

52008580010 2.10780 LITTLE OCHIG LAKE

010

REPORT

ON THE

GEOLOGICAL MAPPING, PROSPECTING AND

LITHOGEOCHEMICAL SAMPLING

KASAGIMINNIS LAKE PROPERTY

PATRICIA MINING DIVISION, DISTRICT OF KENORA

NORTHWESTERN ONTARIO

FOR

POWER EXPLORATIONS INC.

August 1987

Robert A.V. Higginson, B.Sc.

TABLE OF CO

K

1

Ø10C

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
	Figure No. 1 - Location Map	3
3.0	PROPERTY DESCRIPTION	4
	Figure No. 2 - Claim Sketch	5
4.0	LOCATION, ACCESS AND SERVICES	6
5.0	PHYSIOGRAPHY AND VEGETATION	7
6.0	PREVIOUS WORK	8
7.0	REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION	9
	Figure No. 3 - Property Location and Regional Geology	10
8.0	PROPERTY GEOLOGY	11
	 8.1 General Geology 8.2 Volcanics 8.3 Sediments 8.4 Iron Formation 8.5 Intrusives 8.6 Metamorphism 8.7 Structure 	11 12 13 13 14 15 15
9.0	GEOPHYSICAL SUMMARY	16
10.0	LITHOGEOCHEMICAL SAMPLING	16
11.0	DISCUSSION OF RESULTS	17
12.0	CONCLUSIONS	18
13.0	RECOMMENDATIONS	18
	13.1 Phase I 13.2 Phase II	18 19
14.0	ESTIMATED COST OF RECOMMENDED PROGRAM	19
	14.1 Phase I 14.2 Phase II	19 19
15.0	REFERENCES	20

TABLE OF CONTENTS (Cont'd)

۰.

APPENDICES

A	CERTIFICATE OF QUALIFICATIONS	Back	of	report
В	TECHNICAL DATA STATEMENT	••	н	98
С	GRAB AND CHANNEL SAMPLE ANALYSES AND DESCRIPTIONS	"	"	"
D	GRAB AND CHANNEL SAMPLE ROCK ANALYTICAL CERTIFICATES	11	"	68
Е	PROPOSED DRILL HOLE LOCATIONS	11	н	••

LIST OF DRAWINGS

ł

DWG.	NO.	A-1: DETAIL	GEOLOGY,	SUBGRII) A-1		In m	nap	pocket
DWG.	NO.	A-2: DETAIL	GEOLOGY,	SUBGRID) A-2		Back	of	report
DWG.	NO.	A-1-1: DETAIL	GEOLOGY,	TRENCH	AREA	1	14		**
DWG.	NO.	A-1-2: DETAIL	GEOLOGY,	TRENCH	AREA	2	"	"	
DWG.	NO.	A-2-1: DETAIL	GEOLOGY,	TRENCH	AREA	3	81	"	

.

1.0 SUMMARY

The Kasagiminnis Lake property held under a joint venture agreement between Moss Resources Ltd. and Power Explorations Inc. is located 16 miles south-southwest of the town of Pickle Lake in the Dempster-Pickle Lakes greenstone belt.

During the current mapping and prospecting program, potentially economic gold mineralization was encountered in a quartz vein and adjacent silicified and sheared mafic volcanics. Values from the vein ranged from 5,0560 to 18,520 ppb or approximately 0.25 ounces of gold per ton over 6.2 feet. The vein lies 400 feet west of drill hole KAS-87-3 which intersected 38.9 feet of gold mineralization.

A two-phase exploration program is recommended for the property. The program would involve 2,250 feet of diamond drilling to determine the depth and lateral extent of gold mineralization in Phase I. Phase II would involve additional surface work and diamond drilling contingent upon the results of Phase I.

2.0 INTRODUCTION

This report describes the results of a comprehensive field program on the Kasagiminnis Lake property in the Ochig Lake area. The program consisted of mapping, prospecting and lithogeochemical sampling over selected portions of the property as a follow-up to the 1986-87 drilling program (R. Higginson, 1987). The property consists of 80 contiguous unpatented mining claims, located 16 miles south-southwest of the town of Pickle Lake (Fig. No. 1) in the Patricia Mining Division, District of Kenora, northwestern Ontario.

The present program carried out by Geocanex Ltd. studied two areas of the property in detail with a l inch = 100 feet and l inch = 20 feet scale mapping, followed by trenching and lithogeochemical sampling. Concurrently, geophysical surveys including ground magnetics and induced polarization surveys were carried out.

All work on the property was done on a cut picket line grid. The grid has an east-west trending baseline with perpendicular lines cut at 100 foot intervals across the strike of the local stratigraphy. Several tie lines were cut to ensure control. Geological mapping was done at scales of 1 inch = 100 feet over detail areas and 1 inch = 20 feet over cleared sub-areas.

The personnel involved in the program were:

R.	Higginson	Project Geologist	Oro Station, Ontario
J.	Drew	Geologist	North Bay, Ontario
м.	Bliss	Field Assistant	Fort Erie, Ontario
R.	McKelvey	Field Assistant	Kirkland Lake, Ontario

- 2 -

Area #1 (Drawing No. A-1) is bounded by BLO and the northern property boundary between L-8+00 and L28+00W. Area #2 (Drawing No. A-2) is bounded by BLO and L8+00S between L44+00W and L52+00W.

Two sub-areas of Area #1 (Drawing's No. A-1-1 and A-1-2) and one sub-area of Area #2 (Drawing No. A-2-1) were mapped at 1 inch = 20 feet, trenched and channel sampled.

Geophysical anomalies were prospected and quartz veins, mineralized volcanics, intrusives, sediments and iron formations were sampled during the program.

Selected sub-areas of the property were trench-stripped and channel sampled. All sample descriptions and assays are included in this report.

The work was performed between May 15, 1987 and June 13, 1987. The time breakdown for the work performed is as follows:

Man-Days

Mapping/Prospecting

Trenching/Channel Sampling

27

58

Total 85 Man-Days

3.0 PROPERTY DESCRIPTION

The Kasagiminnis Lake property consists of 80 contiguous mining claims in the Ochig Lake area, Patricia Mining Division, northwestern Ontario (Fig. No. 2). The claim

numbers and recording dates are as follows:

	<u>Claim Numbers</u>	<u>.</u>		Record	ling	Date
Pa	769510-769524	inclusive	(15)	April	30,	1984
Pa	769535-769554	inclusive	(20)	April	30,	1984
Pa	769574, 769575	i	(2)	April	30,	1984
Pa	786788-786812	inclusive	(25)	April	30,	1984
Pa	786827-786836	inclusive	(10)	April	30,	1984
Pa	786841		(1)	April	30,	1984
Pa	786843		(1)	April	30,	1984
Pa	786849		(1)	April	30,	1984
Pa	786858-786862	inclusive	(2)	April	30,	1984

Total 80 Claims

The claims are held under a joint venture agreement between Moss Resources Ltd. and Power Explorations Inc. of 1003-34 King Street East, Toronto, Ontario, M5C 1E5.

4.0 LOCATION, ACCESS AND SERVICES

The northernmost boundary of the property is approximately 16 miles south-southwest of the town of Pickle Lake. The eastern boundary is approximately 3.5 miles west of Highway 599 at the northern boundary of the Osnaburgh Indian Reserve (No. 63B) and 4.5 miles northwest of the Indian settlement of New Osnaburgh.

The property can be reached by float/ski plane or helicopter from Pickle Lake, or by winter road from Highway 599, four miles north of the boundary of the Osnaburgh Indian Reserve. Pickle Lake is a mining and transportation centre with a population of approximatey 350. UMEX (Union Miniere) operates a 4,000 TPD copper-nickel mine and concentrator, seven miles northwest of Pickle Lake with 14,000 tons of ore grading 1.6% copper and 0.2% nickel. The mine is presently closed due to depressed base metal prices. Consequently, there is abundant vacant housing in town.

Pickle Lake is connected by paved Highway 599 to Savant Lake and the Canadian National Transcontinental railway line, 90 miles to the south, and Ignace and Trans Canada Highway 17, 180 miles south. Electricity is supplied by a hydro line connecting Pickle Lake to Ear Falls generating station. Air, ground and water transportation for local use are readily available in town. Pickle Lake is also serviced by regular NorOntair flights from Thunder Bay.

5.0 PHYSIOGRAPHY AND VEGETATION

Outcrop exposure constitutes 7 to 10% of the property, which is extensively covered with glacial/fluvial material consisting primarily of sand and boulders. Eskers, drumlinoid ridges and sandhills cover most of the property. Vegetation on the overburden varies from open poplar to thick birch, spruce and alder forests. Low-lying areas and submerged sand plains are poorly drained with muskeg, black spruce, or cedar and alder swamps.

A more detailed analysis of the surficial geology can be obtained from Paradis and Rampton, 1986 and the geology maps (map pocket). Little previous work has been done on the property. In the early 1970's, the property was covered by a regional airborne geophysical survey for UMEX. This company subsequently drilled two anomalies on the property. No assay results were reported.

In 1984, Moss Resources Ltd. staked the current claim group. An airborne VLF-EM and magnetics survey by Terraquest Ltd. covered the property in 1985.

In the spring of 1986, Moss Resources Ltd. signed a joint venture agreement with Power Explorations Inc. Subsequently, Geocanex Ltd. was contracted to complete mapping and geophysical programs which were undertaken during the summer of 1986 (Higginson, 1986 and Medd, 1986).

During the winter of 1986 to 1987, a thirty-nine hole, 12,424 foot diamond drilling program was contracted to Midwest Diamond Drilling of Winnipeg and supervised by Geocanex Ltd. The drilling encountered significant gold mineralization in three holes on the property. A synopsis of the intersections from Higginson (1987) is as follows:

- 1) A 38.9 foot intersection in Hole KAS-87-3 returned values ranging from 0.01 to 0.23 ounces of gold per ton...
- 2) A 13.9 foot intersection in Hole KAS-87-6 returned values of 0.58 ounces of gold per ton over 4.7 feet and 1.40 ounces of gold per ton over 4.2 feet...
- 3) An intersection in Hole KAS-87-31 returned values of 0.58 ounces of gold per ton over 4.2 feet...

- 9 -

As a result of the encouraging drilling results, Geocanex Ltd. was again contracted in the spring of 1987 to undertake the current detailed follow-up mapping and geophysical surveys.

7.0 REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION

The Pickle Lake area is located within the Uchi Subprovince, a part of the Superior Province of the Canadian Shield. The area is characterized by several arcuate, highly deformed and coalescing greenstone belts, consisting of predominantly mafic to intermediate volcanic flows, which have been intruded by numerous granitic to ultramafic intrusive bodies. The metamorphic grade ranges from greenschist-to-amphibolite facies. The volcanics host subordinate amounts of felsic to mafic pyroclastics, sediments and iron formation. Felsic quartz-feldspar porphyry dykes are commonly found in all lithologies (Fig. No. 3).

Ultramafic rocks host copper-nickel mineralization at the Union Miniere Thierry Mine, seven miles northwest of Pickle Lake, with mined ore and mineral reserves totalling 14,000,000 tons grading 1.6% copper and 0.2% nickel.

Historically, gold production in the Pickle Lake area has been from structurally controlled vein type deposits or sulphide replacement bodies spatially associated with, or contained within, bands of Algoman (chert-magnetite) iron formation.

The former producing Pickle Crow and Central Patricia mines operated from 1935 to 1966 and 1934 to 1951, respectively, collectively producing 2,068,020 ounces of gold from

- 11 -

4,966,820 tons of ore for an average grade of 0.416 ounces of gold per ton. Gold was recovered from quartz veins, vein networks and sulphide replacement bodies which occupied shears, faults, fissures and fold axial plane fractures in highly deformed mafic volcanics and iron formation. Goldbearing quartz veins were also mined within quartz-albite porphyry sills near the contact of mafic volcanics and iron formation.

Dome Mines and St. Joe Canada both recently announced their intentions to open new mines in the Pickle Lake area. Dome Mines' Dona Lake property has reported reserves of 1,500,000 tons grading 0.3 ounces of gold per ton. Gold mineralization occurs as sulphide replacement bodies within a band of highly deformed oxide facies iron formation (Northern Miner, September 1986). The mine is expected to produce approximately 40,000 ounces of gold per year over a ten year period.

St. Joe Canada's Golden Patricia property is reported to have an estimated 500,000 ounces of gold reserves with a grade of 0.58 ounces gold per ton. The gold mineralization occurs in a quartz vein at a contact between a mylonitized unit and sheared mafic volcanics in close proximity to banded iron formation (Northern Miner Magazine, September 1986).

8.0 PROPERTY GEOLOGY

8.1 General Geology

The Kasagiminnis Lake property is located in the Dempster-Pickle Lakes greenstone belt which trends roughly east-west and joins the Pickle Lake belt to the east, and the MeenDempster Lakes belt to the west. The property is underlain by a complex sequence of southward younging mafic-tointermediate flows, mafic-to-felsic pyroclastics, sediments and possible iron formation. This sequence has been intruded by numerous small gabbroic bodies, granite pegmatite dykes and minor felsite dykes. The portion of the belt exposed on the property has been compressed between two granitic bodies, the Kasagiminnis Lake and carling Granite Plutons on the north and south, respetively, resulting in a narrowing of the belt to approximtely one mile in width. High angle faults, interpreted from geological and geophysical data, crosscut the volcano-sedimentary sequence and trend northeast-southwest and northwest-southeast. Pervasive shearing and small scale folding is probably related to a regional tectonic event.

8.2 Volcanics

The volcanic sequence is dominated by basaltic-to-andesitic flows and tuffs with subordinate amounts of felsic (rhyolitic to rhyodacitic) tuff, rare lapilli tuff and possible iron formation. The basaltic to andesitic flows are generally fine-grained, light to dark green and massive to foliated. However, medium to coarse grained amphibolitic equivalents and pillowed flows occur commonly in some locations. Well formed to stretched pillows are exosed at L13+00W,18+00N and have southward facing top directions. Basaltic to andesitic tuffs are well foliated, finely laminated to banded and interbedded with cherty-quartz + carbonate bands. Weathered surfaces vary in colour from buff to dark green. Rhyolitic-to-rhyodacitic tuffs are fine-grained, foliated and vary in colour from grey to buff on fresh and weathered surfaces, respectively. The felsics are usually interbedded with the basaltic-to-andesitic tuffs and are frequently

altered to quartz <u>+</u> sericite <u>+</u> chlorite <u>+</u> amphibole schists containing cherty horizons with variable amounts of arseno-

pyrite, iron sulphides and magnetite.

8.3 Sediments

A thick sequence of sediments is intermittently exposed over a width of approximately 1,600 feet in the central portion of the property. The sediments have gradational to interfingering contacts with the volcanics to the north and west, as well as being interbedded with volcanics and granites in the contact zone of the Carling Granite to the south.

The sedimentary sequence consists of interbedded biotite <u>+</u> garnet <u>+</u> chlorite schist, probably representing alumina-rich mudstones, and quartz siltstone to sandstone. Minor magnetite-rich bands may occur as a result of breakdown of biotite or may possibly represent original lean, discontinuous bands of iron formation.

8.4 Iron Formation

Iron formation is exposed in three small outcrops in the western part of the property. Sulphide facies iron formation with 5 to 10% pyrite/pyrrhotite in cherty, chlorite schist is exposed at L21+00N,88+80E. Narrow, sheared oxide facies iron formation is exposed in two outcrops. These exposures are atypical of iron formation in the Pickle Lake area. An exposure at L20+20N,91+52£ consists of 3 to 5% magnetite blebs in irregular chert and chlorite schist lenses. The other exposure at L24+40N,L11+10E consist of sediments (sandstone and mudstone) and cherty, felsic tuff with 3 to 5% magnetite in narrow biotite-garnet schist seams.

8.5 Intrusives

Several generations of felsic-to-mafic intrusives occur on the property. These intrusives range from the regional granitic plutons and associated marginal phases, to gabbroic/ dioritic sills which may be coeval with the volcanics.

The two prominent granitic intrusive bodies on the property are the Kasagiminnis Lake and the Carling Granite Plutons which are exposed on the northeastern and southern portions of the property, respectively.

Extensive exposures of the Kasagiminnis granite indicate that it is weakly foliated chloritic granite. Minor shearing and iron-enriched phases occur near the margins, along with diorite porphyry dykes, which probably formed due to the assimilation of minor amounts of mafic volcanics by the granite magma.

A felsic dyke exposed on the northwestern part of the property at 13+45N, 47+60W, may represent a late stage, marginal phase of the Kasagiminnis Lake Pluton. The dyke rock is zoned, probably due to shearing during emplacement, with graphic textured coarse-grained quartz-feldspar on the contacts and a fine to medium-grained, cream coloured, felsic core. The dyke contains minor amounts of lepidolite (lithium) mica and analyzed 1,386 ppb or approximately 0.04 ounces gold per ton.

The contact zone between the Carling Granite and the volcanosedimentary sequence is well exposed over several hundred feet along (L4+00E and 18+00E) on the southern portion of the property. Volcanics, sediments and granite are discernable

as separate bands in the distal portion of the contact zone, and become more gneissic with crude banding (mineral segregations) proximal to the pluton. To the south of the contact zone, the granite is medium-grained, orange-buff coloured and massive with 3 to 5% biotite. Numerous albite \pm quartz \pm orthoclase \pm biotite pegmatite dykes crosscut the granite, sediments and volcanics, following a distinct north-northeasterly (20° to 35°) trending set of fractures.

Small to medium sized, gabbroic-to-dioritic sills occur throughout the volcano-sedimentary sequence. The sills have coarse-grained amphibole and biotite clots in a fine-grained, amphibole plus chlorite <u>+</u> quartz ground mass with widely spaced, hematite stained, quartz veins infilling narrow shears and fractures. A large, well exposed, gabbroic-todioritic sill hosted in sediments and tuffs, crosses L4+00E and L8+00E at L17+00S to 18+00S, and is traceable for over 1,500 feet along strike. The sill is crosscut by a wide pegmatite dyke, indicating that the sill predates the fracturing and intrusion of the pegmatitic dyke rocks.

8.6 Metamorphism

Abundant garnet metacrysts in the sediments and amphibolization of mafic-to-intermediate volcanics indicates regional amphibolite facies metamorphism.

8.7 Structure

The rocks on the property have been stretched and sheared erasing most primary textures such as pillows and bedding. The stratigraphy strikes roughly east-west and foliations dip steeply to the north. Existing pillow tops indicate a southward younging direction. Shear zones have a general northnorthwest to northwest trend. A strong set of north-northeast (20° to 35°) trending fractures, infilled with pegmatitic dyke rocks, may be small scale representations of regional fault structures. Small scale folds are present in several locations and generally plunge steeply to the east.

9.0 GEOPHYSICAL SUMMARY

Interpretation of airborne geophysical data suggests that the east-west trending volcanic sequence on the property may represent the same stratigraphic horizon that hosts gold mineralization on the Ben Lake property of Power Explorations Inc. and the Hasaga property of Lac Minerals.

Ground geophysical data suggests that the stratigraphy has been crosscut by several northeast-southwest and northwestsoutheast trending fault zones. These interpreted fault zones may have served as conduits for mineralizing fluids which have created sulphide-enriched and silicified zones, within magnetite-rich volcanics, sediments, or iron formation in close proximity to the faults.

A more detailed discussion of the geophysical technique and interpretation of the data is given by S. Medd, 1986, and R. Gillick, 1987.

10.0 LITHOGEOCHEMICAL SAMPLING

During the mapping and prospecting program, grab and channel samples were taken from mineralized volcanics, quartz veins, intrusives and iron formation. A total of 38 grab samples and 156 channel samples were taken and analyzed for gold. Bondar Clegg & Co. Ltd. of Ottawa, assayed all samples using - 17 -

standard fire assay-atomic absorption/mass spectrophotometry techniques.

All grab and channel samples are plotted on the geology maps (map pocket) and all sample descriptions and assay results are listed in Appendices C and D.

11.0 DISCUSSION OF RESULTS

Potential economic gold mineralization occurs in a package of sheared mafic volcanics and iron formation exposed along L24+00W and L25+00W between 11+00N and 12+00N (see Drawings No. A-1 and A-1-2). Numerous grab and channel samples returned anomalous gold values.

The most significant gold values were obtained from an isoclinally folded, northeast-southwest trending quartz vein and adjacent silicified mafic volcanics exposed at L24+00W, l1+50N. Visible gold occurs in association with fine to medium-grained pyrite in the core of the vein. The vein and adjacent volcanics returned the following values:

		Assay in	Width
<u>Assay #</u>	Lithology	in ppb Au	in Feet
8354	Silicified mafic	5530	3.0
8355	Silicified mafic	5050	1.3
8356	Mylonitizea quartz	18,520	0.9
	vein		
8357	Cherty blue grey quartz	5440	1.0
	Average assay	8635 ppb	6.2

OR

0.25 OPT/6.2 feet

The vein crosscuts a sequence of sheared mafic volcanics and iron formation which is on strike and 400 feet west of diamond drill Hole KAS-87-3 which intersected 38.9 feet of gold mineralization with values ranging from 0.01 to 0.23 ounces of gold per ton.

Extensive channel sampling of the two remaining sub-areas failed to return values above background levels (5-25 ppb).

12.0 CONCLUSIONS

Potential economic gold mineralization occurs in surface exposures of a quartz vein hosted in and crosscutting sheared-silicified mafic volcanics and iron formation. The volcanic package is on strike with drill Hole KAS-87-3 which intersected a gold bearing horizon.

Additional work is required to determine the trend, tenor, depth and lateral extent of the gold bearing horizons.

13.0 RECOMMENDATIONS

A two-phase exploration program is recommended for the property and would involve the following:

13.1 Phase I

A total of 2,250 feet of diamond drilling to test potentially gold-bearing structures and horizons indicated by the current geological and geophysical surveys. Proposed drill collars for this Phase are listed in Appendix E. 13.2 Phase II

Additional surface work and diamond drilling contingent upon the results Phase I.

14.0 ESTIMATED COST OF RECOMMENDED PROGRAM

14.1 Phase I

Diamond Drilling: 9 holes for a total of 2,250 feet at a rate of \$35/foot-----\$78,750.00 Contingency 20%-----<u>\$15,750.00</u> Total Cost of Phase I-----<u>\$94,500.00</u>

14.2 Phase II

Surface Work and Diamond Drilling: Amount and costs to be contingent upon the results of Phase I.

Respectfully submitted,

Maginson

Robert A.V. Higginson, B.Sc. Geocanex Ltd.

15.0 REFERENCES

- Gillick, R.E. Report on Induced Polarization and Detailed Magnetic Surveying on the Kasagiminnis Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario for Power Explorations Inc. October 1987, unpublished report of Geocanex Ltd.
- Higginson, R. Report on Diamond Drilling, Kasagiminnis Lake Property for Power Explorations Inc., March 1987, unpublished.
- Higginson, R. Report on Geological Mapping, Prospecting and Geochemical Sampling, Kasagiminnis Lake Property for 669977 Ontario Ltd., December 1986, unpublished.
- Medd, S. Report on Magnetic and VLF-EM Surveys on the Kasagiminnis Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario, for 669977 Ontario Ltd.; unpublished report of Geocanex Ltd.
- Ontario Geological Survey, 1986. Airborne Electromagnetic and Total Intensity Magnetic Survey, Pickle Lake Area, District of Thunder Bay, Ontario; by Geoterrex Ltd. for O.G.S. Geophysical/Geochemical series Map. 80916, Scale 1:20,000.
- Ontario Geological Survey, Resident Geologists Files -Toronto and Sioux Lookout. Various unpublished assessment reports.

APPENDIX A

.

CERTIFICATE OF QUALIFICATIONS

.

THIS IS TO CERTIFY THAT:

I am a resident of Oro Township, Ontario.

I am a graduate of the University of Waterloo, Waterloo, Ontario, with a degree in bachelor of Science, Earth Science; major (Geology).

I have worked as an exploration geologist in gold exploration in northwestern Ontario since 1984.

I supervised geological mapping and rock sampling programs on the Kasagiminnis Lake property, from May 15, 1987 to June 13, 1987.

The statements contained in this report, and conclusions reached, are based upon the study of all relevant assessment work records of the Ontario Geological Survey, and geological reports and maps published by the Ontario Ministry of Natural Resources.

In this report, I have disclosed all relevant descriptive and interpretive material, which is, to the best of my knowledge, necessary to gain a complete understanding of the viability of the project and the recommendations.

DATED THIS 2nd DAY OF December, 1987

Rol paginism

Robert A.V. Higginson, B.Sc. Geologist

APPENDIX B

0

TECHNICAL DATA STATEMENT

APPENDIX C

GRAB AND CHANNEL SAMPLE ANALYSES AND DESCRIPTIONS

KASAGIMINNIS LAKE MAPPING/PROSPECTING SAMPLES

Sample #	Assay #	Location	Description	<u>Au ppb</u>
KL-87-1	8130	20+00N, 18+80W	3" QV, clean, Z folded, spotty gossan on WR contact	<5
KL-87-2	8131	19+97N,18+80W	4" zone with gossan and numerous hematite stained QVs <1" wide	10
KL-87-3	8132	19+98N,18+80W	8" wide zone with Z folded quartz stringers, tr-0.5% po in stringers	25
KL-87-4	8133	19+99N,18+80W	3" wide gossan zone, strong limonite stain, 1" concordant QV	20
KL-87-5	8134	20+15N,18+90W	10" x 4' irregular quartz bleb, chlorite inclusions, minor ochre in quartz, tr. molybdenite in WR	< 5
KL-87-6	8135	20+30N,18+90W	Parallel 1' diorite dykes crosscutting mafic volcanics, sharp to irregular contacts marked by q-tl stringers and limonite staining, dykes cut by 'S' folded tl ± q ± py ± po stringers, 0.5-1% sulphides	g 10
KL-87-7	8136	20+40N,18+90W	6' wide vein swarm, anastomosing q + cc ± tl ± ep, tr. po, py	< 5
KL-87-8	8137	20+45N,19+12W	4' wide diorite dyke extension of 8135	<5
KL-87-9	8138	20+50N,19+35W	16" QV crosscutting ochre limonite inclusions and fracture fill in WR	<5
KL-87-10	8139	18+25N,19+00W	3" QV in mafics, crosscutting	5
JD-01	8140	18+95N,26+00W	3" quartz-epidote pod in mafic volcanics. Minor limonite staining	10
JD-02	8141	18+30N,26+15W	10" wide zone of heavily limonitic mafic volcanics with 1–2% pyrite. Possible shearing present at 110°	15
KL-87-11	8142	17+20N,21+80W	6" fault zone, quartz-cc groundmass with tr-1% po, py, cpy, abundant mafic fragments	15
KL-87-12	8143	17+00N,22+35W	7' rusty buff coloured int-fel unit with minor quartz stringers, possibly mylonitic	10

KASAGIMINNIS LAKE MAPPING/PROSPECTING SAMPLES

1

Sample #	<u>Assay #</u>	Location	Description	<u>Au ppb</u>
KL-87-13	8144	17+39N,21+65W	Typical mafic flows with lim. stain on foliation	5
KL-87-14	8145	17+20N,21+55W	12" mafic dyke 85% chlorite 15% biotite crosscuts mafic flows	<5
KL-87-15	8146	17+50N,23+00W	4" QV minor hem. staining and coat- ings on fractures, concord. to crosscutting	160
KL-87-16	8147	15+68N,23+00W	+2' QV heavy limhem. stain and fracture coatings, weathered iron carbonate or sulphide	5
KL-87-17	8148	11+70N,24+85W	4" to 1.2' QV crosscutting mafics, heavy limhem. staining	295
KL-87-18	8149	12+25N,24+80W	6" to 1' mafic tuff horizon with 1-3% po, heavy lim. weathering	30
KL-87-19	8150	11+85N,24+85W	4" QV concordant, as per 8149	45
KL-87-20	8151	11+50N,24+85W	Fractured magnetic mafic flows, amphibolitized, heavy lim. stain	15
KL-87-21	8152	11+60N,24+00W	30" bull QV at fold nose of vein, 1-2% py, lim. after py, possible v.;	715 g.
KL-87-22	8153	11+60N,24+00W	35" minor mafic volc. with sugary quartz, abundant limonite pockets	2870
KL-87-23	8154	11+60N,24+00W	11" QV, blue-grey, cherty lim., pyrite	8995
KL-87-24	8155	11+65N,24+00W	62" as per 8153, abundant lim hem. pockets, cc.	255
KL-87-25	8156	9+75N,22+20W	Silicified intermed. breccia, lim. stain, buff coloured	30
KL-87-26	8157	9+75N,22+20W	4" QV-f lsic dyke, feldspar + quart: + green mica	z 15
KL-87-27	8158	7+60N,22+70W	1" to 6" QV, boudinaged, hem. stain cc in mafic flows	, 10
KL-87-28	8159	7+60N,22+70W	as per 8158	10

KASAGIMINNIS LAKE MAPPING/PROSPECTING SAMPLES

Sample #	<u>Assay #</u>	Location	Description	<u>Au ppb</u>
KL-87-29	8160	7+60N,22+70W	As per 8158, blue-grey quartz, cherty	15
KL-87-30	8161	7+85N,L27W	12" QV boudinaged, heavy lim hem. stain	355
KL-87-31	8162	7+85N,L27W	Sil. mafic volc. on contacts of QV in 8161	25
KL-87-32	8163	6+00N,24+60W	2' wide int. (dacite?) tuff, cherty, agglomeratic, 1-2% py	5
KL-87-33	8164	5+70N,L18W	1" QV concord. in amphib., lim hem. stain, tr. py	5
KL-87-34	8165	5+65N,17+60W	1" QTV, 10-20% f.g. tl, tr. py, mino hemlim. stain in amphib.	r <5

Assay ∦ ────	Trench Location	Sample Length	Description	Au ppb
8253	NE-A- 1	24''	f.g. basalt-andesite flow, 1-2% po, quartz stringers with lim.	10
8254	NE-A-2	41"	m.g. basalt flows, 1-2% magnetite, tr-0.5% po.	<5
8255	NE-A-3	23"	as above	<5
8256	NE-A-4	45"	as above with minor chert-epidote stringers	< 5
8257	NE-A-5	50"	as above, minor q ± ep. stringers, heavy limonite stain, tr. <u>cpy</u>	5
8258	NE-A-7	45''	as above, with 0.5-1% magnetite, tr. py stringers, grades into f.g. flows as per 8260	5
8259	NE-A-6	30"	as above (8254), tr-0.5% py, q-ep. stringers	< 5
8260	NE-A-8	45"	f.g. basalt flows, non-magnetic, tr-0.5% py, minor crosscutting q stringers	5
8261	NE-A-9	51"	as above, tr. py, minor q stringers	10
8262	NE-A-10	24"	as above, crosscut by 2" shear with biot- chl-amph. schist, tr-1% py, <u>cpy</u> , minor q stringers	15
8263	NE-A-11	30''	f.g. basalt, minor q-cc stringers, tr. py, non-magnetic	10
8264	NE-A-12	30"	as above, tr-0.5% py, po, <u>cpy</u> , discordant q stringers, carb. fracture coatings	< 5
8265	NE-A-13	45 "	as per 8263	< 5
8266	NE-A-14	40"	as per 8263	<5
8267	NE-A-15	30''	pillowed f.g. basalt flows, discordant narrow shears and q-cc stringers	10
8268	NE-A-16	38''	as above	<5
8269	NE-A-17	45"	as above	<5

Assay # 	Trench Location	Sample Length	Description	Au ppb
8270	NE-B-1	35"	sheared-fractured basalt flows, abundant q-cc infillings, tr. py, lim. coatings	20
8271	NE-B-2	15"	as above, q-cc lenses, biot-chl shear with 2-3% py, po	20
8272	NE-B-3	45"	fm.g. basalt, abundant q stringers, 2-3% po, py as blebs parallel to foln., magnetic	25
8273	NE-C-1	38"	m.g. basalt flows, minor boudinaged and "z" folded q stringers, lim. stain, tr. py	<5
8274	NE-C-2	24"	shear, biot-chl-amph. schist, 1-3% py, minor blue-grey carb. fracture fillings, abundant q lenses, lim. coatings	<5
8275	NE-C-3	45"	as per 8273 with tr-3% py, tr-1% po, tr <u>sph</u> , abundant q stringers, variable texture due to micro-shearing	5
8276	NE-C-4	35"	f.g. basalt flows, abundant q-cc stringers, heavy limonite weathering	<5
8277	NE-D-1	15"	folded QV in basalt flows, tr. limonite	<5
8278	NE-D-2	30"	f.g. basalt, chloritized, tr. py, minor q stringers	5
8279	NE-D-3	26"	as per 8278	5
8280	NE-D-4	24"	as per 8278, with 6" q bleb	<5
8281	NE-E-1	45"	as per 8278	<5
8282	NE-E-2	45"	as per 8278, minor q stringers and narrow shear	5
8283	NE-E-3	35"	as per 8278	5
8284	NE-E-4	45"	f.g. basalt-amphibolite, tr. py, abundant q-cc lenses and stringers, lim. stain	10
8285	NE-E-5	45"	as per 8284	<5
8286	NE-E-6	45"	as per 8284, sections to 6" wide with 2-3% py layered possibly tuffaceous q lenses and stringers	5

Assay #	Trench Location	Sample Length	Description	Au ppb
8287	NE-E-7	24"	as per 8284	5
8288	NE-E-8	30"	as per 8284	5
8289	NE-E-9	39''	laminated basalt flows or tuffs, q-cc stringers, tr-1% po, py	5
8290	NE-E-10	30"	as per 8289	10
8291	NE-F-1	35"	mafic pillows, f.g., stretched glassy selvages, lim. stain, q-cc stringers	10
8292	NE-F-2	24"	as per 8291 with 12" discordant shear and boudinaged QV (up to 4" wide)	< 5
8293	NE-F-3	33"	as per 8291	<5
8294	NE-F-4	24"	mafic pillowed flows with narrow shears, q-cc stringers, tr-1% py blebs	<5
8295	NE-F-5	45"	mafic pillows, q-cc stringers parallel to foliation, lim. on cleavage-fracture planes	<5
8296	NE-F-6	50"	as per 8294	<5
8297	NE-K-1	24"	mafic pillows, stretched, sheared, 2-3% py, minor q-cc infillings in shear	5
8298	NE-K-2	30''	as per 8297	5
8299	NE-K-3	45"	as per 8297, 12" shear, 1/2" to 4" boudin- aged QV, abundant biotite along foln. planes	<5
8300	NE-M	35"	pillowed mafics, narrow shear with en echelon q stringers with cc coatings and lim. stain	15
8301	NE-N-1	30''	f.g. mafic pillows, discordant shear with q-cc stringers, tr. py	<5
8302	NE-N-2	36''	as per 8301	≺5
8303	NE-N-3	38"	as per 8301	<5
8304	NE-N-4	24"	massive to pillowed mafic with 4" discor- dant QV in shear	5

Assay #	Trench Location	Sample Length	Description	Au ppb
8305	NE-N-5	51"	as per 8301	<5
8306	NE-P-1	16''	m.g. mafic flows, massive, tr-0.5% po	<5
8307	NE-P-2	13"	as per 8306, discordant, irregular QV, minor epidote on contact with 8306	<5
8308	NE-P-3	31"	mafic flows, narrow q-cc lenses, 12" wide shear with boudinaged 1"-4" QV, lim. stain	<5
8309	NE-G-1	60"	m.g. mafic flows, 0.5-1% py, lim. stain, q ± cc ± ep stringers	<5
8310	NE-G-2	24"	f.g. mafic flows, 10" wide shear, tr. po, py, q ± cc ± ep stringers	<5
8311	NE-H-1	60"	f.g. mafic flow, minor q-cc stringers, tr. po, py, 1 1/2" x 6" q-ep pod	<5
8312	NE-H-2	30"	as per 8311 with 3" shear, q-cc infilling	<5
8313	NE-H-3	45"	as per 8311	<5
8314	NE-H-4	38"	as per 8311, sheared, q-cc stringers, tr. py, chloritic	10
8315	NE-H-5	30''	as per 8311	<5
8316	NE-H-6	15"	m.g. mafic flow with q-cc stringers, lim. staining	<5
8317	NE-J-1	48"	f.g. mafic flow, vuggy, sheared q-cc-ep. stringers, discordant diorite dykelet	<5
8318	NE-J-2	24"	mafic pillows, sheared, minor remnant selvages, abundant q-cc stringers	<5
8319	NE-J-3	45"	as per 8318	5
8320	NE-Q-1	45"	f.g. mafic pillows, abundant q-cc stringers, tr. py, lim. on cleavage planes	<5
8321	NE-Q-2	45"	as per 8320	<5
8322	NE-Q-3	15"	as per 8320	5

Assay # 	Trench Location	Sample Length	Description	Au ppb
8323	NE-Q-4	23"	as per 8320, discordant shear and boudinaged q veins, cc	<5
8324	NE-Q-5	45''	as per 8320, numerous narrow shears, q-cc infill	5
8325	NE-Q-6	30"	as per 8320	5
8326	NE-Q-7	32"	m.g. mafic flows, sheared, q-cc infillings	< 5
8327	NE-R	53"	mafic pillows, sheared, 6" QV, tr-0.5% po, abundant q-cc stringers.	<5
SW DETAIL AREA

Assay # 	Trench Location	Sample Length	Description	Au ppb
8328	SW-A-1	45"	sheared-crenulated felint. tuff, tr-3% po, py, 15-20% gnt.	<5
8329	SW-A-2	45"	as per 8328, tr-2% gnt., tr-1% po, py	<5
8330	SW-A-3	28''	as per 8328, 1-2% f.g. po blebs, 3-5% gnt in some bands	<5
8331	SW-B-1	24"	as per 8328, tr-0.5% py, 10-15% gnt	<5
8332	SW-B-2	24"	as per 8331 with 5" wide shear, sil., heavy lim. stain	<5
8333	SW-B-3	45"	as per 8331, 3-5% gnt decreasing towards 8334, amph. increasing towards 8334	<5
8334	SW-B-4	24"	as per 8331	<5
8335	SW-B-5	38"	intermediate volcanic with vuggy lim. pockets with 3-5% tl in gnt-biot-chl. bands which constitutes 15-20% of rock	<5
8336	SW-B-6	30"	as per 8335 with q-tl stringers	< 5
8337	SW-B-7	36"	as per 8335, lacking tl, minor q-ep. stringers	< 5
8338	SW-C-1	48''	int. volcanic, minor q-cc bands	<5
8339	SW-C-2	10"	as above	<5
8340	SW-C-3	32"	as above, with lenses and bands of 3-5% gnt., limonite pockets and stain.	5

KASAGIMINNIS LAKE GRAB SAMPLES

Sample #	<u>Assay #</u>	Location	Description A	u ppb
KL-87-35	8166	L18N,14+50W	shear in amphibolitized mafic volc. (massive m.g.) chl-biot-schist with tl porphyroblasts, hem. or q.f. plates parallel to foln., q-cc stringers, lim. stain	5
SE-1	8167	5+30S,49+80W	clean 1" QV in sheared sil. int. volc.	<5

CL DETAIL AREA

•

Assay # 	Trench Location	Sample Length	Description	Au ppb
8341	CL-A-1	2.0'	mafic volc., foliated, sh., fm.g., heavy limonite staining	10
8342	CL-A-2	2.0'	as above, with massive bands and q-cc stringers, dissem. tl, lim-hem. pockets	10
8343	CL-A-3	2.0'	as above, tr-0.5% po/py, 1-2% cc	15
8344	CL-A-4	2.0'	as above, tr. py, po	20
8345	CL-A-5	2.0'	as above with carb/lim. pockets	20
8346	CL-A-6	1.5'	as above	35
8347	CL-A-7	3.0'	as above, lim. coatings on cleavages	<5
8348	CL-A-8	2.0'	as above, tr. po, py	<5
8349	CL-A-9	1.2'	as above	10
8350	CL-A-10	2.0'	foliated-massive mafic volcanic, q strin- gers, tr-1% po, heavy limhem. staining, slightly magnetic	300
8351	CL-A-11	2.0'	as per 8350	40
8352	CL-A-12	2.0'	foliated-massive mafic volcanic, tr-0.5% py, po, cc	100
8353	CL-A-13	2.0'	as above	1110
8354	CL-A-14	3.0'	sil. mafic volc., q-lim. stringers, sil. inc. towards 8355, tr-1% po, py, tr <u>asp</u> in q stringers	5530
8355	CL-A-15	1.3'	as above, 1-3% po, q-cc stringers	5050
8356	CL-A-16	0.9'	vuggy lim q-cc zone on border of cherty QV in 8357, tr-0.5% m.g. dissem. py	18520
8357	CL-A-17	1.0'	blue-grey cherty QV banded with lim., tr- 0.5% m.g. dissem. py, no cc	5440
8358	CL-A-18	2.5'	as per 8356, 1-2% dissem. py, tr-0.5% mt.	230

CL DETAIL AREA

Assay #	Trench Location	Sample Length	Description	Au ppb
8359	CL-A-19	2.6'	banded lim g-cc vein with 1-3% wispy mt.	75
8360	CL-B-1	3.1'	massive-banded mafic volc. q, q-ep-cc stringers, 0.5-1% po as stringers with cc and as dissem. blebs	1360
8361	CL-B-2	2.2'	QV, lim., tr-1% dissem. po, 6" q-cc pod with lim. stain, 1-2% po ± <u>asp</u> ? magnetic	2690
8362	CL-C-1	2.5'	foliated mafic volc., q stringers with lim. stain, tr-0.5% po	2480
8363	CL-C-2	1.7'	QV and sil-cc mafic volc., tr-1% po, tr- 0.5% py, lim-hem stain	2100
8364	CL-C-3	2.5'	as per 8362 with tr-1% po/py, minor q stringers	1400
8365	CL-C-4	1.5'	as per 8362 with inc. cc-sil towards 8366	1980
8366	CL-C-5	1.2'	QV and sil. zone in mafic volc., clean, tr-0.5% po in mafics	120
8367	CL-D-1	2.5'	mafic volcanic, tr-1% dissem. po, py, lim- hem stain, minor q stringers	20
8368	CL-D-2	2.5'	as per 8367 with py coatings on cleavage planes	25
8369	CL-D-3	1.5'	as above	20
8370	CL-E-1	3.0'	sil-sh'd mafic-int. volc., fm.g., grey to green, 3-5% dissem. wispy magnetite, tr-0.5% po as blebs, minor q stringers, minor carb.	10
8371	CL-E-2	3.0'	as above	5
8372	CL-E-3	1.7'	as above with 0.2' shear with 3-5% cc	10
8373	CL-E-4	2.5'	as above with 0.2' chert pod, 3-5% dissem. mt., cc, q stringers with 0.5-1% py	. 5
8374	CL-E-5	2.21	as above	180

CL DETAIL AREA

Assay #	Trench Location	Sample Length	Description	Au ppb
8375	CL-F-1	3.0'	mafic volcanic, sheared, q-cc stringers, minor grey chert bands with tr-1% mt.	30
8376	CL-F-2	2.31	as above, tr. cc.	20
8377	CL-F-3	2.2'	mafic volc. sheared, cc, chert pods and stringers with lim. ± mt. or po, py, foliated to banded	45
8378	CL-F-4	3.0'	as above, q-cc stringers	5
8379	CL-F-5	2.6'	as above	<5
8380	CL-F-6	3.0'	sheared sil. mafic volc., 1-2% spotty mt. in cherty q stringers	10
8381	CL-F-7	3.0'	as above	5
8382	CL-F-8	3.0'	as above	40
8383	CL-F-9	3.0'	as above, 1-2% mt, 1-2% cc in cherty-lim. stained zones	15
8384	CL-F-10	3.0'	as above, minor q-cc lenses	25
8385	CL-F-11	2.1'	as above, increasing grain size towards 8386, 1–2% cc, tr–0.5% mt, discordant q–cc stringers	10
8386	CL-F-12	2.4'	c.g. mafic flow, lim. stain, non-magnetic amphibolitic, foliated	10
8387	CL-F-13	1.0'	c.g. amphibolite, tr. biot., mt.	5
8388	CL-H-1	3.0'	intmafic volcanic, sheared?, anastomosing amphib. bands with intermediate cores, py- lim. on cleavage-fracture planes.	15
8389	CL-H-2	3.0'	as above	10
8390	CL-H-3	3.0'	as above with lim. pockets	<5
8391	СН-Н-4	3.0'	as above with minor q stringers	<5
8392	CH-H-5	3.0'	as above	5

1

CL DETAIL AREA

Assay #	Trench Location	Sample Length	Description	Au ppb
8393	CL-H-6	3.01	as above, increasingly laminated towards 8395	10
8394	CL-H-7	3.5'	as per 8393	200
8395	CL-H-8	3.5'	sheared maf. volc., highly laminated, friable, abundant q-cc, q-lim, q-py strin- gers and veins including 1.5' (at fold nose) S folded shear quartz vein, tr-0.5% mag- netite blebs, abundant biotite-chlorite bands	215
8396	CL-H-9	3.0'	as above	365
8397	CL-H-10	2.5'	as above	110
8398	CL-I-1	3.0'	as above with 0.4' discordant sheared int. QFP, abundant lim. zones (bands, pods)	425
8399	CL-I-2	3.3'	shear zone with lenses of chloritized mafic volc., with tr-1% po, lim. stain, irregular and 'S' folded q stringers, cc, minor pockets 3-5% py	620
8400	CL-J-1	3.0'	as per 8393	1240
8168	CL-J-2	3.0'	mafic volc., sheared, q-cc stringers, minor grey chert bands with tr-1% mt., po, tr-0.5% py	30
8169	CL-J-3	2.5'	as above, 3-5% mt., tr-0.5% py	25
8170	CL-J-4	2.5'	as above	<5
8171	CL-J-5	3.1'	as above	<5
8172	CL-G-1	1.0'	fine grained foliated mafic volcanic with 1-2% py along cleavage, minor lim. staining	10
8173	CL-G-2	1.0'	sheared and foliated mafic volcanic as above with heavy limonite staining along fractures and cleavage	5
8174	CL-G-3	3.0'	as above with heavy hematitic and minor limonitic staining	5
8175	CL-G-4	2.5'	mafic volcanic with tr-0.5% disseminated po.	<5

APPENDIX D

•

GRAB AND CHANNEL SAMPLE ROCK ANALYTICAL CERTIFICATES

Bondar-Llegg & Company Ltd. 5420 Canotek, Rd., Olfawa, Ontacio, Canada / 55 Phone: 16 9-2220 Telex: 053-3233

i

i

.

Geochemical Lab Report

ENT: GEOCANEX LIMITEI IECT: KASAGIMINNIS)			S D	UBHITTED BY: R. HIGGINS ATE PRINTED: 1-JUN-87	
ORDER ELEMENT		NUMBER OF ANALYSES 1	LOWER DETECTION LIMIT	EXTRACTION	NETHOD	
1 Au Gold		10	5 PPB	AQUA REGIA	EA-AA @ 10 gm	weight
SANPLE TYPES	NUMBER	SIZE FRA	CTIONS	NUMBER	SAMPLE PREPARATIONS	WHBER
ROCK	10	-200		10	CRUSH, PULVER IZE -200	10
REMARKS: < MEANS LI	ess than.					·····
REPORT COPIES TO: F J	I. HODGE I. ADAMS			INVO 10	E TO: H. HODGE	
· · · · · · · · · · · · · · · · · · ·		n na sana na sana na sa			<u> </u>	
· · · // · · · · · · · · · · · · · · ·						
	a a tha an				····	
			······		·	
· · · · · · · · · · · · · · · · · · ·		199 (1997) (1997) (1997) - 1999) (1997) (1997) (1997) (1997) (1997)				

Bondar-Clegg & Company Ltd. 5420 Canotek, Rd., Ottawa, Ontazi Canada K137 Phone: (613) 2220 Telex: 053-3233

BONDAR-CLEGG

.

Geochemical Lab Report

REPORT: 017-	-2260	PROJECT: KASAGIMINNIS PAGE 1
Sample Number	ELEMENT AU UNITS PPB	
8130 8131 8132 8133 8134	<5 10 25 20 <5	
8135 8136 8137 8138 8139	10 <5 <5 <5 5 5	•
·····		
· · ·		
		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	and we are the second at the second
		· · · · · · · · · · · · · · · · · · ·

Bondar-Ciegg & Company Ltd. 5 19-2220

R

BONDAR-CLEGG

Geochemical Lab Report

LIENT: GEOCANEX LINITED ROJECT: KASAGININNIS	1 - 104 Ma				SUBMITTED BY: P. HIGGINSON DATE PRINTED: 12-JUN-87
ORDER ELEMENT		NUMBER OF Analyses	LOWER Detection limit	EXTRACTION	Method
l Au Gold		23	5 PPB	AQUA REGIA	FA-AA 2 10 gm weight
SAMPLE TYPES	NUMBER	SIZE FR	ACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
ROCK	23	-20	0	23	CRUSH, PULVERIZE -200 23
REMARKS: Z MEANS LE	ss than.	۲. ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰ - ۱۰۰۰			
REPORT COPIES TO: H J	. HODGE . ADANS			INVOI	CE TO: H. HODGE
				· · · · ·	
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
an ann a bha caint ta daothan hi an a tha bhailtean an a	a - see sa har-an, andres na faratsing sandaran aparas				· · · · · · · · · · · · · · · · · · ·
an a second a line o general in the distribution of the second second second second second second second second					
		,			

Bondar-Clegg & Company 11d. 5420 Canotek Rd., Ottawa, Orazio, Canada 55 None: 149-2220 Telex: 053-3233

.

5

BONDAR-CLEGC

• • •

. . . .

ELEMENT AU UNITS PPI		
] 	and a second
1()	
15	i	
1:	5	
10)	
) 	· · · · · · · · · · · · · · · · · · ·
\$;	
160)	
;	5	
29:	5	
3()	
4	5	
1	5	
71	5	
287)	
899	5	an a
25	5	
3	0	
1	5	
1)	
1	0	
1	5	
35	- 5	
2	5	
C.	•	
	1: 1: 1: 1: 1: 1: 1: 2: 2: 3: 4: 1: 2: 3: 3: 1: 1: 3: 1: 3: 1: 3: 2: 1: 1: 1: 1: 1: 1: 1: 1: 1: 1	15 10 5 (5 160 5 295 30 45 15 715 2870 8995 255 30 15 10 10 10 15 355 25

.....

.

SUINDAH-LLEGU

Geochemical Lab Report

MANTE CONTRACTOR STREET, STREE

REPORT: 017-2743 (COMPLETE) **REFERENCE INFO:** SUBMITTED BY: R. HIGGINSON CLIENT: GEOCANEX LIMITED DATE FRINTED: 30-JUN-87 PROJECT: KASAGININNIS NUMBER OF LOVER NETHOD ORDER ELEMENT ANALYSES DEFECTION LIMIT EXTRACTION 1 Au AQUA REGIA FA-AA @ 10 gm weight Gold 131 5 PPB SAMPLE PREPARATIONS NUMBER SAMPLE TYPES SIZE FRACTIONS NUMBER NUMBER _____ -----------131 -200 131 CRUSH, PULVERIZE -200 131 ROCK REMARKS: < MEANS LESS THAN. REPORT COPIES TO: H. HODGE INVOICE TO: H. HODGE R. HIGGINSON

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa, Outario, Canuda, PKS Phone: 749 2220 Teles: 053-1233

BONDAR-CLEGG

.

Geochemical Lab Report

REPORT: 017-	2743		PROJECT: KASAGININNIS	PAGE 1
Sample Number	ELEMENT AU UNIIS PPB	SAMPLE Number	element au Units PPB	
8163	5	8284	10	
8164	5	8285	<5	
8165	<5	8286	5	
8166	5	8287	5	
8167	<5	8288	5	
8168	30	8289	5	
8169	20 (#	8290	10	
8170	<0 /F	831/	<5	
81/1	<0	8318	<0 5	
8203	10 	8317	J 	
8254	<5	8320	<5	
8255	<5	8321	< 5	
8256	<5	8322	5	
8257	5	8323	<5	
8258	5	8324	5	
8259	3	8325	5	· · · · · · · · · · · · · · · · · · ·
8260	5	8326	<5	
8261	10	8327	<5	
8262	15	8328	<5	
9263	10	8329	√5	
8264	< <u>5</u>	8330	<5	
8265	<5	8331	<5	
8266	<5	8332	<5	
8267	10	8333	<5	
8268	<5	8334		
8269	(5	8335	<5	
8270	20	8336	<\$	
8271	20	8337	. (5	
- 8272	25	8338	<5	
8273	(5	8339	() 	.
8274	(5	8340	5	
8275	5	8341	10	
8275	<5	8342	10 .	
8277	<5	B343	15 .	
8278	5	. 8344	20	
	ب	60 H	AA	
8279	5	8345	20	
8280	< 0 /r	8346 0747	30 20	
8481 8767	()	0447 04cg	40 24	
0404 5050	J	5348 5248	ND 1A	
- 82223 8223	J	8349	10	

Bondar-Clegg & Company Ltd.

5420 Canotek Rd., Ottawa, Opercio, Canada K 5 Phone: 16 9-22 Telex: 053-3233 io. 19-2220

100

E

 Δ

.

-C

EGG

٦.

Geochemical Lab Report

	REPORT: 017	-2743	PROJECT: KASAGININIS PAGE 2
	Sample Number	ELEMENT AU UNITS PPB	SAMPLE ELEMENT AU NUNBER UNITS PPB
	8350	300	8390 <5
	8351	40	8391 <5
	8352	100	8392 5
İ	8353	1110	8393 10
	8354	5530	8394 200
ſ `	8335	5050	8395 215
	8356	18520	8396 365
	8357	5440	8397 110
	8358	230	8398 420
.	8359		8399 620
[8360	1360	8400 1240
1	8361	2690	
	8362	2480	
	8363	2100	
-	6364	1400	
	8365	1980	
	B366	120	
	8367	20	
	8368	25	
	8369	20	
	8370	10	
	8371	5	
	8372	10	
-	. 8373	5	
	8374	180	
— —	8375	30	
	8376	20	
	8377	45	
-	8378	5	
	8379	৾ঽ	
S	8380	10	
1	8381	5	
	8382	40	
	8383	15	
	8384	25	
· I · · · ·	8385	10	
	8366	10	
_	8387	5	
	8368	15	
	8389	10	
[

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Ottawa perio, Canada KWS Phone: two 749-2220 Telex: 053-3233

an the second
Geochemical Lab Report

REFERENCE INFO: File: REPORT: 017-2496 (COMPLETE) 1. CLIENT: GEOCANEX LIMITED SUBMITTED BY: R HIGGINSON-PROJECT: KASAGIMINNIS DATE PRINTED: 1'-JUN-87 NUMBER OF LOWER ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION NETHOD l Au Gold 26 5 PPB AQUA REGIA FA-AA @ 10 gm weight and the second and an and an and an and an and an and an an and an an an and an an an and an an an an an an an SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER SAMPLE PREPARATIONS NUMBER ----------***** ****** ROCK 26 -200 26 AS RECEIVED, NO SP 26KEMARKS: <-- MEANS LESS THAN. REPORT COPIES TO: H. HODGE INVOICE TO: H. HODGE J. ADAMS ,

Bondar-Clegg & Company Ltd.

5420 Canolek Rd., Ottawa, Outvio, Canada 55 Phone: (n. 49-2220 Telex: 053-3233

ł

MATE: Contraction of the Alastic States and the Alastic States and the Alastic States and the Alastic States and the Geochemical Lab Report

		the second			Fig. 10 Section of the Print American American American Street Section 1 (1997)
REPORT: 017-	2496	a		PROJECT: KASAGIMINNIS	PAGE I
SAMPLE	ELEHENT	Au	n 1977 e la cine a Maria de Mandellanda e en cine de estado cabadado nos casas de associadades de successo de A la cine de la cine de la constancia de la cine de la cine de la constancia de la constancia de la constante d	n mana mpan, pri 4 m d Squarter kiele & faloniste ka il de Squarque program su	
IUMBER	UNITS	FFB			
8291	a na charach an an Arthur Shann na an ann an an scon	10			
8292		(5			
8293		(5			
8294		(5			
8295		< 5		· · · · · · · · · · · · · · · · · · ·	
8296	والمسالية التحيي والمال				·····
8297		5			
8298		5			
8299		<5			
8300		15	en en en en en fannen en e r en	n na alama manang na kana sa kana alama a	
8301		(5	או איז		
8302		(5			
8303		(5			
8304		5			
8305	· · · · · ·	(5	•		
B306	a in an in the second second second second	75			
8307		(5			
8309		(5			
8310		<5			
8311		<5			
8312	annan agus d'Chlann a ann ann a	(5	en en bet bekan en et netten en netten en netten en de an maater en heefen aan heefen en heefen en soere heefen	nin den geer gesamer Minister van delener en andere geographer i sagebergen je angebregendende is in oor i komm	and and a second se
8313		<5			
8314		10			
8315		Ġ.			
8316		<5			
NE-D-3	a type fragmental state of the	/5	antenan manananan ar a manan anaran anaran an an an ar a ar 1 an 1 an	an sheftafan a gu galab y ngilina in gunan kunga angi angina kungangan ngipa kuna nagangangan kunga angina kung	

,

Certificate of Analysis 5420 Canotek Rd. 5420 Canotek Rd., Ottawa, Ontario, Canada RX5 Phone: 49-2220 Telex 055-233 REFERENCE INFO: REPORT: 417-2743 (COMPLETE) CLIENT: GEOCANEX LIMITED SUBMITTED BY: J. ADAMS PROJECT: KASAGININNIS DATE PRINTED: 8-JUL-87 NUMBER OF LOWER ANALYSES DETECTION LIMIT EXTRACTION ORDER ELEMENT HETHOD

0110-04	65	D110111		111111111010	PUIDOII		WALKING & AUK	IIDTIOL.		
1	-150WT	Weight -150 O	btained	4	0.1	985				
2	AU-150	Gold -150 Fra	ction	4	0.001	ÖPT				
 3	AU+150	Gold +150 Fra	ction	4	0.001	OPT		n a se a company a na se anna a sea a se a se a se a se		
4	, AU AV	Gold Weight A	verage	4	0.001	OPT				
5	+150WT	Weight +150 O	btained	4	0.01	985	•			
 - SANPL	E TYPES	NUM	PER	SIZE F	RACTIONS		NUMBER	SAMPLE PREPARAT	IONS NUMBER	
OT	HER		4	+1	50/-150		4	Sample Preparati	ion 4	
REMAR	KS: OTHE	R SAMPLE TYPE	REFERS TI) REJECT						

REPORT COPIES TO: H. HODGE JOHN H, ADAMS

00.00

Bondar-Clegg & Company Ltd.

INVOICE TO: H. HODGE

Bondar-Clegg & Company Ltd, 5420 Canotek Rd., Ottawa, Ostario, Canadi 2008/8835 Phone: 749-2220 Telex: 053-3233

Certificate of Analysis

.

.

REPORT:	417-2743		****]			PROJECT: KASAGIMINNIS	PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	-150UT 3ms	AU-150 OPT	AU+150 OPT	AU AV OPT	+150WT 9ns		
8354	, , , , , , , , , , , , , , , , , , ,	899.6	0.132	0.318	0.134	10.37		
8355		210.7	0.133	0.243	0.142	18,42		
8356		190.8	0.460	0.297	0.450	12.15		
8357		92.3	0.146	0.001	0.125	15.70		

.

,

· .

•

Ń Chief Chemist

Bondar-Clegg & Company Ltd. 5420 Canotek Rd., Otlawa, Canada Phone: (6) (49-2220 Telex: 053-3233

ł

AR-C

• •

Geochemical Lab Report

1

EGG

XEPC	JXT: 017-2	790 (COMPLE.	TE)			R	EFERENCE INFO:	
TCL.II PROJ	ent: Geoca Ject: Kasa	NEX L Gimin	IMITED				D S	UPRITTED BY: R. HIGGINS ATE PRINTED: 20-JUN-87	2N
	ORDER	EL	ehent		RUHEER OF ANALYSES	LOUER Detection limit	EXTRACTION	Hethod	
	1 A	IJ	Gold		4	5 PPB	AQUA REGIA	FA-AA 2 10 gn	weight
·· •• • · · · ·	SAMPLE T	YPES		NUMBER	SIZE FI	RACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
	ROCK			4	-20	00	• 4	CRUSH, PULVERIZE -200	4
	REMARKS:	< HE	CANS LES	s than.	F	···· ···	-		
	REPORT C	OP IES	5 TO: H. R.	Hodge H Igg Inson			INVOIC	E TO: H. HODGE	
		 		<u>.</u>		مربع بر مربع المربع		·····	
				. .			.		
# **** 11841 * 1	i kanti yi menderi ku menyimey		. (5.1.1)						· · · · · · · · · · · · · · · · · · ·
		•••• #*	• • • • • • • • • • • • • • • • • • •	·····	•			· · · · · ·	
				-			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	u
				1.					
••••				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
				,				/	6
								ľ	

E

٦Ì **R-CLEGG** JAF 3

SAMFLE ELEMENT AU NUMBER UNITS PPB 8172 10 8173 5 8174 5 8175 <5	
8172 10 8173 5 3174 5 8175 <5	· · · · · · · · · · · · · · · · · · ·
	•
	•
• · ·	• •
	n an
	•
·	· · · · · · · · · · · · · · · · · · ·
•	
<u> </u>	

APPENDIX E

.

PROPOSED DRILL HOLE LOCATIONS

.

PROPOSED DRILL HOLE LOCATIONS

PROPOSED DRILL COLLARS

Collar	Azimuth	Inclination	Depth
L25+00W,12+65N	180°	-50°	225
L25+00W,12+65N	180°	-75°	325
L24+00W,12+65N	180°	-50°	200
L24+00W,12+65N	180°	-75°	250
L23+00W,12+65N	180°	-50°	200
L23+00W,12+65N	180°	-75°	250
L20+00W,13+55N	150°	-45°	250
L20+00W,13+55N	180°	-60°	300
L20+00W,13+55N	150	-45	250
			2250

Ministry of Northern Development and Mines

SW0010 2.10780 LITTLE OCHIG LA

900

Ministère du Développement du Nord et des Mines

April 25, 1988

Your File: W8803-054 Our File: 2.10780

Mining Recorder Ministry of Northern Development and Mines Court House P.O. Box 3000 Sioux Lookout Ontario	ONYARIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE
POV 2TO	MAY 1 2 1988
Dear Sir:	RECEIVED

RE: Geochemical Survey and Data for Assaying submitted under Section 77(19) of the Mining Act R.S.O. 1980 on Mining Claims Pa 786792 et al in the Area of Little Ochig Lake

The enclosed statement of assessment work credits for Data for Assaying has been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W.R. Cowan, Manager Mining Lands Section Mines & Minerals Division

Whitney Block, Room 6610 Queen's Park Toronto, Ontario M7A 1W3

Telephone: (416) 965-4888

^ℓM RM:pl

Enclosure (2)

cc: Resident Geologist Sioux Lookout, Ontario

> Power Exploratons Inc. Suite 1003 34 King Street East Toronto, Ontario M5C 1E5

4

Date	05	1000	Mining Recor Work No.
April	25,	1988	

Power Explorations I	nc.
KXXXXXX Area Little Ochig Lake Are	ea
Type of survey and number of Assessment days credit per claim	Mining Claims Assessed
Geophysical	
Electromagnetic days	
Magnetometer days	\$3,834.36 SPENT ON GEOCHEMICAL SURVEY AND ASSAYING SAMPLES TAKEN FROM MINING CLAIMS:
Radiometric days	Pa 786796 to 797 inclusive
Induced polarization days	786807 to 810 inclusive
Other days	
Section 77 (19) See "Mining Claims Assessed" column	
Geological days	
Geochemical days	
Man days Airborne	
Special provision Ground	255.62 DAYS CREDIT ALLOWED WHICH MAY BE GROUPED
Credits have been reduced because of partial coverage of claims.	IN ACCORDANCE WITH SECTION 76(6) OF THE MINING ACT R.S.O. 1980.
Credits have been reduced because of corrections to work dates and figures of applicant.	
ecial credits under section 77 (16) for the following min	ing claims
credits have been allowed for the following mining claim	ms
I not sufficiently covered by the survey	INSUTTICIENT TECHNICƏL DƏTƏ TILED

exceed the maximum allowed as follows: Geophysical - 80; Geologocal - 40; Geochemical - 40; Section 77(19) - 60.

Ministry of	Report of W	ork	DOCUM	ENT No.	Instructions:	Please type or print.	upr 1
and Mines	nt (Geophysica!, I	Geological	W880	3.054		It number of mining clai exceeds space on this form	ins Araverset , attach a list
Ontario	Geochemical a	nd Expend	ditures)	asagimin	Note: -	Only days credits calcul "Expenditures" section ma	ated in the be entered
MININ LANDS	- - -	2-10-18	O Minir	ig Act	-	In the "Expend, Days C Do not use shaded areas bel	ow.
Type of Sur					Township	or Area	
Claim Holder(s)	enaltures				Litt	Le Ochig (G-21 Prospector's Licence No.	04)
Pov	ver Explorat:	ions I	nc.	-		т 4642	
Address	ng St Post	Пожо		tenie ME			
Survey Company	ing bt. East	, 1010		Date of Surv	vey (from & to)	Total Miles of lin	e Cut
Geocar	nex Ltd.	÷.,	,	01,51 005	87 lo3γ ρ	6o. 87r.	
R.A.V. Higgir	son, R.R. #]	l. Oro	Statio	on. Ontar	io		
Credits Requested per Each (Claim in Columns at r	ight	Mining C	Claims Traversed	d (List in nume	rical sequence)	
Special Provisions	Geophysical	Days per Claim	Prefix	Mining Claim Number	Expend. Days Cr.	Mining Claim Prefix Number	Expend. Days Cr.
For first survey:	- Electromagnetic		Pa	786792	60		
includes line cutting)	- Magnetometer			796702	60		* * *** ,
E or opph additional survivu	- Radiometric			786794	60		
using the same grid:	- Other	·					
Enter 20 days (for each)	Geological						
	Geochemical			<u></u>			
Man Days	Geochemical	Days per					
Complete reverse side	Coopingingt 12	Claim		1 2 2			
and enter total(s) here	- Electromagnetic						
WAN	- Magnetometer						
MINING I	ANDS						
	- Other				- A		
	Geological		Ġ		- Fo		
	Geochemicat				12.5 -		
Airborne Credits		Days per Claim	17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11		
Note: Special provisions	Electromagnetic			PA1			
credits do not apply to Airborne Surveys	Magnetometer			CUT TO THE			
	Bagiometric		· · · · · · · · · · · · · · · · · · ·	Nort 1			
Expenditures (excludes powe	er stripping)	<u> </u>					
Type of Work Performed	<u></u>					1747924555 145 ASSE: 1	
Geochemical S	urvey					Andrea († 1997) 19 - Andrea († 1997) 19 - Andrea († 1997)	
786796, 786797,	786807, 7868	08,				· · · · · · · · · · · · · · · · · · ·	
786809, 786810	SECT. (11-16	>					
Calculation of Expenditure Days	Credits	/					
Total Expenditures	Days	otal Credits					
\$ 3,834.36	÷ 15 = 25	5.62	Using 180 -	188-054 = 7	5.62	Total number of mining	2
Instructions			U	IN	RESERVE	report of work.	
Total Days Credits may be ap choice. Enter number of days	portioned at the claim hi credits per claim selecte	older's d		For Office Use	Only	Acting	
in columns at right.	$\overline{\mathbf{N}}$]	Recorded	JEB. 2	9 ,1988 (A L L ALA	
Date Rec Rec	action proper rigerings	ignature)	256 1	2. Date Approve	ed as Recorded	Branch Director	4
rep. 24/88	the fill	P	233.0	~			
Lerutication Verifying Repor	T OT WORK	wiedge of	the facts set i	orth in the Repor	rt of Work annexi	ed hereto, having performed t	the work
or witnessed same during and	'or after its completion a	ind the anne	exed report is	true.			
H.J. Hodge	on Certitying 1003-34 k	ina St	. East	. Toronto), Ontari	O MSC 1E5	
	A			Date Certifie	d l	Certified by (Signature)	
1200 (05/40)				UET	24188	(BMA)-	
1302 (03/12)					•		

OFFICE USE ONLY

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File	
File	

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s)_	Geological/Geoch	emical		
Township or Area_	Kasagiminnis Lak	e Area		AVEDGED
Claim Holder(s)	Power Exploratio	ns Inc.	List numerica	ally
	Cooganay Itd		$P_{2} = 786792$	
Survey Company	Behart A. W. Uiga	ingon	(prefix)	(number)
Author of Report _	Robert A.V. Higg	tion Outomic	Pa 786793	
Address of Author.	K.K. #I, Oro Sta	$\frac{100}{10}$, $\frac{1007}{1007}$	Pa 786794	
Covering Dates of S	urvey May 15 to Ju (linecutting)	to office)		
Total Miles of Line	Cut			
SPECIAL PROVI CREDITS REOU	SIONS ESTED	DAYS 		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Geophy:	sical		
ENTER 40 days	includesElectro	omagnetic		
line cutting) for f	rst —Magne	tometer		
survey.	-Radio	metric		
ENTER 20 days	or each –Other			
additional survey	using Geologi	$cal \underline{40}$		
same griu.	Geochei	nical		• • • • • • • • • • • • • • • • • • • •
AIRBORNE CRED	ITS (Special provision credits do r	not apply to airborne surveys)		
Magnetometer	Electromagnetic	Radiometric /		
	(enter days per claim)			••••••
DATE: January	29/88 SIGNATURE:	18mm		
f		Author of Report or Agent		
Res. Geol.	Qualifications	2.9753		
Previous Surveys	~~~~~~			
File No. Type	Date (laim Holder		
	• • • • • • • • • • • • • • • • • • • •			
•••••••••••••••••••••••••••••••••••••••	•••••••	•••••••		
••••••	••••••			
••••••	•••••	••••••		
	••••••	••••••		
	4	I		

GEOPHYSICAL TECHNICAL DATA

Number o	Number of Stations		Number of Readings		
Station interval			Line spacing		
Profile sca	ıle			·····	
Contour i	nterval	······································	······································		······································
Instrum Accura Diurnal Base St Base St	nent cy — Scale cons l correction met ation check-in i ation location a	tant thod nterval (hours) and value			
Instrum Coil coil Coil sep	nent nfiguration				
Accura	cy				
Method	l:	□ Fixed transmitter	Shoot back	🗆 In line	🗔 Parallel line
ភ្ម័ Freque	ncy		(specify V.L.F. station)	· · · · · · · · · · · · · · · · · · ·	
리 Parame	ters measured_				
Instrum	1ent				
Scale co	onstant				
Correct	ions made				
Base sta	ation value and	location			
Elevatio	on accuracy				
Instrum	nent				
Method	I 🗌 Time Do	main		equency Domain	
Parame	ters – On time	•	Fre	equency	
XII	- Off time		Ka	inge	
VIT	- Delay th	on time			
SIS Power	– megiati		arts (Ber (Ber (Ad.) (Ber) (Ber		
Electro	de arrav	· · · · · · · · · · · · · · · · · · ·			
Electro	de spacing				
	-1 0				-

INDUCED POLARIZATION BESISTIVITY

-		
SELF POTENTIAL		
Instrument	Range	
Survey Method		
Corrections made		
RADIOMETRIC		
Instrument		
Values measured		
Energy windows (levels)		
Height of instrument	Rackground Count	
Size of detector		
Overhurden		
overbarden	(type, depth – include outcrop map)	
OTHERS (SEISMIC, DRILL WI Type of survey	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL WI Type of survey Instrument	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL WI Type of survey Instrument Accuracy	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL WI Type of survey Instrument Accuracy Parameters measured	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und <u>AIRBORNE SURVEYS</u> Type of survey(s)	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und <u>AIRBORNE SURVEYS</u> Type of survey(s) Instrument(s)	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und AIRBORNE SURVEYS Type of survey(s) Instrument(s) Accuracy	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument AccuracyParameters measured Additional information (for und Additional information (for und AIRBORNE SURVEYS Type of survey(s) Instrument(s) Accuracy	ELL LOGGING ETC.) erstanding results) (specify for each type of survey) (specify for each type of survey)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und Additional information (for und AIRBORNE SURVEYS Type of survey(s) Instrument(s) Accuracy Aircraft used	ELL LOGGING ETC.) erstanding results) (specify for each type of survey) (specify for each type of survey)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und Additional information (for und AIRBORNE SURVEYS Type of survey(s) Instrument(s) Accuracy Aircraft used Sensor altitude	ELL LOGGING ETC.)	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument Accuracy Parameters measured Additional information (for und	ELL LOGGING ETC.) erstanding results) (specify for each type of survey) (specify for each type of survey) ery method	
OTHERS (SEISMIC, DRILL W) Type of survey Instrument AccuracyParameters measured Additional information (for undAdditional information (for und	ELL LOGGING ETC.) erstanding results) (specify for each type of survey) (specify for each type of survey) ery method Line Spacing	

Numbers of claims from which samples taken Pa 786796, 786797, 786807, 786808, 786809, 786810

Total Number of Samples215	ANALYTICAL METHODS					
Type of Sample_Rock-Grab-Channel Samples_ (Nature of Material)	Values expressed in: per cent p. p. m.					
Average Sample Weight 5 105.	p. p. b. 🏌					
Method of Collection Channel and Grab	Cu. Pb. Zn. Ni. Co. Ag. Mo. As(circle)					
Sampling						
Soil Horizon Sampled	Others_GOId					
Horizon Development	Field Analysis (tests)					
Sample Depth	Extraction Method					
Terrain	Analytical Method					
	Reagents Used					
Drainage Development	Field Laboratory Analysis					
Estimated Range of Overburden Thickness	No. (tests)					
	Extraction Method					
	Analytical Method					
	Reagents Used					
SAMPLE PREPARATION (Includes drying, screening, crushing, ashing) Mesh size of fraction used for analysis	Commercial Laboratory (<u>215</u> tests) Name of Laboratory <u>Bondar-Clegg & Co.</u> Extraction Method Aqua-Regia					
• • • • • • • • • • • • • • • • • • •	Analytical Method FA-AA					
	Pagganta Usad					
	Keagents Used					
General	General					

S 197 **()** \mathfrak{L} A ш ĹШ

51° 15' 00 1

200

DOGHOLE LAKE AREA G-2007

 $\overline{\mathbf{n}}$ 111
