

2008SW0007 2.11219 LITTLE OCHIG LAKE

010

REPORT

ON

GEOLOGICAL MAPPING, PROSPECTING AND DIAMOND DRILLING

OCHIG LAKE PROPERTY

DISTRICT OF KENORA, PATRICIA MINING DIVISION

NORTHWESTERN ONTARIO

FOR

POWER EXPLORATIONS INC.

NTS 52 0/8 SW

RECEIVED

MAY 20 1988

MINING LANDS SECTION

R.A.V. Higginson, B.Sc.

February 1988

520085W00007 2.11219 LITTLE OCHIG LAKE

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	PROPERTY DESCRIPTION	4
4.0	LOCATION, ACCESS AND SERVICES	6
5.0	PHYSIOGRAPHY AND VEGETATION	7
6.0	PREVIOUS WORK	8
7.0	REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION	8
8.0	PROPERTY GEOLOGY	11
	 8.1 General Geology 8.2 Volcanics 8.3 Sediments 8.4 Iron Formation 8.5 Intrusives 8.6 Metamorphism 8.7 Structure 	11 11 12 13 13 14
9.0	SUMMARY OF GEOPHYSICS	14
10.0	DESCRIPTION OF PROGRAMS	15
	10.1 Geological Mapping and Prospecting	15
	10.2 Diamond Drilling Program	15
11.0	DISCUSSION OF RESULTS	17
12.0	CONCLUSIONS	19
13.0	RECOMMENDATIONS	20
	13.1 Phase I	20
	13.2 Phase II	20
14.0	ESTIMATED COST OF RECOMMENDED EXPLORATION PROGRAM	21
	14.1 Phase I	21
	14.2 Phase II	21
15.0	REFERENCES	22

TABLE OF

LIST OF APPENDICES

Ē

А	CERTIFICATE OF QUALIFICATION	Back	of	report
В	ROCK SAMPLE DESCRIPTIONS AND ANALYSES	н	11	\$1
с	ROCK SAMPLE ASSAY CERTIFICATES	н	н	**
D	DIAMOND DRILL LOGS	н	н	11
Е	LEGEND AND DIAMOND DRILL SECTIONS	# #	н	
F	CORE SAMPLE ASSAY CERTIFICATES	11	11	10

LIST OF TABLES

TABLE	NO.	1	- SUMMARY	OF	DRILL	HOLE	DATA	Page	16	5
-------	-----	---	-----------	----	-------	------	------	------	----	---

LIST OF FIGURES

FIGURE	NO.	1 -	LOCATIO	N MAP				Page	3
FIGURE	NO.	2 -	CLAIM S	КЕТСН				Page	5
FIGURE	NO.	3 -	PROPERT GEOLOGY	Y LOCA	FION AND	REGIONAL		Page	9
FIGURE	NO.	4 -	· PLAN OF	DRILL	ING			Page	18
FIGURE	NO.	5 -	LEGEND				Aj	ppendi	ix E
FIGURE	NO.	6 -	DIAMOND	DRILL	SECTION	42+50E	"	"	11
FIGURE	NO.	7 -	DIAMOND	DRILL	SECTION	12+00E	н	11	н
FIGURE	NO.	8 -	DIAMOND	DRILL	SECTION	60+00W	н	11	н
FIGURE	NO.	9 -	· DIAMOND	DRILL	SECTION	34+00W	н	11	11
FIGURE	NO.	10 -	DIAMOND	DRILL	SECTION	54+00W	н	н	"
FIGURE	NO.	11 -	DIAMOND	DRILL	SECTION	64+00W	u	н	11
FIGURE	NO.	12 -	DIAMOND	DRILL	SECTION	58+50W			

LIST OF DRAWINGS

DRAWING NO. 1 - GEOLOGY OF OCHIG LAKE

In map pocket

1.0 SUMMARY

The Ochig Lake property of Power Explorations Inc. is located 12 miles south of the town of Pickle Lake in northwestern Ontario.

The property lies on an east to northeast trending area of the Dempster-Pickle Lakes greenstone belt. A narrow package of mafic volcanics and iron formation transects a broad zone of dominantly felsic to mafic pyroclastics and sediments. The stratigraphic sequence is crosscut by numerous high angle felsic to mafic intrusives and geophysically interpreted fault-shear systems.

Compilation of results from the current geological mapping, prospecting and diamond drilling programs suggest that significant gold mineralization may occur on the property.

Gold mineralization was encountered in two settings; associated with sulphide mineralization on the central mafic volcanic - iron formation package where three holes intersected values of .002 to .034 ounces per ton gold over significant widths, and, in quartz-tourmaline veining associated with faulting or shearing, in which one hole intersected .028 ounces per ton gold over 3.0 feet.

A two-phase exploration program is warranted and recommended for the property. Phase I would involve detailed ground magnetometer and HLEM surveys, stripping and lithogeochemical trench sampling. Phase II would involve diamond drilling of targets delineated in Phase I.

2.0 INTRODUCTION

.

This report describes the results of the 1987 geological mapping, prospecting and diamond drilling programs on the Ochig Lake property of Power Explorations Inc.

The property consists of 78 mining claims, located 12 miles south of the town of Pickle Lake in the Patricia Mining Division, northwestern Ontario (Fig. No. 1).

The geological mapping and prospecting program, and supervision of the diamond drilling were carried out concurrently with geophysical surveys, including ground magnetics and VLF-EM by Geocanex Ltd. Midwest Drilling of Winnipeg was the drilling contractor.

All survey work and diamond drilling was done on a cut picket line grid. The grid has an east-west trending baseline with perpendicular lines at 400 foot intervals across the strike of the local stratigraphy. Several tie lines were cut to ensure control on long picket lines.

The personnel involved in the geological mapping and prospecting program were:

Higginson	Project Geologist	Oro Station, Ontario
Drew	Geologist	North Bay, Ontario
Howes	Field Assistant	Kingston, Ontario
Simonson	Field Assistant	Trenton, Ontario
	Aigginson Drew Howes Simonson	Aigginson Project Geologist Drew Geologist Howes Field Assistant Simonson Field Assistant

The personnel involved in the drilling program were:

R.	Higginson	Project Geologist	Oro Station,	Ontario
J.	Pierce	Assistant	Wasaga Beach,	, Ontario

During the geological mapping and prospecting program, quartz veins and mineralized horizons were sampled, and geophysical anomalies were prospected. Drill targets were chosen from compiled geological and geophysical data. Quartz veins and mineralized horizons were sampled from the drill core. All sample descriptions and assays from the mapping-prospecting and drilling programs as well as drill logs and drill sections, are included in this report.

The geological mapping and prospecting program was carried out between July 3, 1987 and July 21, 1987. The time breakdown for the work performed is as follows:

Man-Days

Mapping 49.25 Prospecting 11

The diamond drilling program consisted of seven BQ (1-7/16") diamond drill holes totalling 2,145 feet, and was carried out between October 29, 1987 and November 14, 1987.

3.0 PROPERTY DESCRIPTION

The Ochig Lake property consists of 78 contiguous unpatented mining claims in the Ochig Lake area, Patricia Mining Division, District of Kenora, northwestern Ontario (Fig. No. 2). The claim numbers and recording dates are as follows:

- 5 -

Claim Numbers

Recording Dates

Pa	893308-893324	inclusive	(17)	October	21,	1986
Pa	893948-893969	inclusive	(22)	October	21,	1986
Pa	903474-903483	inclusive	(10)	October	21,	1986
Pa	903609-903621	inclusive	(13)	October	21,	1986
Pa	965801-965816	inclusive	(16)	February	10,	, 1987

Total 78 Claims

The claims are wholly owned by Power Explorations Inc. of 1003-34 King Street East, Toronto, Ontario, M5C 1E5.

4.0 LOCATION, ACCESS AND SERVICES

The Ochig Lake property is located 12 miles south of Pickle Lake and lies to the north and west of the northwestern corner of the Osnaburgh Indian Reserve (No. 63B). The eastern property boundary is approximately 1/2 mile west of Highway 599.

The property can be easily reached from Highway 599 along the northern surveyed boundary of the Osnaburgh Indian Reserve, or by float plane from Pickle Lake.

Pickle Lake is a mining and transportation centre of approximately 350. UMEX (Union Miniere Exploration) operates a 4,000 TPD copper-nickel mine and concentrator seven miles northwest of Pickle Lake with 14,000,000 tons of ore grading 1.6% copper and 0.2% nickel. The mine is presently closed due to depressed base metal prices. Consequently, there is abundant vacant housing in town. Pickle Lake is connected by paved Highway 599 to Savant Lake and the Canadian National transcontinental railway line 90 miles south, and Ignace and Trans Canada Highway 17, 180 miles south. Electricity is supplied by a hydro line connecting Pickle Lake to the Ear Falls generating station.

Air, ground and water transportation for local use are readily available in town. Pickle Lake is also serviced by regularly scheduled flights from Thunder Bay with connections to Toronto.

5.0 PHYSIOGRAPHY AND VEGETATION

The Ochig Lake property is covered equally by low-lying swamps and sporadic sand and boulder ridges. Outcrop exposures constitute 5-10% of the property area, and are erratically dispersed. Abundant outcrop occurs to the west of an arcuate lake-creek system that bisects the property from north to south. The lakes are generally shallow and swampy, with marshy, sandy or occasionally rocky shorelines.

Vegetation consists of black spruce over muskeg in low-lying areas with cedar-alder swamps along creeks. Mixed, mature, birch-poplar-spruce forests dominate the higher ground.

A recent burn area extends from L12+00W eastward off the property. Vegetation in this area is sparse with sporadic new growths of alder and small birch.

6.0 PREVIOUS WORK

There is no record of previous work on the property, however, several drill holes were completed to the east and west by UMEX Inc. and INCO Limited in the early 1970's.

In 1986, Geoterrex Ltd. completed regional airborne magnetic and electromagnetic surveys for the O.G.S., which covered the property area. During the winter of 1986-87, the Kasagiminnis Lake property of Power Explorations Inc., adjoining to the west, underwent an extensive diamond drilling program. Several significant intersections of gold mineralization were reported in similar stratigraphic horizons to those encountered on the Ochig Lake property.

7.0 REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION

The Pickle Lake area is located within the Uchi Subprovince, a part of the Superior Province of the Canadian Shield. The area is characterized by several arcuate, highly deformed and coalescing greenstone belts, consisting of predominantly mafic to intermediate volcanic flows, which have been intruded by numerous granitic to ultramafic intrusive bodies. The metamorphic grade ranges from greenschist to amphibolite facies. The volcanics host subordinate amounts of felsic to mafic pyroclastics, sediments and iron formation. Felsic quartz-feldspar porphyry dykes are commonly found in all lithologies (Fig. No. 3).

Ultramafic rocks host copper-nickel mineralization at the Union Miniere (UMEX) Thierry Mine, seven miles northwest of Pickle Lake, with mined ore and mineral reserves totalling 14,000,000 tons grading 1.6% copper and 0.2% nickel.

Historically, gold production in the Pickle Lake area has been from structurally controlled vein-type deposits or sulphide replacement bodies spatially associated with, or contained within, bands of Algoman (chert-magnetite) iron formation.

The former producing Pickle Crow and Central Patricia mines operated from 1935 to 1966 and 1934 to 1951, respectively, collectively producing 2,068,020 ounces of gold from 4,966,820 tons of ore for an average grade of 0.416 ounces of gold per ton. Gold was recovered from quartz veins/vein networks, and sulphide replacement bodies which occupied shears, faults, fissures and fold axial plane fractures in highly deformed mafic volcanics and iron formation. Gold bearing quartz veins were also mined within quartz-albite porphyry sills near the contact of mafic volcanics and iron formation.

Dome Mines Limited and St. Joe Canada Inc. both recently announced their intentions to open new mines in the Pickle Lake area. Dome Mines' Dona Lake property has reported reserves of 1,500,000 tons grading 0.3 ounces of gold per ton. Gold mineralization occurs as sulphide replacement bodies within a band of highly deformed oxide facies iron formation (Northern Miner, March 23, 1987).

St. Joe Canada's Golden Patricia property is reported to have an estimated 500,000 ounces of gold reserves with a grade of 0.58 ounces of gold per ton. The gold mineralization occurs in a quartz vein at a contact between a mylonitized unit and

- 10 -

- 11 -

sheared mafic volcanics in close proximity to banded iron formation (Northern Miner Magazine, September, 1986). The initial mining project has drill indicated reserves of 283,000 tons grading 0.88 ounces per ton and is expected to produce 40,000 ounces of gold annually (Northern Miner, March 23, 1987).

8.0 PROPERTY GEOLOGY

8.1 General Geology

The Ochig Lake property lies on an east to northeast trending arm of the Dempster-Pickle Lakes greenstone belt. The property is underlain by a complex sequence of interbedded felsic to mafic pyroclastics and epiclastics (including siltstone, mudstone and argillite). A narrow band of dominantly mafic to intermediate flows hosting subordinate amounts of pyroclastics, epiclastics and iron formation, crosses the property from the southwest to northeast corners.

Numerous metagabbro, quartz-feldspar porphyry, aplite, granite to granite pegmatite intrusives and geophysically interpreted fault-shear structures crosscut the property at a high angle to the stratigraphy. Parasitic "S" and "Z" folds occur frequently and may be related to the interpreted faultshear structures.

8.2 Volcanics

Relatively equal proportions of felsic and mafic volcanics are exposed in the northwest and southwest portions of the property.

Felsic tuffs and probable flows occur as thin laminations with mafic tuff and sediments; or as individual massive beds tens of feet thick.

- 12 -

Typically, the felsics are fine-grained, granular, massive to banded, and dark grey to pink-buff on fresh and weathered surfaces, respectively.

Mafic tuffs are fine-grained, dark green and foliated. Mafic flows are massive, dark green to black and fine to coarsegrained. The mafic volcanics are generally amphibolitic.

8.3 Sediments

The regional maps (Map 2218) indicate that the sediments exposed on the property are part of a 5 mile long, southwest trending tongue of epiclastics which include siltstones, argillites, arkoses, greywackes and conglomerates.

The sediments exposed on the property consist of interbedded siltstones, mudstones and argillites. Individual bands are metamorphosed to feldspar \pm quartz \pm sericite and chlorite \pm amphibole \pm sericite \pm biotite assemblages. Texturally, the rocks vary from fine-grained, equigranular to schistose.

8.4 Iron Formation

Iron formation is not exposed on the property, however, two closely spaced bands of oxide facies iron formation were encountered in Hole OCH-87-2. The bands consist of banded to massive, quartz \pm amphibole (grunerite?) \pm carbonate \pm 1-5% magnetite \pm garnet with accessory pyrite and pyrrhotite. The bands occur coincidently with a linear 2,000 gamma magnetic feature, within the broad horizon of mafic volcanics which cross the centre of the property. Several stronger (+2,500 gamma) magnetic features are interpreted as discontinuous bands of oxide facies; chert, magnetite, banded iron formation.

8.5 Intrusives

Several generations of felsic and mafic intrusives occur on the property. Regional geology maps indicate that the Kasagiminnis Lake and Carling Lake granite plutons lie to the north and south of the property, respectively. These plutons may represent the sources for the numerous felsic dykes present.

Granite to granite-pegmatite dykes occur throughout the volcano-sedimentary sequence, with subordinate aplite and quartz-feldspar porphyry dykes, as encountered in drill core.

Massive carbonatized mafic dykes occur in the central mafic volcanic sequence and may represent late to syngenetic diabase.

A highly foliated mafic body was encountered in drill core from the northwestern part of the property. Geophysical and drill data indicates that the body may represent a late gabbro intrusive.

8.6 Metamorphism

Abundant amphibolite metacrysts in the mafic volcanics and argillaceous sediments indicate that the metamorphic grade on the property is lower amphibolite facies.

8.7 Structure

Geophysical and geological data suggests the presence of several crosscutting fault-shear zones trending northeast to southwest and northwest to southeast. Apparent lateral displacements along the faults are in the order of tens of feet.

Small scale folding occurs in the proximity of the faultshear structures and may represent parasitic drag folds.

9.0 SUMMARY OF GEOPHYSICS

A central band of high magnetic susceptibility rock is interpreted as either magnetite-rich mafic to intermediate volcanics, or discontinuous bands of iron formation hosted in mafic volcanics.

A second high magnetic area, in the northwest corner of the property is interpreted as being fault bounded, sheared or folded mafic volcanics.

Eleven VLF-EM conductors with southeast-northwest trends are interpreted as mineralized horizons within four fault-shear systems. Another ten conductors may represent either sulphide/graphite horizons, or shears that are parallel to the stratigraphy.

10.0 DESCRIPTION OF PROGRAMS

10.1 Geological Mapping and Prospecting

Geological mapping and prospecting were carried out on a cut picket line grid. The grid has an east-west trending baseline with perpendicular lines cut at 400 foot intervals across the local stratigraphy. Tie lines were cut on long picket lines to ensure control.

Geological mapping was performed at a scale of 1 inch = 400 feet. During the mapping, grab samples were taken from shears, quartz veins and mineralized volcanics, sediments and intrusives. Geophysical anomalies were prospected and grab samples taken. A total of 152 grab samples were submitted for analysis by fire assay at Bondar-Clegg and Company Limited. All values were reported in parts per billion gold.

Sample locations and assay results are shown on the Geology map (map pocket). All sample descriptions and analyses are included in Appendix B. Rock analytical certificates are compiled in Appendix C.

10.2 Diamond Drilling Program

The diamond drilling program was contracted to Midwest Drilling of Winnipeg, Manitoba, which completed 7 BQ (1-7/16") diamond drill holes totalling 2,145 feet (see Table No. 1). The drilling was carried out between October 29, 1987 and November 24, 1987, under the supervision of Geocanex Ltd.

Drillhole	Grid	Length				F	ATOC	GE	
Number	Location (metric)	(feet)	SUMMARY DESCRIPTION	Assay 🛊	oz/Au/ ton	From	То	Total	Sample Description
00H-87-1	142+50e, 33+00n	307	Siltstone overlying mafic flows, sequence intruded by numerous mafic dykes.	5515	.034	102.0	107.0	5.0	1-3% disseminated pyrite and pyrrhotite in epidote rich interflow in mafic flows.
				5526	.020	152.0	157.0	5.0	Silicified mafic flows 3-5% pyrrhotite and pyrite.
OCH-87-2	L12+00E, 15+00N	357	Mafic to intermediate flows and tuff hosting lean iron formation.	5577	.016	267.0	272.0	5.0	Mafic tuff, 1-2% pyrite.
OCH-87-3	L60+00W, 44+25S	306	Interbedded felsic to intermediate tuff (+ silicification) and mafic volcanics (+ silicification).	5622	.012	220.3	222.4	2.1	Felsic to intermediate tuff band with 0.2 foot pyrrhotite stringer.
0 <u>0</u> 1-87-4	L34+00W, 26+75S	358	Interbedded mafic to intermediate volcanic, mafic flows and felsic to intermediate tuff crosscut by mafic intrusives and minor granite dykes.						
0CH-87-5	L54+00W, 3+00S	305	Hybrid gneissic mafic flows overlie felsic tuff. Mafic and minor intermediate flows which overlie mafic flows and tuff, minor granitic dykes.	-	<u> </u>		:		
OCH-87-6	1.64+00w, 38+00N	206	Mafic intrusive (foliated gabbro?) crosscut by minor quartz-feldspar porphyry intrusives.				<u> </u>		
ОСн-87-7	158+50W, 9+00s	306	Felsic to intermediate tuffs overlie inter- mediate flows.	5768	.028	205.8	208.8	3.0	1-2% quartz-tourmaline veining in epidote rich horizon in felsic tuff.

.

TABLE I SUMMARY TABLE OF DRILL HOLE DATA

- 16

Т

,

- 17 -

Midwest Drilling provided room and board on site for both geological and drill crews. The camp was supplied by helicopter from the town of Pickle Lake.

Detailed core logging was followed by sampling of favourable horizons. Samples consisted of halved core taken over measured intervals of 0.5 to 5.0 feet. Core samples were analyzed for gold by Bell-White Analytical Laboratories using standard fire assay techniques. All values were reported in ounces gold per ton.

Hole locations and assay highlights are shown in the Plan of Drilling (Fig. No. 4). Detailed logs with assay results are compiled in Appendix D. Drill sections and legend are shown in Appendix E. All assay certificates are compiled in Appendix F.

11.0 DISCUSSION OF RESULTS

During the current programs elevated gold values were obtained in both grab samples and drill core from two areas:

1. Elevated gold values were obtained from a grab sample and drill core taken from the mafic volcanic horizon which transects the property. Grab sample 1185 returned a gold value of 590 parts per billion (ppb). Several values ranging from .002 to .034 ounces gold per ton were returned from Holes OCH-87-1, 2 and 3. The gold values are associated, in each case, with zones of pyrite and pyrrhotite mineralization. Significant gold mineralization was reported by Higginson (1987, 1988) in a similar stratigraphic horizon on the adjacent Kasagiminnis property of joint venture partners Power Explorations Inc. and Moss Resources Ltd.

2. Grab samples 15797 and 1138 returned gold values of 200 and 110 ppb, respectively. These samples are from different stratigraphic horizons, although both are located within 100 feet of geophysically inferred fault systems. Further investigation of one of the faults by Hole OCH-87-7 intersected 3.0 feet grading .028 ounces gold per ton, in a zone of altered felsic tuff and quartztourmaline veining with accessory pyrite.

12.0 CONCLUSIONS

The Ochig Lake property lies in the Dempster-Pickle Lakes greenstone belt, and is underlain by an east to northeast trending sequence of mafic volcanics and iron formation sandwiched between broad zones of sediments and pyroclastics.

Compilation of available geological, geophysical and geochemical data suggests several horizons and structures with potential for gold mineralization occur on the property. Anomalous gold values obtained from rock and drill core sampling indicate that gold mineralization occurs in association with:

- Sulphide mineralization hosted in the central band of mafic volcanics and iron formation.
- 2. Within or in close proximity to several geophysically indicated fault-shear systems.

13.0 RECOMMENDATIONS

A two-phase exploration program is warranted and recommended for the property and would involve the following:

Phase I

Additional surface work including:

- a) A detailed ground magnetometer survey with profiles at 100 foot spacings and readings at 10 to 20 foot intervals across the central band of elevated magnetics.
- b) A Horizontal Loop Electromagnetic (HLEM) survey with profiles over selected VLF-EM axes to define potential zones of gold-bearing sulphides.
- c) Power stripping-trenching, trench sampling and mapping to better define the nature and extent of potential goldbearing structures and horizons.

Phase II

Diamond drilling of targets defined in Phase I.

14.0 ESTIMATED COST OF RECOMMENDED EXPLORATION PROGRAM

14.1 Phase 1

Linecutting: 30 miles at \$350/mile-----\$10,500.00 Detailed Ground Magnetometer Survey: 40 miles at \$300/mile-----\$12,000.00 Horizontal Loop Electromagnetic Survey: 20 miles at \$300/mile-----\$6,000.00 Power Stripping, Trench Sampling & Mapping: Two geologists and two assistants for 15 days at \$1,000/day, all inclusive-----\$15,000.00 Contingencies 20%------<u>\$8,700.00</u> Total Cost of Phase I-----<u>\$52,200.00</u>

14.2 Phase II

Diamond Drilling: Amount and costs are contingent upon results of Phase I.

Respectfully submitted,

Robert A.V. Higginson, B.Sc. Geocanex Ltd.

15.0 REFERENCES

- Gillick, R.E., Report on Ground Magnetometer and VLF-EM Surveys on the Ochig Lake Property for Power Explorations Inc., August 1987, unpublished.
- Higginson, R.A.V., Report on Diamond Drilling on the Kasagiminnis Lake Property for Power Explorations Inc., March 1987, unpublished.
- Higginson, R.A.V., Report on Geological Mapping, Prospecting and Lithogeochemical Sampling on the Kasagiminnis Lake Property for Power Explorations Inc., August 1987, unpublished.
- Ontario Geological Survey, 1986. Airborne Electromagnetic and Total Intensity Magnetic Survey, Pickle Lake Area, District of Thunder Bay, Ontario; by Geoterrex Ltd. for O.G.S. Geophysical/Geochemical Series Maps 80916 and 80917.
- Ontario Geological Survey, Resident Geologists Files -Toronto and Sioux Lookout. Various unpublished assessment reports.

APPENDIX A

(

CERTIFICATE OF QUALIFICATION

THIS IS TO CERTIFY THAT:

I am a resident of Oro Township, Ontario.

I am a graduate of the University of Waterloo, Waterloo, Ontario, with a degree in Bachelor of Science, Earth Science (Geology) Major.

1 have worked continuously as an exploration geologist since 1984 in gold exploration in northwestern Ontario.

I supervised geological mapping and geochemical sampling programs on the Ochig Lake property, from July 3, 1987 to July 21, 1987.

The statements contained in this report, and conclusions reached, are based upon the study of all relevant assessment work records of the Ontario Geological Survey, and geological reports and maps published by the Ontario Ministry of Natural Resources.

In this report, I have disclosed all relevant descriptive and interpretative material, which is, to the best of my knowledge, necessary to gain a complete understanding of the viability of the project and the recommendations.

DATED THIS Gth DAY OF March, 1988

Lotur Higginsu

Robert A.V. Higginson, B.Sc. Geologist

APPENDIX B

,

ROCK SAMPLE DESCRIPTIONS AND ANALYSES

Z

Sample No.	Assay No.	Location	Description	Assay Au ppb
LO-1	1059	06+70S,50+25W	24" granite pegmatite dyke 2-3% lepidolite mica	<5
L0-2	1060	06+80S,48+30W	6" QV, clean, int. tuff	<5
LO-3	1061	18+40S,41+00W	6" QV, in siltstone	<5
LO-4	1062	18+90S,40+00W	metased. band, 2-3% po., lim. staining	25
JD-L0-01	1063	13+00N,35+00W	fine grained intermediate tuff with approx. 3-5% cc.	<5
JD-LO-02	1064	13+00N,35+00W	3" quartz vein in felsic & int. tuff, no visible mineralization	<5
JD-LO-03	1065	13+00N,35+00W	fine grained felsic tuff, 3-5% cc., 0.5-1% py, minor limonite staining, blue quartz eyes are 2 mm diameter	<5
JD-L0-04	1066	13+00N,35+00W	Float – as per 1065 with cross- cutting quartz veins	<5
JD-L0-05	1067	15+50N,32+00W	as per 1065 with 0.5-1% pyrite	<5
JD-L0-06	1068	33+50N,27+75W	as per 1063	<5
JD-L0-07	1069	33+25N,27+50W	as per 1065	<5
JD-LO-08	1070	25+00N,27+00W	intermediate fine grained tuff with trace-0.5% pyrite	<5
JD-LO-09	1071	25+00N,27+00W	felsic tuff, fine grained, trace- 0.5% pyrite	<5
JD-LO-10	1072	32+00N,26+00W	qtz vein, average 2" in width with 2—3% cc. Trends 67° and is vertica	<5 1
JD-LO-11	1073	29+50N,27+00W	qtztourmaline vein, average 3" in width occurring in intermediate tuffs. Minor cc. present. Occurs parallel to foliation.	<5
JD-LO-12	1074	28+00N,18+00W	felsic volcanic (med. grained) within intermediate tuffs, trace- 0.5% pyrite	<5
JD-L0-13	1075	28+00N,17+85W	fine grained intermediate to mafic tuff with trace-0.5% py, 1-2% cc.	5

ļ

Sample No.	Assay No.	Location	Description	Assay Au ppb
OC-LN12-01	1076	28+50S,12+00W	silt sediment, fine to medium grained, bands of bt. interbedded	5
OC-LN12-02	1077	28+47S,12+00W	metasediment, pyrite weathered to limonite, bt. bands, fine-medium grained, trace pyrite (1-2%)	<5
OC-LN12-03	1078	28+35S,12+00W	mafic, fine grained, foliations trending 080°	10
JD-LO-14	1079	21+00N,15+90W	fine grained felsic tuff, no visible mineralization	5
JD-LO-15	1080	21+00N,15+90W	fine grained mafic tuff with 3-5% carbonate	<5
JD-L0-16	1081	21+00N,15+90W	quartz-tourmaline vein, 2" wide parallel to foliation, trace carbonate in felsic tuff	<5
JD-LO-17	1082	21+00N,15+90W	quartz vein, 1/2" wide, parallel to foliation, no visible mineraliz- ation, in felsic tuff	o <5
JD-L0-18	1083	21+00N,15+50W	fine grained intermediate tuff with 0.5-1% pyrite, 3-5% cc.	n 5
JD-LO-19	1084	21+00N,15+50W	2" QV, S-folded, no visible mineralization, crosscutting	<5
JD-L0-20	1085	21+00N,15+50W	2' quartz pod, S-folded, no visible mineralization, crosscutting	e <5
JD-LO-21	1086	21+00N,15+50W	fine grained int. tuff with heavy limonite staining, garnetiferous, 2-3% pyrite, 1-2% magnetite	5
JD-LO-22	1087	21+00N,15+50W	1" wide QV, concordant, in felsic tuff	<5
JD-L0-23	1088	21+00N,15+50W	1" QV, concordant, no visible mineralization, in felsic tuff	<5
JD-L0-24	1089	21+00N,15+00W	3" QV, no visible mineralization, felsic tuff	<5
JD-L0-25	1090	21+00N,15+00W	2" QV, no visible mineralization, felsic tuff	<5

Sample No.	Assay No.	Location	Description	Assay Au ppb
JD-L0-26	1091	20+25N,15+00W	2" QTV, in felsic tuff	<5
JD-L0-27	1092	32+50N,12+00W	2" QTV, in felsic tuff	<5
OC-BH-04	1093	28+35S,12+00W	9" QTV, in mafic volcanics, smoky, recrystallized quartz	<5
OC-BH-05	1094	06+80N,08+00E	mafic volcanic, 1-2% magnetite	10
OC-BH-06	1095	43+30N,07+80E	felsic rhyolitic tuff	<5
OC-BH-07	1096	43+30N,07+80E	quartz in rhyolitic tuff	<5
OC-BH-08	1097	43+30N,07+80E	2" quartz in rhyolitic tuff	<5
OC-BH-09	15784	08+10N,20+00E	mafic intermediate volcanic, bands of amphibole, hbl., cl.	<5
ос-вн-10	15785	08+12N,20+00E	friable qtz. stringers (1/2") in mafic intermediate, amphibole bands	<5 3
OC-BH-11	15786	08+12N,20+00E	friable mafic-intermediate volcanio	e <5
OC-BH-12	15787	08+12N,20+00E	recrystallized qtz. stringers in mafic to intermediate volcanics	<5
JD-L0-28	15788	37+00N,04+00E	4" QV infilling tension fracture, minor muscovite along fracture plane, no visible mineralization, crosscutting	<5
JD-LO-29	15789	37+00N,04+00E	as per 15788, no muscovite, 2"	<5
JD-LO-30	15790	37+00N,04+00E	as per 15788	<5
JD-L0-31	15791	37+00N,04+00E	<pre>intmaf. tuff with trace-0.5% py, limonite staining, iron-carbonate (1-2%)</pre>	<5
JD-LO-32	15792	38+50N,03+50E	6" wide QV, concordant, clean in felsic tuff	5
JD-LO-33	15793	38+50N,03+50E	medium grained mafic tuff, 8-10" wide, 1-2% py, 1-2% cc.	<5
JD-LO-34	15794	38+50N,03+50E	as per 15792	<5
JD-LO-35	15795	18+00N,16+00E	2" wide QV, clean, in mafic volcanics	<5

Ì

Sample No.	Assay No.	Location	Description	Assay Au ppb
JD-LO-36	15796	18+00N,16+00E	fine grained MVLC with 0.5% py, minor limonite staining	<5
RH-1	15797	06+00N,44+20W	12" QV, boudinaged - folded in felsic tuff, hem., lim., cc. pockets, chl.	200
RH-2	15798	10+30N,48+00W	3" QV perpendicular to foliation in metasediment	<5
RH- 3	15799	09+80N,48+00W	massive rhyolite - rhyodacite flows with tr1% dissem. po., 5-10% chl. wisps	5
RH-4	15800	04+00N,48+20W	2" QV, irregular, in felsic volcanic muscovite, chl., lim. pockets, tr. S	e 15 S
OC-BH-13	1101	20+75S ,72+ 38W	mafic pelite, well banded, thin felsic bands	5
OC-BH-14	1102	20+755,72+00W	rhyolite tuff with quartz stringers	5
OC-BH-15	1103	20+755,72+00₩	mafic pelite, chl. + amphibole	10
OC-BH-17	1104	15+00S,72+QOW	intermediate-mafic volcanic with felsic bands	10
JD-LO-37	1105	50+00N,15+00W	2" wide QV fracture, clean, cross- cutting, felsic tuff	<5
JD-LO-38	1106	52+00N,15+00W	3" wide QV, trace py., minor limon- ite, minor tourmaline, concordant, in felsic tuff	<5
JD-LO-39	1107	41+00N,18+00W	6" wide QV, clean, in felsic tuff	10
JD-LO-40	1108	37+25N,19+50W	mafic tuff with 3-5% py., trace- 0.5% po., cc. along contact with QV	5
JD-LO-41	1109	37+25N,19+50W	2" wide QV, minor limonite staining cc. close to contact with mafic tuf:	10 £
JD-LO-42	1110	37+25N,20+00W	1/2" wide chert band within felsic tuff (possible sed.) 2-3% po.	10
ОС-ВН-18	1111	32+50S,35+39W	mafic-intermediate, minor iron staining, traces of bt., musc., amph.	10

Sample No.	Assay No.	Location	Description	Assay Au ppb
ОС-ВН-19	1112	33+00S,36+00W	granite stringers (1/4") discor- dant with int. mafic, bt. bands	<5
OC-BH-20	1113	32+75S,36+20W	QTV (8" wide), smoky, traces of sulphides	<5
OC-BH-21	1114	32+00S,36+75W	QTV 4' wide, clean, with trace of sulphides	<5
OC-BH-22	1115	31+50S,36+75W	QTV with granite stringer, 2" wide in a mafic sediment (pelite)	5
ОС-ВН-23	1116	31 + 50S,36+75W	mafic sediment, well banded with bt., feldspar	10
JD-LO-43	1117	41+00N,24+00W	medium grained felsic tuff, tr-0.5% pyrite	15
JD-LO-44	1118	41+00N,24+00W	2" wide QV, trace cc., in felsic tuff	<5
JD-LO-45	1119	23+00N,36+00W	4" wide QV with fine grained amphibole and possible <u>tourmaline</u> , minor limonite staining	<5
JD-L0-46	1120	23+00N,36+00W	as per 1119 with trace epidote	5
JD-L0-47	1121	23+00N,36+00W	fine grained felsic tuff with tr. p	o. 10
JD-LO-48	1122	29+50N,40+00W	QV averaging 10" wide, Z-folded, clean, crosscutting, in interbedded seds. and tuff	5
RH-5	1123	07+70S,72+00W	2' x 6" Q pod, limhem. stain, chl inclusions, on metased-tuff contact	. <5
RH-6	1124	19+80S,80+20W	as above	<5
RH-7	1125	12+60S,59+50W	2" QV in fel. tuff, limhem. stain	<5
RH-8	1126	22+50S,57+00W	2" to 6" irreg. QV or stockwork in felsic band hosted in mafic tuff	<5
RH-9	1127	18+00S,56+00W	irregular qtz. pods in felsic tuff proximal to metased. contact	5
OC-BH-24	1128	21+50S,40+00N	mafic seds., 2 small 1/8" Q stringe minor carbonates, limonite staining	rs <5

Sample No.	Assay No.	Location	Description	Assay Au ppb
OC-BH-25	1129	24+20S,40+45W	epidote with mafic seds., bt. and amphibole bands	<5
ОС-ВН-26	1130	24+20S,40+55W	8" QTV, no sulphides	<5
OC-BH-27	1131	26+15S,40+90W	mafic seds., trace of sulphides	<5
OC-BH-28	1132	20+00S,44+90W	felsic with cherty bands, trace of carbonates	<5
OC-BH-29	1133	21+75S,45+72W	felsic with epidote, limonite staining	<5
JD-LO-49	1134	05+00N,52+00W	mafic pelite with trace py., trace cc.	<5
ос-вн-30	1135	38+00S,47+90W	mafic pelite with trace of py., tr. iron staining - limonite	<5
OC-BH-31	1136	38+00S,47+90W	1 1/2" Q vein, smoky, recrystallize iron hydroxide staining	d <5
0C-BH-32	1137	30+00S,48+00W	mafic volcanic, fine grained, limon ite staining (intermediate)	- <5
OC-BH-34	1138	17+00S,53+40W	1" Q vein, iron staining, traces of py.	110
ОС-ВН-35	1139	17+00S,53+40W	felsic seds., chloritic and feldspathic bands	<5
RH-10	1140	03+20N,72+40W	foldnose in mafic tuff with quartz bleb	<5
RH-11	1141	03+20N,72+40W	irregular quartz pod at contact between felsic and mafic tuff	<5
RH-12	1142	04+30N,71+70W	irregular quartz stringers and pods, clean, 1–2% K-spar laths	5
RH-13	1143	07+20N,80+00W	3" QV, clean, minor hem. stain, in metasediments	<5
JD-LO-50	1144	01+50N,64+00W	pelitic sed. with narrow po. strin- gers, hematite staining, 2-3% cc.	<5
JD-L0-51	1145	01+60N,64+20W	as per 1144	<5

Sample No.	Assay No.	Location	Description	Assay Au ppb
JD-L0-52	1146	01+60N,64+20W	as per 1144 with 1/4" wide granitic dyke	<5
JD-L0-53	1147	03+00N,64+20W	2" wide QV with minor limonite staining, musc. in pelitic seds.	<5
JD-L0-54	1148	03+00N,64+20W	2" wide QV with 0.5-1% msv. pyrite in seds.	20
JD-L0-55	1149	12+20N,63+00W	3" wide QV with minor epidote	30
JD-L0-56	1150	BLO,67+00W	coarse grained granitic dyke with musc. and epidote	<5
JD-L0-57	1151	00+10N,66+50W	2" QV, clean in pelitic seds.	<5
JD-L0-58	1152	00+10N,66+50W	seds. with heavy limonite staining, minor hematite staining, trace po.	<5
JD-LO-59	1153	02+20N,84+20W	1" wide QV, minor limonite staining in mvlc	, <5
JD-L0-60	1154	02+20N,84+20W	fine grained felsic with 2-3% gnts. minor limonite staining	, 5
JD-LO-61	1155	02+20N,84+20W	mvlc with abundant gnts., limonite staining along fracture planes, 0.5–1% pyrite	<5
JD-10-62	1156	02+00N,84+50W	mvlc with qtz. stringers, 5-7% gnts limonite staining	. 10
JD-L0-63	1157	00+30N,84+20W	Qtz. pod (8" x 1') in seds., clean	<5
JD-LO-64	1158	03+25S,86+00W	6" wide QV, 0.5-1% py., minor epidote and limonite staining	<5
JD-L0-65	1159	06+00S,84+00W	felsic tuff with 1-2% py., heavy limonite staining	<5
JDLO-66	1160	12+00S,83+50W	4" wide granite pegmatic dyke crosscutting seds. and mvlc	<5
JD-L0-67	1161	14+50S,64+00W	8" wide QV, limonite staining near contact with seds.	<5
JD-L0-68	1162	14+50S,64+00W	as per 1161, 6" wide QV	<5
LITTLE OCHIG

GRAB SAMPLE DESCRIPTIONS

Sample No.	Assay No.	Location	Description	Assay Au ppb
ос-вн-з6	1163	02+00S,64+00W	mafic seds., iron hydroxide staining, bands of chl. + amphi- boles + bt.	<5
ОС-ВН-37	1164	06+00S,65+80W	mafic lapilli tuff	<5
0С-ВН-38	1165	06+10S,63+90W	3" QV, no mineralization	<5
OC-BH-39	1166	08+00S,63+90W	2" QV, iron staining - limonitic traces of pyrite	<5
ос-вн-40	1167	28+00S,64+00W	mafic tuff, intermixed with seds. minor iron hydroxide staining	<5
OC-BH-41	1168	04+80S,68+00W	QV, 3" wide, iron hydroxide staining, traces of pyrite	<5
OC-BH-42	1169	01+80S,67+95W	2" QV, trace of epidote, trace py.	<5
OC-BH-43	1170	01+80S,67+95W	chloritic mafic tuff intermixed with seds.	5
RH-14	1171	00+25S,82+00W	QV network in metasediment, tr. <u>malachite</u> , tr1% dissem. pyrite	5
RH-15	1172	00+90S,69+00W	6" QV, S-folded, branching in felsic tuff, lim., hem.	<5
RH-16	1173	01+00S,68+25W	3" QV in sedtuff, tr0.5% py in wall rock, lim., hem.	<5
RH17	1174	00+75N,68+30W	metasediment with 3-5% py., tr-0.5% po.	5
RH-18	1175	01+60S,68+10W	1" QV in metasediment, tr. py., 2-3% epidote	15
OR-1	1176	27+00S,47+50W	3 to 6" QV crosscutting mafic volc., lim. stain.	<5
0R-2	1177	25+20S,47+90W	12" x 4' Qtz. pod in mafic flows, clean	<5
OR-3	1178	25+20S,47+90W	6 to 8" laminated mafic tuff band, lim., 1-2% py., cherty	<5
OR-4	1179	28+70S,43+50W	sheared contact b/w felsic volc. an granite intrusive, laminated, lim. staining	d <5

LITTLE OCHIG

1

*

GRAB SAMPLE DESCRIPTIONS

Sample No.	Assay No.	Location	Description	Assay Au ppb
OR-5	1180	31+50S,39+50W	QV swarm in intmafic volcanics tr1% dissem. pyrite, limhem. stain.	<5
OP- 1	1181	28+40S,48+20W	granite pegmatite dyke with muscovite crosscutting mvlc.	10
OP-2	1182	28+40S,48+20W	10" QV with minor limonite staining near contact with mvlc.	<5
OP-3	1183	28+40S,48+20W	B.I.F., limonite staining, trace- 2% py + po.	15
OP-4	1184	28+40S,48+00W	2" QV in weak B.I.F., trace sulphides	<5
OP-5	1185	27+70S,48+30W	2" QV in mafic tuff, minor limon- ite staining, epidote pods in w.r.	590
OP-6	1186	26+00S,47+50W	mafic tuff with heavy limonite staining, trace-0.5% pyrite	10
OP-7	1187	26+00S,47+50W	3" QV with heavy limonite and hematite staining, in mafic tuff	<5
OP-8	1188	25+40S,47+70W	6" QV, broken up and folded, hematite and limonite staining near contact with mvlc.	<5
OP-9	1189	34+50S,40+50W	mvlc. with chert blebs, trace-1% py + po., heavy limonite staining	<5
OB-1	1190	26+30S,44+80W	10" QV in mafic volcanics, minor limonite staining	<5
OB-2	1191	25+00S,44+00W	4" QV in contact with mafic seds., trace of sulphides	<5
OB-3	1192	31+50S,39+50W	mafic tuff, trace of sulphides, limonite staining	<5
0B-4	1193	31+50S,39+50W	4' Q vein, trace of sulphides	<5
JD-01	1194		highly foliated mvlc. with 2-3% diss. py + po, py occurs along cleavage surfaces as does limonite staining	65

LITTLE OCHIG

GRAB SAMPLE DESCRIPTIONS

	Sample No.	Assay No.	Location	Description	Assay Au ppb
*	X-1	1195		mafic int. tuff, trace-2% pyrrhotite, pyrite	10
*	X-2	1196		as above	10

* Note: Samples JD-01, X-1 and X-2 were taken off of the property, 400 feet west of Claim 893308.

APPENDIX C

ROCK SAMPLE ASSAY CERTIFICATES

Bondar-Ciegg & Company Ltd. 5420 Ottaw Jario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233	BONDAR	R-CLEGG C Geochemics Lab Report
SECCANEX LIMIT 1003-34 KING S TORONTO, ONTAR M5C 1E5	20 1. E. 10	
	+	+ +
		Dato Rec'd
		J.M.H. File:

Bondar-Cireg & Company Lid. 5420 ck Rd., Otta-Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

Geochemical Lab Report

ACFORT: 017-3136 (COMF	LETE >			R	SPERENCE INFO:	
CLIEWT: GEOCANEX LIMITE PROJECT: LITTLE OCHIG	1 1			SI	UPMITTED BY: R. HIGGINSO ATE PRINTED: 21-JUL-87	N.
ONDER ELEMENT 1 Au Gold		NUMBER OF Analyses det 20	LOWER ECTION LIMIT 5 PPB	EXTRACTION AQUA REGIA	Method Fa-aa & 10 ga	weight
SAMPLE TYPES	NJKBER	SIZE FRACT	(ONS	NUMBER	SAMPLE PREPARATIONS N	UNBER
ROCK DEMADUC: / NEANIC I	20 ECE TUAN	-200		20	CRUSH, PULVERIZE -200	20
REPORT COPIES TO:	GEOCANEX R. HIGGINSON			INVOIC	E TO: GEOCANEX	
			•			
					1_	

BONDAR-CLEGG

Bondar-Greg & Company Ltd. 5420 k Rd., Ottawar nitario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

BONDAR-CLEGG

REFORT: 017	-3136	PROJECT: LITTLE SCHIG PAGE 1
sakyle Number	elexent Au Units P7B	
1059 1060 1061 1052 1063	<5 <5 <5 25 <5	
1964 1065 1066 1067 1058	(5 (5 (5 (5 (5 (5	
1069 1070 1071 1072 1073	(5 (5 (5 (5 (5 (5	
1074 1075 1076 1077 1078	<5 5 5 <5 <5 10	

Bon 22 & Company 542 otek Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 Telex: 053-3233 eg & Company Ltd.

BONDAF -CI EG 2 and the attraction to many designed and

CLIENT: GEOC	ANEX	LIMITED				S	UBNITTED BY: W. HOWES	
PROJECT: LII	TLE	OCH IG	***		1994) ***********************************]	ATE PRINTED: 27-JUL-87	an an a an
ORDER		element		NUMBER OF ANALYSES	LOWER Detection limit	EXTRACTION	Kethod	
1	Au	Gold		19	5 PPB	AQUA REGIA	FA-AA @ 10 gm	weight
SAMPLE	TYPE	S	NUMBER	SIZE FR	RACTIONS	NUMBER	SAMPLE PREPARATIONS N	UMBER
ROCK			19	-20)0	19	CRUSH, PULVERIZE -200	19
REPORT	COPI	ES TO: GEC R.	DCANEX HIGGINSON			INVOIC	E-TO:-GEOCANEX	- d an ann a bha a bha a bh a a bh an
n ar an an t-Salahan da tanàna (ao amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny Amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny faritana amin'ny fa			••••••••••••••••••••••••••••••••••••••					
						. V 10.000 - 0.000		
	40 - 144 - 1499, er or		8 - Maria and - San					. 1996 - 1997 -
						997999999		antan ang ang ang ang ang ang ang ang ang a

BONDAR-CLEGG

	ւ երգելու անձանեւնել հնարգաներինությ									_	
RI	EPORT: 017-3	222				PROJECT	LITTLE	DCHIG	PAGE	1	
Si Ni	AMPLE JMBER	ELEMENT UNITS	Au PPB	 	 						
	1079		5	 							
	1080		<5								
4 4	1081		<5								
n n n	1082		<5								
	1083	n a filiada an a su an	J		 						
	1084		<5								
	1085		<5								
	1086		5 /5								
	1087		() /5								
) 8 milio - Anna Anna Anna -	1000		<u>\J</u>	 	 						
	1089		<5								
	1090		<5								
	1091		(5								
	1092		() /5								
	1775		\J	·							
	1094		10								
	1095		<5								
	1096		<5								
	1097		(5 -								
				 	 					· · · · · · · · · · · · · · ·	
			•								
, , , ,				 	 						
				 	 	-		.,			
					 ••••••••••••••••••••••••••••••••••••••						
				 	 						·

Bonden Clegs & Company Lid. 54 Dick Rd., Ottawn, Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

BUNDAH-ULEU

REFERENCE INFO: REPORT: 017-3293 (COMPLETE) SUBMITTED BY: W. HOWES CLIENT: GEOCANEX LIMITED PROJECT: LITTLE OCHIG DATE PRINTED: 27-JUL-87 LOWER NUMBER OF METHOD ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION FA-AA @ 10 gm weight 1 Au Gold 13 5 PPB AQUA REGIA SAMPLE TYPES NUMBER SAMPLE PREPARATIONS NUMBER NUMBER SIZE FRACTIONS ----_____ 13 CRUSH, PULVERIZE -200 13 ROCK 13 -200 INVOICE TO: GEOCANEX REFORT COPIES TO: GEOCANEX R. HIGGINSON

Bondar-Creg & Company Ltd. 54 Dottek Rd., Otta-Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

Ī

E

30

JL

DAR-CI EGG 1

REPURT: 017-	3293			PROJECT: LITTLE OCH	116	PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Au PPB				
15784		<5				
15785		<5				
15786		<5				
15787		<5 /5				
15788		<5			-	
15789		<5				
15790		<5				
15791		(5				
10/92		0 /5				
1J/73		\J				
15794		<5 (5				
15795		() /5				
13796		10				
an a sa a a a a a a a a a a a a a a a a						
		,				
1997 - 1997 - 1997 - 1997 - 1998 - 19						an - ngangan tanih dalah yang dalam yang digi ngang berbahan yan dalam yang digi ngang berbahan yan dalam dalam Kan ngangan yang dalam yang dalam yang digi ngang berbahan yan dalam yang digi ngang digi ngang digi ngang digi
nan an Artana an anna ann an an an an	eren al de anna anna anna anna anna anna anna a		antar arabisatis tanang kata arabis kata salah salah sara sara kata kata sara da kata sara kata sara kata sara			
ne an an a' fair i an para a' an Bhailean an a			a 1 Marsha - 2009 Alexandro (1974 - 1974 - 1974 - 1977 - 197			****

Tiegg & Company Ltd. Bond 5420 (ck Rd., Ottawa, Ontario, Canada KIJ 8X5 Phone: (613) 749-2220 Telex: 053-3233

an in an Alice of

ł

SEPORT 027-3445 (CONPLETE)			Ĩ	SERENCE INFO:
CLIENT: GEOCANEX LIMITES PROJECT: LITTLE COMIG			S I	UERITIED BY: R. WIGGINSON ATE FRINTED: 4-AUG-27
RUH Crier element ana	PER OF L Lyses detect	OVER ION LIMIT	EXTRACTION	NETHOD
1 Au Bold	28	5 PPB	AGUA REGIA	FA-AA 0 10 gm weight
EAMFLE TYPES NUMBER	SIZE FRACTIONS	, N	UNPER	EAMPLE FREPARATIONS NUMBER
NGCK	-200		28	CRUSH, PULVERIZE -200 28
FEXABLE: 2 VEANE IFEE THAN				
REPORT COPIES TO: H. HODGE R. HIGGINSON			INVOIC	e to: H. Hodge
		line		
		•		
	e a la Constante de la constante de la constante Constante de la constante de la			
			,	
	на на селото на селот На селото на селото на На селото на селото н			

19.1.1

BONDAR-CLEGG

Bondar-Clegg & Company, Ltd. 542 tek Rd., Otta bitk Rd., Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

BONDAR Ē 1 R GG --- (F 增长现于中国人员 1.48 a - Martines 100 2.92. 1.

Geochemical Lab Report

a filoso restriction for the filosof

ESPORT: 017-34		PROJECT: LITTLE COATS PAGE 1
Sample Runier	SLEMENT AU UNITS PPB	
1101 1102 1103 1104 1105	5 5 10 10 (S	
1105 1107 1108 1109 1110	(5 10 5 10 10	
1111 1112 1113 1114 1115	10 (5 (5 (5 (5 5	
1118 1117 1118 1119 1120	10 15 <5 <5 5	
1121 1122 1123 1124 15797	10 5 <5 (5 200	
15798 15759 15800	<5 5 15	

Bondar Creg: & Company Ltd. 142 Mek Rd., Ottaver Ontario, Canada K1J 8X5 Phone: (613) 749-2220 Telex: 053-3233

BONDAR-CLEGG

REPORT: 017-3513 (C()HPLETE)				REFERENCE INFO:	
CLIENT: GEOCANEX LIN PROJECT: LITTLE OCHIO	ITED 3	مور و جریش نظ البط الور المکرد مشارعها بر مربق الور و ر		9 1	SUBMITTED BY: R. HIGGINSON DATE PRINTED: 10-AUG-87	1
ORDER ELEMI	ENT	NUMBER OF ANALYSES	LOWER Detection limit	EXTRACT ION	METHOD	
1 Au Go	old	72	5 PPB	AQUA REGIA	FA-AA @ 10 gm .	eight
SAMPLE TYPES	NUMBER	SIZE FI	RACTIONS	NUMBER	SAMPLE PREPARATIONS NU	IMBER
ROCK	72	-20	00	72	CRUSH, PULVERIZE -200	72
REMARKS: < MEANS	LESS THAN.					n parantan pana ang pang ang pang ang pang ang pang bana ang pang ang pang ang pang ang pang bana ang pang ang
REPORT COPIES TO): H. HODGE R. HIGGINSON			INVOIC	CE TO: H. HODGE	,
		agen angeneration over som som som en				
		ین و در میروند و تعدید				
		an a tha an		19 1 Falandar F. 196 Filmhadd - 1, 10 - 19 19 19 19 19 - Falandar Josef J and a filmhadd		
			ana ang ang ang ang ang ang ang ang ang			
					٨	
a - sea an	er var bei homme men og som en og som skeyter mege sag sag, og sagantige		. An standard (of pages and set of the standard and generative strategy and the standard strategy and the stand		íto	

Bondar, Clega & Company Ltd. .4. Otta-Ott

ĺ

ľ

P

ļ

30NDAR-CLE

Geochemical Lab Report

3

REPORT: 017-	-3513		PROJECT: LITTLE OCHIG	PAGE 1
Sample Number	ELEMENT Au UNITS PPB	Sanple Number	ELENENT AU UNITS PPB	
1125	<5	1165	<5	
1126	<5	1166	<5	
1127	5	1167	<5	
1128	<5	1168	<5	
1129	<5	1169	<5	وروان در المراجع المراجع المراجع المراجع المحمد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع
1130	(5) 10 10 1000 10 1000 10 1000 10 10 10 10	1170	5	
1131	<5	1171	5	
1132	<5	1172	<5	
1133	<5	1173	<5	
1134	(5	1174	5	at the up is in these operations is reported to the one channels, particularly of the second
1135	<5	1175	15	
1136	<5	1176	(5	
1137	<5	1177	(5	
1138	110	1178	(5	
1139	<5	1179	<5	
1140		1180	/5	
1141	<5	1181	10	
1142	5	1182	25	
1143	<5	1183	15	
1144	<5	1184	<5	nagalagi ginang ni binin, ang kunang kunang ang ang ang ang ang ang ang ang ang
1145	<5	1185	590	
1146	<5	1186	10	
1147	<5	1187	(5	
1148	20	1188	<5	
1149	30	1189	<5	
1150		1190	/5	
1151	<5	1191	(5	
1152	<5	1192	() (5	
1153	<5	1193	(5	
1154	5	1194	65	
1155		1195	١٨	
1156	10	1196	10	
1157		1175	10	
1158	(5			
1159	<5			
1160	(5			
1161	(5			
1162	(5			
1163	<5			
1164	<5			
ومتهافين والتروي والمتعاد المتعاد والمتعاد	on of the second s		No. A series of the series and an experimental series of parameters of the series o	entering of a set of the set of the set of the set of the second set of the second second second second set of the second s

APPENDIX D

.

Í

I

DIAMOND DRILL LOGS

NAME OF PROPE	RTY OCHIG LAKE		
HOLE NO. OCH-8	7-1 LENGTH	307.0'	
LOCATION 42+5	OE, 33+00N		
LATITUDE	DEPARTI	JRE	····
ELEVATION	AZIMUTH	DIF	<u>-46°</u>
STARTED OCTOB	er 29/87 FINISHER	November 1/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	-46° -44°				

HOLE NO. 0CH-87-1 SHEET NO. 1 OF 1 REMARKS PA893954

SUMMARY LOG

LOGGED BY R. Higginson

FOO	TAGE	DESCRIPTION SAMPLE				ASSAYS						
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL.	36	36	oz/ton	oz/ton	
0.0	50.0	CASING.										
50.0	77.9	MAFIC FLOWS.										:
77.9	78.7	MAFIC INTRUSIVE.										
78.7	135.4	MAFIC FLOWS.										
135.4	177.6	SILICIFIED MAFIC FLOWS.										
177.6	212.0	MAFIC FLOWS.										
212.0	212.5	MAFIC INTRUSIVE.										
212.5	215.5	MAFIC FLOWS.										
215.5	216.2	MAFIC INTRUSIVE.										
216.2	222.7	MAFIC FLOWS.										
222.7	238.6	SANDSTONE - SILTSTONE.										
238.6	239.3	MAFIC INTRUSIVE.										
239.3	277.9	SANDSTONE - SILTSTONE.	ļ									
277.9	278.8	MAFIC INTRUSIVE.										
278.8	307.0	SANDSTONE - SILTSTONE.										
-1168	307.0	E.O.H.										
- 366												
01V												
0 C C C C C C C C C C C C C C C C C C C												
1 ES												
DCIA												
LANC												
1												

......

NAME OF	PROPERTY	OCHIG	i lake				
HOLE NO.	<u>OCH-87-1</u>		LENGTH	307.0'			
LOCATION	42+50E,	33+00N					
LATITUDE			DEPARTUR	ε			
ELEVATION	<u></u>		AZIMUTH_	<u>20°</u>	DIP	<u>-46°</u>	
STARTED	October 2	9/87	FINISHED .	November	1/87		

FOOTAG	E DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0) -46°				
307.0) -44°				

HOLE NO. <u>OCH-87-1</u> SHEET NO. <u>1 of 3</u> REMARKS <u>PA893954</u>

LOGGED BY ____R. Higginson

FOO	TAGE				SAMP	LE		ASSAYS			
FROM	то	DESCRIPTION	N0.	SUL PH-	FROM	FOOTAGE TO	TOTAL	z	36	OZ/TON	OZ/TON
0.0	50.0	Casing.									
50.0	77.9	Mafic Flows- dark green to black, fine to medium grained, massive to slightly foliated.Modal percent:Amphibole50-55%Plagioclase30-35%Quartz5-7%Carbonate0.5-1%Epidote1-2%	5501 5502 5503 5504 5505 5506 5507	1-3 1-3 1-3 1-3 1-3 1-3 1-3	50.0 53.5 57.0 62.0 67.0 72.0 75.0	53.5 57.0 62.0 67.0 72.0 75.0 77.9	3.5 3.5 5.0 5.0 5.0 5.0 2.9			tr tr tr tr tr tr	
		Amphibolitic, common quartz-epidote bands and irregular quartz- plagioclase blobs, minor quartz-carbonate stringers, trace pyrite in massive flows, 1-3% pyrite and pyprrhotite in interflow bands.					4				
77.9	78.7	Mafic Intrusive – dark green, fine grained groundmass with black medium grained phenocrysts. Modal percent: Amphibole 60–65% Chlorite 10–15% Carbonate 5–10% Plagioclase 5–10%	5508		77.9	78.7	0.8			tr	
		Medium grained phenocrysts of chlorite,discordant, irregular to sharp contacts, irregular contact at 77.9', contact at 32° to core axis at 78.7'.									
78.7	135.4	Mafic Flows - typical, as above, foliation at 47° to core axis at 130.0', fracturing at 33° to core axis at 128.0', 52° at 159.0'.									
		- 78.7' - 84.3' - typical, fine grained.	5509 5510	1-3 1-3	78.7 81.7	81.7 84.3	3.0 2.6			tr tr	
		- 84.3' - 122.0' - mottled, abundant (3-10%) quartz-plagio- clase-epidote-carbonate stringers, bands	5511 5512	1-3 1-3	84.3 87.0	87.0 92.0	2.7 5.0			tr tr	

NAME OF PROPERTY. OCHIG LAKE HOLE NO. OCH-87-1 SHEET NO. 2 OF 3

FOO	1 AGE	OFFCRIPTION			SAMPL	E		ASSAYS				
FROM	10	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	ъ.	~	OAYON	GZ TON	
78.7	135.4	Cont'd. and blobs with 1-3% pyrite and pyrrhotite as disseminated grains, 5-7% biotite.	5513 5514 5515 5516 5517 5518	1-3 1-3 1-3 1-3 1-3 1-3	92.0 97.0 102.0 107.0 112.0 117.0	97.0 102.0 107.0 112.0 117.0 122.0	5.0 5.0 5.0 5.0 5.0 5.0			tr .002 .034 tr .008 tr		
		- 122.0' - 125.3' - typical, 2-3% felted amphibole grains.	5519	1-3	122.0	125.3	3.3			tr		
		- 125.3' - 135.4' - crudely banded to massive, 3-5% chlorite bands, 2-3% quartz-carbonate stringers, 2-3% felted amphibole.	5520 5521	1-3 1-3	125.3 130.3	130.3 135.4	5.0 5.1			tr tr		-
135.4	177.6	Silicified Mafic Flows - dark grey to dark green, medium to coarse grained, massive.Modal percent:QuartzPlagioclase45-50%Amphibole30-35%Chlorite5-7%Pyrrhotite3-5%Carbonate2-3%	5522 5523 5524 5525 5526 5527 5528 5529 5529 5530 5531	3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5 3-5	135.4 138.0 142.0 152.0 157.0 162.0 167.0 172.0 175.0	138.0 142.0 147.0 152.0 157.0 162.0 167.0 172.0 175.0 177.6	$\begin{array}{c} 2.6 \\ 4.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 3.0 \\ 2.6 \end{array}$			tr .006 .002 .008 .020 .008 .006 .006 .002 tr		
177.6	212.0	amphibole grains, 2-3% irregular-quartz-carbonate stringers, dis- s minated fine to medium grained pyrrhotite and pyrite blebs. <u>Mafic Flows</u> - medium grained, atypical. 5-10% quartz-carbonate stringers, competant - few fractures, trace-0.5% pyrite, 1-2% pyrrhotite, fracturing at 62° to core axis at 198.0'.	5532 5533 5534 5535 5536 5537 5538	1-2 1-2 1-2 1-2 1-2 1-2 1-2	177.6 182.0 187.0 192.0 197.0 202.0 207.0	182.0 187.0 192.0 197.0 202.0 207.0 212.0	4.4 5.0 5.0 5.0 5.0 5.0 5.0			tr tr tr tr tr tr .002		
212.0	212.5	Mafic Intrusive - as above, contacts at 70° to core axis 212.5', 70° at 212.0'.										

NAME OF PROPERTY OCHIG LAKE

HOLE NO. 0CH-87-1 SHEFT NO. 3 OF 3

FOO	1 AGE	DECONDIAN			SAMPL	E		ASSAYS				
FROM	10	DESCRIPTION	NO.	5. SULPH	FROM	FOOTAGE	TOTAL		~	0.AHLN	OZ TON	
212.5	215.5	Mafic Flows - medium grained, atypical, as above.	5539	1-2	212.0	216.2	4.2			.002		
215.5	216.2	Mafic Intrusive - typical, contact at 53° to core axis at 216.2', 70° at 215.5'.										
216.2	222.7	Mafic Flows - medium grained, atypical, as above.	5540 5541	1-2 1-2	216.2 219.2	219.2 222.7	3.0 3.5			tr tr		
222.7	238.6	Sandstone - Siltstone - dark grey, very fine grained to fine grained, banded to massive. Modal percent: Quartz55-60% Plagioclase Orthoclase30-35% Biotite30-35% 2-3% Actinolite Tremolite	5542		222.7	227.7	5.0			tr		
		Silt to very fine sand-sized particles, granular texture, with minor aligned needles of amphibole and laths of biotite, very competant, few widely spaced fractures, banding at 47° to core axis at 223.0', 40° at 238.0', fractures at 47° to core axis at 231.5', 32° at 238.0'.										
238.6	239.3	Mafic Intrusive - typical, contact at 68° to core axis at 238.6', 50° at 239.5'.	5543		237.0	240.0	3.0			tr		
239.3	277.9	Sandstone - Siltstone - as above, 3-5% amphibole, as fine grains, banding at 44° to core axis 247.0', 42° at 268.0', fractures at 41° to core axis at 259.0', 38° at 265.0'.										
277.9	278.8	<u>Mafic Intrusive</u> - typical with medium to coarse grained felted chlorite grains contacts at 37° to core axis.	5544		277.0	280.0	3.0			tr		
278.8	307.0	Sandstone - Siltstone - as above, banding at 32° to core axis at 292.0', 45° at 306.0', fracturing at 51° to core axis at 306.0'.	5545		302.0	307.0	5.0			tr		
	307.0	Е.О.Н.								Ŷ	had	m

NAME OF PROPERTY OCHIG LAKE	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE NO. OCH-87-2SHEET NO. 1 OF 1 REMARKS PA893961
HOLE NO LENGTH CONTO	0.0	47°					
	200.0	46°					SUMMARY LOG
	357.0	41°					
STARTED November 2/87 FINISHED November 5/87	L				<u> </u>		LOGGED BY R. Higginson

	FOOT	FAGE	DESCRIPTION			SAM P	LE		ASSAYS				
-	FROM	то	SUMMARY LOG	NO.	SULPH	FROM	FOOTAGE	TOTAL	36	X	оzАЮн	OZ/TON	
	0.0	31.0	CASING.										
	31.0	171.8	MAFIC TO INTERMEDIATE VOLCANICS.										
1	71.8	177.2	CHERT - LEAN BANDED IRON FORMATION.										
1	77.2	182.0	MAFIC TO INTERMEDIATE FLOWS.										
1	82.0	262.6	MAFIC TUFF AND LEAN IRON FORMATION.										
12	262.6	281.3	MAFIC TUFF.									1	
12	81.3	286.1	MAFIC FLOWS - fine grained.										
2	86.1	357.0	MAFIC FLOWS - medium grained.										
		357.0	Е.О.Н.									1	
												•	
-1168													
- 366													
rt0													
0HO													
1													
and the													
ANG										-			
]													
•		•			. 1		•	. 1	• •		· ·		

NAME OF PROPERTY OCHIG LAKE	FOOTAGE	DIP	AZIMUTH	FOOTAGE
HOLE NO. 0CH-87-2 LENGTH 357.0'	0.0	47°		
LOCATION	200.0	46°		
LATITUDE DEPARTURE	357.0	41°		
STARTED November 2/87 FINISHED November 5/87	L			

DIP AZIMUTH

HOLE NO. OCH-87-2 SHEET NO. 1 OF 3 REMARKSPA893961

LOGGED BY _____ R. Higginson

FOO	TAGE		1	<u></u>	БАМР	LE			A	SSA	15	
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	36	AU oz/ton	OZ/TON	
0.0	31.0	Casing.										
31.0	171.8	Mafic to Intermediate Volcanics - grey to dark green, fine to medium grained, massive to banded. Modal percent: Amphibole40-45% Quartz PlagioclaseQuartz Biotite35-40% 5-7% 	5546	tr	31.0	36.0	5.0			tr		
		Medium grained feathery amphiboles in fine grained quartz-plagio- clase-amphibole groundmass, few fractures, 2-3% quartz-carbonate stringers, trace pyrite, fractures at 54° to core axis at 118.0', 51° at 148.0', 38° at 164.0'.										
		- 53.8' - 64.5' - chloritized amphibole grains.	5547 5548 5549	tr tr tr	53.8 57.0 62.0	57.0 62.0 64.5	3.2 5.0 2.5			tr tr tr	c	
		- 79.0' - 88.3' - fine grained, few medium grained amphibole bands or grains.	5550 5551 5552 5553 5554 5555	tr tr tr tr tr tr	79.0 82.0 86.0 112.0 142.0 167.0	82.0 86.0 88.3 117.0 147.0 171.8	3.0 4.0 2.3 5.0 5.0 4.8			tr tr .004 tr tr		
171.8	177.2	<u>Chert – Lean Banded Iron Formation</u> – dark grey, fine grained, mottled to massive. modal percent: Quartz 45–50% Amphibole 35–40% Chlorite 5–7% Magnetite 1–3%	5556 5557	tr tr	171.8 174.0	174.0 177.2	2.2 3.2			tr tr		

NAME OF PROPERTY____OCHIG LAKE

HOLE NO. OCH-87-2 SHEET NO. 2 OF 3

F 00	TAGE	DESCRIPTION	SAMPLE							ASSAYS		
FROM	10		NO.	A SUL PH	FROM	FOOTAGE	TOTAL	" ;	<u>``</u>	OZ TON	OZ TON	
171.8	177.2	Cont'd. Disseminated, fine grained magnetite grains in felsic groundmass with medium grained amphibole as streaked-wispy bands, fractures at 70° and 28° to core axis.										
177.2	182.0	Mafic to Intermediate Flows - typical as above, massive.	5558	tr	177.2	182.0	4.8			tr		
182.0	262.6	Mafic Tuff and Lean Iron Formation mottled to massive to banded, fine to medium grained. Modal percent: Amphibole Quartz Plagioclase Chlorite35-40% 35-40% Chlorite 35-40% 	5559 5560 5561 5562 5563 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575	$ \begin{array}{r} 1-3\\ 1-3\\ 1-3\\ 1-3\\ 1-3\\ 1-3\\ 1-3\\ 1-3\\$	182.0 187.0 192.0 202.0 207.0 212.0 217.0 222.0 227.0 232.0 237.0 242.0 247.0 252.0 257.0 260.0	187.0 192.0 197.0 207.0 217.0 217.0 227.0 227.0 232.0 237.0 242.0 247.0 252.0 257.0 257.0 260.0 262.6	$\begin{array}{c} 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\$			tr tr tr tr tr tr tr tr tr tr tr tr tr		
262.6	281.3	Mafic Tuff - dark grey to dark green, fine grained, banded.Modal percent:AmphiboleQuartzJPlagioclaseJBiotite5-10%Chlorite3-5%Carbonate1-2%Pyrite1-2%Pyrnotitetr-1%MagnetitetraceGarnettrace	5576 5577 5578 5579	1-2 1-2 1-2 1-2	262.6 267.0 272.0 277.0	267.0 272.0 277.0 281.3	4.4 5.0 5.0 4.3			tr .016 tr tr		

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. OCH-87-2 SHEET NO. 3 OF 3

FOO	T AGE				SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	NO.	3 SUL PH	FROM	FOOTAGE	TOTAL	7	2	OZ AU	02 TON	
262.6	281.3	Cont'd. Frequent folded and distorted banding, chlorite and biotite as bands, 2–5% quartz-carbonate stringers, 1–2% pyrite as dissemin- ated grains, blebs on fractures, distorted banding subparallel to										
281.3	286.1	core axis between 265.0' and 275.0'. <u>Mafic Flows</u> – dark green, fine grained, massive. <u>Modal percent: Amphibole 50-55%</u> Plagioclase 40-45% Quartz Carbonate] 1-2%										
		Amphibolitic, few widely spaced fractures.	5580	-	281.3	284.1	2.8			.002		
		- 284.1' - 286.1' - 2-3% quartz-carbonate stringers with 1-2% pyrite, 2-3% graphite.	5581	1-2	284.1	286.1	2.0			.002		
286.1	357.0	Mafic Flows – as above, medium grained, abundant wispy albite grains, 1–2% quartz-carbonate stringers, trace-0.5% pyrite.	5582	tr	286.1	291.1	5.0			tr		
		- 312.4' - 314.3' - quartz vein, trace disseminated pyrite.	5583	tr	312.4	314.3	1.9			tr		
		- 317.0' - 332.0' - 1-2% quartz-carbonate stringers and veins with 1-2% disseminated pyrite.	5584 5585 5586	1-2 1-2 1-2	317.0 322.0 327.0	322.0 327.0 332.0	5.0 5.0 5.0			tr tr tr		
		Fracturing at 40° and 56° to core axis at 304.0', 62° at 355.0'.	1									
	357.0	Е.О.Н.							Ģ	Ŵ	Ma	nn ^o

NAME O HOLE N LOCATIO LATITUD ELEVATI STARTED	F PROPE 0, N E ON Novem	arty OCHIG LAKE F -87-3 LENGTH 306.0' +00W, 44+25S 3 DEPARTURE 3 AZIMUTH 180° DIP -47° ber 6/87 FINISHED November 7/87 3	0.0 0.0 06.0	01P 47° 40°		H F00TA	GE DIP			HOLE N REMAI SUMM	ю, <u>ОСН-</u> як s <u>РА9</u> IARY LO	<u>87-3</u> _{5н} 03482 G R. Hit	EET NO.'.	
FOO	TAGE					S A	MPLE				A	SSAN	' 5	
FROM	то	SUMMARY LOG	······	•	₩0. 501 10	PH-	F001 M T	AGE O TO	DTAL	z	%	AU oz/ton	oz/ton	
0.0	57.0 206.5	CASING. FELSIC TO INTERMEDIATE THEF.												
206.5	214.6	SILICIFIED, FELSIC TO INTERMEDIATE TUFF - 1-10% pyrrhotite	e, 1-5	*										
214.6	220.3	SILICIFIED MAFIC VOLCANIC - 3-5% pyrrhotite, pyrite.												
220.3	222.4	FELSIC TO INTERMEDIATE TUFF.											, 	
222.4	228.2	SILICIFIED MAFIC VOLCANIC.												
228.2	235.1	SILICIFIED FELSIC TO INTERMEDIATE TUFF.												
235.1	240.8	FELSIC TO INTERMEDIATE TUFF - 5-10% garnet.												
240.8	306.0	FELSIC TO INTERMEDIATE TUFF.												
240.8	306.0 306.0	FELSIC TO INTERMEDIATE TUFF. E.O.H.									:			

										OCH-	87-3		1 of 4
NAME O	F PROPE	OCHIG LAKE	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE N	10, <u>0011</u>	<u> </u>	EET NO.	
HOLE N	o. <u>OCH-</u>	87-3LENGTH306.0'	0.0	470					REMA	rks <u>PA9</u>	03482		
LOCATIO	N 60+	00W, 44+25S	306.0	40°									
LATITUD	E	DEPARTURE			······								
ELEVATI	ON Novo	$\frac{180^{\circ}}{180^{\circ}} DIP - \frac{-47^{\circ}}{180^{\circ}}$							LOCOET	N BY	R. Higo	inson	
STARTED	<u> </u>	FINISHED NOVENDEL 7787											
FOO	TAGE					5 A M	PLE			٨	SSAY	's	
FROM	то	DESCRIPTION		•	10. SULP		FOOTA	GE	8	*	02/10N	OZ/TON	
	57.0	0	<u></u>		IUES		1-10	1017			<u>-</u>		
0.0	57.0	Lasing.											
57.0	206.5	Felsic to Intermediate Tuff - dark to light grey, fine	grained,										
		massive bands to banded to schistose.											
		Feldspar] 45-50%				1						1	
		Sericite 25-30%											
		Amphibole 5-10%											
		Chlorite 3-5%									Í		
		Garbonato 1.24											
		Pvrite 1-2%			·								
		Arsenopyrite tr-0.5%		ľ									
		Disseminated fine to medium subidiomorphic pink garnet	prophyro	b- 5	587 1-2	57.0	62	.0 5.0			tr		
		lasts, irregular to elliptical clasts of plagioclase, f	ine grai	n 5	588 1-2	62.0	67	.0 5.0			tr		
		disseminated arsenopyrite as aggregates of grains, pyrit	e as dis	- 5	589 1-2	67.0	72	0 5.0			tr		
		seminated grains, stringers, blebs and fracture coating	s, minor	5	590 1-2	72.0		.0 5.0			.002		
		bonate stringers. Foliation averages 55° to core axis	driz-Cdr Fractu	- 5 res 5	597 1-2	82 0	87	0 5.0			tr 002		
		at 30° to 34° to core axis between 60.0' and 111.0', 40'	$^{\circ}$ to 42 $^{\circ}$	5	593 1-2	87.0	92	0 5.0			tr		
		between 127.0' and 206.5'.		5	594 1-2	92.0	97	0 5.0			tr		
g		- 97.0' - 102.0' - 2-3% disseminated pyrite, ½" qu	artz str	in- 5	595 2-3	97.0	102	.0 5.0			.004		
≦ ki		ger with coarse grained pyrite I	blebs.	5	596 1-2	102.0	107	0 5.0			tr		
				5	597 1-2	107.0	112	0 5.0	1 1		tr		
				5	598 1-2	112.0	117	.0 5.0			tr		
				5	500 1-2	122 0	127	0 5.0			ir tr		j
2				5	501 1-2	127.0	132	0 5.0			tr		
				5	502 1-2	132.0	137	0 5.0			.006		
2				50	503 1-2	137.0	142	0 5.0			tr		
2				50	04 1-2	142.0	147	.0 5.0			tr		
1							1						
I	1 I				ļ	I	ł	1	n i		i l	1	

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. 0CH-87-3 SHEET NO. 2 OF 4

F00	TAGE				SAMPI	LE		[ASSAYS		
FROM	10	DESCRIPTION	мо	", SUL PH	FROM	FOOTAGE	TOTAL	<u> </u>	~	AUGN	OZ TON	
57.0	206.5	Cont'd. - 147.0' - 206.5' - highly fractured, 2-3% pyrite as frac- ture fillings and stringers, minor gra-	5605 5606	2-3 2-3	147.0 152.0	152.0 157.0	5.0 5.0			tr tr		
		phite grains. 3-5% grunerite as stubby prisms.	5607 5608 5609 5610 5611 5612 5613 5614 5615 5616	2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3	157.0 162.0 167.0 172.0 177.0 182.0 187.0 192.0 197.0 202.0	162.0 167.0 172.0 177.0 182.0 187.0 192.0 197.0 202.0 206.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.5			tr tr tr tr tr tr tr tr tr		
206.5	214.6	Silicified, Felsic to Intermediate Tuff – light to dark grey to white, fine grained, banded. Modal percent: Quartz 40-45% Sericite 35-40% Amphibole 3-5% Pyrrhotite] 2-10%										
		Siliceous – cherty, 1–10% pyrrhotite, 1–5% pyrite, as massive stringers, wispy blebs and fracture fillings, foliation at 55° to core axis at 206.5', fracture at 40° to core axis at 207.5'.										
		- 206.5' - 209.3' - 1-2% wispy pyrrhotite blebs.	5617	1-2	206.5	209.3	2.8			tr		
		- 209.3' - 210.3' - 2-3% wispy pyrrhotite blebs.	5618	1-3	209.3	211.8	2.5			tr		
		- 210.3' - 211.8' - 1-2% wispy pyrrhotite blebs.										
		- 211.8' - 214.6' - massive sulphide stringers, 60% pyrrho- tite, 2-3% pyrite nodules, 35-40% round- ed quartz grains.	5619	60	211.8	214.6	2.8			tr		
214.6	220.3	<u>Silicified Mafic Volcanic</u> - dark grey to dark green, fine to me- dium grained, massive. Modal percent: Amphibole 40-45% Plagioclase 20-25% Quartz 10-15%	5620 5621	3-5 3-5	214.6 217.0	217.0 220.3	2.4 3.3			tr tr		
1			1	F	l	1	1	1				

LANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. OCH-87-3 SHEET NO. 3 OF 4

1	F001	TAGE				SAMPL	E		1	ASSAYS		
	FROM	10	DESCRIPTION	NO	", SUL PH		FOOTAGE			AU	OZ TON	
\vdash					IDES	FROM	10	TOTAL	ł	 		
	214.6	220.3	Cont'd.									
		i	Chlorite 3-5%									
			Pyrhotite 3-5%									
			Garnet 2-3%									
			Carbonate 1-2%									
			Amphibolitic, medium grained amphiboles in fine grained ground- mass, disseminated medium grained, subidiomorphic pink garnets with pyrite as cores or mantles, 0.1 foot vuggy pyrite-quartz tringer at upper contact.									
	220.3	222.4	<u>Felsic to Intermediate Tuff</u> – typical, 0.2 foot massive pyrrhotite stringers.	5622	3-5	220.3	222.4	2.1		.012		
			- 221.9' - 222.4' - quartz vein, 3-5% pyrrhotite stringers.									
	222.4	228.2	Silicified Mafic Volcanic - as above.	5623 5624	3-5 3-5	222.4 225.0	225.0 228.2	2.6 3.2		tr tr		
	228.2	235.1	Silicified Felsic to Intermediate Tuff - as above, 2-3% quartz- carbonate stringers.	5625	tr	228.2	233.3	5.1		tr		
			- 233.8' - 234.0' - massive sulphide stringer, 60% pyrrhotite 3-5% pyrite nodules.	5626	10	233.3	235.1	1.8		tr		
			Foliation at 60° to core axis at 233.0'.									
	235.1	240.8	Felsic to Intermediate Tuff - atypical, 5-10% medium to fine	5627	1-2	235.1	237.1	2.0		tr		
168			grained garnets, 5-7% stubby fine grained grunerite grains, folia- tion at 60° to core axis at 240.8'.	5628	1-2	237.1	240.8	3.7		.008		
0 - 366-1	240.8	306.0	Felsic to Intermediate Tuff - typical foliation at 62° to core axis at 257.0° .	5629	1-2	240.8	244.0	3.2		tr		
TNOHO:			- 257.0' - 276.0' - ½" quartz stringer, 2-3% pyrite and tourmaline.	5630 5631	1-2 1-2	244.0 247.0	247.0 252.0	3.0 5.0		tr tr		
- S				5632	1-2	252.0	257.0	5.0		.002		1
and GE				5633 5634	1-2	257.0	262.0	5.0		tr tr		
ANG				5635	1-2	267.0	272.0	5.0		tr		
ر_												
1	1	1		1	I	I	ı I			!	l I	1

NAME OF PROPERTY_OCHIG LAKE HOLE NO._OCH-87-3 SHEET NO. 4 OF 4

FOO	TAGE				SAMP	LE				ASSAYS		
FROM	10		NO.	1 SUL PH	FROM	FOOTAGE TO	TOTAL	3	7	ALLON	OZ TON	
240.8	306.0	Cont'd.	5636 5637 5638 5639 5640 5641 5642 5643 5643	1-2 2-3 1-2 1-2 1-2 1-2 1-2 1-2 1-2	272.0 275.0 276.0 280.0 282.0 287.0 292.0 297.0 302.0	275.0 276.0 280.0 282.0 287.0 292.0 297.0 302.0 306.0	3.0 1.0 4.0 2.0 5.0 5.0 5.0 5.0 4.0			tr tr tr tr tr tr tr		
	306.0	Е.О.Н.		1-2	302.0	300.0	4.0					
LANGRIDGES - TORONTO - 366-1168									A	M	Ma	M

	HOLE NO, 0CH-87-4 SHEET NO, 1 of 2													
	NAME O	F PROP	ERTY OCHIG LAKE	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE	рлс	5H	EEI NU	
	HOLE NO	. <u>OCH-</u>	87-4 LENGTH 358.0'	0.0	160					REMA	RKS	03477		
	LOCATIO	N	00W, 26+755	200.0	4 <u>0</u> 43°						PA8	93321		
1	LATITUD	E	DEPARTURE	358.0	38.5	þ				SUM	MARY LO	G		
1	ELEVATI		AZIMUTH DIP DIP							LOGGE	DBY R	. Higgi	nson	
1	STARTED													
	FOOT	FAGE	DESCRIPTION				SAM	PLE				SSA	(5	
	FROM	то	SUMMARY LOG		N	IO. SULPI	FROM	F00TA T0	GE TOTAL	- 36	36	OZ/TON	OZ/TON	
	0.0	13.5	CASING.											
	13.5	44.0	MAFIC TO INTERMEDIATE VOLCANIC.											
	44.0	47.0	GRANITE DYKELET.					1						
	47.0	70.7	MAFIC TO INTERMEDIATE VOLCANIC.		H									
	70.7	73.6	APLITE DYKE.											
	73.6	106.4	MAFIC FLOWS.											
	106.4	125.0	MAFIC TUFF.											
	125.0	130.0	FELSIC TO INTERMEDIATE TUFF.					1						
	130.0	142.4	FELSIC TUFF.									-		
	142.4	163.7	MAFIC FLOWS.											
	163.7	166.2	GRANITE DYKE.											
	166.2	262.4	FELSIC TO INTERMEDIATE TUFF.											
	262.4	263.7	MAFIC INTRUSIVE.										Ē	
	263.7	272.5	MAFIC FLOWS.											
	272.5	273.0	MAFIC INTRUSIVE.											
1198	273.0	294.1	MAFIC FLOWS.											
- 366-	294.1	294.8	MAFIC INTRUSIVE.											
1052	294.8	312.3	MAFIC FLOWS AND MAFIC INTRUSIVE (DYKE) SWARM.											
0HO	312.3	313.5	GRANITE DYKE.						1					
1	313.5	315.6	TOURMALINITE.			1								
FIDGE	315.6	320.2	MAFIC INTRUSIVE.					1						
220														
וכ														
- 1	1				11	1	1	1	1	11			1	

•

NAME OF PROPERTY OCHIG LAKE

· · ····· HOLE NO. OCH-87-4 SHEET NO. 2 OF 2

FOO	TAGE	DESCRIPTION			SAMPL	E				ASSAYS		
FROM	10		NO.	N SUL PH IDES	FROM	FOOTAGE	TOTAL	· •	· ·	OZ TON	OZ TON	
320.2 324.4 325.4	324.4 325.4 358.0 358.0	FELSIC TO INTERMEDIATE TUFF. MAFIC INTRUSIVE. FELSIC TO INTERMEDIATE TUFF. E.O.H.	NO.	1015	FROM	10	ΤΟΤΑΙ			07 ¹ 6n	02 ТОН	
LANGROOES - 1040410 - 366-1168												

NAME OF	PROPERTY _	OCHI	<u>G LAKE</u>				
HOLE NO.	OCH-87-4		LENGTH	358.0'			
LOCATION	34+00W,	26+75	S				
LATITUDE			DEPARTURE				
ELEVATION	·		AZIMUTH	020°	D1P	46°	
STARTED _	November 8/	87	FINISHED	November	10/87		

	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	0.0	46°				
	200.0	43°				
	358.0	38.5	ò			
1						

HOLE NO. OCH-87-4 SHEET NO. 1 OF 6

LOGGED BY R. Higginson

REMARKS PA903477 PA893321

FOOTAGE			SAMPLE				ASSAYS					
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	26	¥	огДон	OZ/TON	
0.0	13.5	Casing.										
13.5	44.0	Mafic to Intermediate Volcanic medium grained, banded dark grey to dark green, fine toModal percent:Amphibole40-45%Quartz Plagioclase Biotite30-35%Biotite5-10%Chlorite3-5%										
		Amphibolitic, fine to coarse banding, 3-5% quartz-carbonate strin- gers, foliation at 40° to core axis at 17.0', 35° at 32.0'.	5645		13.5	17.0	3.5			tr		
		- 20.3' - 20.7' - quartz vein with hematite staining.	5646		17.0	22.0	5.0			tr		
		- 24.4' - 24.7' - quartz-carbonate vein with biotite, felted amphibole inclusions, hematite staining.	5647 5648		22.0 27.0	27.0 32.0	5.0 5.0			tr tr		
		- 35.0' - 35.2' - milky quartz vein, white to green, with 2-3% disseminated <u>tourmaline</u> , limonite on fractures.	5649		32.0	37.0	5.0			tr		
		- 37.3' - 37.8' - medium grained, amphibolite hematite-limo- nite staining, medium grainedblebs of hema- tite.	5650 5651		37.0 42.0	42.0 44.0	5.0 2.0			tr tr		
44.0	47.0	Granite Dykelet – white to orange, medium grained, massive. Modal percent: Quartz 40-45% Plagioclase 25-30% Potash Feldspar 10-15% Tourmaline 2-3% Limonite 1-2%	5652		44.0	47.0	3.0			tr		

NAME OF PROPERTY OCHIG LAKE

HOLE NO. 0CH-87-4 SHEET NO. 2 OF 6

FOOTAGE					SAMP	LE		ASSAYS					
FROM	10	DESCRIPTION	NO.	SUL PH	68011	FOOTAGE	1014			AU	OZ TON		
					FROM								
44.0	47.0	Cont'd.											
		Orange limonite staining throughout, equigranular texture, <u>tour-</u> maline along fractures and contacts, irregular contacts, cross- cuts volcanics – subparallel to core axis.											
47.0	70.7	Mafic to Intermediate Volcanics - as above, foliation at 32° to core axis at 49.0', 38° at 57.0', 38° at 67.0'.	5653 5654		47.0 67.0	52.0 70.7	5.0 3.7			tr tr			
70.7	73.6	Aplite Dyke – cream-yellow to grey, fine grained, massive. Modal percent: Quartz] 90-95% Feldspar] 3-5%	5655		70.7	73.6	2.9			tr			
		5–10% irregular blebs of grey quartz in aphanitic groundmass, fine grained streaks and flakes of green-silver muscovite mica, frac- tures at 40° to core axis, contacts at 58–70° to core axis.											
73.6	106.4	Mafic Flows – dark green, medium grained, foliated. Modal percent: Amphibole 45–50% Plagioclase 40–45% Quartz] 3–5%	5656		73.6	77.0	2.4			tr			
		Amphibolitic, minor dark grey felsic bands with 1–2% disseminated magnetite, foliation at 33° to core axis at 87.0', 34° at 106.0', fractures at 58° to core axis at 96.0', 55° at 89.0'. 3–5% quartz-carbonate stringers.	5657		102.0	106.4	4.4			tr			
106.4	125.0	Mafic Tuff- dark green to brown, fine grained, banded.Modal percent:Amphibole45-50%Quartz]30-35%Plagioclase]30-35%Chlorite3-5%Biotite3-5%Carbonate3-5%Garnettr-1%Pyritetr-1%	5658		106.4	111.4	5.0			tr			
		3-5% quartz-carbonate stringers, biotite bands, pyrite as fracture coatings, fractues at 51° to core axis, banding at 35° to core											

LANGRIDGES - *0RONTO - 366-1168

NAME OF PROPERTY OCHIG LAKE

HOLE NO. 0CH-87-4 SHEET NO. 3 OF 6

FOOTAGE				SAMPLE			ASSAYS					
FROM	10	DESCRIPTION	NO.	501 PH	FROM	FOOTAGE	TOTAL	3	ñ	AU 07 TON	UZ TON	
106.4	125.0	Cont'd. axis.										
125.0	130.0	- 122.0' - 125.0' - fracturing with 1-2% pyrite stringers. Felsic to Intermediate Tuff - dark grey to grey-brown, fine grain-	5659 5660	1-2	122.0	125.0	3.0 5.0			tr tr		
		ed, banded to laminated. Modal percent: Quartz] 85-90% Plagioclase 2-3% Chlorite 5-7% Foliation at 32° to core axis at 127.0'.										
130.0	142.4	Felsic Tuff - light grey, fine grained, laminated to banded with medium grained augens.Modal percent:Quartz45-50% PlagioclasePlagioclase30-35% Muscovite10-15% Carbonate	5661 5662 5663		130.0 135.0 138.0	135.0 138.0 142.4	5.0 3.0 4.4			tr tr tr		
		Medium grained plagioclase eyes in fine grained quartz-plagio- clase groundmass. Wispy – foliated mica laminae. 2–3% quartz- carbonate stringers, limonite staining on fractures, minor orange to pink potassic alteration foliation at 44° to core axis 137.0'.										
142.4	163.7	Mafic Flows - typical, 2-3% quartz-carbonate stringers, trace-1% pyrite, trace-0.5% disseminated ankerite, foliation at 44° to core axis at 157.0'.	5664 5665 5666 5667 5668	tr-1 tr-1 tr-1 tr-1 tr-1	142.4 147.0 152.0 157.0 162.0	147.0 152.0 157.0 162.0 163.7	4.6 5.0 5.0 5.0 1.7			tr tr tr tr tr		
163.7	166.2	Granitic Dyke – white to purple, medium grained, massive. Modal percent: Plagioclase] 70–75% Potash Feldspar] 15–20% Quartz 15–20% Lepidolite mica 3–5% Muscovite mica 2–3%	5669		163.7	166.2	2.5			tr		
		Purple lepidolite mica as aggregates of flakes of fine white muscovite, medium grained quartz-feldspar.										

LANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. OCH-87-4 SHEET NO. 4 OF 6

FOOTAGE					SAMP	LE		ASSAYS					
FROM	то	DESCRIPTION	NÔ.	3. SULPH IDES	FROM	FOOTAGE TO	TOTAL		<u>,</u> Ац.	N 02 TO	•		
166.2	262.4	Felsic to Intermediate Tuff - typical, 2-3% quartz-carbonate stringers, fractures infilled with rock flour and carbonates, foliated at 39-42° to core axis across interval, fractures at 40° to core axis at 186.0', 22° at 222.0'.	5670 5671		166.2 217.0	171.2 222.0	5.0 5.0		tr tr				
		- 261.4' - 262.4' - 1-2% limonite bands.	5672		261.4	262.4	1.0		tr	1	1		
262.4	263.7	Mafic Intrusive – black, medium grained, massive. Modal percent: Amphibole 50–60% Tourmaline 15–20% Biotite 10–15% Plagioclase 3–5%	5673	1-2	262.4	263.7	1.3		tr				
		Randomly oriented tourmaline prisms, 0.1-foot fine grained, mas- sive, magnetite-hematite band; 0.2-foot massive irregular pyrite band, contacts at 32° to core axis.											
263.7	272.5	Mafic Flows – typical, mottled, 2–3% quartz-carbonate stringers, 1–2% pyrite stringers and disseminated grains, foliation at 40° to core axis at 270.8'.	5674 5675	1-2 1-2	263.7 267.0	267.0 270.0	3.3 3.0		tr tr				
		- 270.0' - 270.6' - massive magnetite-hematite band, fine grained, ruddy brown-slate grey.	5676 5677		270.0 270.6	270.6 273.0	0.6 2.4		tr tr				
272.5	273.0	<u>Mafic Intrusive</u> - typical.											
273.0	294.1	Mafic Flows - typical, foliation at 40° to core axis at 277.0', 44° at 288.0'.	5678 5679 5680 5681 5682	tr-1 tr-1 tr-1 tr-1 tr-1	273.0 277.0 282.0 287.0 290.0	277.0 282.0 287.0 290.0 294.1	4.0 5.0 5.0 3.0 4.1		tr tr .00 tr tr	2			
294.1	294.8	Mafic Intrusive - atypical, light green, porphyritic, fine to medium grained.Modal percent: Amphibole75-80% ChloriteModal percent: Amphibole75-80% ChloriteChlorite10-15% Carbonate1-3% Pyrite1-3% 1-2%Medium grained chlorite phenocrysts in fine grained amphibole	5683	1-2	294.1	296.6	2.5		tr				

NAME OF PROPERTY___OCHIG LAKE

.

HOLE NO. 000-87-4 SHEET NO. 5 OF 6

FOOTAGE		IAGE	DETERIOTION			SAMPI	. Е		ASSAYS					
Ī	FROM	10	DESCRIPTION	ND.	2 SUL PH	FROM	FOOTAGE	TOTAL	*	"".	AU 02 TON	OZ TON		
	294.1	294.8	Cont'd. groundmass. contact at 73° to core axis at 294.1'.											
	294.8	312.3	Mafic Flows and Mafic Intrusive (Dyke) Swarm – typical flows, atypical intrusives as above. – 294.8' – 296.0' – flows, chloritic, 3–5% quartz-carbonate stringers.											
			- 296.0' - 296.6' - intrusive.											
			- 296.6' - 297.4' - flows, chloritic, as above.	5684		296.6	299.6	3.0			tr			
			- 297.4' - 299.6' - intrusive, contacts at 60° to core axis.											
			- 299.6' - 301.5' - flows, chloritic.	5685		299.6	304.6	5.0			tr			
			- 301.5' - 303.5' - intrusive.											
			- 303.5' - 304.6' - flows, typical, foliation at 53° to core axis at 304.0'.											
			- 304.6' - 306.0' - intrusive contacts at 58° to core axis at 303.5', 50° at 304.6'.	5686		304.6	306.0	1.4			tr			
			- 306.0' - 312.3' - flows, typical, foliation at 42° to core	5687		306.0	311.0	5.0			tr			
			axis at 307.0°. - 311.0° - 312.3° - chloritic flows, 3-5% quartz-carbonate stringers.	5688		311.0	312.3	1.3			tr			
i	312.3	313.5	<u>Granitic Dyke</u> – typical, no lepidolite mica.	5689		312.3	313.5	1.2			tr			
5 - TORONTO - 366-1168	313.5	315.6	Tourmalinite – dark ruddy brown, fine grained, massive to wispy banding. Modal percent: Tourmaline 75-80% Amphibole 5-10% Biotite 3-5% Carbonate 3-5% Equigranular texture, 0.3-foot granitic dyke rock as above with	5690		313.5	315.6	2.1			tr			
LANGRIDGE														

. . .
NAME OF PROPERTY OCHIG LAKE

HOLE NO. 0CH-87-4 SHEET NO. 6 OF 6

FOO	TAGE		SAMPLE NO SULPH FOOTAGE IDES FROM TO TO						ASSAYS		
FROM	10	DESCRIPTION	NO	SUL PH		FOOTAGE		 <u>^</u>	AU	OZ TON	
				IDES	FROM	10	TOTAL				
315.6	320.2	Mafic Intrusive - atypical, fine grained, foliated, 10-15% car- bonate, foliation at 38° to core axis at 318.5'.	5691		315.6	320.2	4.6		tr		
320.2	324.4	Felsic to Intermediate Tuff - Typical. - 321.6' - 323.2' - sugary quartz-carbonate stringers with hematite staining, 2-3% limonite stained pyrite stringers, altered-silicified.	5692	2-3	320.2	324.4	4.2		tr		
324.4	325.4	Mafic Intrusive - atypical, foliated.	5693		324.4	325.4	1.0		tr		
325.4	358.0 358.0	Felsic to Intermediate Tuff - typical, 2-3% quartz-carbonate stringers, 1-3% pyrite as fine grained stringers and disseminated grains, foliation at 40° to core axis at 326.0', 41° at 346.0', 52° at 357.0', fractures at 53° to core axis at 326.0'. - 348.0' - 348.6' - quartz-pyrite vein, 3-5% pyrite as strin- gers and blebs. - 355.0' - 356.8' - schistose, fine grained, 2-3% coarse grained tourmaline prisms. E.O.H.	5694 5695 5696 5697 5698 5699 5700	1-3 1-3 1-3 1-3 1-3 3-5 1-3	325.4 328.0 333.0 338.0 343.0 348.0 353.0	328.0 333.0 338.0 343.0 348.0 353.0 358.0	2.6 5.0 5.0 5.0 5.0 5.0		tr tr tr tr tr tr		
									C	4 PA	Malani

NAME O HOLE N LOCATIO LATITUD ELEVATI STARTED	F PROP 0. OCH N 54 E ON Nover	OCHIG LAKE -87-5 LENGTH 305.0' +00W, 03+00S	F00TAGE 0.0 305.0	DIP AZ1 45 38.5	MUTH	FOOTAGE		2 IMUTH	HOLE I REMA SUM LOGGE	no. <u>OCH</u> rks PA PA MARY L(d by <u>R</u>	<u>-87-5</u> _{5н} 393314 393315 ЭG . Higgi	EET NO.	
FOO	TAGE					SAMP	LE			A	SSAN	ſS	
FROM	то	SUMMARY LOG		NO.	SUL PH	FROM	FOOTAGE	TOTAL	¥	¥	oz/ton	oz/ton	
0.0 91.0 127.8 128.1 177.9 184.6 203.1 203.8 206.5 210.7 219.4 236.3 237.4 265.5 265.0	91.0 127.8 128.1 177.9 184.6 203.1 203.8 206.5 210.7 219.4 236.3 237.4 265.5 266.0 305.0	CASING. MAFIC VOLCANICS - 50:50 flows; tuffs. GRANITE DYKELET. MAFIC VOLCANICS - 50:50 flows; tuffs. FELSIC TUFF. MAFIC FLOWS. FELSIC TUFF. MAFIC FLOWS. FELSIC TUFF - FELSIC CRYSTAL TUFF. MAFIC FLOWS. FELSIC TUFF - FELSIC CRYSTAL TUFF. MAFIC FLOWS. FELSIC TUFF. HYBRID GNESSIC MAFIC VOLCANICS. GRANITE DYKE.											
	305.0	E.O.H.											

NAME OF	PROPERTY	OCHIG	LAKE			
HOLE NO.	OCH-87-5		LENGTH	305.0'		
LOCATION	54+00W,	03+005				
LATITUDE			DEPARTURE			
ELEVATION			AZIMUTH	<u>160°</u>		45°
STARTED _	November 1	0/87	FINISHED	November	12/87	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0.0	45				
305.0	38.5				

HOLE NO. OCH-87-5 SHEET NO. 1 OF 3

LOGGED BY R. Higginson

PA893315

REMARKS PA893314

F 0 0 1	AGE				SAMP	LΕ			A	SSAN	'S	
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	%	OZ/TON	oz/ton	
0.0	91.0	<u>Casing</u> .										
91.0	127.8	Mafic Volcanic50:50 flows and tuffs, dark green to white, fine grained, mottled to Modal percent:sive to banded.Modal percent:Amphibole40-45% PlagioclaseChlorite10-15% 	5701		91.0	95.0	4.0			tr		
		Competant, few fractures with orange potassic alteration, equi- granular texture, foliation at 32° to core axis across interval, fractures at 41° to core axis.										
127.8	128.1	Granite Dykelet - white to red, fine grained, massive. Modal percent: Plagioclase 45-50% Quartz 40-45% Muscovite 2-3% Amphibole 1-2%	5702		127.0	130.0	3.0			tr		
		Equigranular texture, hematite staining.										
128.1	177.9	Mafic Volcanic – as above.	5703		130.0	133.0	3.0			tr		
89		- 133.0' - 134.5' - friable, highly weathered.	5704		133.0	135.0	2.0			tr		
- 366-1		- 134.5' - 154.4' - 3-5% quartz-carbonate stringers.	5705 5706		135.0	140.0 145.0	5.0 5.0			tr tr		
0100401		Foliation at 32° to core axis.	5707 5708 5709		145.0 150.0 175.0	150.0 154.4 177.9	5.0 4.4 2.9			tr tr tr		
177.9	184.6	<u>Felsic Tuff</u> – dark grey, fine grained, foliated. Modal percent: Quartz 40-44% Plagioclase 40-44%	5710 5711	tr-1 tr-1	177.9 181.0	181.0 184.6	3.1 3.6			tr tr		

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. 001-87-5 SHEET NO. 2 OF 3

ſ	F00'	FAGE	DECONDITION			SAMPI	E			ASSAYS		
	FROM	10	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	 ",	oz Ay	OZ TON	
	177.9	184.6	Cont'd.						 			
			Chlorite 3-5% Epidote 2-3% Potash Feldspar 2-3% Pyrite tr-1%									
			3-5% quartz-potash feldspar stringers with trace-1% pyrite blebs, limonite-hematite stain on fractures, foliation at 46° to core axis at 184.0', fracture at 34° to core axis at 184.0'.									
	184.6	203.1	<u>Mafic Flows</u> - massive, 2-3% epidote and potash feldspar along fractures, 2-3% quartz-carbonate stringers, fractures at 40° to core axis at 300.0', foliation at 31° to core axis at 295.0'.	5712 5750 5751 5713		184.6 189.6 194.6 199.6	189.6 194.6 199.6 203.1	5.0 5.0 5.0 3.5		tr tr tr tr		i
	203.1	203.8	Felsic Tuff - as above, foliation and fractures at 40° to core axis.	5714		203.1	203.8	0.7		tr		
	203.8	206.5	Mafic Flows - as above.	5715		203.8	206.5	2.7		tr		
	206.5	210.7	Intermediate Flows – light green, fine grained, massive to mottled Modal percent: Amphibole 40–45% Plagioclase 40–45% Epidote 5–7% Carbonate 2–3%	5716		206.5	210.7	4.2		tr		
-			Fine amphibole needles, minor carbonate stringers, foliation and fractures at 41° to core axis.									
ONTO 366-1168	210.7	219.4	Felsic Tuff - Felsic Crystal Tuff - atypical, dark grey to red, fine grained groundmass with medium grained white clasts inter- bedded to gradational contacts, medium grained plagioclase-quartz crystals in fine grained groundmass, 3-5% potash feldspar-quartz- chlorite-epidote-pyrite stringers, 1-3% disseminated pyrite.	5717 5718	1-3 1-3	210.7 215.0	215.0 219.4	4.3 4.4		tr tr		
ES - TOR	219.4	236.3	Mafic Flows - typical, 2-3% quartz-carbonate stringers, minor potassic alteration, fracture and foliation at 44° to core axis	5719		219.4	224.4	5.0		tr		
LANGRIDG			al 222.0'.	5720		233.3	236.3	3.0		tr		

Vacciacio

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. 0CH-87-5 SHEET NO. 3 OF 3

FOOT	TAGE		SAM			. E				ASSAYS		
FROM	10	DESCRIPTION	ND	5. SUL PH IDE S	FROM	FOOTAGE	TOTAL	" •	~,	OZ TON	UZ TON	
236.3	237.4	<u>Felsic Tuff</u> - as above, fracturing at 36° to core axis, foliation at 53° to core axis.	5721		236.3	237.4	1.1			tr		
237.4	265.5	Hybrid Gneissic Mafic Volcanics – dark green to black to white, fine to medium grained, banded – gneissose. Modal percent: Amphibole 45-50% Quartz 25-30% Plagioclase 10-15% Epidote 3-5% Pyrite 2-3%	5722 5723 5724 5725 5726 5727	2-3 2-3 2-3 2-3 2-3 2-3 2-3	237.4 239.9 245.0 250.0 255.0 260.0	239.9 245.0 250.0 255.0 260.0 265.0	2.5 5.1 5.0 5.0 5.0 5.0			tr tr tr tr tr		
		Partial gneissose segregation of phases, speckled to equigranular texture to individual bands, foliation gneissocity at 40° to core axis at 246.0', 2-3% disseminated pyrite throughout, 2-3% quartz- potash feldspar stringers.										
265.5	266.0	<u>Granititc Dyke</u> - typical, contacts at 40° to core axis, limonite staining.	5728	2-3	265.0	270.0	5.0			tr		
266.0	305.0	Hybrid Gneissic Mafic Volcanics -										
		- 266.0' - 270.0' - typical.										
		- 270.0' - 305.0' - amphibole-albite gneiss with 5-7% wispy chlorite bands, gneissocity at 42° to	5729		270.0	275.0	5.0			tr		
		core axis at 305.0'.	5730		300.0	305.0	5.0			tr		
	305.0	E.O.H.										
									Ó	AN	Inta	m ^o
							v		J	19		

NAME OF PROPERTY OCHIG LAKE	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE NO, SHEET NO,
101 F NO 0CH-87-6 LENGTH 206.0'							REMARKS <u>PA903615</u>
64+00W 38+00N	0.0	45°					
LOCATION	206.0	42°					SUMMARY LOG
LATITUDE DEPARTURE						11	
ELEVATION AZIMUTH ZIU" DIP 45"						1	R. Hinginson
STARTEDNOVEMber 11/87 FINISHEDNOVEMber 13/87			I			1	LOGGED BY
FOOTAGE		8		SAM	PLE		ASSAYS

1,00	1.05				3 4 4 1				~		~	
FROM	то	SUMMARY LOG	NO.	SUL PH- IDES	FROM	FOOTAGE TO	TOTAL	36	*6	AU oz/ton	OZ/TON	
0.0	23.0	CASING.										
23.0	149.7	MAFIC INTRUSIVE.										
149.7	151.5	QUARTZ FELDSPAR PORPHYRY.										
151.5	173.8	MAFIC INTRUSIVE.										
173.8	181.2	QUARTZ FELDSPAR PORPHYRY.										
181.2	206.0	MAFIC INTRUSIVE.										
	206.0	Е.О.Н.										
			ļ									
					1							
58												
56-11												
			lí –								ĺ	
PTNO.												
101												
, sa												
GHID												
L AN												
I	ļ											

HOLF NO. OCH-87-6 SHEET NO. 1 OF 1

NAME OF PROPERTYOCHIG LAKE	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	1.02.
HOLE NO. 0CH-87-6 LENGTH 206.0'			I				REM
	0.0	45°					1
	206.0	42°					
LATITUDE DEPARTURE							1
elevation azimuth210.0° dip45°							1
STARTED November 11/87 FINISHED November 13/87		l		l		I	LOGO

HOLE NO. 0CH-87-6 SHEET NO. 1 OF 2 REMARKS PA903615

GED BY R. Higginson

FOO	TAGE				SAMP	LΕ			A	SSAY	'S	
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	36	36	оДнон	OZ/TON	
0.0	23.0	<u>Casing</u> .										
23.0	149.7	Mafic Intrusive - green to black, fine to medium grained, massive to finely banded.Modal percent: Amphibole45-50% Quartz Plagioclase 	5731 5732 5733		23.0 56.0 76.0	28.0 61.0 81.0	5.0 5.0 5.0			tr tr tr		
		Quartz-carbonate stringers, massive medium grained amphibolite to aphanitic amphibole bands to wispy banded chloritic horizons, frac- turing at 58° and 32° to core axis at 125.0', cleavage at 80° to core axis at 86.0', 80° at 30.0', 82° at 43.0'. - 107.0' - 117.0' - highly fractured 1-2% carbonate, medium grained chlorite pseudomorphs after pyro-	5734 5735		107.0 112.0	112.0 117.0	5.0 5.0			tr tr		
		- 140.6' - 141.4' - quartz-carbonate vein with albite and amphibole inclusions with 1-2% dissemin- ated pyrite blebs.	5736 5737 5738	1-2	140.0 142.0 147.0	142.0 147.0 149.7	2.0 5.0 2.7			tr tr tr		
149.70 - 300000 - 300000 - 300000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 30000 - 300000 - 300000 - 300000 - 30000 - 300000 - 300000 - 300000 - 300000 - 3000000 - 3000000 - 300000000	151.5	Quartz-Feldspar Porphyry - dark grey, fine grained groundmass, white, medium grained phenocrysts, massive. Modal percent: Plagioclase phenocrysts 40-45% Plagioclase] groundmass 40-45% Quartz 10% Chlorite 5-10% Pyrite tr-0.5%	5739		149.7	151.5	1.8			tr		

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. 000-87-6 SHEET NO. 2 OF 2

FOOT	TAGE.	DESCRIPTION			SAMP	L.E				ASSAYS		
FROM	10		NO.	* SULPH IDES	FROM	FOOTAGE	TOTAL	r,	٦.	Ayon	OZ TON	
149.7	151.5	Cont'd. Porphyritic, no fracturing, fresh, contacts at 70° to core axis.										
151.5	173.8	Mafic Intrusive - as above, foliation at 82° to core axis, frac- tures at 47° and 80° to core axis at 164.5'.	5740 5741		151.5 170.0	156.0 173.8	4.5 3.8			tr tr		
173.8	181.2	Quartz-Feldspar Porphyry - fine to medium grained, porphyritic to microporphyritic, minor fractures with potassic alteration haloes around fractures, chlorite-quartz-1-2% pyrite infillings.	5742 5743	1-2 1-2	173.8 177.3	177.3 181.2	3.5 3.9			tr tr		
181.2	206.0	Mafic Intrusive - as above, fractures and foliation at 72° to core axis at 205.0'.	5744 5745		181.2 186.0	186.0 191.0	4.8 5.0			tr tr		
		- 195.0' - 203.0' - quartz-carbonate veining with chlorite- amphibole inclusions. Trace-0.5% pyrite.	5746 5747 5748 5749		191.0 195.0 200.0 203.0	195.0 200.0 203.0 206.0	4.0 5.0 3.0 3.0			tr tr tr tr		
	206.0	E.O.H.										
							•					
											An al	, 1/111/-
					:				9	Y!	"]/()()?	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

NAME O HOLE N LOCATIC LATITUD ELEVATI STARTES	F00TAGE 0.0 306.0	DIP 47° 44°		н Гоот		DIP AZ		hole i rema SUMM/ Logge	NO. <u>OCH-8</u> RKS <u>PAR</u> ARY LOO D BY <u></u>	<u>37-7</u> ын 393314 5 4. Higg	EET NO.	<u>1 of 1</u>		
FOO	TAGE	DESCRIPTION				5 /	АМРІ	LE			A	5 5 A '	YS	
FROM	то	SUMMARY LOG		•	10. sú	PH 5 F	ROM	TO	TOTAL	36	ж	OZ/TON	OZ/TON	
0.0	11.0	CASING.												
11.0	33.9	INTERMEDIATE FLOWS.											1 1	
33.9	180.8	INTERMEDIATE TUFF AND AGGLOMERATE.												
180.8	245.8	FELSIC TUFF - 1-2% quartz-pyrite-tourmaline veining.												
245.8	257.0	FELSIC TO INTERMEDIATE TUFF.												
257.0	265.8	FELSIC CRYSTAL TUFF.												
265.8	268.2	FELSIC TO INTERMEDIATE TUFF.												
268.2	270.8	FELSIC TUFF.												
270.8	272.6	FELSIC TO INTERMEDIATE TUFF.												
272.6	273.9	FELSIC TUFF.												
273.9	275.8	FELSIC TO INTERMEDIATE TUFF.											i l	
275.8	295.2	FELSIC CRYSTAL TUFF.											i	
295.2	297.2	INTERMEDIATE TUFF.												
297.2	306.0	FELSIC TUFF.												
	306.0	E.O.H.					1							
6														
													i l	
5														

NAME OF	PROPERTY _	OCHIG LAKE		
HOLE NO.	OCH-87-7	LENGTH	306.0'	
LOCATION	58+50W,	09+00S		
LATITUDE		DEPARTURE		 ·····
LATITUDE		DEPARTURE	160°	 47°

ĺ	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	0.0	47°				
	306.0	44°				

HOLE NO.0CH-87-7 SHEET NO. 1 OF 3 REMARKS PA893314

LOGGED BY R. Higginson

FOOTAGE		DESCRIPTION			SAMP	LE		ASSAYS				
FROM	то	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	36	z	OZ/TON	OZ/TON	
0.0	11.0	Casing.										
11.0	33.9	Intermediate Flows – dark grey to green, fine grained, massive to slightly foliated. Modal percent: Plagioclase Quartz] 50–55% Amphibole 30–35%	5752	tr	11.0	14.0	3.0			tr		
		Chlorite 5-10% Carbonate 2-3% Pyrite tr-0.5%										
		2-3% quartz-carbonate stringers, foliation at 38° to core axis at 14.0'.	5753	tr	30.9	33.9	3.0		i	tr		
33.9	180.8	Intermediate Tuff and Agglomerate - black to white to dark green, fine grained, foliated to mottled with distorted bands and clasts. Modal percent: Amphibole 50-55% Chlorite 15-20% Quartz - 40.45%	5754 5755 5756		33.9 66.0 96.0	36.0 69.0 99.0	2.1 3.0 3.0			tr tr tr		
		Carbonate J 10-15% Sericite 5-10%										
2		Highly distorted-crenulated bands, angular clasts and small bombs in some horizons, penetrative cleavage at 43° to core axis at 56.0', 44° at 76.0', 48° at 106.0', 50° at 146.0'.										
		- 119.0' - 121.0' - quartz-carbonate stringers with epidote.	5757 5758		119.0 163.0	121.0 166.0	2.0 3.0			tr tr		
		- 177.5' - 178.1' - clean discordant quartz vein.	5759		177.5	180.8	3.3			tr		
180.8	245.8	<u>Felsic Tuff</u> - light grey, fine to medium grained, banded to mas- sive.										

.

- 366-1168

LANGRIDGES - TORONTO

NAME OF PROPERTY. OCHIG LAKE

HOLE NO. OCH-87-7 SHEET NO. 2 OF 3

FOOTAGE		DESCRIPTION			SAMPL	. E		ASSAYS				
FROM	10	DESCRIPTION	ND.	", SULPH IDES	FROM	FOOTAGE TO	TOTAL	*4	~	02 AUN	OZ TON	
F00T FROM 180.8	AGE 10 245.8	Cont'd. Modal percent: Plagioclase] 85-90% Quartz] 85-90% Muscovite 3-5% Chlorite] 3-5% Amphibole] 3-5% Pyrite tr-2% Minor epidote-amphibole bands, quartz-pyrite-tourmaline stringers and veins, variable textures, abundant quartz-plagioclase crystals in some horizons. - 180.8' - 189.6' - crystal tuff, 5-10% quartz veining with 1-2% pyrite grains, 1-3% disseminated pyrite throughout. - 189.6' - 195.7' - 10-15% sericite-muscovite, 2-3% epidote, crudely banded, 1-2% quartz-tourmaline- pyrite stringers. - 195.7' - 201.3' - massive to banded, 1-2% quartz-tourma- line-pyrite stringers, 3-5% carbonate. - 195.7' - 205.8' - massive to crudely banded, 3-5% epidote, 5-7% carbonate. - 201.3' - 205.8' - massive to crudely banded, 3-5% epidote, 5-7% carbonate. - 205.8' - 211.4' - 1-2% quartz-tourmaline veining, 3-5% fine grained disseminated epidote. - 211.4' - 231.2' - crystal tuff, medium to coarse grained quartz crystals, mottled, epidote-seri- cite bands, 1-3% disseminated pyrite, 2- 3% quartz-tourmaline-epidote-pyrite veins - 231.2' - 236.0' - as per 205.8' - 211.4'. - 236.0' - 245.8' - crystal tuff, coarse to medium grained quartz crystals.	NO. 5760 5761 5762 5763 5764 5765 5766 5766 5766 5766 5767 5776 5770 5771 5772 5773 5774	1-3 1-3 1-3 1-2 1-2 1-2 1-2 1-2 1-2 1-3 1-3 1-3 1-3	FROM 180.8 180.8 184.6 189.6 193.6 195.7 196.5 199.5 201.3 205.8 201.0 226.0 231.2 236.0	E FOOTAGE 70 184.6 189.6 193.6 195.7 196.5 199.5 201.3 205.8 208.8 211.4 216.0 221.0 226.0 231.2 236.0 239.6	101AL 3.8 5.0 4.0 2.1 0.8 3.0 1.8 4.5 3.0 2.6 4.6 5.0 5.2 4.8 3.6			ASSAYS 02 AUN tr tr tr tr tr tr tr tr tr tr	02 TON	
		- 239.6' - 240.2' - 2-3% disseminated py- rite. - 240.2' - 241.0' - epidote-sericite bands.	5776 5777	2-3	239.6 241.0	241.0 245.8	1.4 4.8			tr tr		

NAME OF PROPERTY OCHIG LAKE

HOLE NO. OCH-87-7 SHEET NO. 3 OF 3

	F 00"	TAGE		SAMPLE				ASSAYS					
F	FROM	10	DESCRIPTION	NO.	1. SUL PH		FOOTAGE		~	~	oz AU	OZ TON	
┟					IDES	FROM	10	TOTAL	·				
	245.8	257.0	Felsic to Intermediate Tuff- green to grey, fine grained, banded to mottled.Modal percent:Quartz35-40% PlagioclaseAmphibole5-10% Epidote3-5% ChloriteCarbonate2-3% Pyritetr-2%	5778 5779 5780	tr-2 tr-2 tr-2	245.8 250.8 253.8	250.8 253.8 257.0	5.0 3.0 3.2			tr tr tr		
			2-3% quartz-carbonate stringers, trace-1% disseminated pyrite.										
	257.0	265.8	Felsic Crystal Tuff - typical, folation at 42° to core axis at 264.0', trace pyrite.										
	265.8	268.2	Felsic to Intermediate Tuff - as above, trace pyrite.				ļ						
	268.2	270.8	<u>Felsic Tuff</u> - typical.										
	270.8	272.6	Felsic to Intermediate Tuff - typical.										
	272.6	273.9	Felsic Tuff - typical.										
	273.9	275.8	Felsic to Intermediate Tuff - 1-2% quartz-carbonate stringers.										
	275.8	295.2	Felsic Crystal Tuff – typical, foliation at 45° to core axis at 284.0', 1–2% quartz-carbonate stringers, potassic alteration along fractures.										
168	295.2	297.2	<u>Intermediate Tuff</u> - typical.										
- 366-	297.2	306.0	<u>Felsic Tuff</u> - typical, sericitic.										
ORONTO -			- 301.0' - 306.0' - 1-2% pyrite as bands and blebs in sili- ceous horizons.	5781	1-2	301.0	306.0	5.0			tr		
F	•		Foliation at 42° to core axis at 306.0'.								1	11	
LANGRIDGES		306.0	Е.О.Н.							Ĥ	KID	1 a	M
	,									// `			

APPENDIX E

ļ

ļ

F

ſ

ſ

Ĩ,

LEGEND AND DIAMOND DRILL SECTIONS

		For legend see Figur	re No. 5
······			
	0	50' Scale 1" = 40 feet	100*
	F	POWER EXPLORATION	NS INC.
	00	CHIG LAKE PRO Patricia M.D., Onta	PERTY
	D.[D.H. SECTION 4 LOOKING WEST	2+50E
	D.D.H.	No. OCH-87-1	-
	SEDCOMPL	GEOCANEX LTD TORONTO CANADA	BY: R.H / R.T.M. DATE: April, 1988 SCALE: 1: 480 FIGURE No. 6

AAAams

100' Allams For legend see Figure No. 5 - 200'--100' 50' Scale 1" = 40 feet POWER EXPLORATIONS INC. OCHIG LAKE PROPERTY Patricia M.D., Ontario D.D.H. SECTION 34+00W LOOKING WEST D.D.H. No. OCH-87-4 BY: R.H. / R.T.M. ×. DATE: April, 1988 GEOCHNER. GEOCANEX LTD. TORONTO, CANADA SCALE: 1:480 Ŵ FIGURE No. 9

100 Alamo For legend see Figure No. 5 - 200'-100" 50' Scale 1" = 40 feet POWER EXPLORATIONS INC. OCHIG LAKE PROPERTY Patricia M.D., Ontario D.D.H. SECTION 54+00W LOOKING WEST D.D.H. No. OCH-87-5 BY: R.H./R.T.M. j.æ. DATE: April, 1988 SCALE: 1: 480 SEDCRMEX. GEOCANEX LTD TOPONTO, CANADA ેન્દ્રન્ટ FIGURE No. 10

-10 C . HAMdamis For legend see Figure No. 5 -200'-50' 100* Scale 1" = 40 feet POWER EXPLORATIONS INC. OCHIG LAKE PROPERTY Patricia M.D., Ontario D.D.H. SECTION 64+00W LOOKING WEST D.D.H. No. OCH-87-6 I GEOCAMEX | , BY: R.H./R.T.M. DATE: April, 1988 SCALE: 1: 480 FIGURE No. 11 GEOCANEX LTD TORON TO CANADA

Addams For legend see Figure No. 5 -200'-50' 100" Scale 1" = 40 feet POWER EXPLORATIONS INC. OCHIG LAKE PROPERTY Patricia M.D., Ontario D.D.H. SECTION 58+50W LOOKING WEST D.D.H. No. OCH-87-7 BY: R.H./R.T.M. DATE: April, 1988 SCALE: 1:480 FIGURE No. 12 GEOCANEX LTD TORONTO CANADA

--- -100'

APPENDIX F

CORE SAMPLE ASSAY CERTIFICATES

,

Bell - White analytical laboratories LTD.

P.O. BOX 187. HAILEYBURY, ONTARIO TEL: 672-3107

Certificate of Analysis

Page 1 of 2

NO.	3821		2	DATE:	November	24,	1987
SAMPL	E(S) OF:	Core (144)		RECEIVED:	November	1987	7

SAMPLE(S) FROM: Mr. R. Higginson, Geocanex Ltd.

		PROJECT: Ochig Lake
Sample No.	Oz. Gold	Sample No. Oz. Gold
5501	Trace	5537 Trace
2	Trace	8 0.002*
3	Trace	9 0.002*
4	Trace	5540 Trace
5	Trace	1 Trace
6	Trace	2 Trace
7	Trace	3 Trace
8	Trace	4 Trace
9	Trace	5 Trace
5510	Trace	6 Trace
1	Trace	7 Trace
2	Trace	8 Trace
3	Trace	9 Trace
4	0.002	5550 Trace
5	0.034	1 Trace
6	Trace	2 Trace
7	0.008	3 0.004
8	Trace	4 Trace
9	Trace	5 Trace
5520	Trace	6 Trace
1	Trace	7 Trace
2	Trace	8 Trace
3	0.006	9 Trace
4	0.002	5560 Trace
5	0.008	l Trace
6	0.020	2 Trace
7	0.008	3 Trace
8	0.006	4 Trace
9	0.006	5 Trace
5530	0.002*	6 Trace
1	Trace	7 Trace
2	Trace	8 Trace
3	Trace	9 Trace
4	Trace	5570 0.008
5	Trace	l Trace
6	Trace	2 Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pen

	Bell - White	E ANALYTICAL LA	ABORATO	RIES LTD.
	P.O. BOX 187.	HAILEYBURY, ONTA	RIO TEL	: 672-3107
	(a)			
	Certif	icate of Analy	sis	
		Page 2 of 2		
NO . 3821		·	DATE:	November 24, 1987
SAMPLE(S) OF:	Core (144)		RECEIVED:	November 1987
SAMPLE(S) FROM:	Mr. R. Higg	inson, Geocanex Lt	d.	
			PROJECT:	Ochig Lake
			C 1 N.	
Sample No.	Oz. Gold		Sample No.	
5573	Trace		5609	Trace
4	Trace		5610	Trace
5	Trace		1	Trace
6	Trace		2	Trace
7	0.016		3	Trace
8	Trace		4	Trace
9	Trace		5	Trace
5580	0.002*		6	Trace
1	0.002		7	Trace
2	Trace		8	Trace
3	Trace		9	Trace
4	Trace		5620	Trace
5	Trace		1	Trace
6	Trace		2	0.012
7	Trace		3	Trace
8	Trace		4	Trace
9	Trace		5	Trace
5590	0.002*		6	Trace
1	Trace		7	Trace
2	0.002*		8	0.008
3	Trace		9	Trace
4	Trace		5630	Trace
5	0.004		1	Trace
6	Trace		2	0.002*
7	Trace		3	Trace
8	Trace		4	Trace
9	Trace		5	Trace
5600	Trace		6	Trace
1	Trace		7	Trace
2	0.006		8	Trace
3	Trace		9	Trace

* Estimated

Trace

Trace

Trace

Trace

Trace

4 5

6

7

8

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Trace

Trace

Trace

Trace

Trace

5640

1

2

3

4

Bell - White analytical laboratories LTD.

P.O. BOX 187. H

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 3

NO. 3863

DATE:^{November 27, 1987}

SAMPLE(S) OF: Core (184)

RECEIVED: November 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

PROJECT: Ochig Lake

Sample No.	Oz Gold	Sample No.	Oz Gold
5645	Trace	5676	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	5680	0.002
5650	Trace	1	Trace
1	Trace	2	Trace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace	5	Trace
5	Trace	6	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	5690	Trace
5660	Trace	1	Trace
1	Trace	2	Trace
2	Trace	3	Trace
3	Trace	5701	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	Trace
9	Trace	7	Trace
5670	Trace	8	Trace
1	Trace	9	Trace
2	Trace	5710	Trace
3	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Bell - White analytical laboratories LTD.

P.O. BOX 187. HAILEYBURY, ONTARIO TEL: 672-3107

Certificate of Analysis

Page 2 of 3

NO. 3863

DATE:November 27, 1987

SAMPLE(S) OF: Core (184)

RECEIVED: November 1987

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd. PROJECT: Ochiq Lake

Sample No.	Oz Gold	Sample No.	<u>Oz Gold</u>
	_		_
5714	Trace	5745	Trace
5	Trace	6	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	5750	Trace
5720	Trace	1	Trace
1	Trace	2	Trace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace	5	Trace
5	Trace	6	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	5760	Trace
5730	Trace	1	Trace
1	Trace	2	Trace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace	5	Trace
5	Trace	6	Trace
6	Trace	7	Trace
7	Trace	8	0.028
8	Trace	9	Trace
9	Trace	5770	Trace
5740	Trace	1	Trace
1	Trace	2	Trace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace	5	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Bell - White ANALYTICAL LABORATORIES LTD.

P.O. BOX 187,

HAILEYBURY, ONTARIO

PROJECT:

TEL: 672-3107

Certificate of Analysis Page 3 of 3

NO. 3863

DATE:November 27, 1987

SAMPLE(S) OF: Core (184)

RECEIVED: November 1987

Ochig Lake

SAMPLE(S) FROM: Mr. James Pierce, Geocanex Ltd.

Sample No.	Oz Gold	Sample No.	Oz Gold
5776	Trace	5928	Trace
7	Trace	9	0.002*
8	Trace	5930	0.002
9	Trace	1	Trace
5780	Trace	2	Trace
1	Trace	3	0.002*
5904	0.002*	4	0.004
5	Trace	5	0.020
6	Trace	6	0.008
7	Trace	7	Trace
8	Trace	8	0.002*
9	0,002*	9	Trace
5910	Trace	5940	0.004
1	0.002*	1	0.028
2	Trace	2	0.002
3	Trace	3	0.008
4	Trace	4	0.002
5	Trace	5	Trace
6	Trace	6	Trace
7	Trace	7	Trace
8	Trace	8	Trace
9	Trace	9	Trace
5920	Trace	5950	Trace
1	Trace	1	Trace
2	Trace	2	Trace
3	Trace	3	Trace
4	Trace	4	Trace
5	Trace	5	Trace
6	Trace	6	Trace
7	0.002*	7	Trace

Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD. PER

Bell - WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187. HAILEYBURY, ONTARIO T

TEL: 672-3107

Certificate of Analysis

NO.	3863 (Correct	.ed)	DATE:	March 2, 1988
SAMPLE(S) O F :	Core (54)	RECEIVED:	November 1987
SAMPLE (S) FROM:	Mr. James Pierce,	Geocanex Ltd.	
			PROJECT:	Kasagiminnis Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
5904	0.002*	5931	Írace
5	Trace	2	Trace
6	Trace	3	0.002*
7	Trace	4	0.004
8	Trace	5	0.020
9	0.002*	6	0.008
5910	Trace	7	Trace
1	0.002*	8	0.002*
2	Trace	9	Trace
3	Trace	5940	0.004
4	Trace	. 1	0.028
5	Trace	2	0.002
6	Trace	3	0.008
7	Trace	4	0.002
8	Trace	5	Trace
9	Trace	6	Trace
5920	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	5950	Trace
4	Trace	1	Trace
5	Trace	2	Trace
6	Trace	3	Trace
7	0.002*	4	Trace
8	Trace	5	Trace
9	0.002*	6	Trace
5930	0.002	7	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM UNLESS IT IS SPECIFICALLY STATED OT-FRWISS DOWN ANY SILVER VALUES REPORTED ON THEST PROFIS HAVE NOT LEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

2

· Minister of		Ochi	g Prop					·) · · · ·
ivorthern Developm	ent Report of W	ork	D					
and Mines	(Geophysical,	Geologica	l, V					
Min - Lands	Geochemical a	ind Expen	UTUTUS Jamana Latera	52008580007 2				
, Section	事務会	05.14	() Min		. 11219 1111	LE OCHIG LA	KE	900
Type of Survey(s)			<u></u>		Township	o or Area)
Geolog	ical 🖌			· · · · · · · · · · · · · · · · · · ·	0ch	ig Lak	e Area G	2104
Claim Holder(s)	D 1 1					Prospecto	r's Licence No. ムルク	
Address	Explorations	inc.		0			042	
1003-3	4 King St. F	ast	Toront	o. Ontari	o M	5C 1E5		
Survey Company	H KING DUT I			Date of Survey	(from & to)	~ ~ ~ ~	Total Miles of lin	e Cut
Geocan	ex Ltd.		,	Day Mo.	Vr. Day	07 87 Mo. Yr.	70.42	
Name and Address of Author (of Geo-Technical report)							
R.A.V.	<u>Higginson</u>	R.R	.#1, Oro	, Untario) Lint in mun			
Special Provisions		Davs per	Mining Cla	ning Claim	Expend.	erical seque	ence) lining Claim	Expand
	Geophysical	Claim	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.
For tirst survey:	Electromagnetic		see	attached				1
includes line cutting)	- Magnetometer				-			
	Dediametric							
For each additional survey: using the same orid:	- Hadiometrić				 			
Enter 20 days (for each)	- Other							
	Geological	40						
	Geochemical				11			
Man Days		Dave nor	- [893]-					
	Geophysical	Claim						
and enter totalls) bere.	Electromagnetic							
RECEIV	L D. Magnetometer					Sec.		
				· · · · · · · · · · · · · · · · · · ·				
MAY 181	988 Radiometric							
	- Other						1	
MINING LANDS	SECTION						AF EL EN	\square
	Gaochamical					A STAR	1110	
Airborne Credits		Days per				13841	AC80.	
		Claim				Para	¥ 101900	0
Note: Special provisions	Electromagnetic						TOICIA MININ	5
credits do not apply to Airborne Surveys	Magnetometer					VEX 18	ONISION	AJI
						XX		¥
	Radiometric	<u> </u>					TITIE	
Type of Work Performed	er stripping)	J						
		Ĩ						
Performed on Claim(s)	·							
		ł						
Calculation of Expenditure Dave	Cradite							
Total Expenditures	T Dave	otal						
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		I	9.36.6973		
\$	$] \div [15] = [$					Total num claims cov	ber of mining ered by this	
Instructions						report of v	vork.	62
Total Days Credits may be ap choice. Enter number of days	portioned at the claim h credits per claim selecte	older's d	F	or Office Use O	nly] Botie	?	
in columns at right.			Recorded	r. Date Recorded	0.14	Mining Rec	prder	
17/ay 10, 1988 (Lewy/ A our land								
May 6/88	Crubo ribidor or Agent IS		2480	10	1 1 27	Tr Ann	uX.	
Certification Verifying Repo	rt of Work		- L	Li. Ne	n ma	AR	<u> </u>	J
I hereby certify that I have a	personal and intimate kn	owledge of	the facts set for	th in the Report of	of Work anne	xed hereto, h	aving performed	the work
or witnessed same during and	/or after its completion a	ind the anne	exed report is tr	ue.			· · · · · · · · · · · · · · · · · · ·	
Name and Postal Address of Pers	on Certifying	2/ 1/		Foot			n	
H.J. H	lodge 1003	-34 K	ing St.	Date Certified		Certified M	Signaturen	
Taront	0 M5C 1E5	1		May 6/8	8		MAL	
101011	1100 2100					· · · · · · · · · · · · · · · · · · ·		I

OCHIG LAKE AREA PROPERTY

POWER EXPLORATIONS INC.

MINING CLAIMS TRAVERSED

Pa 893308

(2)(). ()

A BAR STAND

and the second second

Pa 893948	;
893949)
893950	1
893951	
893952	
893953	
893954	
893955	
893956	
893957	
893958	
893959	
893960	
893961	
893962	
893963	
893964	
893965	
893966	
893967	
893968	
893969	

Pa	903474	Da	902600
	903475	ra	903609
	202475		903610
	903476		903611
	903477		903612
	903478		903613
	903479		903614
	903480		000014
	002401		903615
	903481		903616
	903482		903617
	903483		903618
			903619
			903620
			903621
		Total	62 Claims

. .

4. 14

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s)_	Geologica	1	
Township or Area	chig lake	ARea	MINING CLAIMS TRAVERSED
Claim Holder(s) Power Explorations Inc.			List numerically
		······	
Survey Company	Geocanex	Ltd.	(seeattached.)
Author of Report]	R.A.V. Hig	ginson	
Address of Author	R.R. #1 O1	co, Ontario	
Covering Dates of Su	urvey_07/03	$\frac{3/87 \text{ to } 07/21/87}{\text{(linecutting to office)}}$	
Total Miles of Line (Cut70.	42	
	and states and the first and a first state of the data for the states of the states of the states of the states		
SPECIAL PROVIS	SIONS	DAYS	
CREDITS REQU	ESTED	Geophysical ^{per claim}	
ENTED 40 1 (Electromagnetic	
LINIER 40 days (1 line cutting) for fi	includes	Magnetometer	
survey.		-Radiometric	
ENTER 20 days fo	or each		
additional survey a	using	Geological40	,
same grid.		Geochemical	
AIRBORNE CREDI	<u>TS</u> (Special provi	sion credits do not apply to airborne surycys)	
Magnetometer	Electromag	netic Radiometric	
-	(enter d	ays per claim)	
DATE: May 20th	1/88_SIGNA	TURE:	
		Author of Report or Agent	=
Res Geol	Qualif	ications	
Previous Surveys	Quain		—
File No. Type	Date	Claim Holder	
*****	•••••		
••••••	•••••	•••••••••••••••••••••••••••••••••••••••	•
••••••	•••••	•••••••••••••••••••••••••••••••••••••••	•
••••••	••••	•••••••	
••••••	•••••	••••••	•
••••••	••••		TOTAL CLAIMS 62

OFFICE USE ONLY

GEOPHYSICAL TECHNICAL DATA

2	GROUND SURVEYS -	- If more than one survey, sp	occify data for each ty	pe of survey	••
N	Sumber of Stations.		Number of	of Readings	
Station interval			Line spac	ing	
o P	rofile scale	·····	Inne spac		
r c	Contour interval	**************************************			
C			· · · · · · · · · · · · · · · · · · ·		
e 91	Instrument				
II	Accuracy Scale cos	nstant			······
NE	Diurnal correction m	ethod			
MAC	Base Station check-ir	n interval (hours)			
	Base Station location	and value			
U	Instrument		10 Million		
ETI	Coil configuration				
NO	Coil separation				11 10 F 10
MA	Accuracy				
RO	Method:	Fixed transmitter	Shoot back	🗆 In line	Parallel line
ECI	Frequency				
EL			(specify V.L.F. station)		
	Parameters measured	· • • • • • • • • • • • • • • • • • • •			
	Instrument				
	Scale constant				
Z	Corrections made				
IV	· ·				
GR	Base station value and	d location			
•					
	Elevation accuracy				
			······································		
	Instrument				
	Method 🔲 Time D	Domain	🗔 Fr	equency Domain	
	Parameters – On tim	e	Fr	equency	
×	– Off tim	1e	Ra	ange	
VIT	Delay t	time			
IIS	Integra	tion time			
ESI	Power				
R	Electrode array				
	Electrode spacing				
1	Type of electrode				

INDUCED POLARIZATION RESISTIVITY SELF POTENTIAL

 Height of instrument
 Background Count

 Size of detector
 Overburden

 (type, depth – include outcrop map)

OTHERS (SEISMIC, DRILL WELL LOGGING ETC.)

· · · · · · · · · · · · · · · · · · ·	
Additional information (for understanding results)	
Parameters measured	
Accuracy	
Instrument	
Type of survey	
Type of survey	

AIRBORNE SURVEYS

Type of survey(s)						
Instrument(s)	(specify for each type of survey)					
Accuracy	(specify for each type of survey)					
Aircraft used						
Sensor altitude	,					
Navigation and flight path recovery method						
Aircraft altitude	Line Spacing					
Miles flown over total area	Over claims only					

GEOCHEMICAL SURVEY – PROCEDURE RECORD

÷

Numbers of claims from which samples taken_893951,893966,903478,903621,893969,893968,903614 903620,903618,893308,893309,893310,893313,893314,893322,893323,893324,903475 903476,903477

Total Number of Samples152	ANALYTICAL METHODS Values expressed in: per cent p. p. m. p. p. m. p. p. b. x				
Type of Sample rock (Nature of Material) Average Sample Weight 5 1bs (2kg)					
Method of Collectiongrad_samples	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)				
Soil Horizon Sampled	_ Others_gold				
Horizon Development	_ Field Analysis (tests)				
Sample Depth	_ Extraction Method				
Terrain	Analytical Method				
	_ Reagents Used				
Drainage Development	_ Field Laboratory Analysis				
Estimated Range of Overburden Thickness	_ No. (tests)				
	Extraction Method				
	_ Analytical Method				
	Reagents Used				
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing) Mesh size of fraction used for analysis 200	Commercial Laboratory (<u>152</u> tests) Name of Laboratory <u>Bondar Clegg & Co</u> . Extraction Method <u>Aqua</u> Regia				
	Analytical Method ire Assay - A A				
	- Reagents Used				
General	General				
	•••				

OCHIG LAKE AREA PROPERTY

POWER EXPLORATIONS INC.

MINING CLAIMS TRAVERSED

Pa 893308 893309 893310 893311

893308	Pa	893948	Pa	903474	Pa	903	8609
893309		893949		903475		903	3610
893310		893950		903476		903	3611
893311		893951		903477		903	3612
893312		893952		903478		903	3613
893313		893953		903479		903	3614
893314		893954		903480		903	3615
893315		893955		903481		903	3616
893316		893956		903482		903	3617
893317		893957		903483		903	3618
893318		893958				903	3619
893319		893959				903	3620
893320		893960				903	3621
893321		893961					
893322		893962			Total	62	Cla
893323		893963					
893324		893964					
		893965					
		893966					

893967 893968 893969

Claims

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines

June 15, 1988

Your File: W8803-140 Our File: 2.11219

Mining Recorder Ministry of Northern Development and Mines Court House P.O. Box 3000 Sioux Lookout, Ontario POV 2TO

Dear Sir:

ONTARIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE JUN 21 1988 RECEIVED

RE: Notice of Intent dated May 31, 1988 - Geological Survey submitted on Mining Claims PA 893308 et al in the Area of Ochig Lake

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W.R. Cowan, Manager Mining Lands Section Mines and Minerals Division

Whitney Block, Room 6610 Queen's Park Toronto, Ontario M7A 1W3

Telephone: (416) 965-4888

AB AB:p1

Enclosure: Technical Assessment Work Credits

cc: Mr. G.H. Ferguson Mining & Lands Commissioner Toronto, Ontario Resident Geologist Sioux Lookout, Ontario

Power Explorations Inc. Suite 1003 34 King Street East Toronto, Ontaro M5C 1E5

Technical Assessment Work Credits

					File
			٠		2.11219
Date May	31,	1988		Mining Re Work No.	W8803-140

Recorded Holder	Power Explora	itons Inc.			
TXXXXXXX Area	Ochig Lake				
Type of survey and nu Assessment days credit	mber of per claim	Mining Claims Assessed			
Geophysical					
Electromagnetic	days	PA 893308-09			
Magnetometer	days	893312 to 21 inclusive 893323-24			
Radiometric	days	893948 to 51 inclusive 893953 to 67 inclusive			
Induced polarization	days	903474 to 83 inclusive 903609			
Other	days	903611-12-14 903616 to 18 inclusive			
Section 77 (19) See "Mining Claim	ns Assessed" column	903020-21			
Geological 20	days				
Geochemical	days				
Man days	Airborne				
Special provision [X]	Ground 📉				
coverage of claims.	ause of partial				
Credits have been reduced because of corrections to work dates and figures of applicant.					
· .					
Special credits under section 77 (1	6) for the following min	ing claims			
<u>10 days</u>		<u>15 days</u>			
PA 893952 893968-69		PA 893310-11 893322 903610 903613-15 903619			
No credits have been allowed for t	he following mining clair	ns			
X]. not sufficiently covered by the	survey	nsufficient technical data filed			
No credits for line	ecutting - alread	ly approved on Report of Work 87-183.			

The Mining Recorder may reduce the above credits if necessary in order that the total number of approved assessment days recorded on each claim does not exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 60.

1003-34 King St. East Toronto, Ontario M5C 1E5 (416) 862-9078

May 20, 1988

Mr. W.R. Cowan Manager Mining Lands Section Whitney Block, Room 6610 Queen's Park Toronto, Ontario M7A 1W3

RECEIVED

MAY 20 1988

MINING LANDS SECTION

Re: Technical Reports

Dear Mr. Cowan,

I am enclosing two (2) copies each of the technical reports on our Libert Lake property and Ochig property.

Thank you.

Yours very truly,

POWER EXPLORATIONS INC.

June M.)Hodge Assistant Secretary

JMH/ml

Encl

200

RWN

DOGHOLE LAKE AREA G-2007

LEGEND HIGHWAY AND ROUTE No. OTHER ROADS -----TRAILS SURVEYED LINES: TOWNSHIPS, BASE LINES, ETC. LOTS, MINING CLAIMS, PARCELS, ETC ----UNSURVEYED LINES: LOT LINES PARCEL BOUNDARY -----MINING CLAIMS ETC. ______ RAILWAY AND RIGHT OF WAY UTILITY LINES NON-PERENNIAL STREAM -----FLOODING OR FLOODING RIGHTS SUBDIVISION OR COMPOSITE PLAN The second s RESERVATIONS ORIGINAL SHORELINE MARSH OR MUSKEG MINES TRAVERSE MONUMENT **DISPOSITION OF CROWN LANDS** SYMBOL TYPE OF DOCUMENT PATENT, SURFACE & MINING RIGHTS. " , SURFACE RIGHTS ONLY__ , MINING RIGHTS ONLY ... LEASE, SURFACE & MINING RIGHTS. ", SURFACE RIGHTS ONLY , MINING RIGHTS ONLY LICENCE OF OCCUPATION ORDER-IN-COUNCI RESERVATION CANCELLED SAND & GRAVEL NOTE: MINING RIGHTS IN PARCELS PATENTED PRIOR TO MAY 6, . 1913, VESTED IN ORIGINAL PATENTEE BY THE PUBLIC LANDS ACT, R.S.O. 1970, CHAP 380, SEC. 63, SUBSEC 1. REFERENCES AREAS WITHDRAWN FROM DISPOSITION M.R.O. - MINING RIGHTS ONLY S.R.D. - SURFACE RIGHTS ONLY M.+ S. - MINING AND SURFACE RIGHTS Date Disposition Order No. Description 627 4005 • ` l' l Oct. 21/86 FEB. 10/81 Mar. 1187 Arrist 87 //2 //6 Mar. 21/88 6 APR 2 1 1985 PATRICIA MINING DIVISION IBI SCALE: 1 INCH = 40 CHAINS 1000 2000 4000 0 200 METRES (2 KM) LITTLE AREA OCHIG LAKE SIOUX LOOKOUT MINING DIVISION PATRICIA LAND TITLES / REGISTRY DIVISION KENORA (PATRICIA PORTION) Ministry of Land Ontario Natural Management Resources Branch Date JANUARY, 1984 Number G-2104 F 3902

96 ð С 4 Ц Ц 0 ш AK ر___ 00 MOSK ш Ш ()

З

909 5 30"

And the second

