	T	5.45.0	-
	6419	Trace	6458	Trace
	6420	Trace	5450	Trace
	1	Trace	6460	Trace
	2	Trace	1	Trace
	3	Trace	2	Trace
	4 c	Trace	3	Trace
	5 6	Trace	4	Trace
_	7	Trace	5	Trace
	, 8	Trace	6 7	Trace
	9	Trace	8	Trace
	6430	Trace Trace	9	Trace Trace
	1	Trace	6470	Trace
:	2	Trace	04/0	Trace
	2 2	Trace	2	Trace
	3 1	Trace	2 3	Trace
	5	Trace	3	0.016
	6	Trace	4	Trace
	7	Trace	5	Trace
	8	Trace	4 5 6 7	Trace
	9	Trace	8	0.002*
	6440	Trace	9	Trace
	1	0.002	6480	Trace
4	2	Trace	1	0.020
_	3	Trace	2	0.002*
_	Ã	0.014		Trace
	5	Trace	3 4 5 6 7	Trace
	5 6 7	Trace	τ 5	Trace
· _	7	0.004	6	Trace
	8	Trace	7	Trace
	ğ	0.052 - 0.048	8	Trace
	6450	Trace	9	Trace
	1	Trace	6490	Trace
	2	Trace	6491	Trace
_	3	Trace	2	Trace
_	4	Trace	3	Trace
1	5	Trace	4	Trace
	5 6	Trace	5	Trace
	7	Trace	3 4 5 6	Trace

ACCORDANCE WITH LONG-ESTABLISHED NORTH
AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED
OTHERWISE GOLD AND SILVER VALUES REPORTED ON
THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTE FOR LOSSES AND GAINS INHERENT IN THE FIRE
ASSAY PROCESS.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

16876

Mr. H.J. Hodge Geocanex Ltd. 1003 - 34 King Street East

Toronto, Ontario

M5C-1E5

January 15

Fage: 1

Work Order # : P870336

Project : Kasagaminis

SAMPLE	NUMBERS	Gold	
Accurassay	Customer	OZZT	
415966	4001	<0. 002	
415967	4002	<0.002	
41,5968	4003	<0.002	
415969	4004	<0.002	
415970	4005	<0.002	
415971	4006	\$00.02	
415972	4007	<0.002	
415973	400s	<0.002	
415974	4009	(0.002	
415975	4010	<0.002	
415975	4010	<0.002	Check
415976	4011	∢0,002	
415977	4012	<0.002	
418978	4013	<0.002	
415979	4014	<0.002	
415980	4015	(0.002	
415981	4016	(0.002	
415982	4017	<0.002	
415988	4013	<0.002	
415984	4019		
415984	4019	<0.002	Check
415985	4020		
415986	4021		
415987	4022		
415988	4023		
415989	4024		
415990	4025	<0.002	
415991	4026	(0.003	
415992	4027	(0.002	
415903		(0,002	~~
415993	4028	<0.002	Check

er:		
•••	 	_

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

16877

Mr. H.J. Hodge Geocanex Ltd. 1003 - 34 King Street East Toronto, Ontario M5C-1E5

Page: 2

Work Order # : P870386

Project : Kasagaminis

SAMPLE	NUMBERS	Gold	
Accurassay	Customer	Oz/T	
415994	4029	<0.002	
415995	4030	<0.002	
415996	4031	<0.002	
415997	4032	<0.002	
415998	4033	KO.002	
415999	4034	<0.002	
416000	4035	<0. 00 2	
416001	4036	<0.002	
416002	4037		
416002	40 37		Check
416003		<0.002	
416004	4039	<0.002	
416005	4040	(0.002)	
416006	4041	<0.002	
416007	4042	<0.003	
416008	4043	<0.003	
416009	4044	<0.002	
416010	4045	<0.003	
416011	4046	<0.002	
416011		<0.002	Check
416012	· · · · · · · · · · · · · · · · · · ·	<0.002	
416013		<0.002	
416014		<0.002	
416015	4050	<0.003	
416016	405 L	<0.002	
415017	4052	0.003	
416018	4050		
415019	4054	0.008	
416020		(0.002	,
416020	4655	40.002	Vaecs
416021	4050	30,003	

Per:		

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

16878

Mr. H.J. Hodge Geocanex Ltd. 1003 - 34 King Street Bast Toronto, Ontario MSC-1E5

रिवयस: 🔇

Work Order # : P870336 Project : Kasagaminio

SAMPLE NUMBERS Gold Oz/T Customer Accurassay 4057 <0.002416032 <0.002 416023 4058 4059 <0.002 416024 KO.002 4000 416025 4061 ± 0.002 416026 0.095 4062 416027 4063 -0.16δ 415028 4064 0.051416029 0.049 4064 Check 416029 0.014416030 4065 4066 -0.008 416031 416032 4067 0.0174063 <0.002 416000 4069 <0.002 416034 4070 K0.002 416035 4071 <0.002 416036 4072 < 0.002 416007 4073 <0.002 416038 4073 <0.002 Check 416038 4074 -0.003416039 < 0.0024075 416040 416041 4076 0.003 4077 <0.002 416042 416043 4078 K0.002 416044 4079 <0.0024080 K0.002 416045 K0.002 4081 416046 4082 <0.003416047 4082 416047 < 0.002Chack 4083 < 0.002 410048 415049 4084 -0.002

Per:		
T T I .		

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

16879

410077

Mr. H.J. Hodge Geocanex Ltd. 1003 - S4 King Street East Toronto, Ontario

M5C-1E5

Work Ord

Page:

Work Order # : P870386 Project : Kasagaminis

January 15

Gold SAMPLE NUMBERS Customer Oz/T Accurassav <0.002 416050 4085 4086 <0.002416051 4087 <0.002 416052 <0.002 4088 416053 4089 <0.002 416054 <0.002 416055 4090 <0.002 416056 4091 4091 (0.002 Check 416056 <0.002 4092 416057 (0.002)4093 416058 <0.002 4094 416059 4095 <0.002416060 4096 < 0.002416061<0.002 416062 4097 4093 <0.002 416063 4099 KO.002 416064 <0.002 4100 416065 4100 <0.003 Check 416065 <0.003 4101 416066 4102 KO.002 416067 4103 <0.002 416068 (0.002)4104 416069 0.002 4105 416670 <0.0024106 416071 4107 <0.002 416072 <0.002 4103 416073 <0.0024109416074 <0.002 Check 416074 41094110 -0.304416075 4111 <0.002 416076

4112

0.003

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

16880

Mr. H.J. Hodge Geocanex Ltd. 1003 - 34 King Street East Toronto, Ontario

January 15

Page: 5

M5C-1E5

Work Order # : P370386 Project : Kasagaminis

SAMPLE	NUMBERS	Gold	
Accurassay	Customer	Oz/T	
416078	4113	<0.002	
416078	4113	<0.002	Check

Per: ______

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

ATT: Mr. H. J. Hodge

Geocanex Ltd.

17118 1003, 34 King Street East

Toronto, Ontario

M5L 1E5

Assay results are as follows:

Page #1

Date: ____01/22/88

_ 19 .

Work Order P870386 Project: Kasagaminis

REASSAY

SAMPLE NO Accurassay	UMBER Customer	Original Gold Oz/T	Check Oz/T
416027	4062	0.095	0.121
416028	4063	0.166	0.185
416029	4064	0.051	0.041

Per:	 	

P.O. BOX 187.

HAILEYBURY, ONTARIO

Certificate of Analysis

Page 1 of 3

0240

DATE:

January 20, 1988

SAMPLE(S) OF:

Core (166)

RECEIVED:

January 1988

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

"Geocanex Kasagiminnis Project"

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4114	Trace	4142	Trace
5	Trace	3	Trace
6 7	Trace	4	Trace
	Trace	5	Trace
8 9	Trace	6	Trace
9	Trace	7	Trace
4120	Trace	8	0.002*
1	Trace	. 9	Trace
2	Trace	4150	Trace
2 3	Trace	1	Trace
4	Trace	2	0.002*
4 5 6	Trace	3	0.002*
6	Trace	4	0.016
7	Trace	5	Trace
8	Trace	6 7	Trace
9	Trace		Trace
4130	0.002*	8 9	0.002*
1	Trace	9	Trace
2	Trace	4160	Trace
2 3 4 5 6 7	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
	Trace	3 4 5 6	Trace
8	Trace	6	0.026
9	Trace	7	0.060 - 0.052
4140	Trace	8 9	0.004
1	Trace	9	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM: UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON ESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTE FOR LOSSÉS AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 2

NO. 0240

DATE:

January 20, 1988

SAMPLE(S) OF:

Core (166)

RECEIVED:

January 1988

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

"Geocanex Kasagiminnis Project"

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4170	Trace	4198	Trace
]	Trace	9	Trace
2	Trace	4200	Trace
2 3	0.008	1	Trace
4 5 6 7	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
	Trace	5	Trace
8 9	Trace	6	Trace
	Trace	2 3 4 5 6 7 8 9	Trace
4180	Trace	8	Trace
1	Trace		Trace
2 3	Trace	4210	0.002*
3	Trace	1	0.044
4	Trace	2	Trace
4 5 6 7	Trace	2 3 4 5 6 7	Trace
6	Trace	4	Trace
	Trace	5	Trace
8 9	Trace	б	Trace
	Trace	7	Trace
4190	Trace	8 9	Trace
1	Trace		Trace
2	Trace	4220	Trace
3	Trace	1	Trace
2 3 4 5 6 7	Trace	2	Trace
5	Trace	2 3 4 5	Trace
6	Trace	4	Trace
7	Trace	5	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM UNLESS IT IS SPECIFICALLY STATED HERWISE GOLD AND SILVER VALUES REPORTED ON ESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-TE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Par Delle

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 3 of 3

NO. 0240

DATE:

January 20, 1988

SAMPLE(S) OF:

Core (166)

RECEIVED:

January 1988

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

"Geocanex Kasagiminnis Project"

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4226	Trace	4253	Trace
7	Trace	4	Trace
8	Trace	5	0.160 - 0.172
8 9	Trace	6	0.026
4230	Trace	7	0.106 - 0.114
1	Trace	8 9	0.044
2	Trace	9	0.002*
3	Trace	4260	0.002*
4	Trace	1	Trace
4 5 6 7	Trace	2	0.080 - 0.084
6	Trace	3	0.160 - 0.160
-	Trace	4	0.076 - 0.082
8	Trace	5	0.008
9	Trace	6	Trace
4240	Trace	7	0.002*
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	4270	Trace
4	Trace	Ţ	Trace
5	Trace	2	Trace
6	Trace	3	<u>T</u> race
7	Trace	4	<u>T</u> race
8 9	Trace	5	<u>T</u> race
•	0.016	<u>6</u>	<u>T</u> race
4250	0.002*	7	Trace
1	<u>0</u> .028	8 9	<u>T</u> race
2	Trace	9	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON ESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-TE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

- 200 m

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 3

0295

DATE:

February 1, 1988

SAMPLE(S) OF:

Core (160)

RECEIVED:

January 1988

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4280	Trace	4307	Trace
1	Trace	8	Trace
2	Trace	9	Trace
2 3	Trace	4310	Trace
4	Trace	1	Trace
4 5 6	Trace	2	Trace
6	Trace	3	Trace
7	Trace	4	Trace
8	Trace	4 5	0.002*
9	0.002*	6	Trace
4290	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	4320	Trace
4 5 6 7	Trace	1	Trace
5	0.002*	2	Trace
6	Trace	3	Trace
	Trace	4	Trace
8 9	Trace	5	Trace
_	Trace	6	Trace
4300	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	4330	Trace
4	Trace	1	Trace
2 3 4 5 6	Trace	2	Trace
6	Trace	3	Trace

*Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON ESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-TE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 3

0295

DATE:

February 1, 1988

SAMPLE(S) OF:

Core (160)

RECEIVED:

January 1988

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4334	Trace	4361	0.022
5	Trace	2	0.268 - 0.286
6	Trace	3	0.106 - 0.108
7	Trace	4	0.100 - 0.098
8	Trace	5	0.002*
9	Trace	6	0.056 - 0.062
4340	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	4370	Trace
4	Trace	1	Trace
5	Trace	2	Trace
6	Trace	3	Trace
7	Trace	4	Trace
8	Trace	4 5	Trace
9	Trace	6	Trace
4350	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	4380	Trace
4	0.012	1	Trace
5	0.030	2	Trace
6	0.064 - 0.056	 	Trace
7	0.006	4 5	Trace
8	0.004	5	Trace
9	Trace	6	Trace
4360	Trace	7	Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON ESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-TE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 3 of 3

0295 NO.

DATE:

February 1, 1988

SAMPLE(S) OF:

Core (160)

RECEIVED:

January 1988

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	<u>Sample No.</u>	Oz. Gold
4388	Trace	4414	Trace
9	Trace	5	Trace
4390	Trace	6	Trace
1	Trace	7	Trace
2	Trace	8	Trace
3	Trace	9	Trace
	Trace	4420	Trace
4 5 6	Trace	1	Trace
6	Trace	2	Trace
7	Trace	3	Trace
8	Trace	4	Trace
9	Trace	5	Trace
4400	Trace	2 3 4 5 6 7	Trace
1	Trace	•	Trace
2	Trace	8	Trace
3	Trace	9	Trace
4	Trace	4430	Trace
3 4 5 6 7	Trace	1	Trace
6	Trace	2	Trace
•	Trace	3 4	Trace
8	Trace	4	Trace
9	Trace	5	Trace
4410	Trace	6	Trace
1	Trace	7	Trace
2	Trace	8	Trace
3	Trace	9	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED CHERWISE GOLD AND SILVER VALUES REPORTED ON ESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-TE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

Certificate of Analysis

Page 1 of 3

0324

DATE:

February 3, 1988

SAMPLE(S) OF:

Core (200)

RECEIVED:

February 1988

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4440	Trace	4473	Trace
1	Trace	4	Trace
2	Trace		Trace
2 3	Trace	5 6 7	Trace
	Trace	7	Trace
4 5	Trace	8	Trace
6 7	0.002*	9	Trace
7	0.002*	4480	Trace
8 9	Trace	1	Trace
9	0.002*	2	Trace
4450	Trace	2 3	Trace
1	Trace	4	Trace
2 3	Trace	5	Trace
3	Trace	5 6 7	Trace
4	Trace		0.014
5	Trace	8	Trace
6 7	Trace	. 9	Trace
•	Trace	4490	Trace
8 9	Trace	1	0.062 - 0.062
	Trace	2 3	0.088 - 0.088
4460	Trace	3	Trace
1	Trace	4	0.002
2 3	Trace	5 6	Trace
3	Trace	6	Trace
4	Trace	7	0.070 - 0.066
5	Trace	8 9	Trace
5 6 7	Trace		Trace
	0.002*	4500	0.036
8 9	Trace	1	0.010
	Trace	2 3	Trace
4470	Trace		Trace
1	Trace	4	Trace
2	Trace	5	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED CHARWISE GOLD AND SILVER VALUES REPORTED ON SE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENSE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 3

0324 NO.

DATE:

February 3, 1988

SAMPLE(S) OF:

Core (200)

RECEIVED: February 1988

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4506	Trace	4539	Trace
7	Trace	4540	Trace
8	Trace	1	Trace
9	Trace	2	Trace
4510	Trace	3	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	2 3 4 5 6 7 8	Trace
4	Trace	7	Trace
5	Trace	8 ,	Trace
2 3 4 5 6 7 8 9	Trace	9	Trace
7	Trace	4550	Trace
8	Trace	1	Trace
	Trace	2	Trace
4520	Trace	3	Trace
1	Trace	2 3 4 5 6 7 8 9	Trace
2 3 4 5 6 7 8	Trace	5	Trace
3	Trace	6	Trace
4	Trace	7	Trace
5	Trace	8	Trace
6	Trace	-	Trace
7	Trace	4560	Trace
8	Trace	1	Trace
9	0.004	2	Trace
4530	Trace	2 3 4 5 6 7	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	6	Trace
4	Trace	7	Trace
5	Trace	8	Trace
2 3 4 5 6 7 8	Trace	9	Trace
7	Trace	4570	Trace
8	Trace	1	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED CHERWISE GOLD AND SILVER VALUES REPORTED ON ISE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

HAILEYBURY, ONTARIO

Certificate of Analysis Page 3 of 3

0324

February 3, 1988

SAMPLE(S) OF:

Core (200)

RECEIVED:

DATE:

February 1988

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4572	Trace	4606	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
5 6 7	Trace	4610	Trace
7	0.008	1	Trace
8 9	Trace	2	Trace
	Trace	 	0.002*
4580	Trace	4	Trace
1	Trace	5	0.010
2 3	Trace	2 3 4 5 6 7	Trace
3	Trace	7	Trace
4	0.020	8 9	Trace
4 5 6 7	Trace		Trace
6	Trace	4620	Trace
	Trace	1 ·	Trace
8 9	Trace	2	Trace
	Trace	2 3 4 5 6 7	Trace
4590	Trace	4	Trace
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
2 3 4 5 6 7	Trace	4630	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	3	Trace
4600	Trace	4	Trace
1	Trace	5	Trace
2	0.002*	2 3 4 5 6 7	Trace
3	Trace	7	Trace
2 3 4 5	Trace	8 9	Trace
5	Trace	9	Trace

Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED HERWISE GOLD AND SILVER VALUES REPORTED ON ESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

ren

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

NO. 0381

DATE: February 12, 1988

SAMPLE(S) OF: 141(core)

RECEIVED: February 1988

SAMPLE(S) FROM: R. Higginson, Geocanex Ltd.

Project: Kasagiminnis

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4640	0.004	4675	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	Trace		Trace
4	Trace	8 9	Trace
5	Trace	4680	0.002*
2 3 4 5 6 7	Trace	i	Trace
	Trace	2	Trace
8	Trace	2 3 4 5 6 7 8	Trace
9	Trace	4	Trace
4650	Trace	5	Trace
1	Trace	6	Trace
2	0.006	7	Trace
2 3	0.002*	8	Trace
4	Trace	9	Trace
5	Trace	4690	Trace
6 7	Trace	1	Trace
7	Trace	2	Trace
8	Trace	2 3 4 5 6 7	Trace
9	Trace	4	Trace
4660	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
2 3 4	Trace	8	Trace
4	Trace	9	Trace
5 6	Trace	4700	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	Trace	3	Trace
9	Trace	4	Trace
4670	Trace	5	0.002*
1	Trace	6	Trace
2	Trace	2 3 4 5 6 7 8	Trace
2 3	Trace	8	Trace
4	Trace	9	Trace

*Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pen ()

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 2

NO. 0381

DATE: February 12, 1988

SAMPLE(S) OF: 141(core)

RECEIVED: February 1988

SAMPLE(S) FROM: R. Higginson, Geocanex Ltd.

Project: Kasagiminnis

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4710	0.090	4745	Trace
1	0.002*	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
2 3 4 5 6 7	Trace	4750	Trace
6	0.004	1	Trace
	Trace	2	Trace
8	Trace	2 3 4 5 6 7 8 9	Trace
9	Trace	4	Trace
4720	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace		Trace
5	Trace	4760	Trace
2 3 4 5 6 7	Trace	1	Trace
	Trace	2 3 4 5 6 7	Trace
8	Trace	3	Trace
9	Trace	4	Trace
4730	Trace	5	Trace
1	0.002*	6	Trace
2	Trace		Trace
2 3 4	Trace	8	Trace
4	Trace	9	Trace
5 6 7	Trace	4770	Trace
6	Trace	1	Trace
7	0.002*	2	Trace
8	Trace	3	Trace
9	Trace	2 3 4 5 6 7	Trace
4740	Trace	5	Trace
1	Trace	6	Trace
2	Trace		Trace
2 3 4	Trace	8.	Trace
4	Trace	9	Trace
		4780	Trace

*Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO.

0397

DATE:

February 15, 1988

SAMPLE(S) OF:

Core (44)

RECEIVED:

February 1988

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold
4781	Trace
2	Trace
2 3 4 5 6	Trace
4	Trace
5	0.002*
6	Trace
7	Trace
8	Trace
9	Trace
4790	Trace
1	Trace
2 3 4 5 6	Trace
3	Trace
4	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	Trace
4800	<u>T</u> race
1	Trace
2	Trace

Sample No.	0z.	Gold
4803	Tr	ace
4		ace
5		ace
5 6		ace
7	Tra	ace
8	Tra	ace
9		ace
4810		ace
1		ace
2 3 4 5 6 7		ace
3		ace
4		002*
5		ace
0 7		ace ace
8		ace
9	_	ace
4820		ace
1		ace
•		ace
2 3		ace
4		002*

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pen John State Comments of the

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON 1656 SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0390

DATE: February 12, 1988

SAMPLE(S) OF: 22(rock)

RECEIVED: February 1988

SAMPLE(S) FROM: R. Higginson, Geocanex Ltd.

Project: Kasagiminnis

Sample No.
4825 6 7
, 8 9 4830 1 2 3
2 3 4 5 6 7 8 9
9 4840 1 2 3 4 5 6
6

Trace Trace 0.002* Trace 0.006 Trace Trace 0.002 Trace Trace Trace 0.002 Trace 0.016 0.002 0.006 Trace 0.002* Trace Trace Trace

0.002

Oz. Gold

*Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON MESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0420

DATE:

February 17, 1988

SAMPLE(S) OF:

Core (59)

RECEIVED: February 1988

SAMPLE(S) FROM:

Mr. Rob Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4847	0.002*	4877	Trace
8	0.382 - 0.378	8	Trace
9	Trace	9	Trace
4850	0.002*	4880	Trace
1	Trace	1	Trace
2	Trace	2	Trace
2 3 4 5 6 7 8 9	Trace	2 3	Trace
4	Trace	4	Trace
5	Trace	4 5	Trace
6	Trace	6	Trace
7	Trace	7	Trace
8	Trace	8	Trace
9	Trace	9	Trace
4860	Trace	4890	Trace
1	Trace	1	Trace
2	Trace	2	Trace
2 3 4 5 6 7 8 9	Trace	2 3 4 5	Trace
4	Trace	4	Trace
5	Trace	5	Trace
6	Trace	6 7	Trace
7	Trace	•	Trace
8	Trace	8	Trace
·-	Trace	9	Trace
4870	Trace	4900	Trace
1	Trace	1	Trace
2	Trace	2	Trace
2 3 4 5 6	Trace	2 3	Trace
4	Trace	4 5	Trace
5	Trace	5	Trace
6	Trace		

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER_____

Certificate of Analysis

0417

DATE:

February 17, 1988

SAMPLE(S) OF:

Core (43)

RECEIVED: February 1988

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

<u>PROJECT: Kasagiminnis Lake</u>

Sample No.	Oz. Gold
4906	Trace
7	Trace
8	Trace
9	Trace
4910	Trace
1	Trace
1 2 3 4 5 6	Trace
3	Trace
4	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	Trace
4920	Trace
<u>l</u>	Trace
2 3 4 5 6	Trace
3	Trace
4	Trace
5	0.002*
	Trace
7	Trace

Sample No.	Oz. Gold
4928	Trace
9	Trace
4930	0.002*
1	0.002*
	0.002*
2 3 4	Trace
4	Trace
5	0.020
6	0.194 - 0.196
7	0.436 - 0.446
8	0.164 - 0.160
9	0.060 - 0.068
4940	0.026
1	0.030
	0.002*
3	0.014
4	0.068 - 0.062
2 3 4 5	0.040
6	0.068 - 0.064
7	0.010
8	0.002*

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED THERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPENTATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

0437

February 19, 1988

SAMPLE(S) OF:

Core (126)

RECEIVED:

DATE:

February 1988

SAMPLE(S) FROM:

Mr. R. Higginson, Geocanex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
4949	Trace	4981	Trace
4950	Trace	2	0.002*
1	Trace	3	Trace
2	Trace	4	Trace
3	Trace	5	Trace
2 3 4 5 6 7	Trace	5 6	0.002*
5	Trace	7	Trace
6	Trace	8	Trace
7	Trace	13701	Trace
8 9	Trace		Trace
9	Trace	2 3 4	Trace
4960	Trace	4	Trace
1	Trace	5 6 7	Trace
2	Trace	6	Trace
2 3 4 5 6 7 8 9	Trace		Trace
4	Trace	8 9	Trace
5	Trace		Trace
6	Trace	13710	Trace
7	Trace	1	Trace
8	Trace	2	Trace
	Trace	3	Trace
4970	Trace	3 4 5 6 7	Trace
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace		Trace
4	Trace	8	Trace
2 3 4 5 6 7	Trace	9	Trace
6	Trace	13720	Trace
7	Trace	1	Trace
8 9	Trace	2	Trace
	Trace	2 3 4	Trace
4980	Trace	4	Trace

^{*} Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED THERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187.

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 2 of 2

NO. 0437

DATE:

February 19, 1988

SAMPLE(S) OF:

Core (126)

RECEIVED: February 1988

SAMPLE(S) FROM:

Mr. R. Higginson, Geocamex Ltd.

PROJECT: Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
13725	Trace	13756	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8 9	Trace	8 9	Trace
9	Trace	13760	Trace
13730	Trace	1	Trace
1	Trace	2	Trace
2	Trace	3	Trace
2 3	Trace	2 3 4 5 6 7	0.002*
4	Trace	5	Trace
5	Trace	6	Trace
6 7	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	13770	Trace
13740	Trace	1	Trace
1	Trace	2	0.002*
2	Trace	2 3	0.002*
3	Trace	4	0.030
4	Trace	4 5 6 7	0.232 - 0.248
5	Trace	6	0.026
6	Trace	7	0.032
7	Trace	8	0.002*
8 9	Trace	9	Trace
9	Trace	13780	0.002*
13750	Trace	1	0.046
1	Trace	2	Trace
2	Trace		Trace
2 3	Trace	3 4	Trace
4 5	Trace	5 6	Trace
5	Trace	6	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED THERWISE GOLD AND SILVER VALUES REPORTED ON HESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-ATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Little Ochiglake DD#14 292

REPORT

ON

DIAMOND DRILLING

KASAGIMINNIS LAKE PROPERTY

KENORA MINING DIVISION

PATRICIA PORTION

ONTARIO

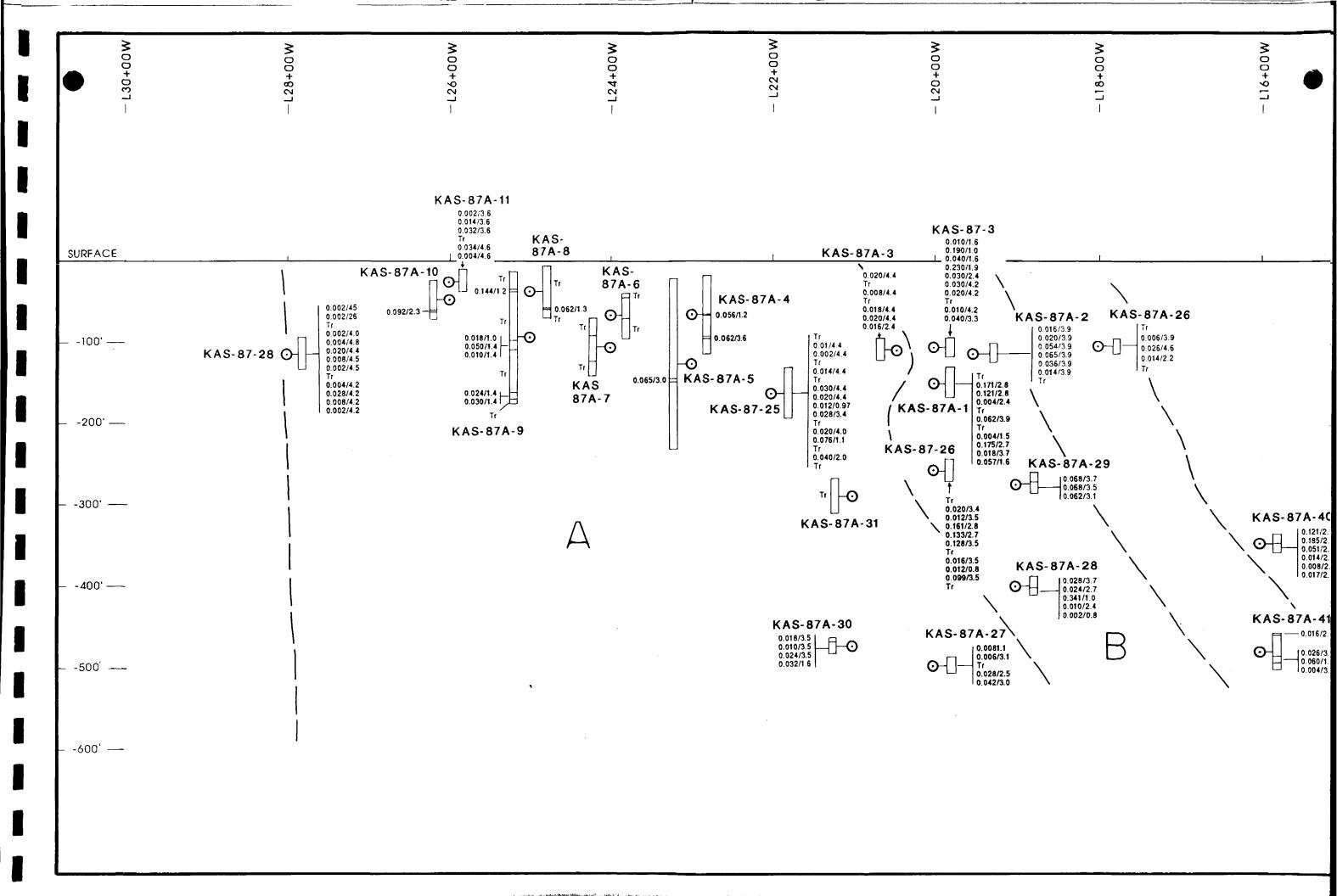
FOR

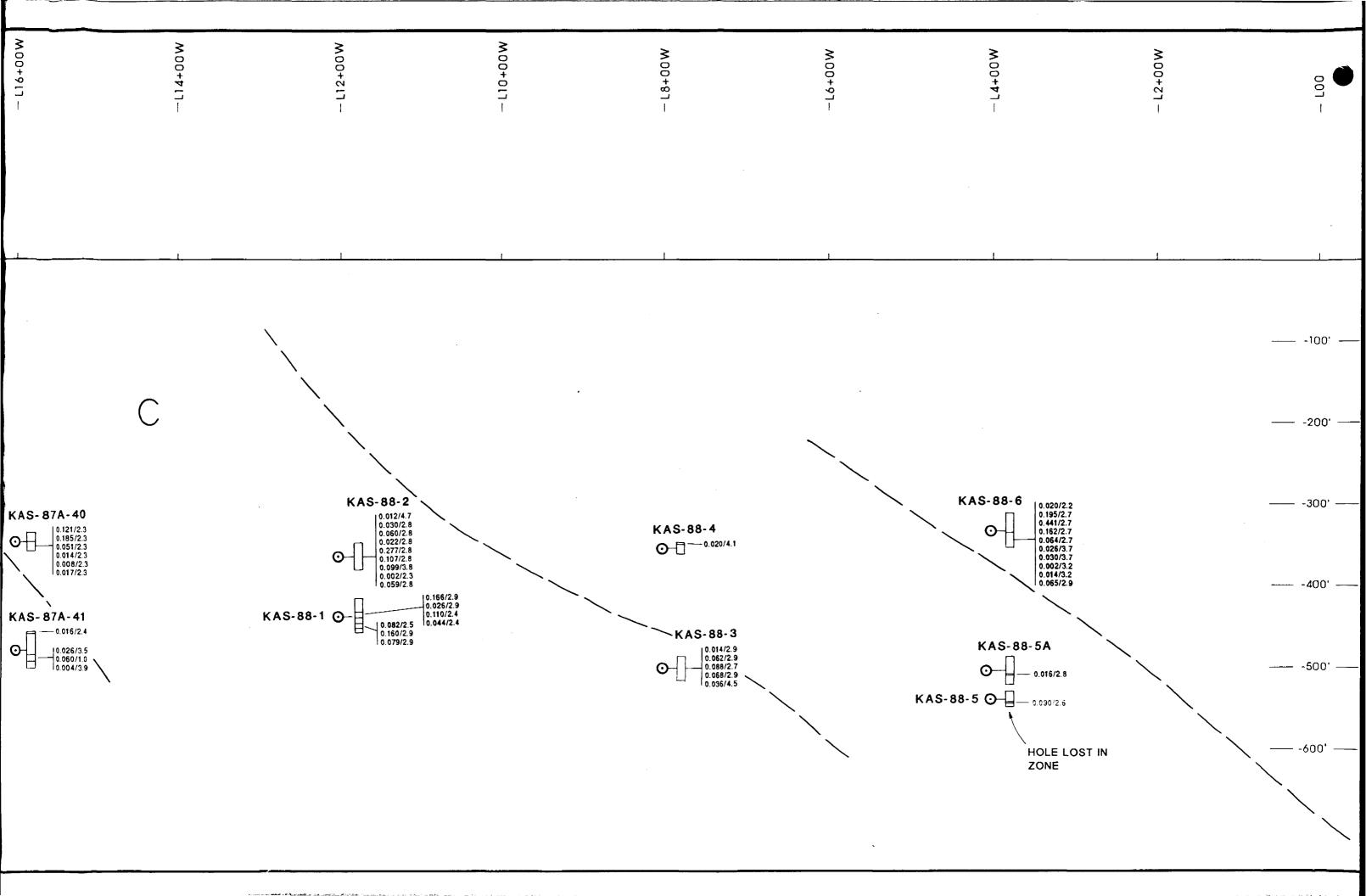
POWER EXPLORATIONS INC.

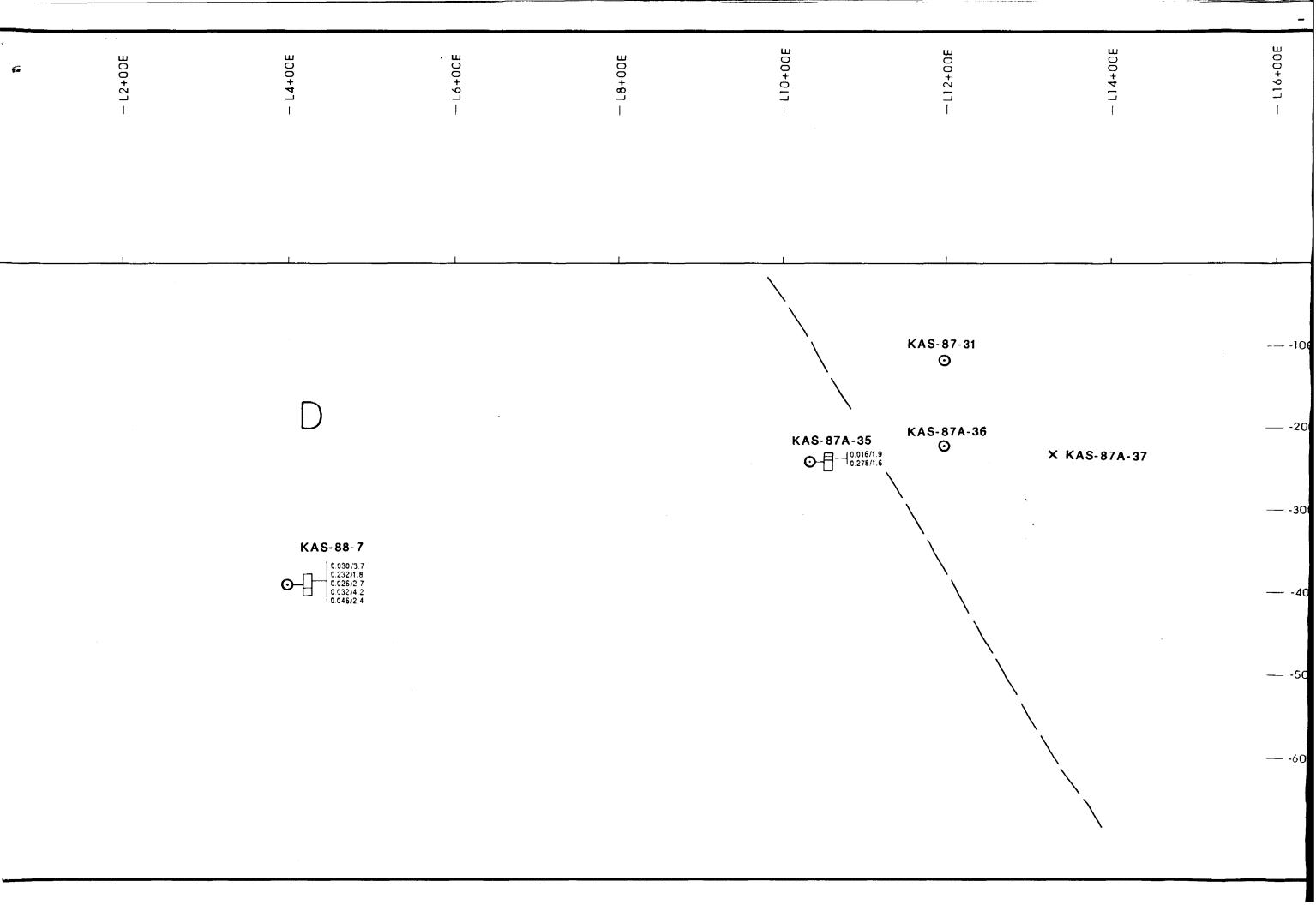
VOLUME 2

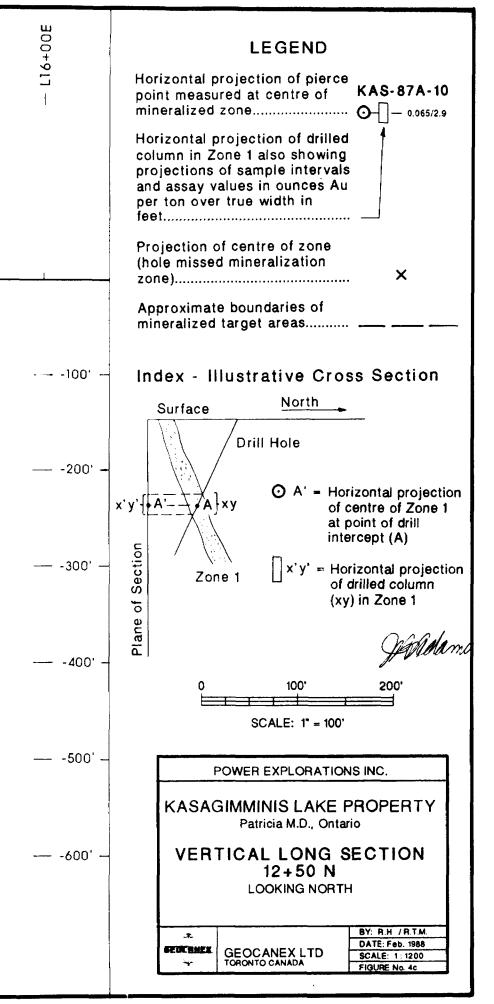
March, 1988

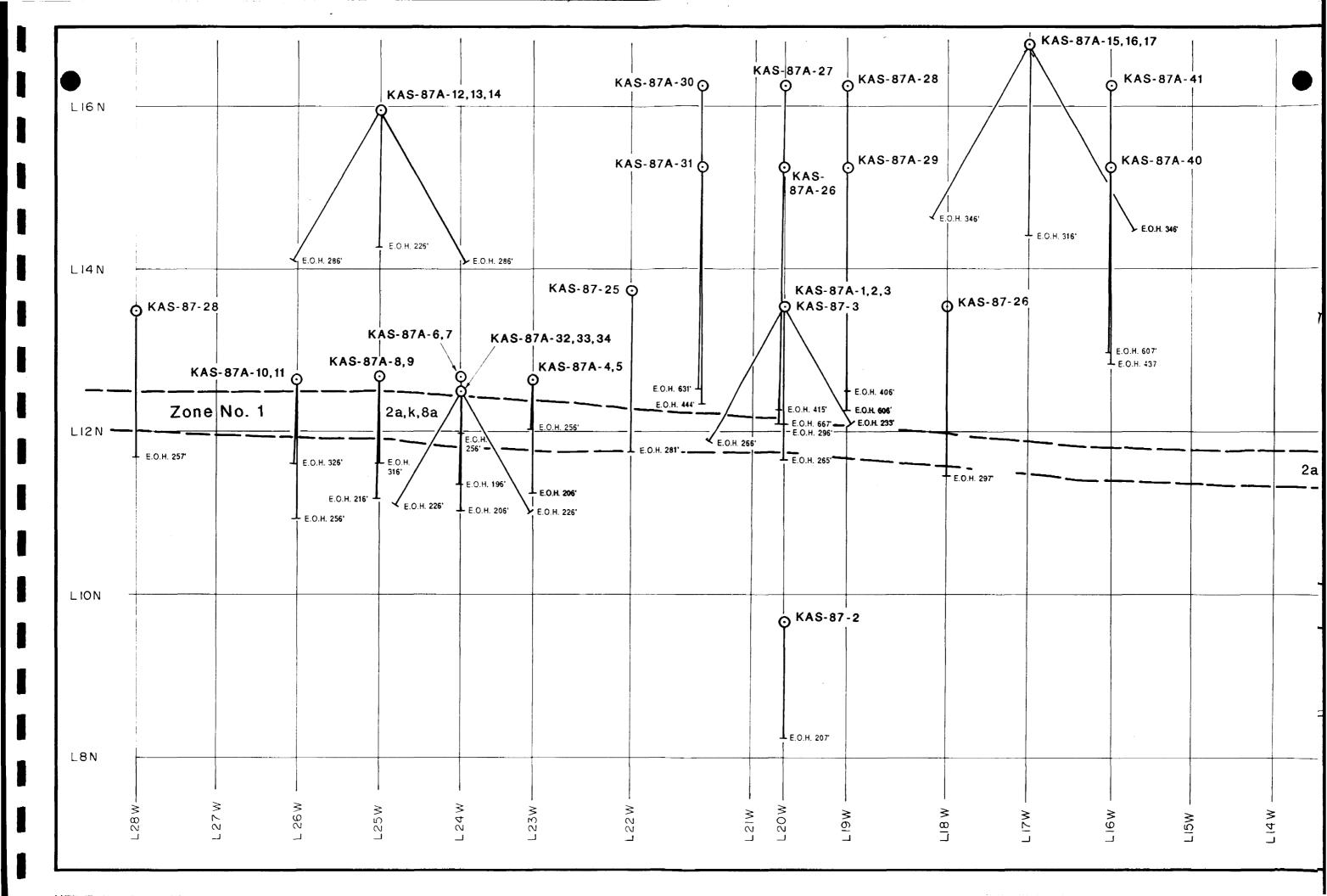
R. Higginson, B.Sc.

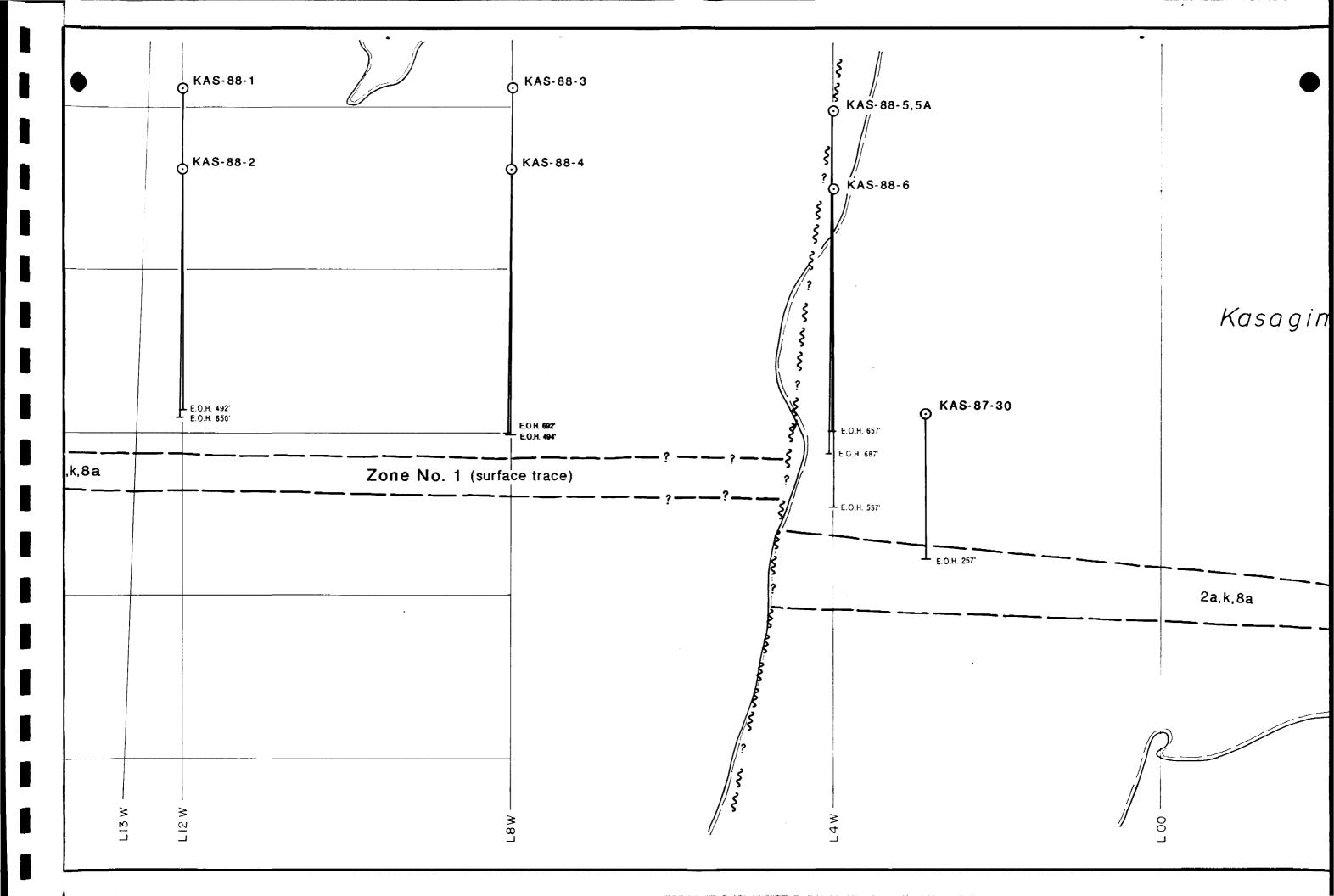

APPENDIX E

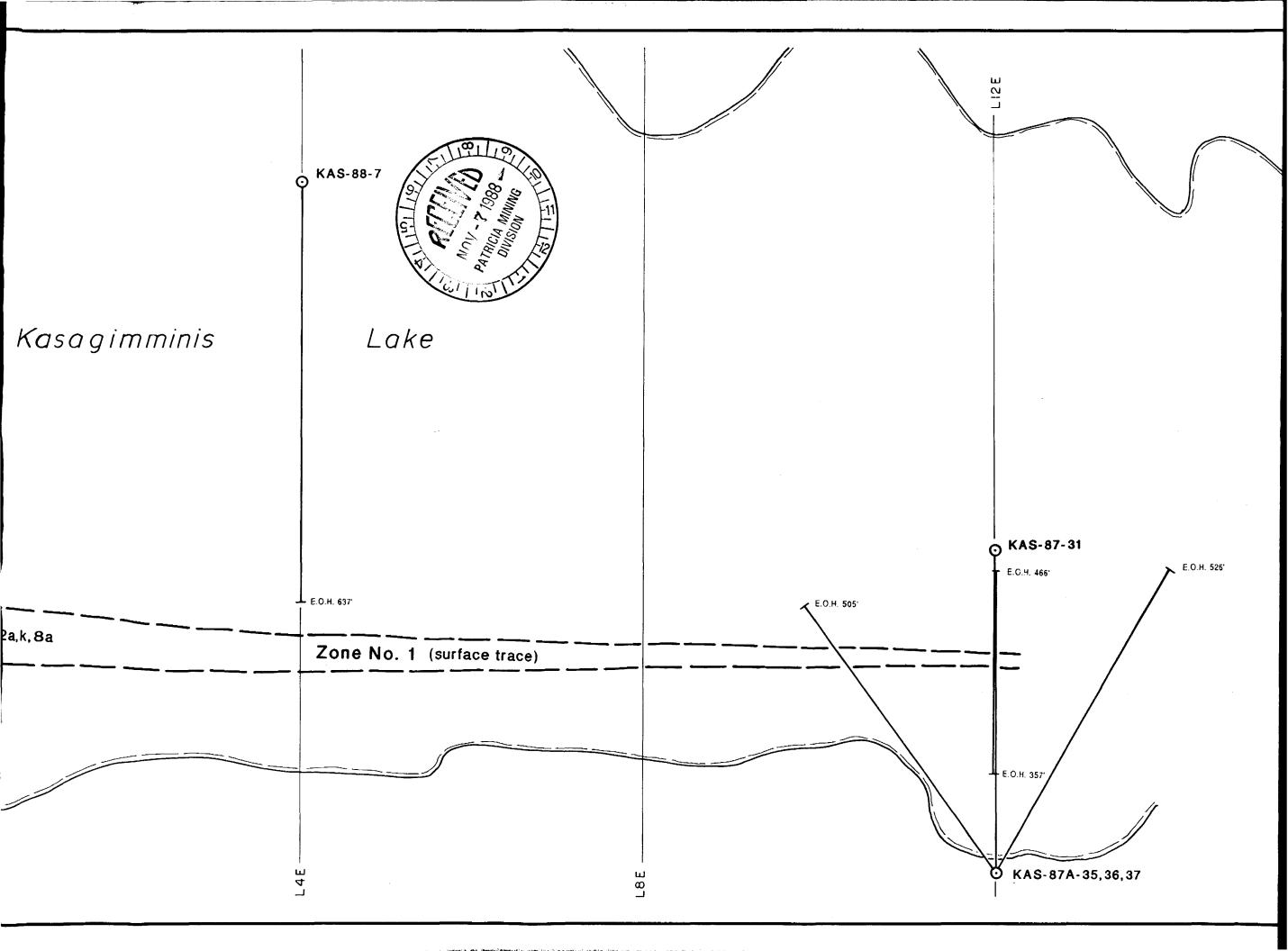

LEGEND AND DRILL SECTIONS

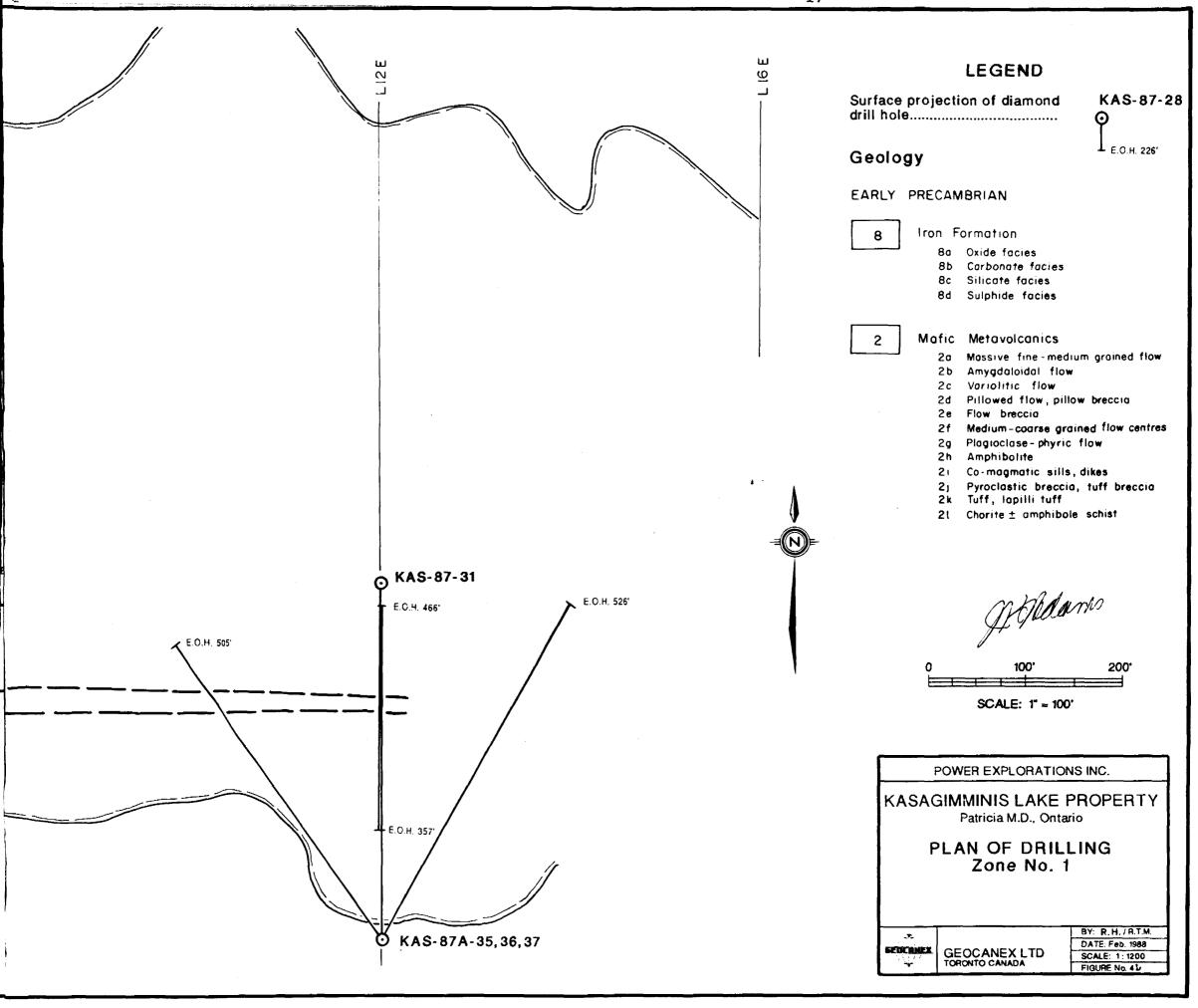

LEGEND FOR THE DIAMOND DRILL HOLE SECTIONS FOR THE KASAGIMINNIS LAKE PROPERTY Patricia M.D., Ontario

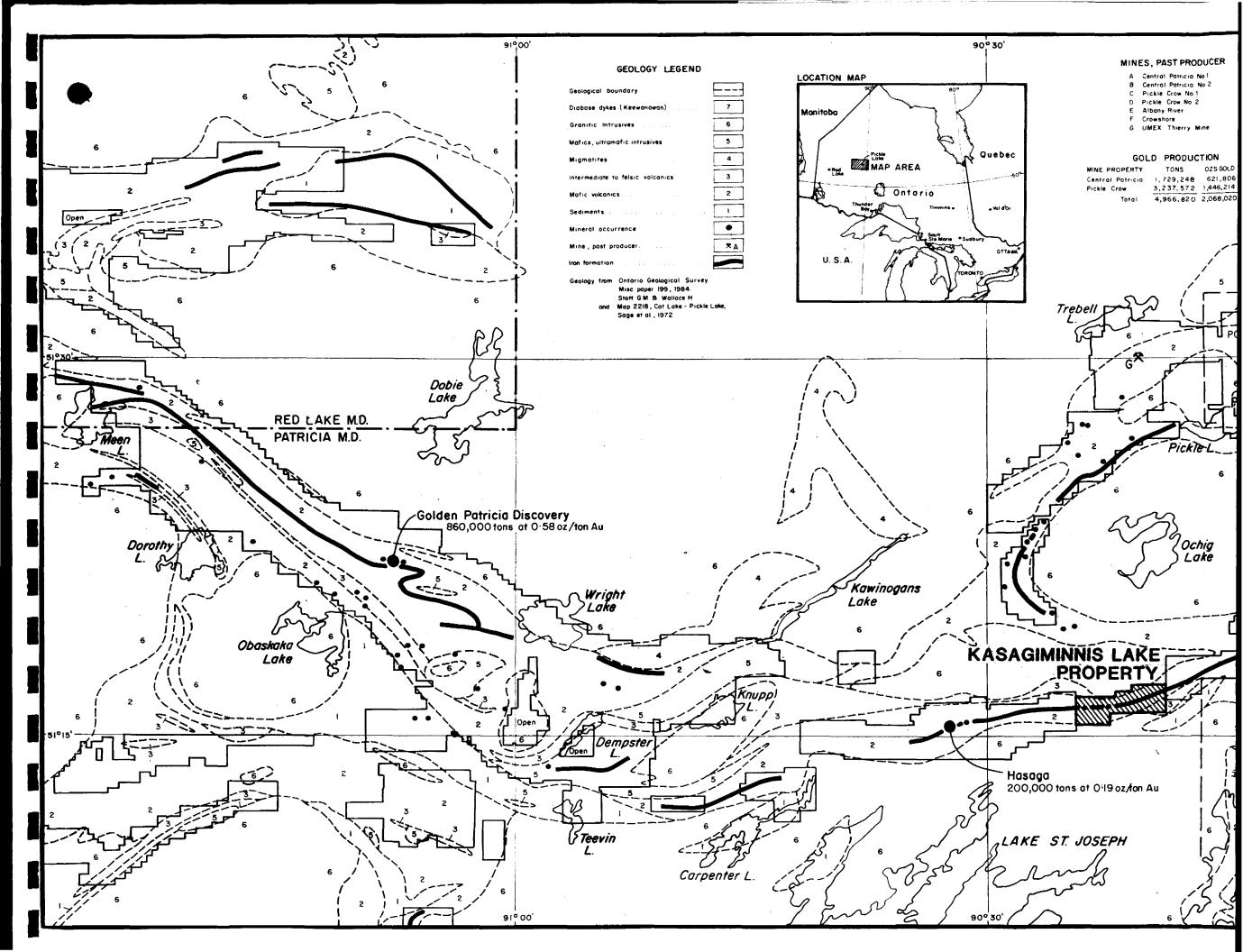

q.v.,c.v. Q	uartz/carbonate veins	
	termediate and felsic intrusive 8a Granite 8b Diorite 8c Granite gneiss 8d Porphyry, quartz/feldspar	es
	afic to ultramafic intrusives 7a Gabbro, diabase 7b Peridotite on formation 6a Oxide facies 6b Carbonate facies 6c Silicate facies 6d Sulphide facies	SYMBOLS Overburden
4 Fe	Sastic sediments 5a Wacke 5b Mudstone, argillite 5c Siltstone elsic volcanics 4a Flows 4b Tuff, lapilli tuff 4c Breccia, agglomerate termediate volcanics 3a Flows	Fault, shear zone
Ma	3b Tuff, lapilli tuff 3c Breccia, agglomerate afic volcanics 2a Flows 2b Tuff, lapilli tuff	ch - chloritization ca - carbonatization Mineralization s - sulphides
1 UI	2c Breccia, agglomerate 2d Amphibolite Itramafic volcanics	po - pyrrhotite py - pyrite cp - chalcopyrite As - arsenopyrite sp - sphalerite Ga - galena Mo - Molybdenite
Ŋ.	Malamo	gf - Graphite tour - tourmaline

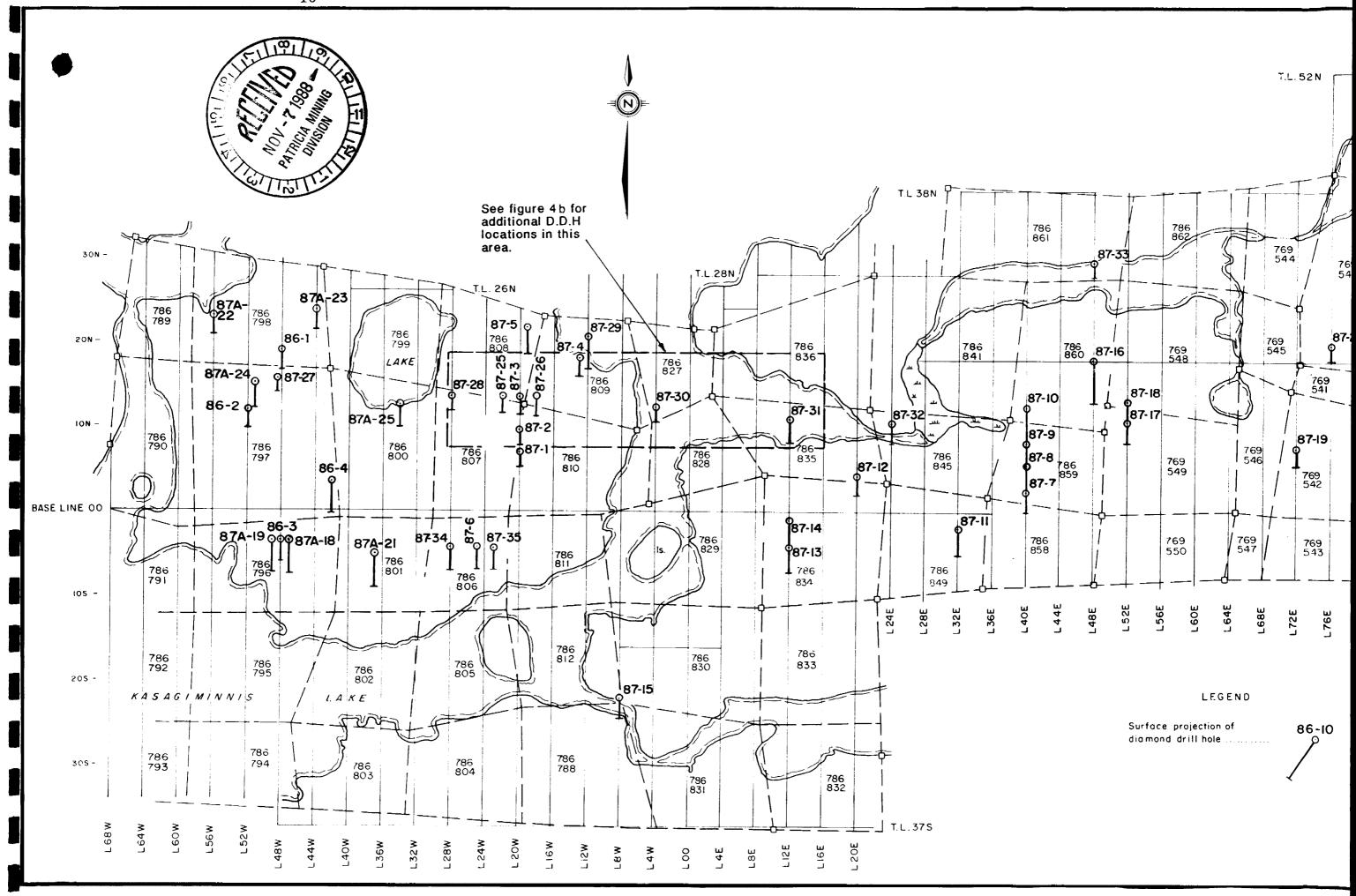

Fig. 5

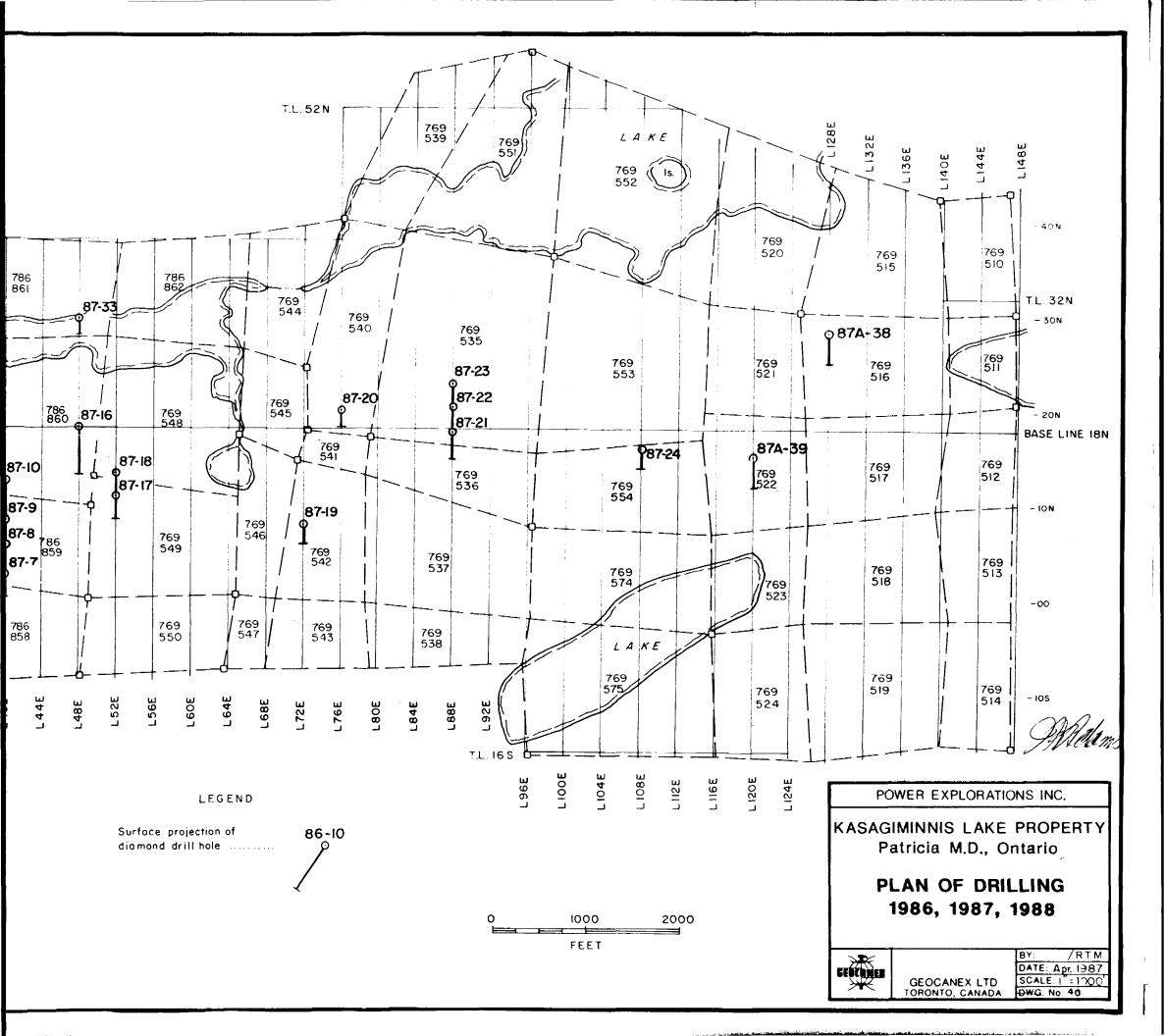












90° 30'

R port c Work

Kasagimminis-L

DOCUMENT No.

900

Assess. Library Address of Recorded Holder Power Explorations Inc.

Imended

Mining /

T 4642

1003-34 King ST. Last. Toronto. Ontario M5C 1E5
Summary of Work Performance and Distribution of Credits

Total Work Days Cr. claimed		Mining Claim	Work		Mining Claim	Work	Мі	ining Claim	Work
19,971 (260 reque	sted)	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.
for Performance of the following work. (Check one only)	Рa	1008197	20	Pa	1008205	20			<u> </u>
Manual Work		1008198	20		1008206	20			
Shaft Sinking Drifting or		1008199	20		1008207	20			
other Lateral Work. Compressed Air, other		1008200	20		1008208	20			
Power driven or mechanical equip.		1008201	20		1008209	20			
Power Stripping		1008202	20						
Diamond or other Core drilling		1008203	20						
Land Survey		1008204	20						

All the work was performed on Mining Claim(s): Pa 769512,769516, 786796, 786797, 786798, 786800, 786828 766801, 786807,786808, 786809, 786810,786835,786836

Required Information eg: type of equipment, Names, Addresses, etc. (See Table Below)

Little Ochiq Later & 2104

Drilling Contractor: Midwest Drilling, Winnipeg, Manitoba

Core Size: BQ 1 7/16

Holes: total of 49

using No. Kas-88-7

Footage: 19,971 Geologist In Charge:

using 260 feet
Rob A.V. Higginson, Oro, Ontario GEOLOGICAL SURVEY

Dates:

768 (85/12)

September 2nd to October 28th, 1987 December 11th to December 17th, 1987

January 7th to February 9th, 1988

ASSESSMENT FILES OFFICE

OCT 24 1989

Agent (Signature)

RECEIVED

Using 88-285 for fature Use

Terrorance Mowed

18,096

17 836

Certification Verifying Report of Work

November 3/88

Nov. 3/88

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having perform or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

H.J. Hodge 1003-34 King St. East, Toronto, Ontario M5C

Type of WorkSpecific information per type		Other information (Common to 2 or more types) Attachm		
Manual Work				
Shaft Sinking, Drifting or other Lateral Work	Nil	Names and addresses of men who performed manual work / operated equipment, together with dates and hours of employment.	Work Sketch: these are required to show the location and extent of work in relation to the	
Compressed air, other power driven or mechanical equip.	Type of equipment	With datas and flours of employment.		
Power Stripping	Type of equipment and amount expended. Note: Proof of actual cost must be submitted within 30 days of recording.	Names and addresses of owner or operator together with dates when drilling/stripping	neerest claim post.	
Diamond or other core drilling	Signed core log showing; footage, diameter of core, number and angles of holes.	done.	Work Sketch (as above) in duplicate	
Land Survey	Name and address of Ontario land surveyer.	Nii	NII	

Ministry of Northern Development and Mines

Report of Work

COCUMENT No. W8803- **285** Kasagimminis-Lake

Instructions -Supply required data on a separate form for each type of work to be recorded (see table below).

For Geo-technical work use form no. 1362 "Report of Work (Geological, Geophysical, Geochemical and Expenditures)".

ľ	Viir	ing	Ac	t

smout Library	Mining Act	Expenditures)".	
Name and all Address of Regorded Holder		Prospector's Licence No.	_
Power Explorations Inc.		T 4642	
•			

1003-34 King ST. Fast. Toronto. (Summary of Work Performance and Distribution of Credits Ontario M5C 1E5

Total Work Days Cr. claimed		Mining Claim	Work		Mining Claim	Work	M	lining Claim	Work
19,971 (260 reque	strett)	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.
for Performance of the following work. (Check one only)	Рa	1008197	20	Pa	1008205	20			
Manual Work		1008198	20		1008206	20			
Shaft Sinking Drifting or		1008199	20		1008207	20			
other Lateral Work. Compressed Air, other		1008200	20		1008208	20			
Power driven or mechanical equip.		1008201	20		1008209	1 20			
Power Stripping		1008202	20						
Diamond or other Core		1008203	20						
Land Survey		1008204	20						

All the work was performed on Mining Claim(s): Pa 769512,769516, 786796, 786797, 786798, .786810..786835..786836 786807.786808. 786801. 786828

Required Information eg: type of equipment, Names, Addresses, etc. (See Table Below)

Little Ochiq Lake & 2104

Drilling Contractor: Midwest Drilling, Winnipeg, Manitoba

Core Size: BQ 1 7/16

Holes: total of 49

using No. Kas-88-7 using 260 f

Footage: 19,971 4846 Geologist In Charge:

Rob A.V. HIg

Dates:

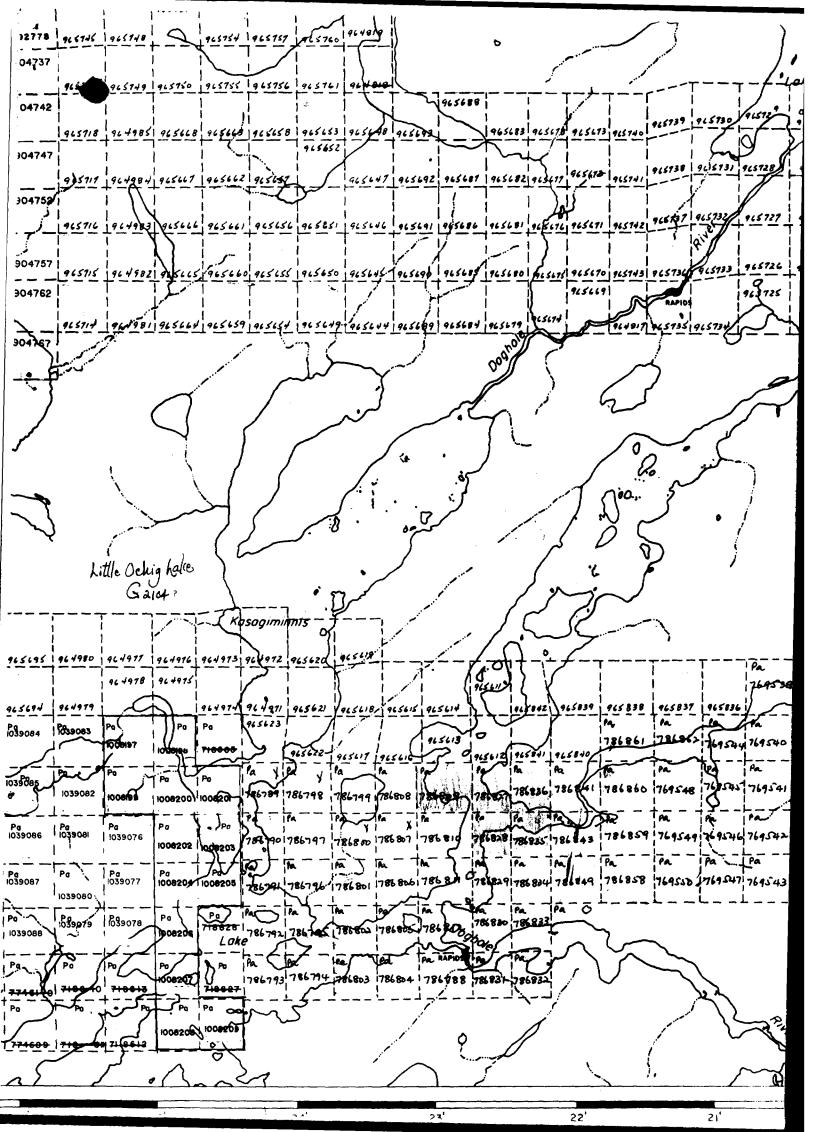
September 2nd to October 28t December 11th to December 17th,

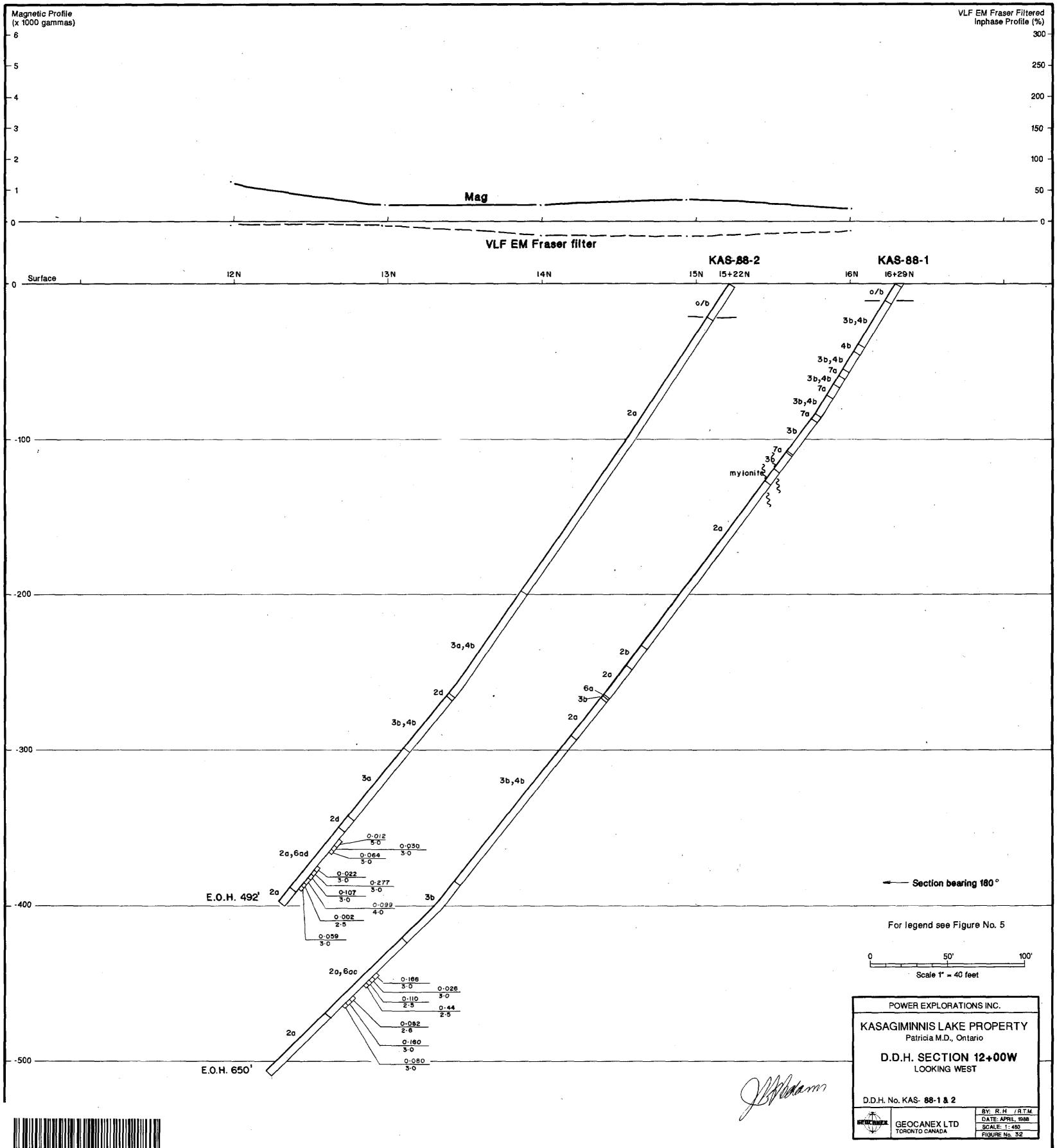
January 7th to February 9th,

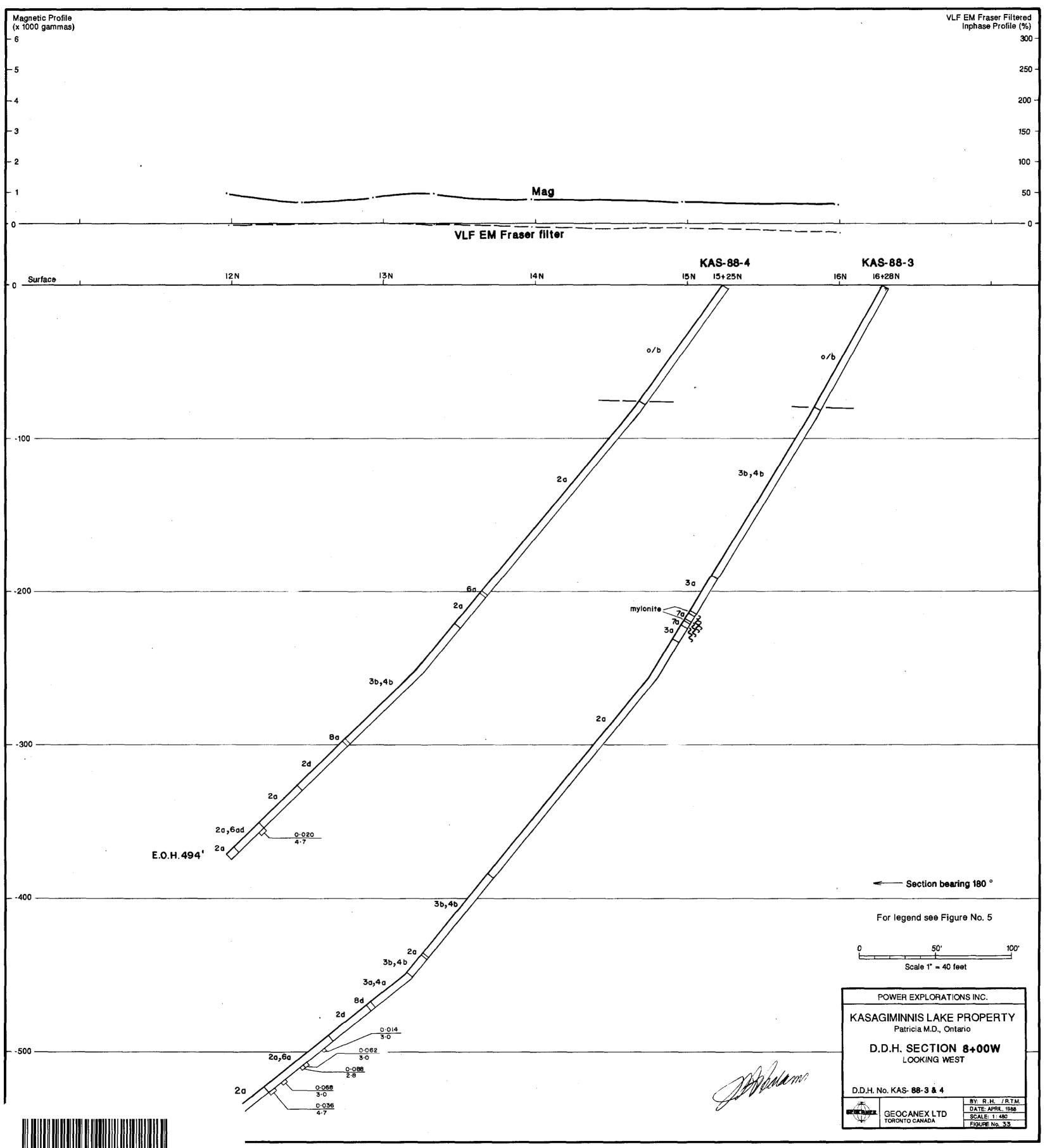
198700

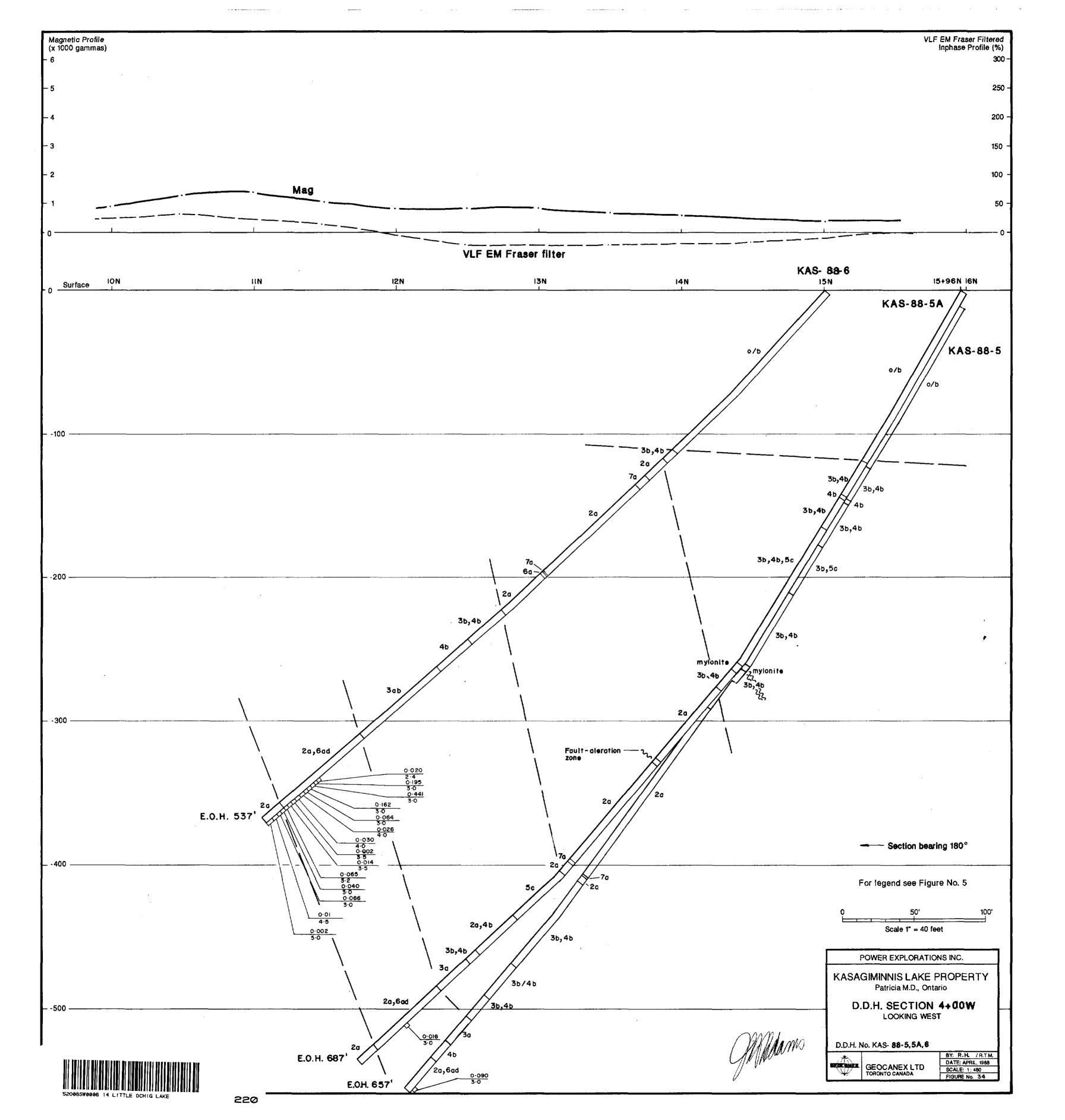
November

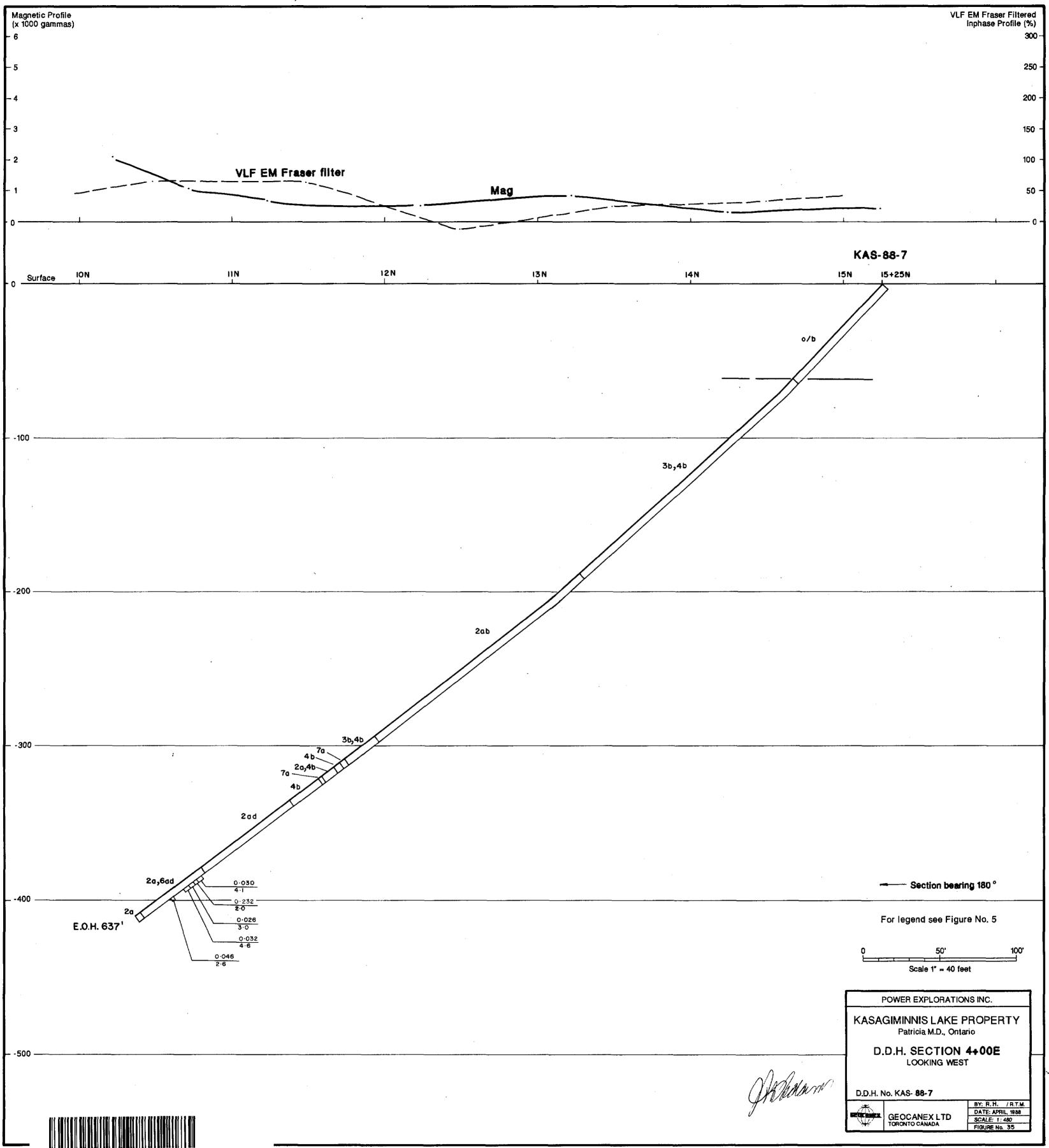
3/8

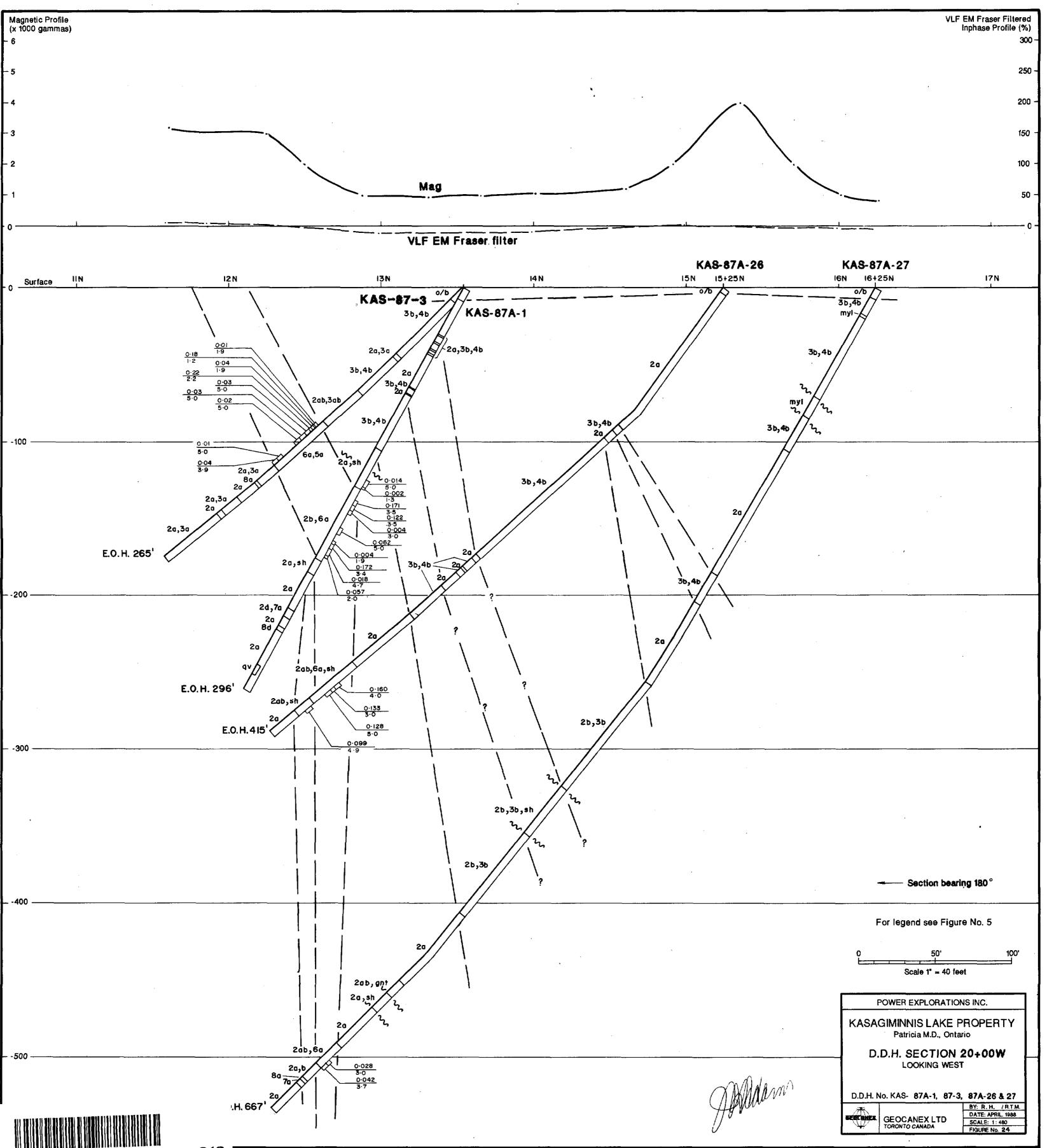

Certification Verifying Report of Work

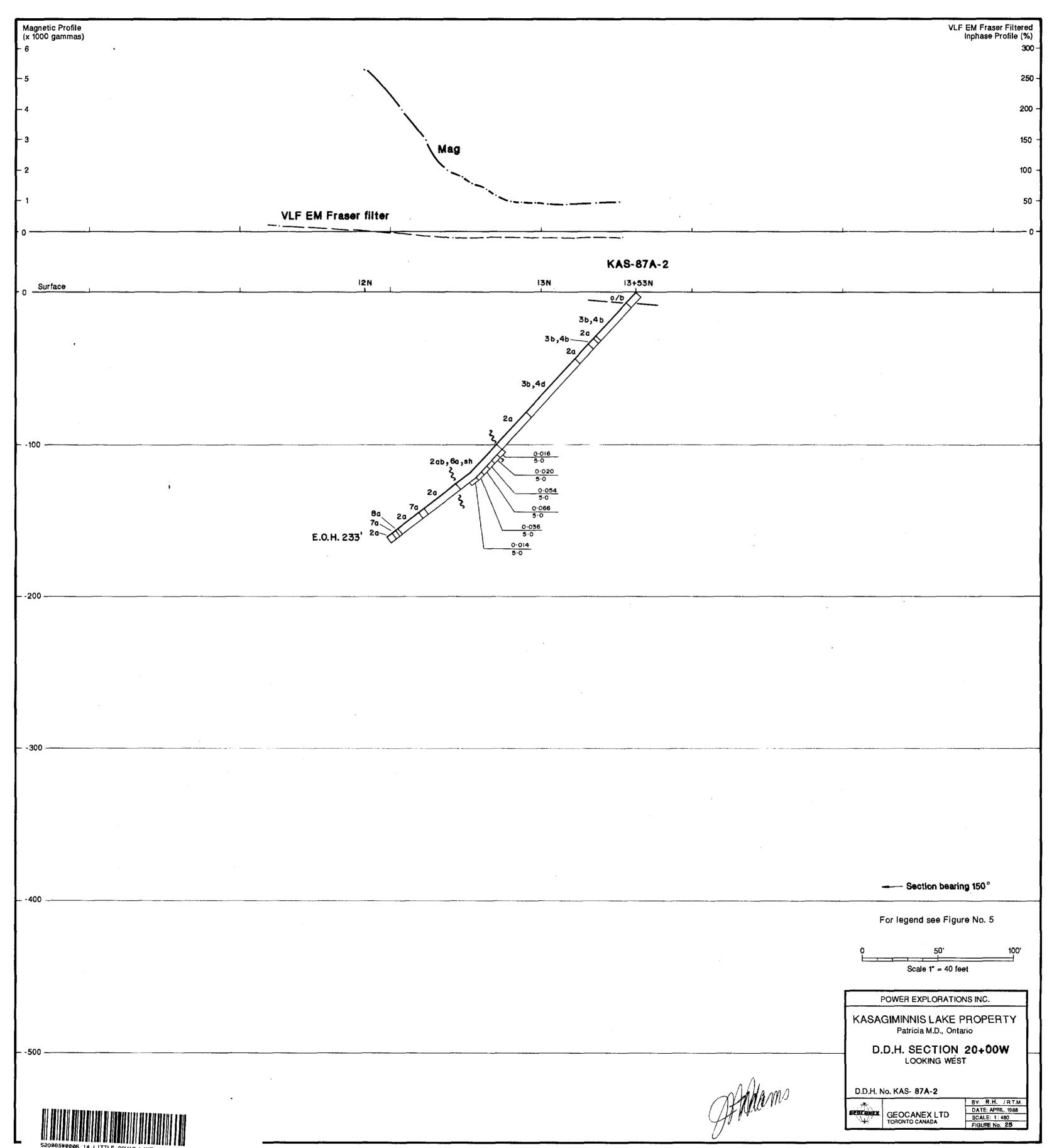

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having perform or witnessed same during and/or after its completion and the annexed report is true.

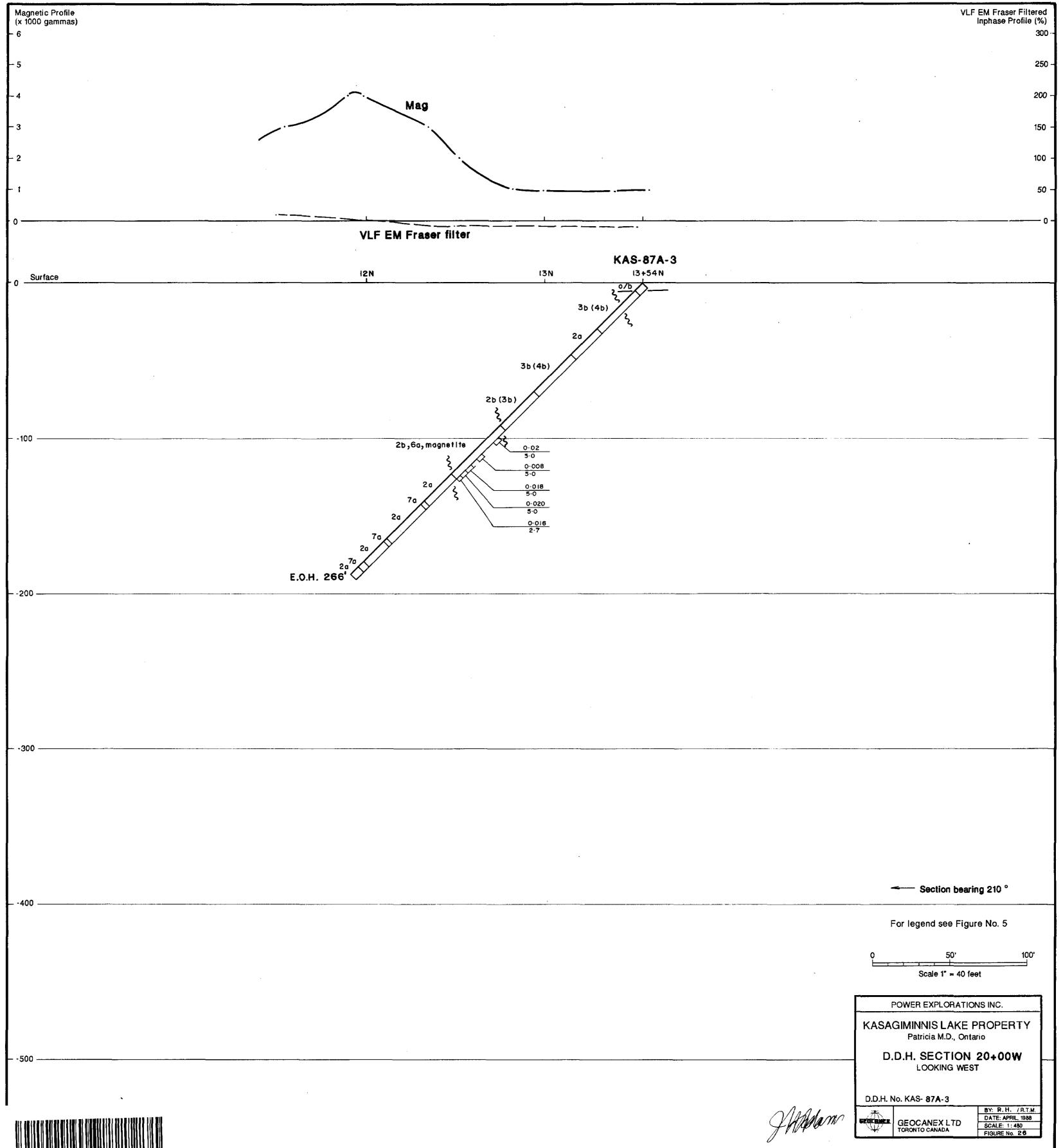

Name and Postal Address of Person Certifying

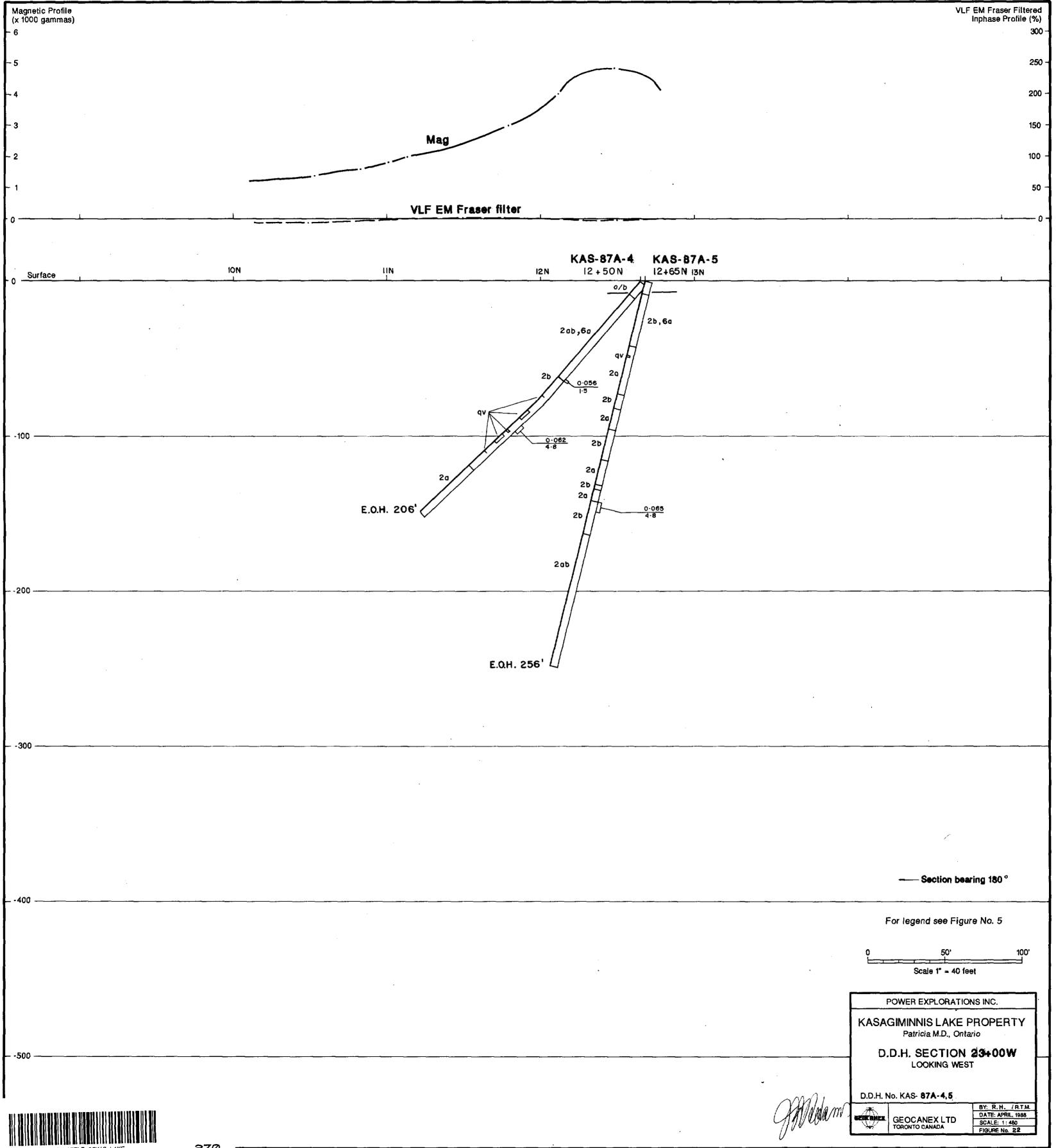

H.J. Hodge 1003-34 King St. East, Toronto Ontario M5C Nov. 3/88

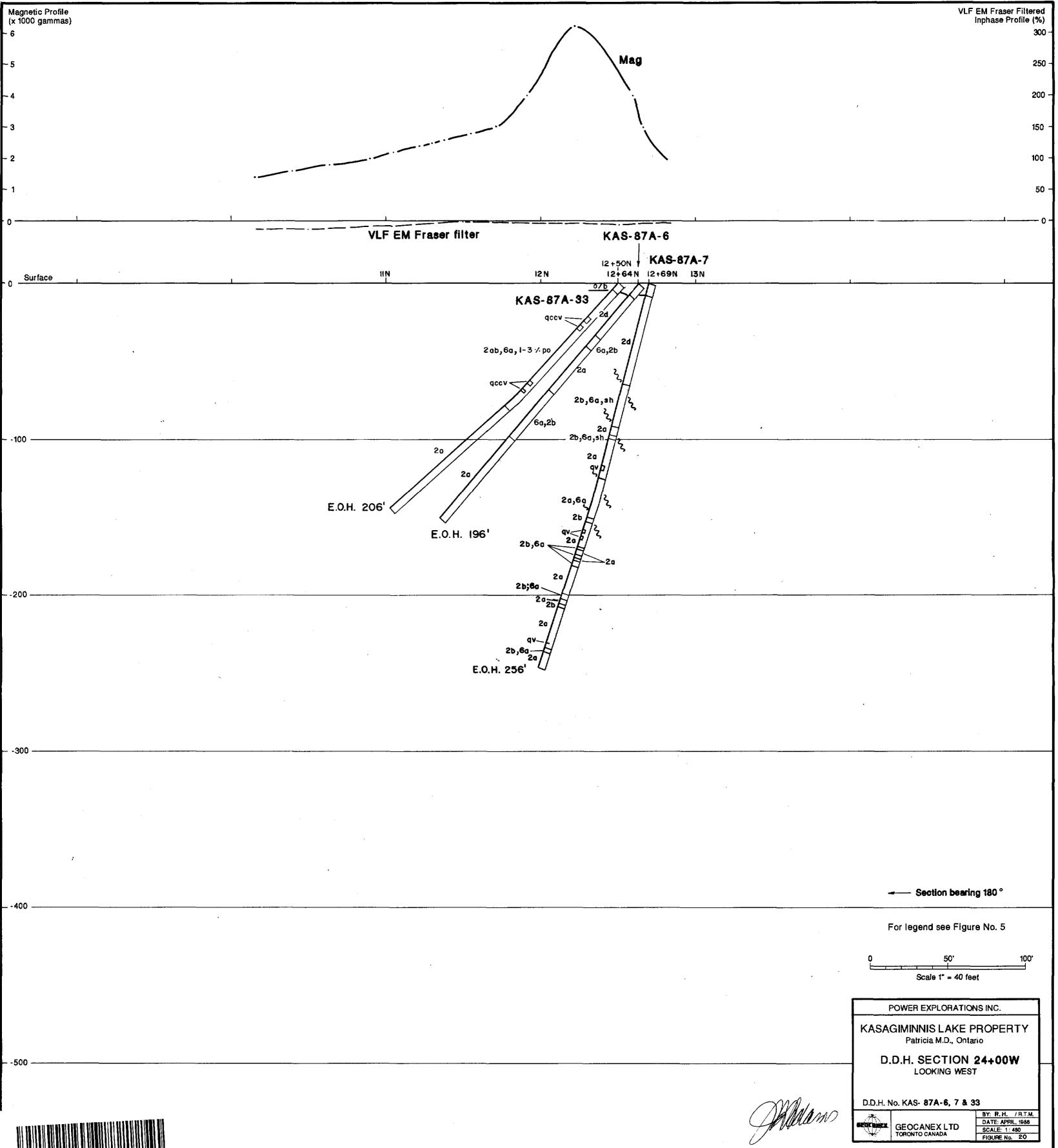

Type of Work	_Specific information per type	Other information (Common to 2 or more types)	Attachments	
Manual Work				
Shaft Sinking, Drifting or other Lateral Work	Nii	Names and addresses of men who performed manual work/operated equipment, together with dates and hours of employment.	Work Sketch: these are required to show the location and extent of work in relation to the nearest claim post.	
Compressed air, other power driven or mechanical equip.	Type of equipment			
Power Stripping	Type of equipment and amount expended. Note: Proof of actual cost must be submitted within 30 days of recording.	Names and addresses of owner or operator together with dates when drilling/stripping		
Diamond or other core drilling	Signed core log showing; footage, diameter of core, number and angles of holes.	done.	Work Sketch (as above) in duplicate	
Land Survey	Name and address of Ontario land surveyer.	NII	Nii	

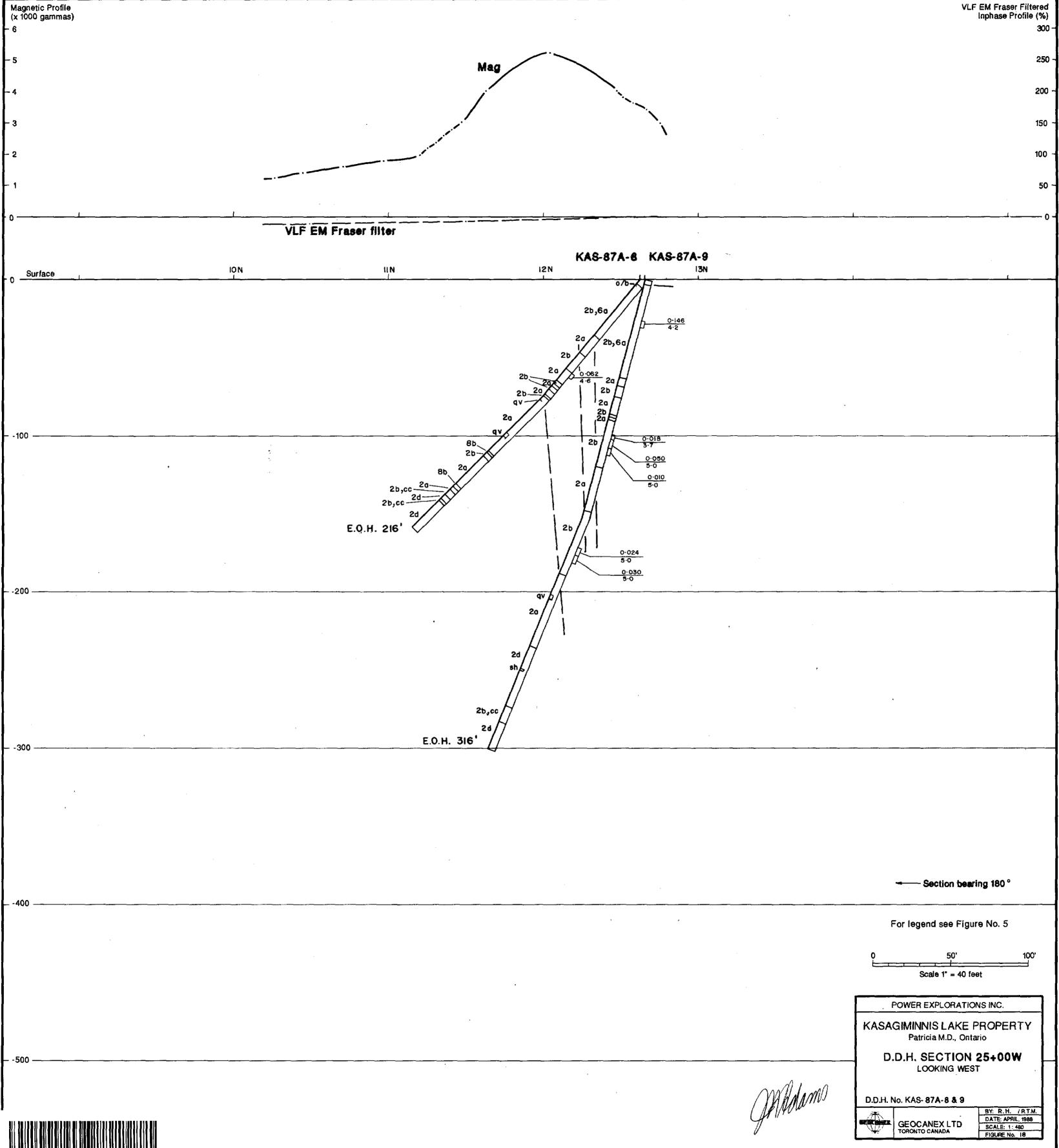


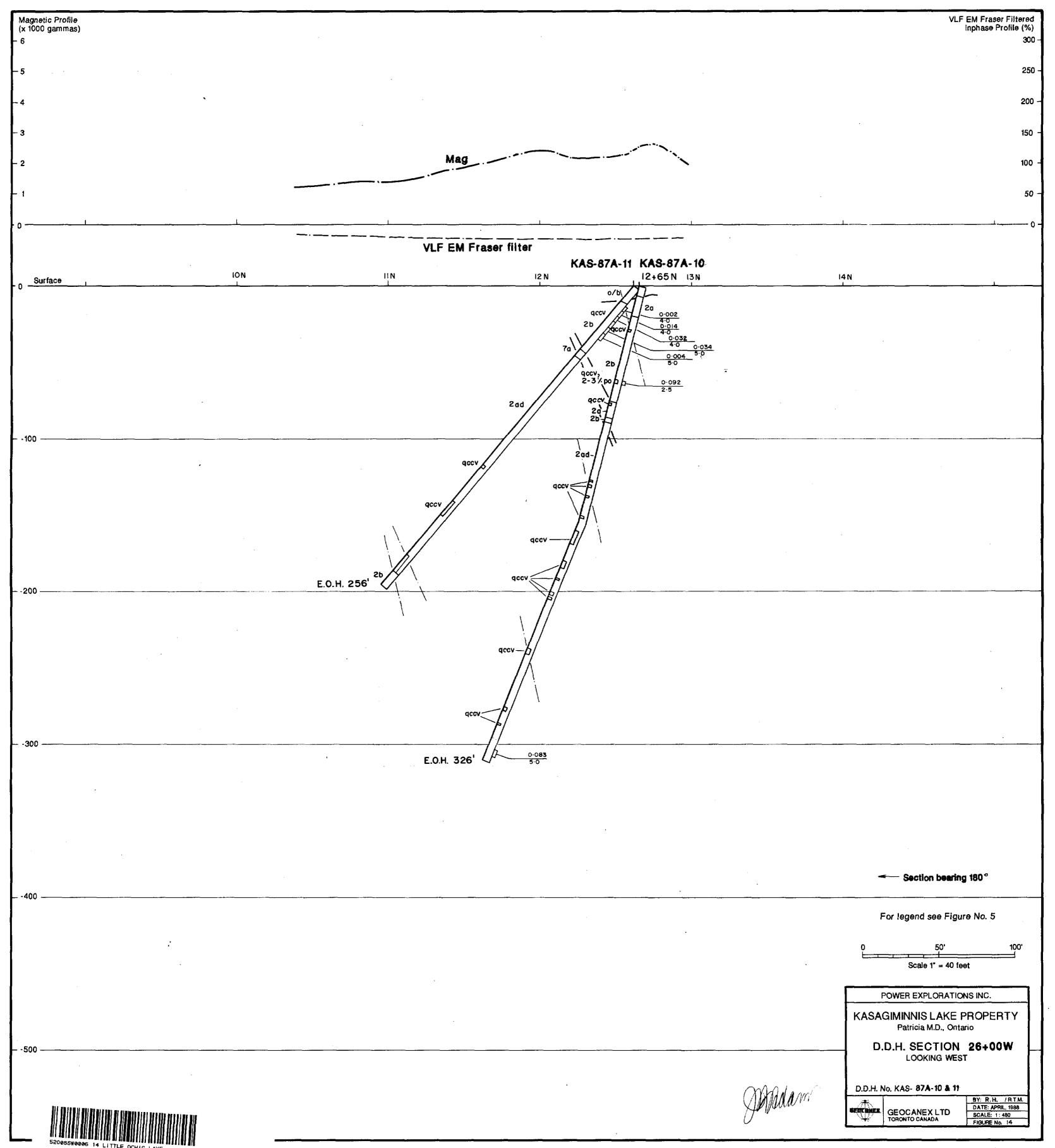


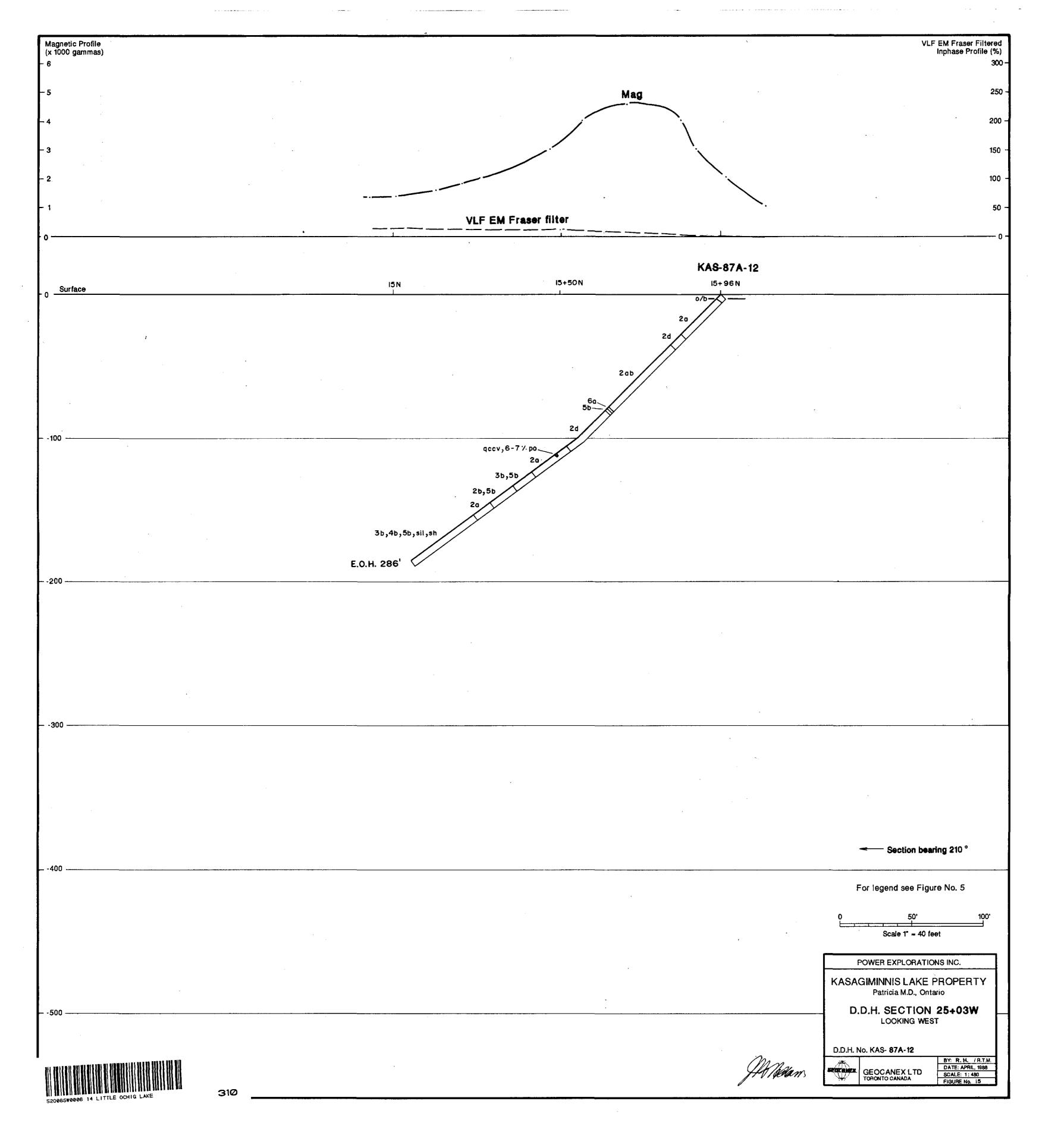


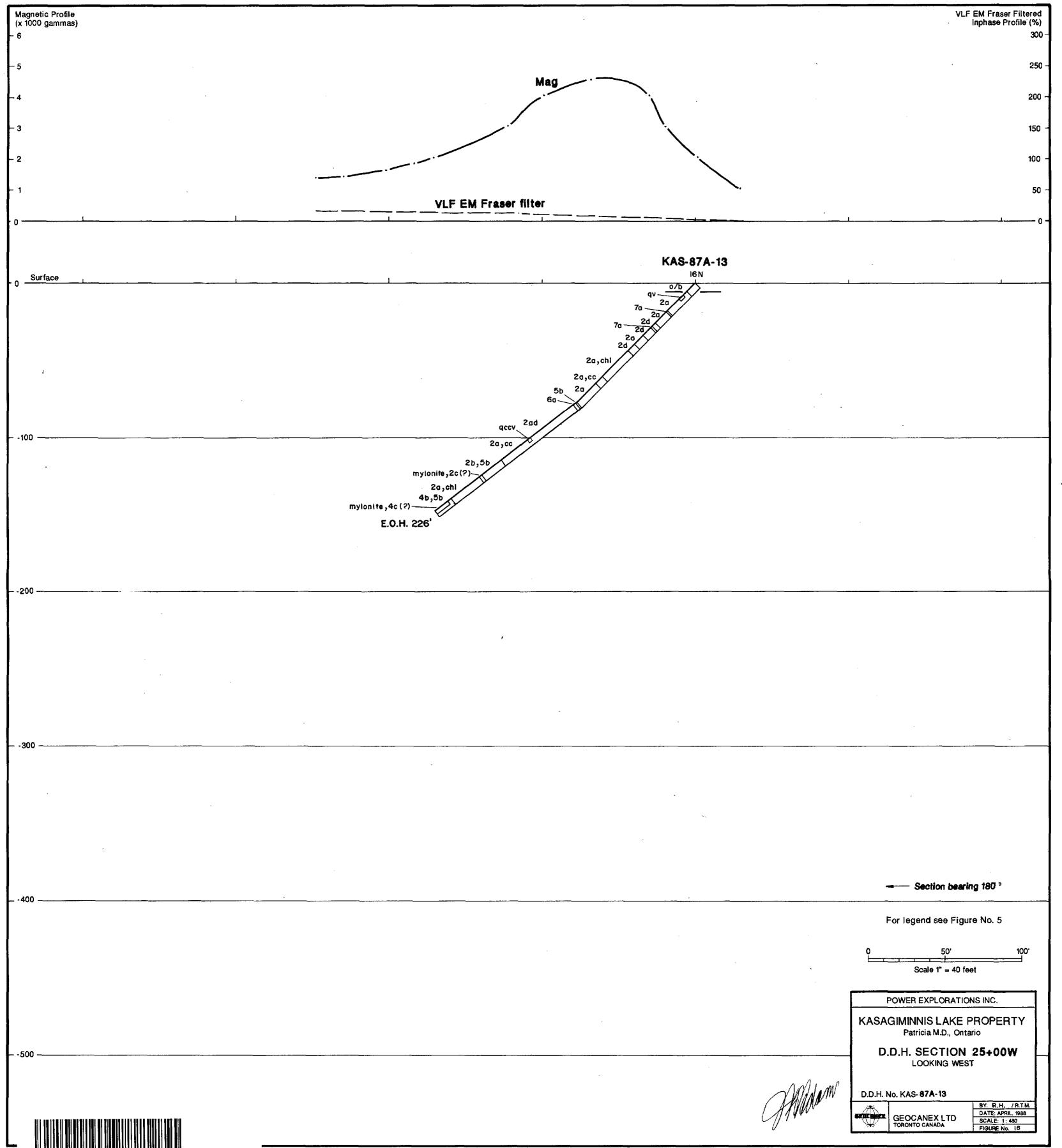


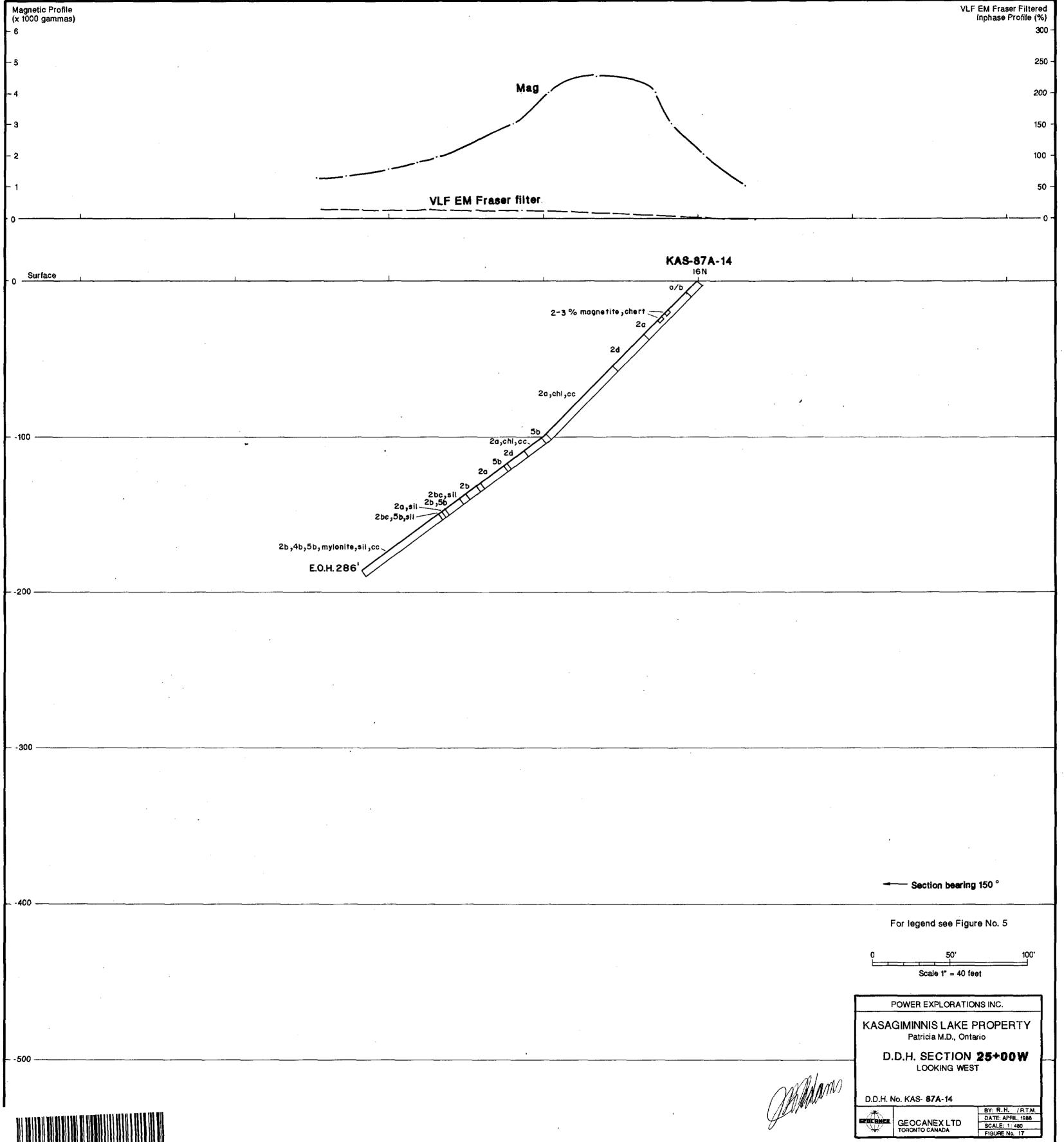


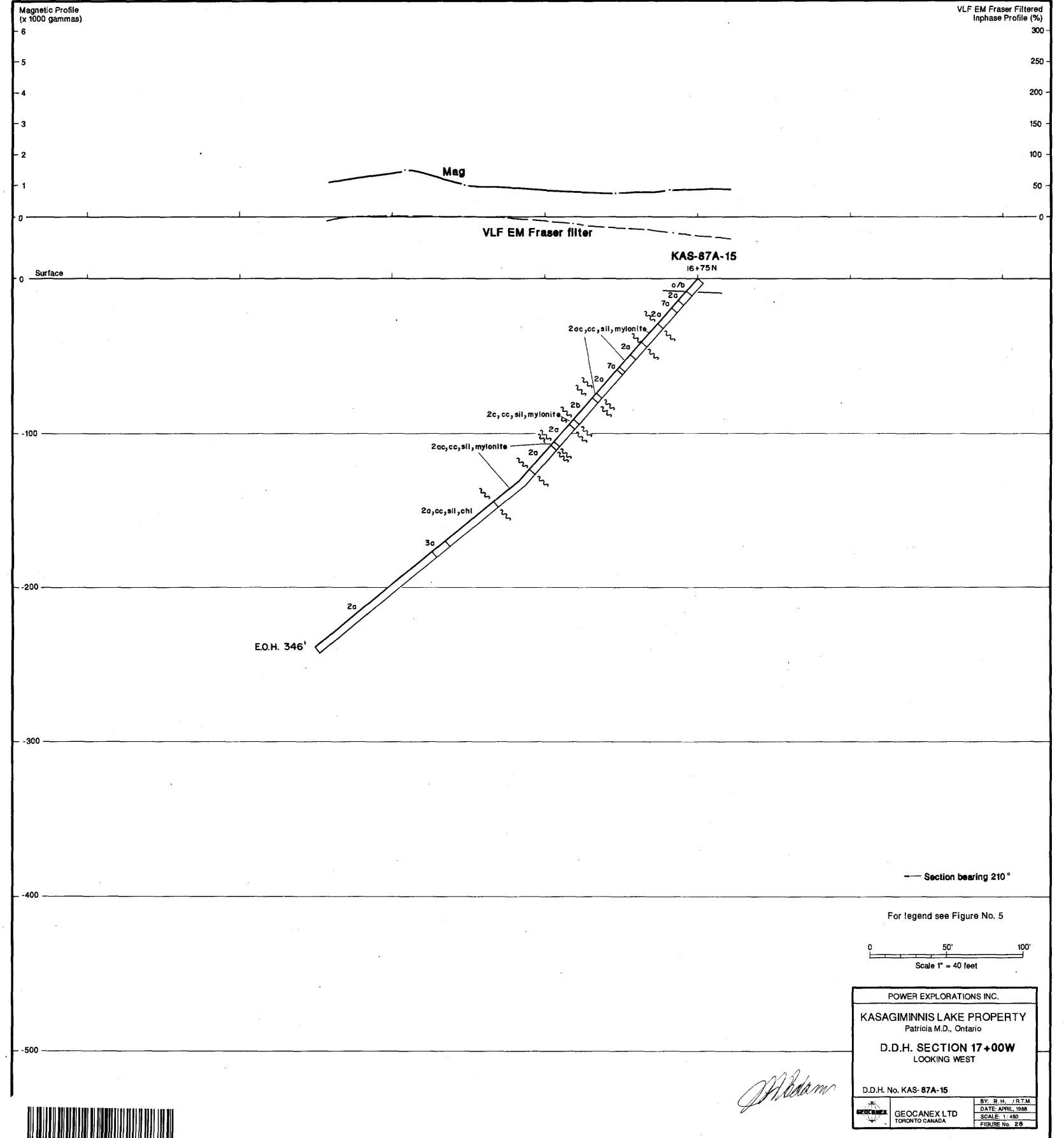


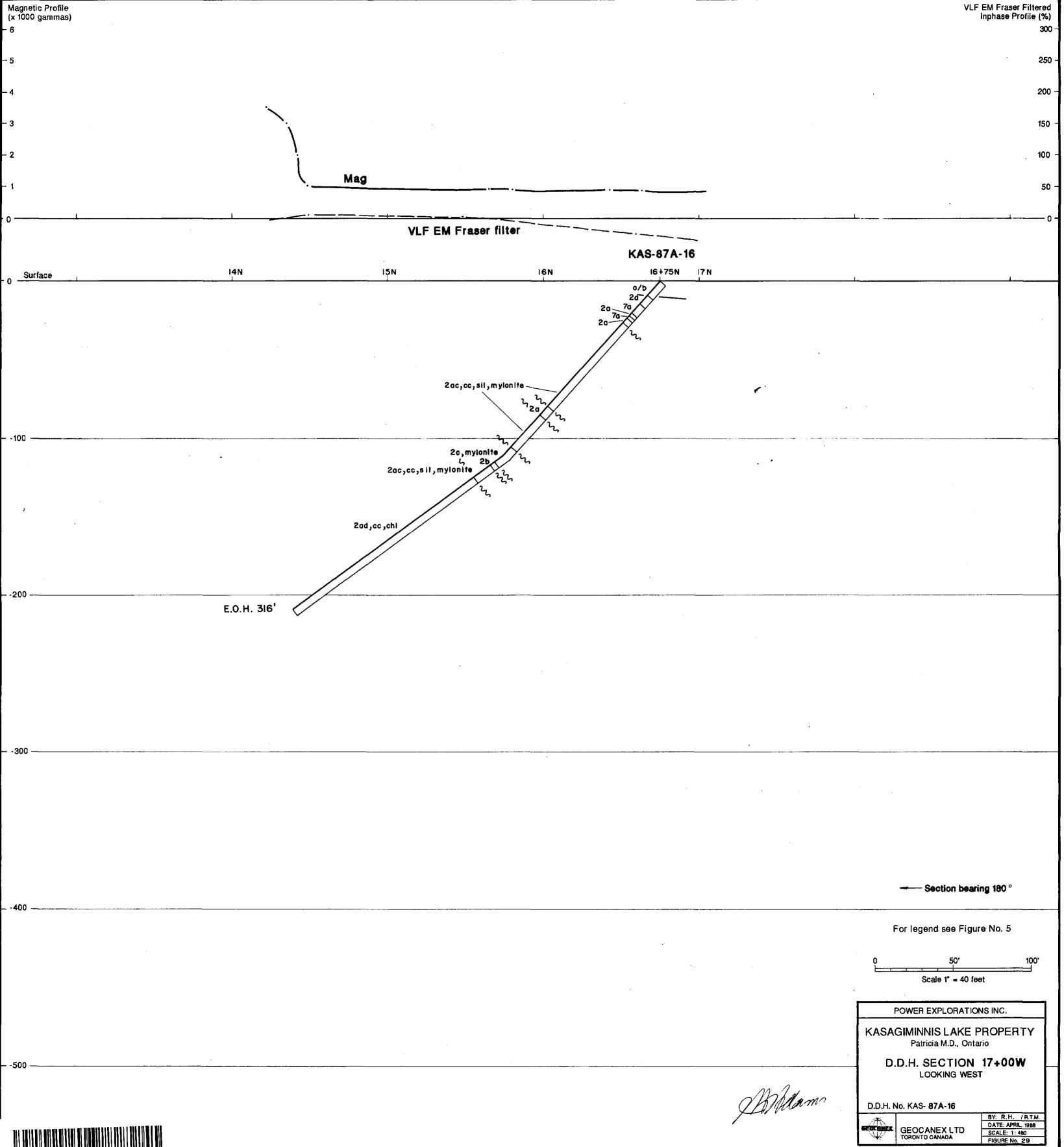


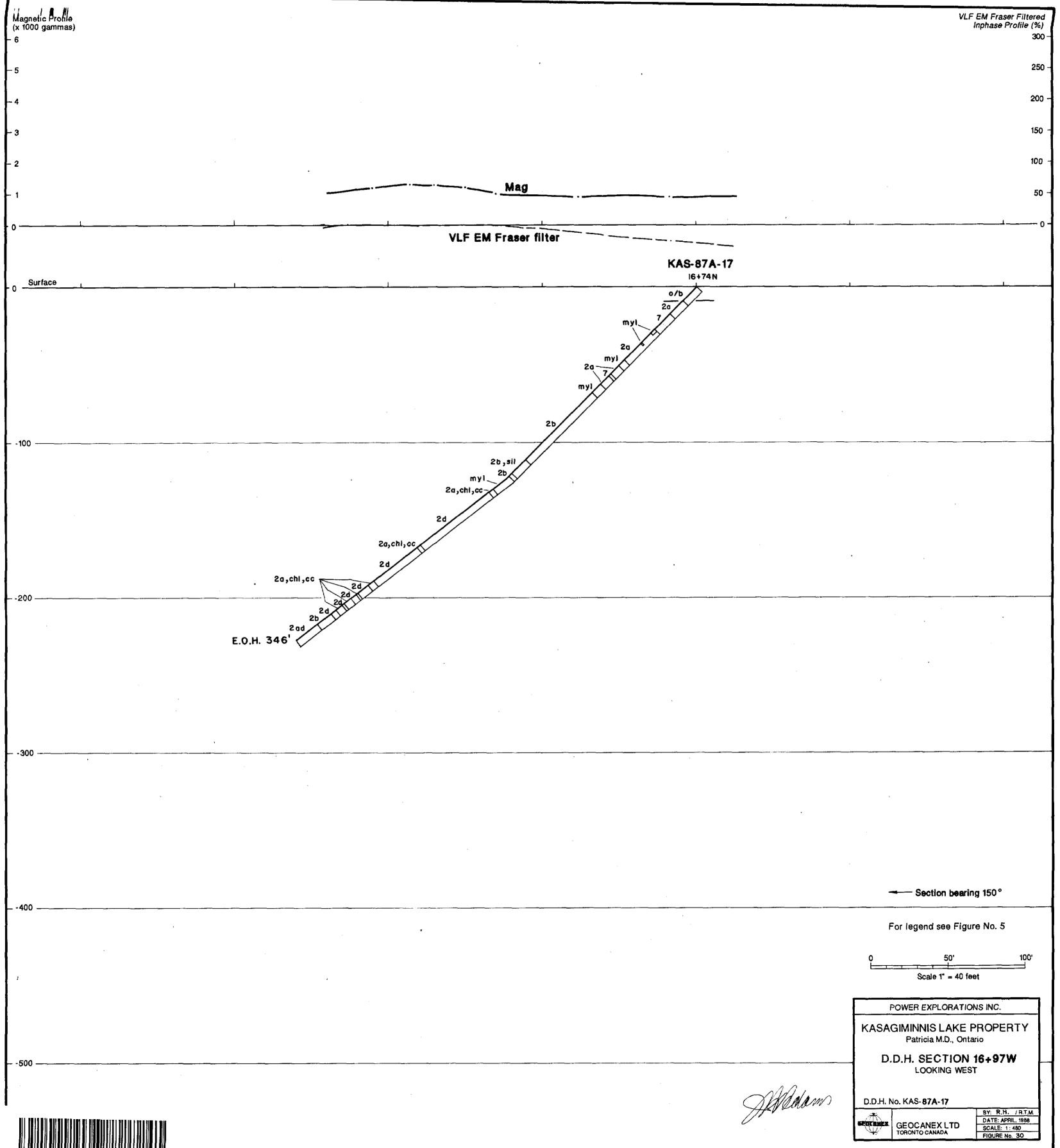


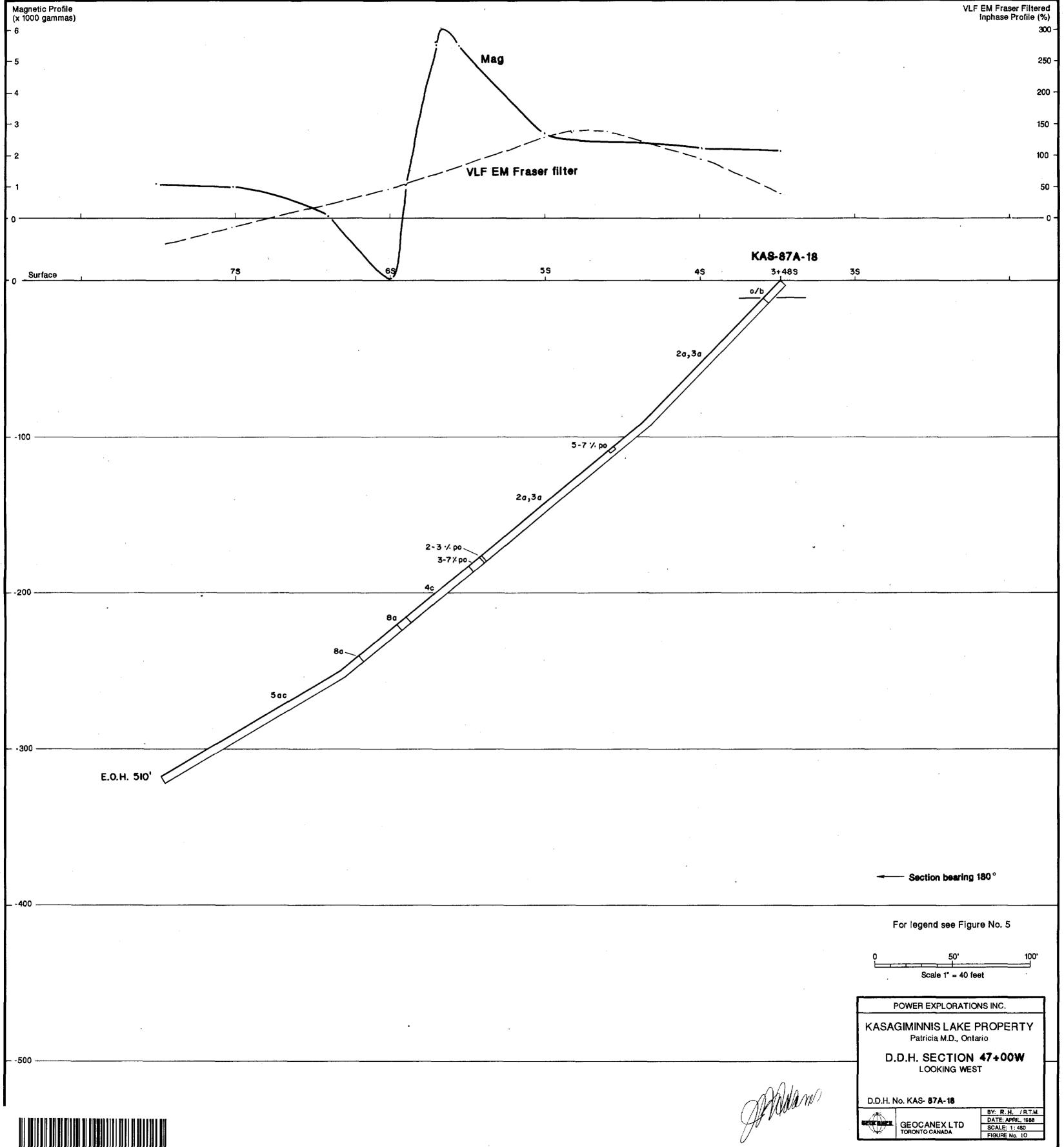


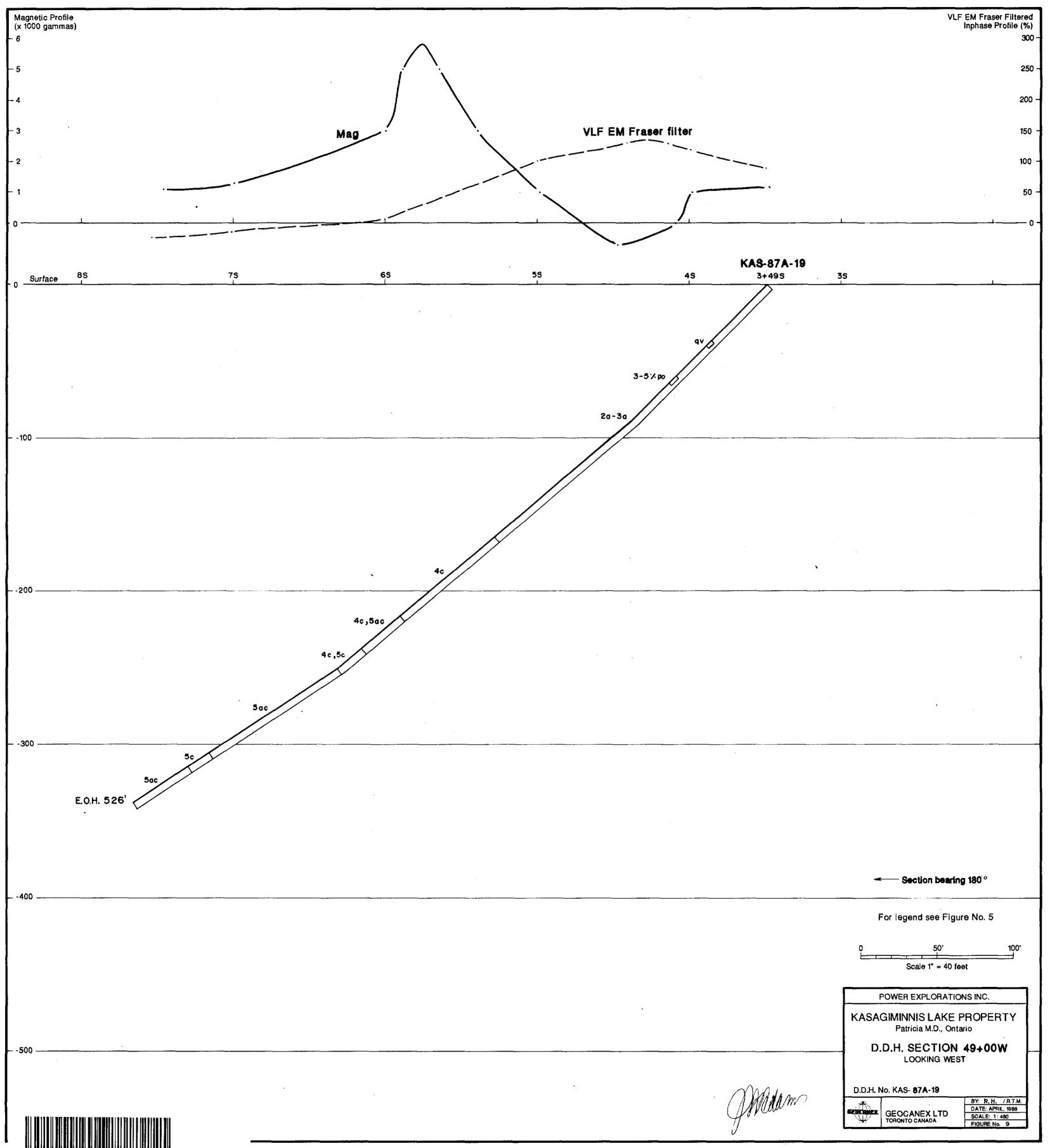


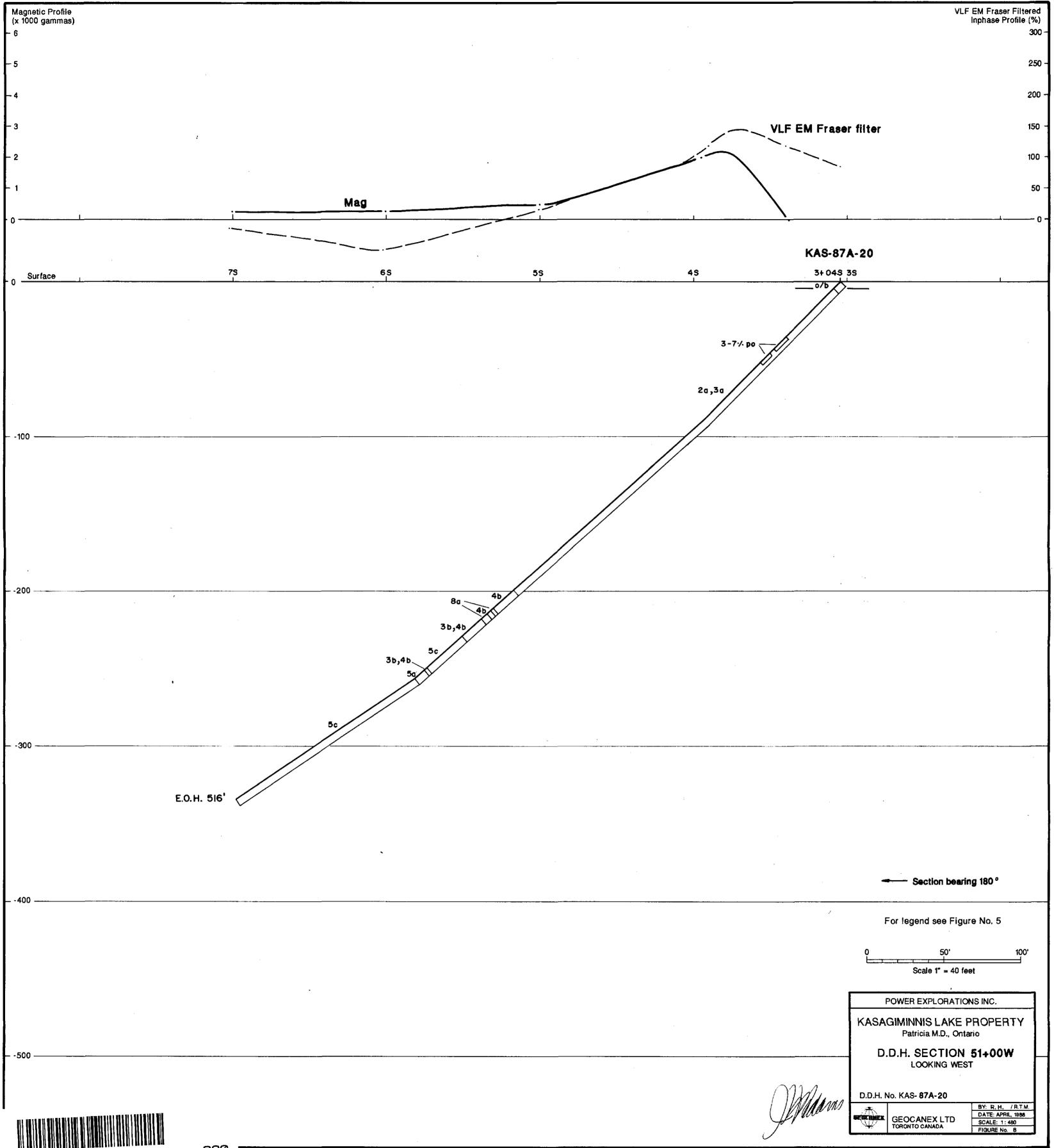


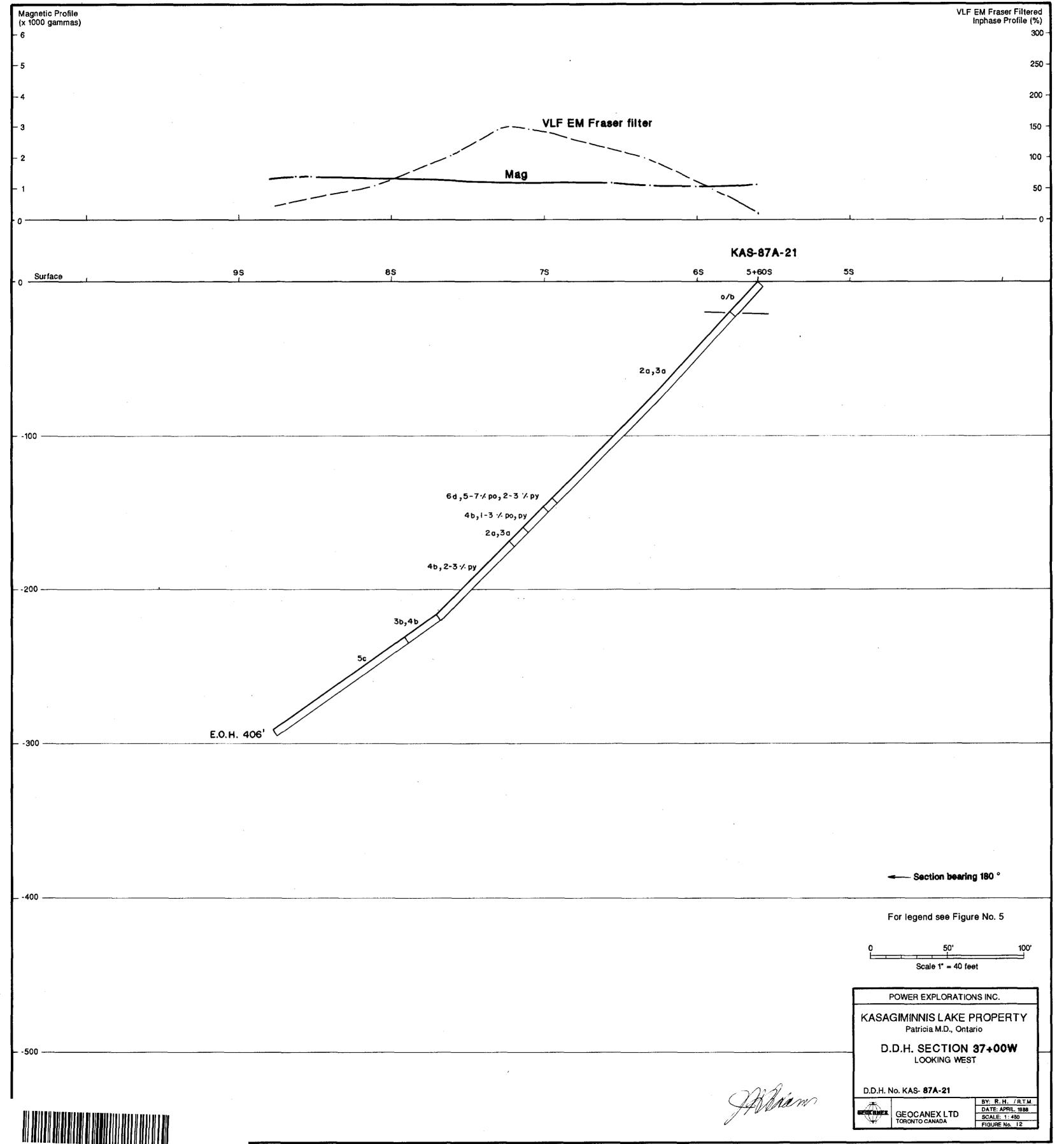


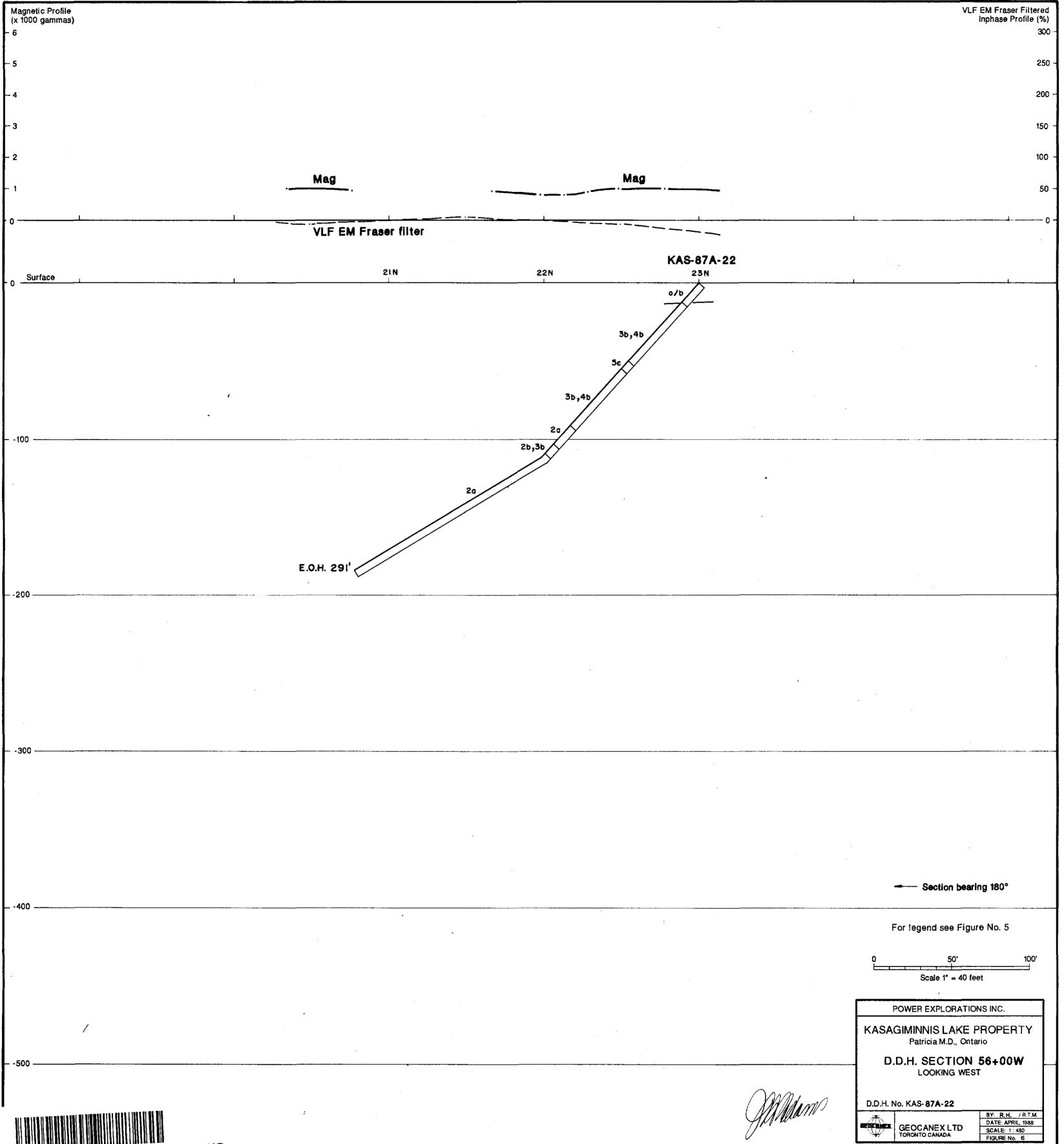


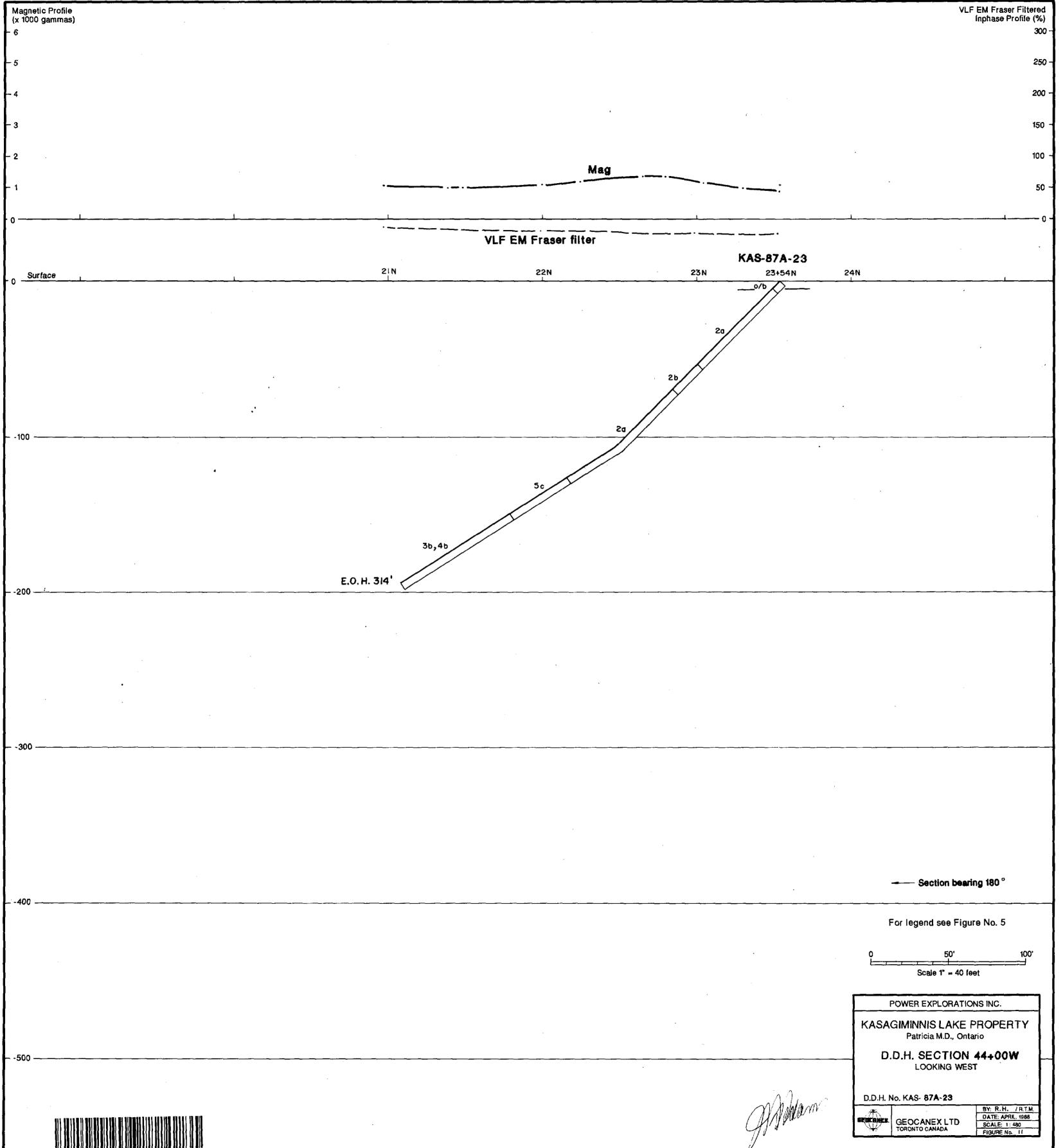


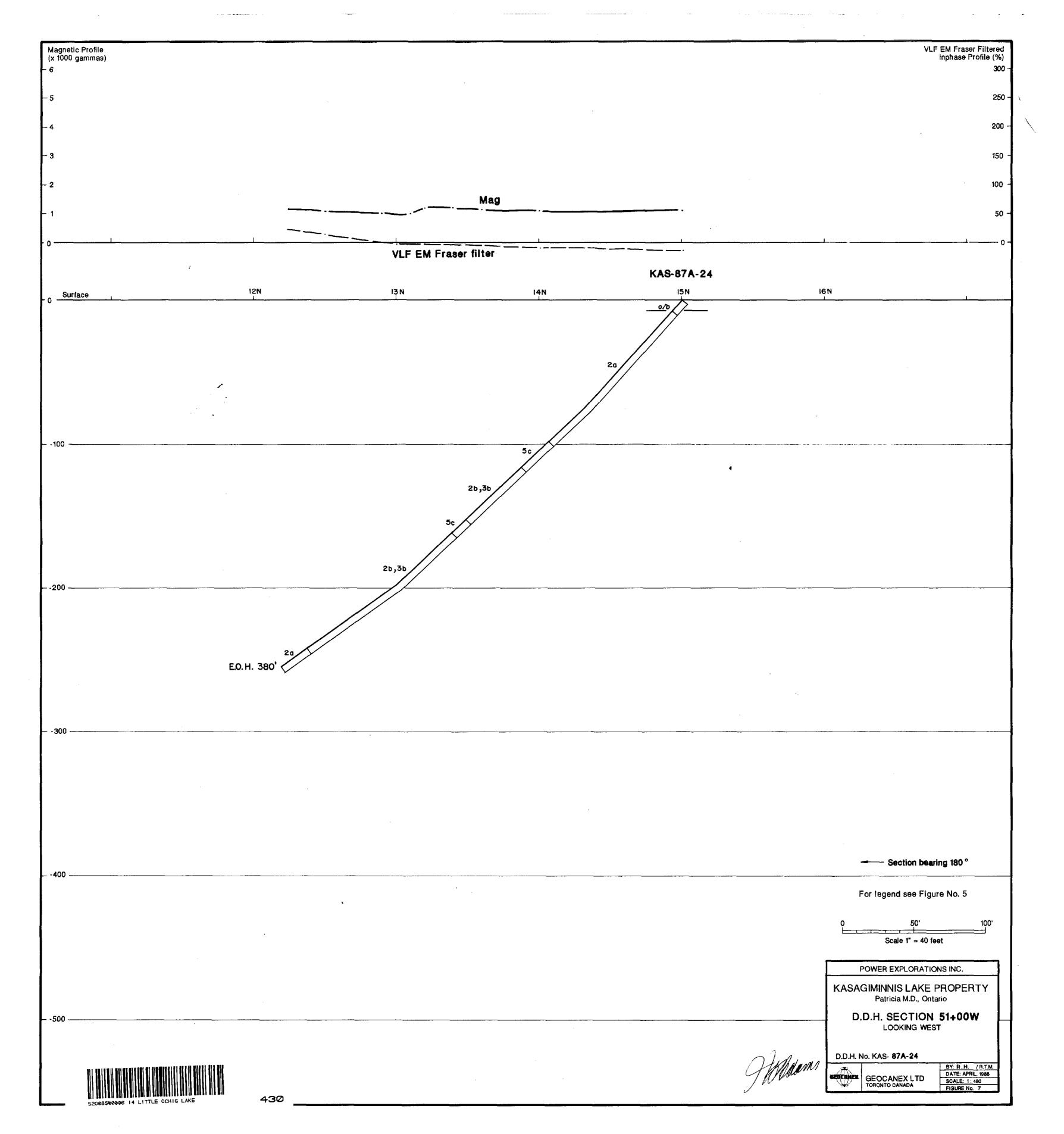


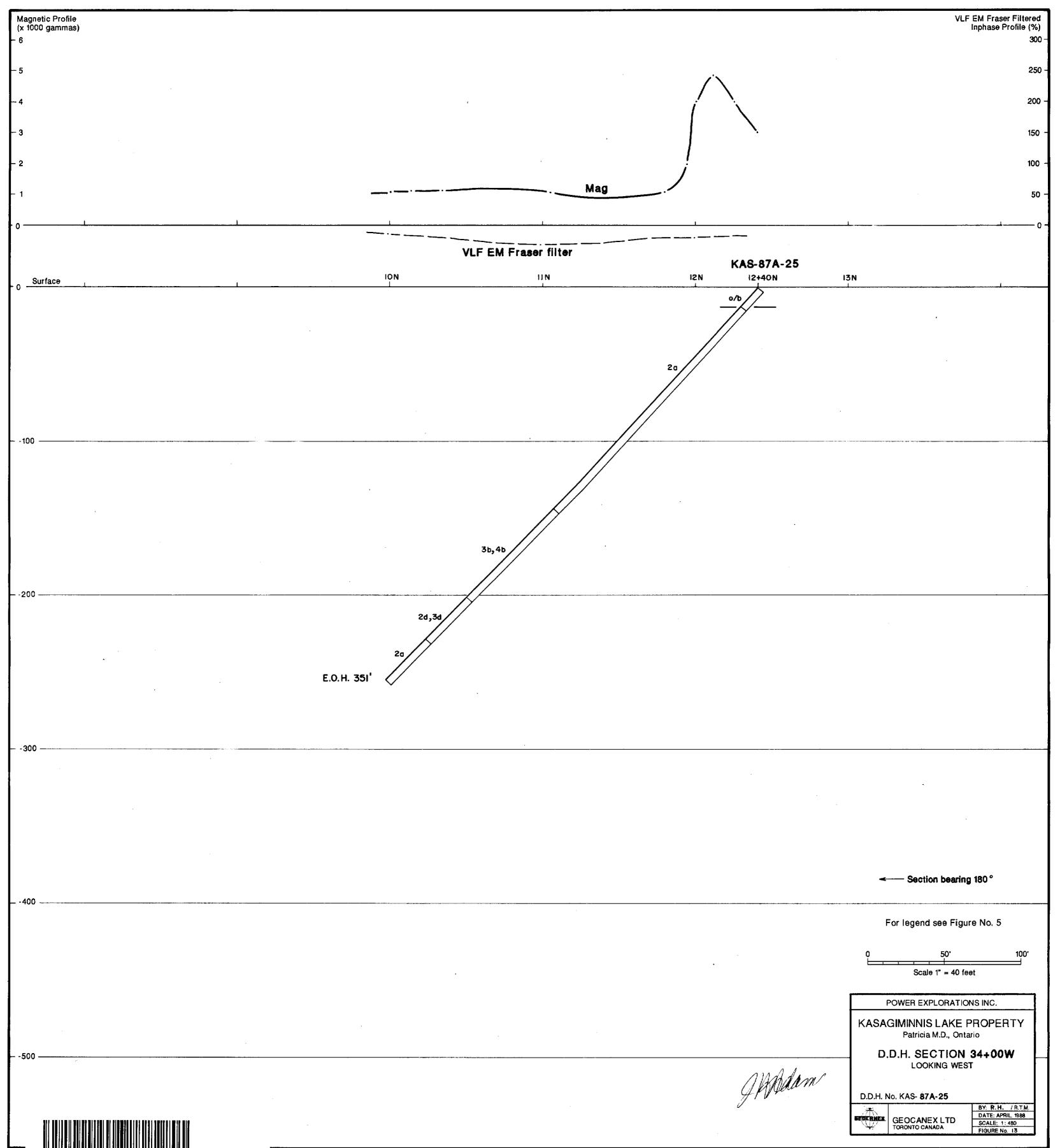


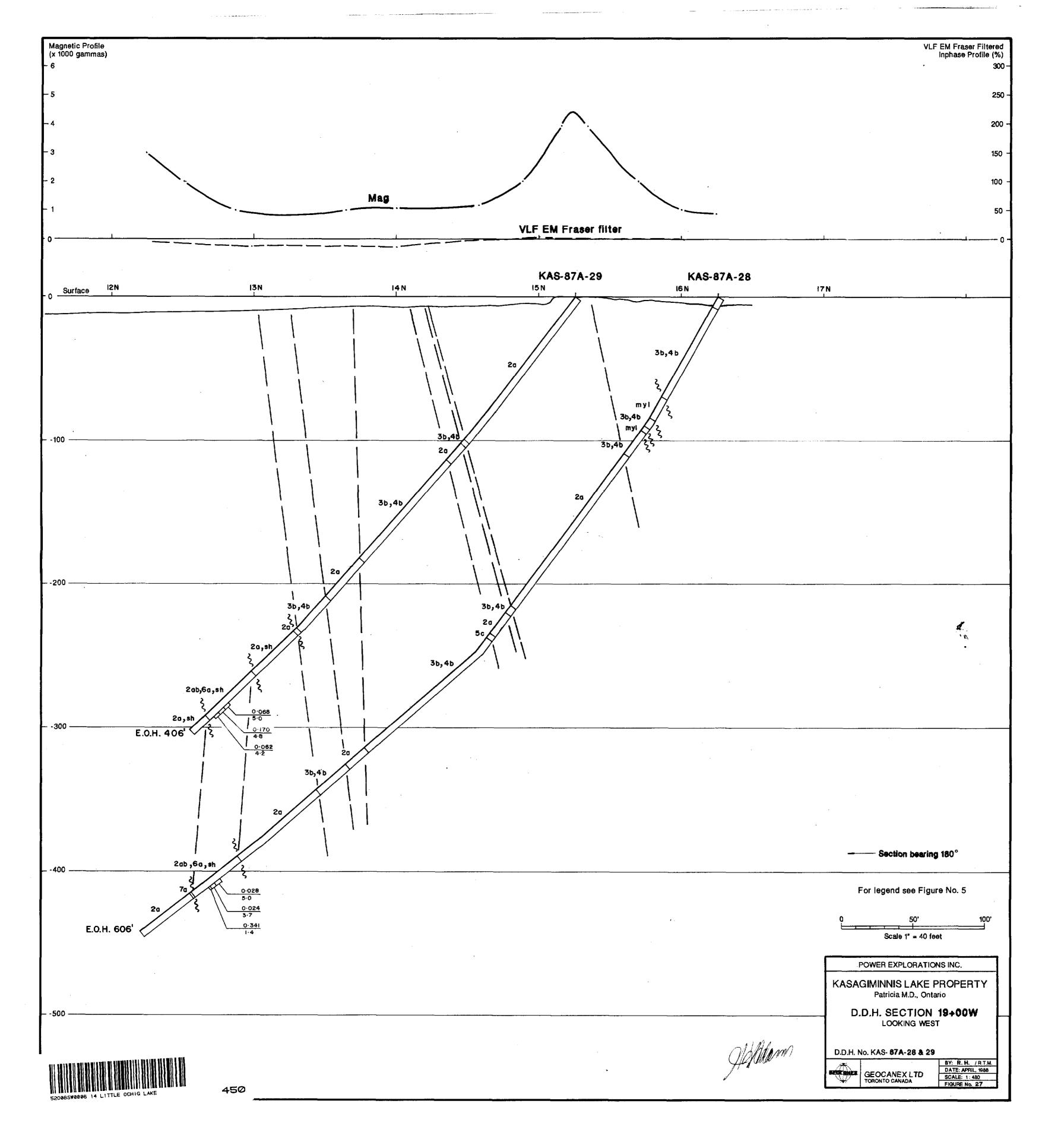


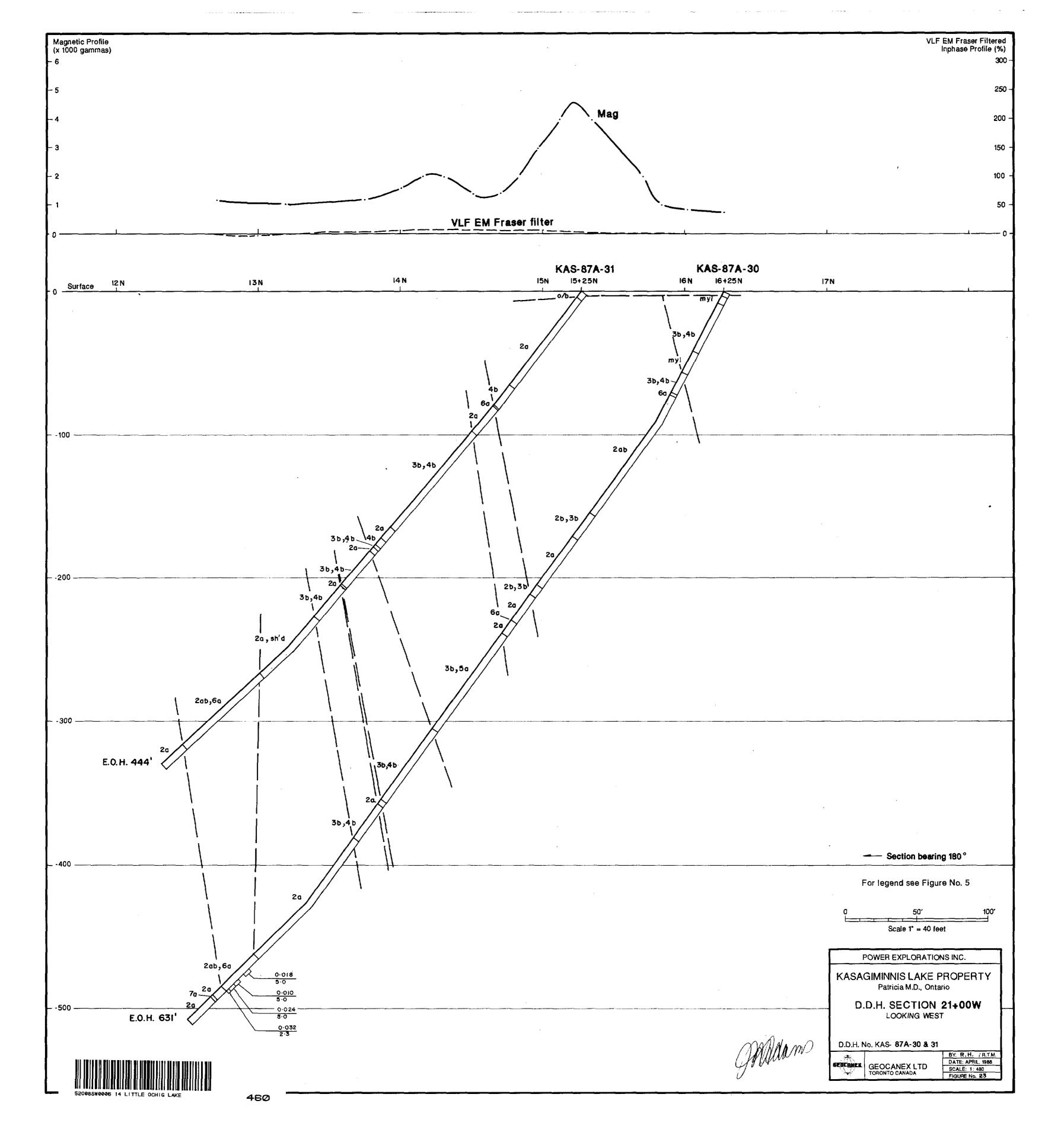


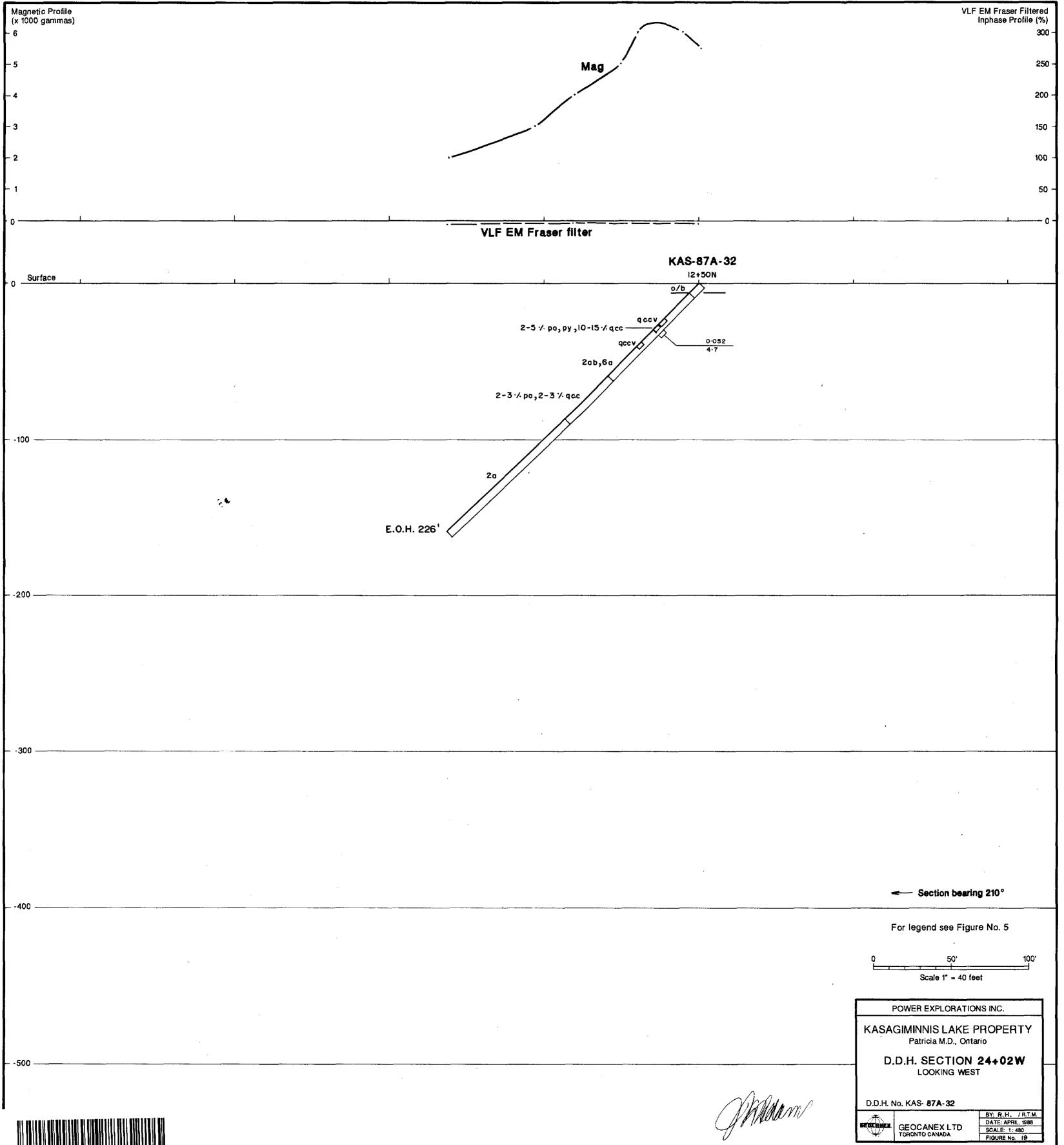


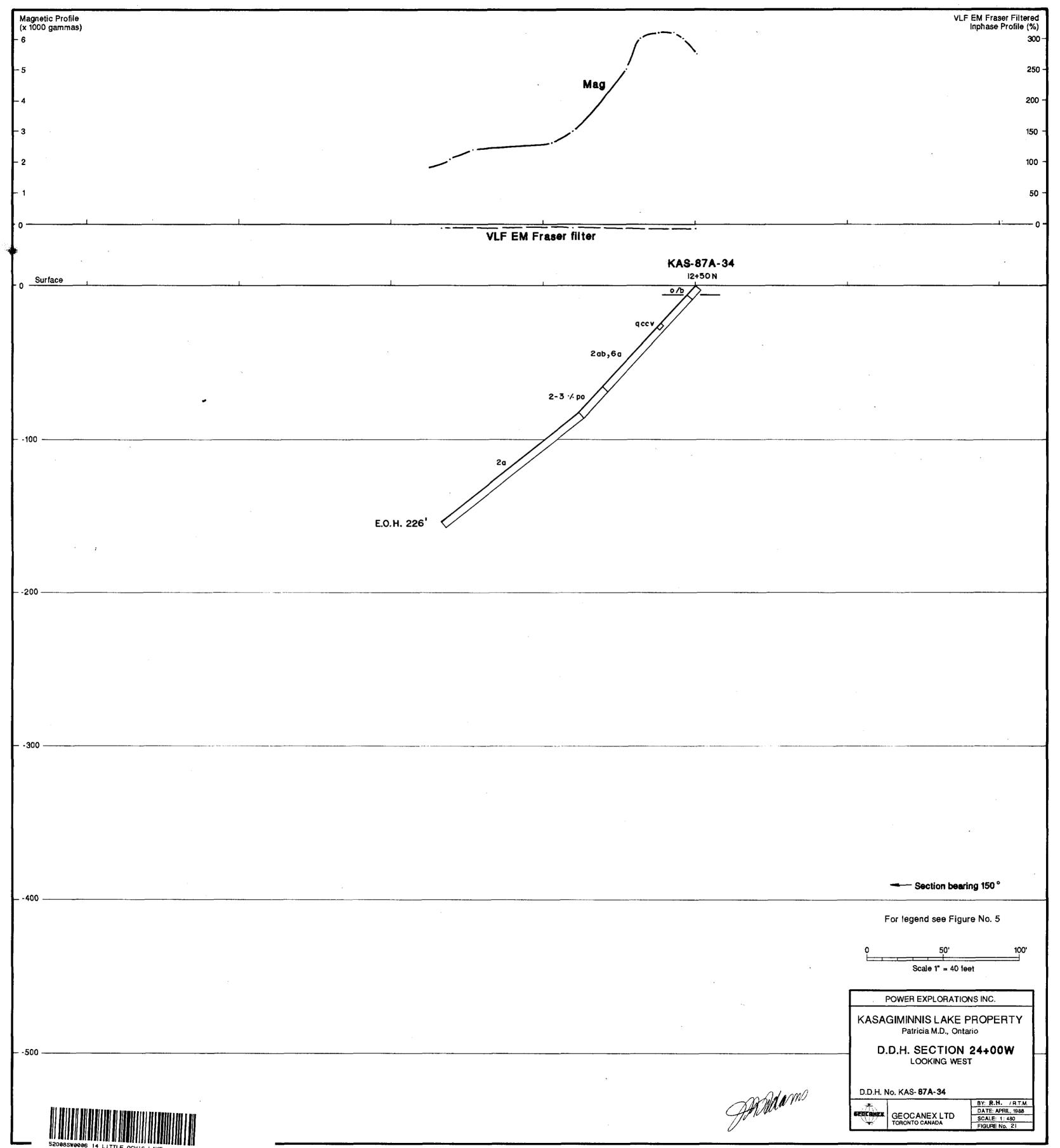


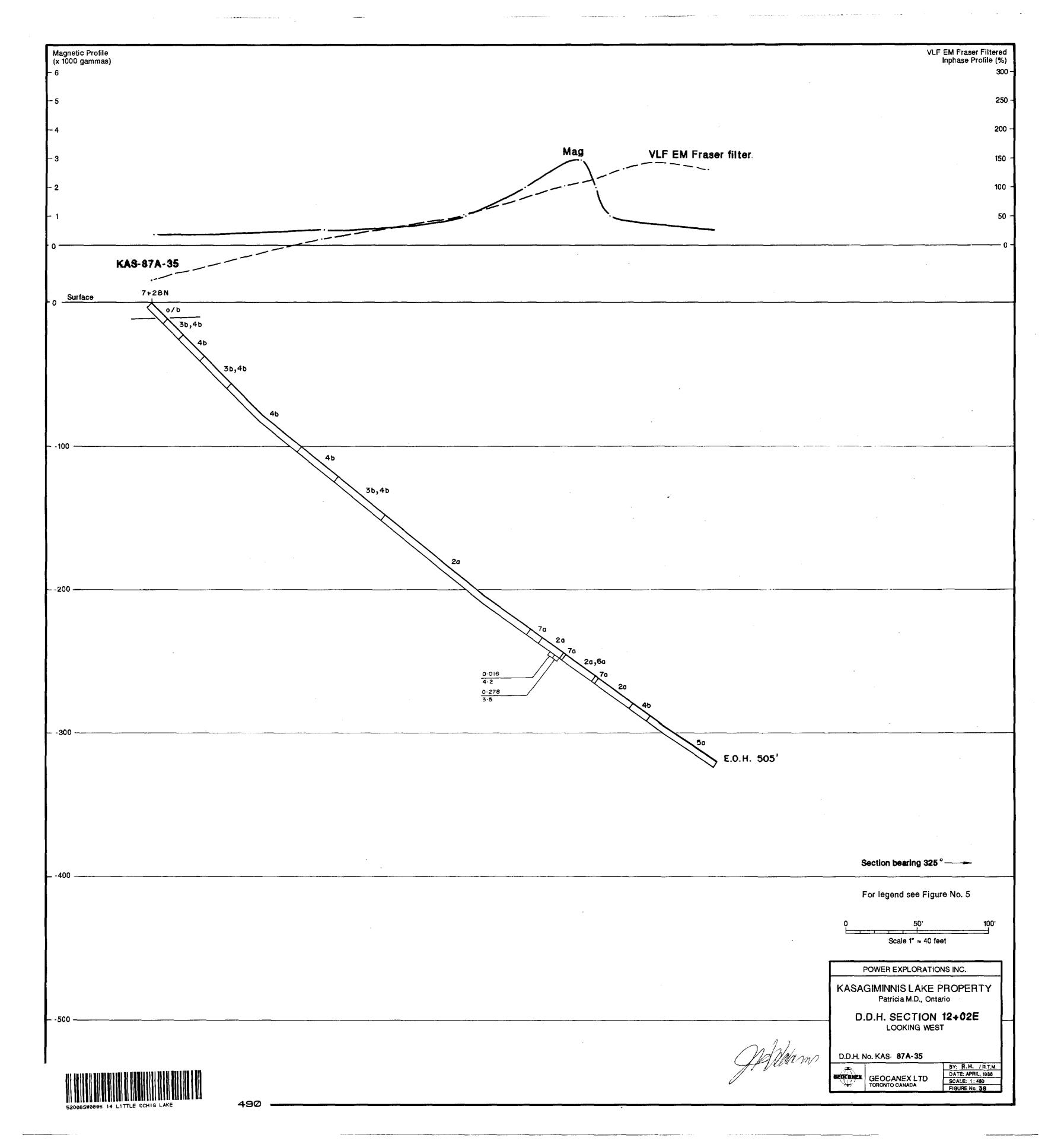


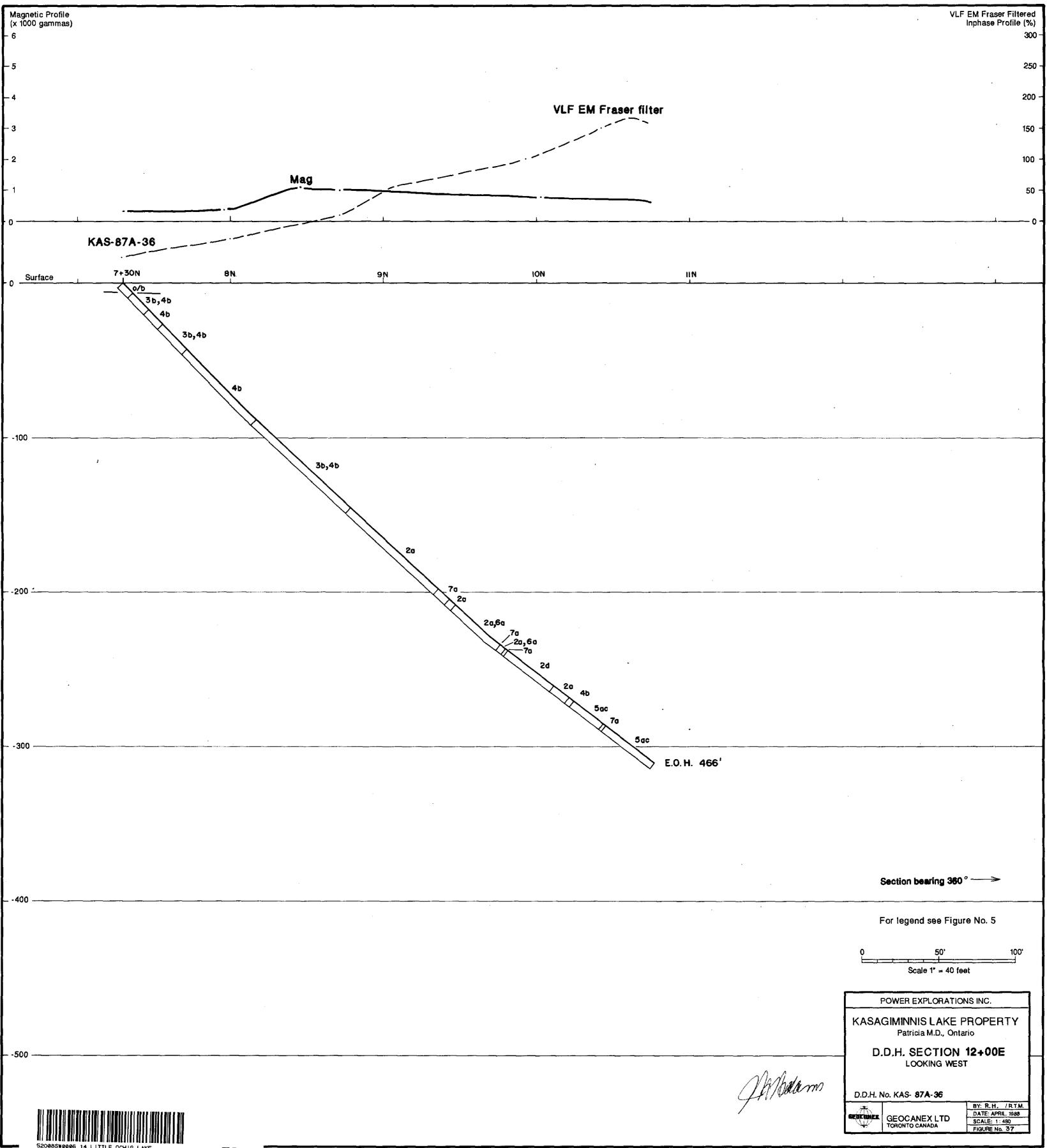


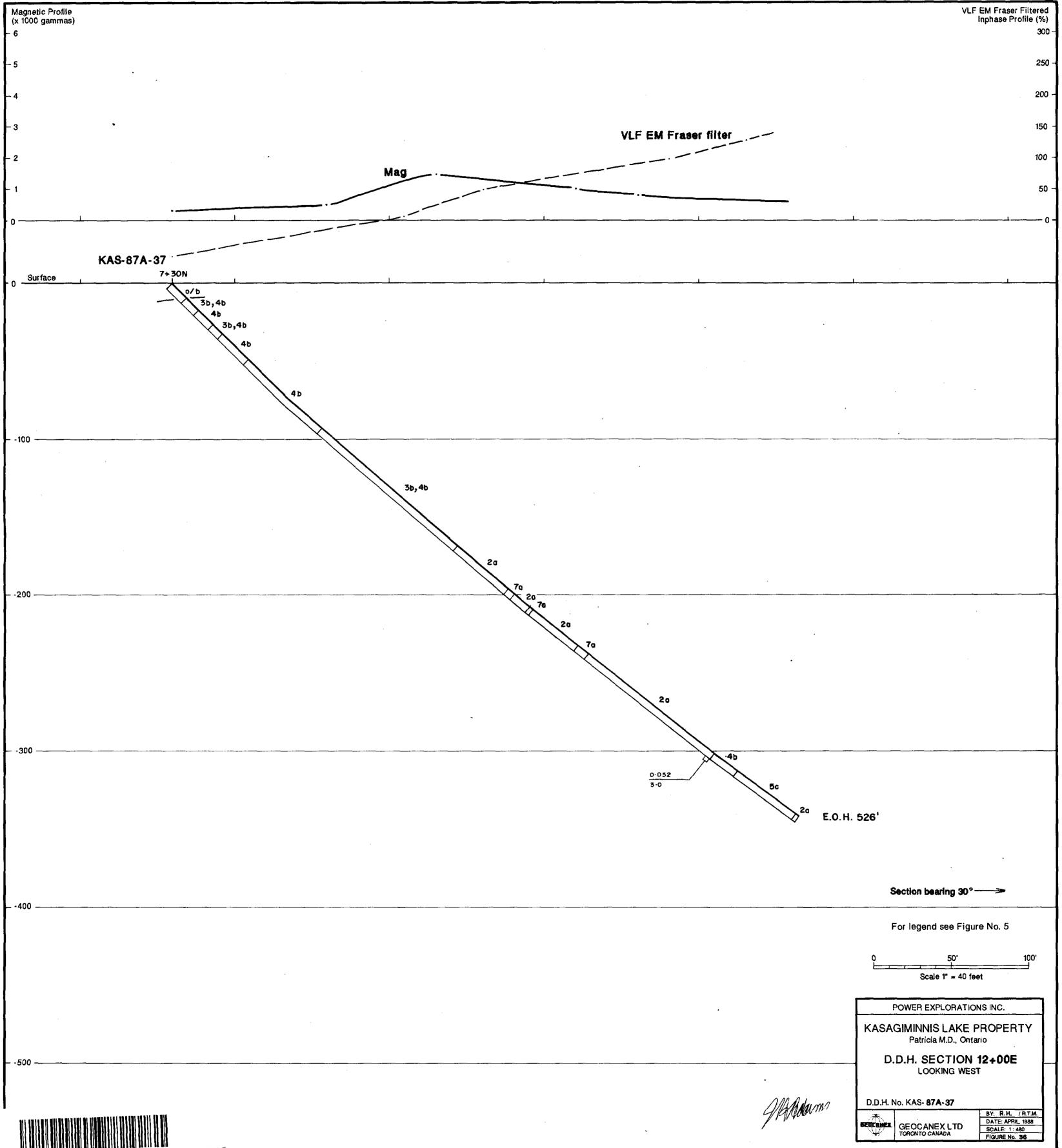


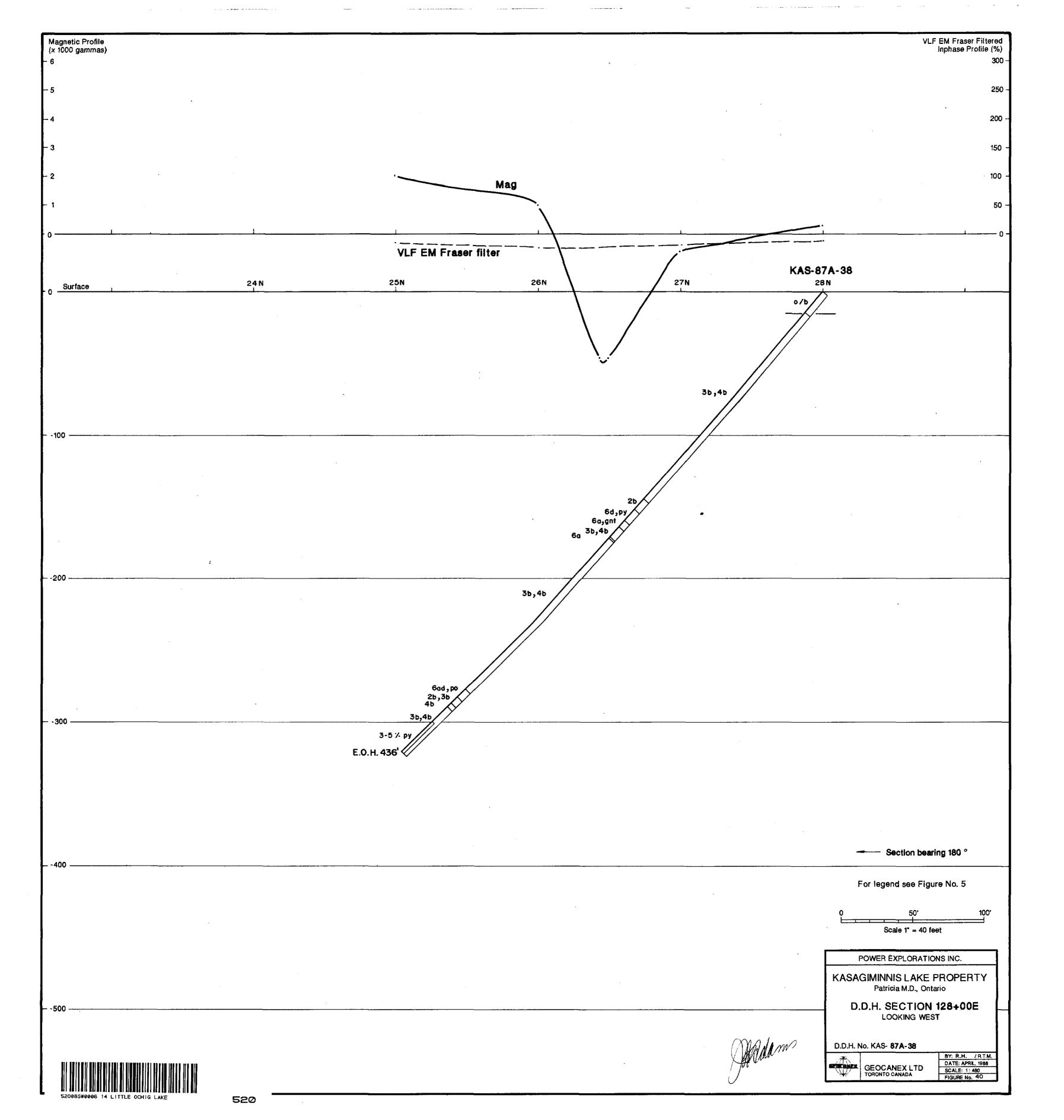











MINING THE CONTRACT OF THE STATE OF THE STAT

