F. T. ARCHIBALD CONSULTING LTD.

74.

Gold Hill Resources Ltd. Suite 402- 27 Queen St.East, Toronto, Ontario. M5C 2M6 702 - 100 ADELAIDE ST. W. TORONTO. ONTARIO M5H 153 CANADA TEL. (416) 363-5054 November 16, 1987.

Diamond Drilling Summary; Poplar Bay/Kenora Clair

A two-phase diamond drilling program was completed over the Gold Hill property which is located in the Poplar Bay area, southwest of Kenora, between April 29, 1987 and July 31, 1987. A total of 4,003 feet of drilling was completed in twelve holes.

The drilling was done on mining claims K855715, K855719, and K855720 to test three gold-bearing zones. These zones, outlined by electromagnetic and magnetometer surveys, correspond to shear zones which occur at the contacts between: granite intrusives and mafic metavolcanics, feldspar porphyry intrusives and mafic metavolcanics, or felsic and mafic metavolcanics.

A summary of the drilling program is as follows:

<u>Hole#</u>	Date Drilled For	ootage	Zone Intersection	<u>Assay</u> (oz.Au/ton)	Anomaly Type
87-1	April 29-30/87	303.0	28.0-31.0 (3.0')	0.20	contact, VLF
87-2	May 1-3/87	267.0	27.0-35.0 248.0-249.0		contact, VLF shear
87-3	May 12-13/87	277.0	89.0-97.0 (8.0')	0.11	Minerva zone shear, contact
87-4	May 3-6/87	307.0	159.0-163.0		mag, VLF
87-5	May 7-9/87	300.0	128.0-129.0 211.0-214.0		mag, VLF
87-6	May 10-11/87	300.0	85.0-105.0 242.0-255.0		mag, VLF
87-7	May 14-16/87	227.0	91.0-93.0 (2.0')	0.24	Minerva Zone shear, contact
87-8	May 16-18/87	235.0	76.3-78.5 (2.2') 208.0-210.5 (2.5	0.01)0.Q2	contact, VLF
87-9	May 19-20/87	287.0	152.0-155.0		VLF, mag
87-10	July 20-25/87	750.0	@ 67.0 338.6-340.0(1.4'	V.G.)0.08	Minerva Zone shear, contact
87-11	July 25-29/87	550.0	357.5-358.5(1.0' 479.0-483.5(4.5' 500.2-504.2(4.0' 535.2-537.9(2.7')0.10)0.02)0.06)0.06	Minerva Zone shear, contact
87-12	July 29-31/87	200.0	93.8-96.0 (2.2')	0.88	Minerva Zone shear, contact

OM86-3-C-147

010

A total of two gold-bearing zones were outlined by the diamond drilling program; one of which is considered significant. The Minerva Zone has been traced for a distance of over 250 feet and has been drilled to a depth of approximately 310 feet below surface. Five holes have been drilled through this zone which ranges in widths of 1.0 to 8.0 feet. The Minerva Vein assays from the drilling are between 0.08 to 0.88 ounces of gold per ton.

It is recommended that the Minerva Vein and parallel zones be traced to length and depth by further drilling as this zone is open in all directions. This can be done best under winter ice conditions. Basal till sampling methods over the lake could also aid in tracing these zones and in locating the drill targets.

> Yours sincerely, J.S. Onchilson, F.T. Archibald, B.Sc.Geologist.

2

ME OF	F PROPERTS. GH $\frac{27}{27}$	Poplar Bay/ Minerva Mine, Kenora, Ontario 7-10 LENGTH 750.0 feet 75 feet from shaft (180 feet behind 87-3) 75 m Wast Destaures 2+05 m South P.I	ютаде 50 1	ыр -34 ⁰	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOL.E REMA	NO. GHE RKS	<u>37-10</u> s+	IEET NO.	<u> 1 of</u> 4
EVATIO	ом July	AZIMUTH N 209°E mag DIP -60°							LOGGE	о ву <u>F.</u>	T.Arch	nibald	<u>,B.Sc</u> .G
FOOT	TAGE					SAMI	PLE	<u></u>	T		ASSA	YS	
FROM	то	DESCRIPTION		N	IO. SULPI	FROM	FOOTA TO	GE TOTAL	%	%	ZU OZ/TON	OZ/TON	
0	32.0	Casing											
32.0	33.0	Intermediate-Coarse grained Flow(Metavolcanic)											
		blue quartz eyes, slight banding @ 40° to cor	e axi	.s									
		feldspar phenocrysts diameter (euhedral p biotite rich, dark g with white phenocrys speck pyrite (replac of biotite)	to denote the to the to the to the the text of tex of tex of tex of text of text of text of text o	ryst atri dd	s) x								
+1.0	255.0	Intermediate Coarse Grained Metavolcanic Flow											
		massive with blue quartz eyes, fine-medium gragrey colour, slight banding @ 40°to core axis speck pyrite/pyrrhotite/chalcopyrite, odd sil fracture @ 50-65° to core axis	ained , odd iceou	, S									
		33.0-175.0- low chlorite content(increasing w	ith d	epth)								
		@ 67.0- fragments of burned bit											
		105.0-108.5- up to $\frac{1}{4}$ % disseminated pyrite	е										
		135.4-137.0- <u>Altered Feldspar Porphyry D</u> slightly bleached/carbonate coarse grained, pink colour	<u>yke</u> rich	,									
		140.0-141.0- <u>Altered Feldspar Porphyry</u> coarse grained, pink colour											
		172.0-175.0- coarse grained, speckled app	peara	nce							A.C.	And	Ind
				11	1	1	1	1	n		IN IN IN	11 V V ~4 V	\sim \sim 1

- S. 🚅

GOLD MILL RESOURCES INC. **DIAMOND DRILL RECORD**

NAME OF PROPERTY HOLE NO. GH 87-10 LENGTH

LOCATION _____ LATITUDE _____ DEPARTURE _____ ELEVATION _____ AZIMUTH _____ DIP ____

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HELE NO. GH87-10 SHEET NO. 2 of 4

REMARKS

LOGGED BY _____

STARTED	ARTED FINISHED				I	k		LOGGE	D BY			
FOOT	FAGE	DESCRIPTION			SAMP	LΕ			A	SSA	YS	
FROM	то		NO.	% SULPH- IDES	FROM	FOOTAGE TO	TOTAL	76	%	AU OZ/TON	OZ/TON	
		@ 195.0- 1" Quartz Seam- barren of sulphides										
		250.3-255.0- biotite rich with $\frac{1}{4}$ -1% pyrite content (seam/disseminated)	8710	1	250.3	255.4	5.1'			0.01		
255.0	255.4	<u>Quartz Vein</u> - @ 50 ⁰ to core axis, low pyrite content	8710	2	262.8	265.7	2.9'			Tr.		
255.4	265.7	Basic Metavolcanic Flow- basalt fine grained, massive, grey colour, brittle, low siliceous fracturing, odd pyrite rich seam, chlorite content increasing with depth					•					
		262.8-265.7- bleached, moderately chloritic, low pyr							- - -			
265•7	281.5	Feldspar Porphyry Intrusive- light grey/pink colour, med to coarse grained, biotite rich, pink/white feldspar phenocrysts (¹ / ₄ - ¹ / ₂ th diameter, euhedral)	lium									
281.5	675.0	Basic Metavolcanic Flow- basalt fine grained, massive, grey/black colour										
		282.5-286.0- slight siliceous banding @ 50 ⁰ to core axis										
		286.0-291.7- massive										
		291.7-295.5- bleached/cherty texture, low pyrite @ 295.5- 4" <u>Quartz Vein</u> with odd bleb pyrite	8710	3	291.7	295.5	3.8'			0.01		
		306.2-308.6- bleached/cherty texture, odd speck pyr. 308.6-326.8- increase in chlorite/silica fracturing	8710	4	306.2	308.6	2.4'		<i>C</i>	Tr.		0.1
000		some <u>breccia</u> seams 326.8-328.0- silica rich	8710	ĸ	226 0	328 0	1 21		C		xxxlo	Ner
		328.0-420.0- slight banding @ 45-50 ⁰ to core axis green colour. mod.chloritic.	5710		520.0	0 • 0 عر	1.2			** •		

GOLD HILL RESOURCES INC. DIAMOND DRILL RECORD

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HOLE NO H87-10 SHEET NO. 3 Of 4

REMARKS _____

LCGGED BY ____

HOLE NO. <u>GH 87-10</u> LENG

LATITUDE _____ DEPARTURE _____

ELEVATION ______ AZIMUTH _____ DIP _____

TABTEO

NAME OF PROPERTY

FINISHED

____ LENGTH ______

оот	AGE				SAMP	LE			· /	SSA	YS	
ROM	то	UESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE	TOTAL	3;	%	AU OZ/TON	OZ/TON	
		some cherty/bleached sections odd <u>breccia</u> seam										
		338.6-340.0- bleached/siliceous rich seams @ 45 50° to core axis, up to ½% pyrite/ pyrrhotite (seam/dissemination)	871	6	338.6	340.0) 1.4'			0.08		
		420.0-492.4- massive, decrease in chlorite content (slightly chloritic), some moderately chloritic sections, some bleached/chert rich sections										
		465.0-470.4- bleached/cherty, serecitic, odd speck pyrite	871	7	465.0	470.1	- 5.4'			Tr.		
		476.0-483.2- slightly bleached/cherty/schistose	871	8	476.0	479.4	3.4'					
		492.4-527.0- massive with slight banding @ 25-30 ⁰ to core axis, slight to moderately chloritic green/grey colour, fine grained	.07108			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				11.		
		527.0-579.0- slight increase in silica fracturing @ 25-60° to core axis, moderately chloritic green/grey colour, odd pyrite/pyrrhotite rich seam, chlorite rich (flow) bands @ 1-6" thick, bleached/cherty rich sections odd speck chalcopyrite, odd breccia seam	s 87109 S	7109 5	7109	564.0	566-0	2.0'			Πr	
		579.0-675.0- massive to slight banding @ 25-30 ⁰ to core axis, slightly chloritic (decreasing with depth)			Je					***		
		579.0-624.5- green-grey colour, slightly chlorit	c									
		624.5-675.0- grey colour, low chlorite content							(h			
•0 7	750.0	<u>Coarse Grained Metavolcanic Flow</u> - massive, equigranular blue quartz eyes, porphyritic texture, slightly	,						50	Bar	I.I.	

GOLD MILL RESOURCES INC. **DIAMOND DRILL RECORD**

_	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
-						
-						
-						

POLE NO. ______ SHEET NO. _____ 4 of 4

REMARKS

LOGGED BY _

NAME OF	PROPERTY			
HOLE NO.	<u>GH 87-10</u>	LENGTH		
LOCATION				
LATITUDE				
ELEVATION		AZIMUTH	DIP	

STARTED _____ FINISHED ___

FOO	TAGE				SAMP	LE		ASSAYS				
FROM	то	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	%	%	AU oz/ton	OZ/TON	
		chloritic, speckled appearance, up to 2% disseminated magnetite (increasing amount with depth)										
		675.0-680.0- slight increase in silica, low pyrite (to ¼% content)(decreasing with depth)										
		737.0-742.0- increase in size and amount magneti	te									
	750.0	End of Hole										
									:			
1												
										•		
											1	
									\mathcal{A}	STA.	-	l bl

GOLD HILL RESOURCES INC. **DIAMOND DRILL RECORD** 87-11 NAME OF PROPERTY Poplar Bay/Minerva Mine, Kenora, Ontario

LATITUDE _______ O+15 m West___ DEPARTURE 1+50 m. South of B.L. ELEVATION _______ AZIMUTH N 209°E mag_ DIP ______

178' from collar 87-10 200' south-east of shaft

FOOTAGE AZIMUTH FOOTAGE DIP DIP AZIMUTH HOLE NO. <u>GH 87-11</u> LENGTH <u>550.0'</u> LOCATION <u>284'</u> from vein intersection, 247' behind 87-7 collar 550' -42°

HOLE NO. GH87-11 SHEET NO. 1 of 3

REMARKS

F.T. Archibald.B.Sc.Geol.

- 001	FAGE				SAMF	'LE			A	SSA	rs
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	%	%	OZ/TON	OZ/TON
0	22.0	Casing									
2.0	130.0	Intermediate-Mafic Metavolcanics Flow									
		massive, fine grained, dark grey colour, slight- fine siliceous fracturing @ 40-45° to core axis,low carbonate rich fractures (decreasing with depth), slight chlorite content (increasing with depth)									
		86.0-130.0- massive, coarse grained, slight chlorite content, slight banding @ 45° to core axis									
30.0	162.0	(Intermediate)Coarse Grained Metavolcanic Flow								1	
		slightly chloritic, slight banding @ 45 ⁰ to core axis, medium grained					-		-		
		155.5-162.0- biotite rich bands					-				
		@ 161.7- <u>schistose</u>									
2.0	182.1	Feldspar Porphyry Intrusive-									
		coarse grained, equigranular, pink/grey colour, biotite rich									
		162.0-165.0- odd speck pyrite	\$711:	1	162.0	165.0	3.0'			Tr.	
2.1	481.0	(Intermediate)Coarse Grained Metavolcanic Flow	8711:		182.1	184.0	2.0'			Tr.	
		slight banding @ 45-50 ⁰ to core axis to 35 ⁰ to core axis with depth, slightly chloritic (increasing with depth)							- 		
		182.1-187.0- biotite rich banding, moderately chloritic							~		
		208.0-277.0- up to $\frac{1}{4}\%$ magnetite content	8711 ⁻	4	250.0	251.0	1.0'		A	Tral	6-0-

GOLD NILL RESOURCES INC. **DIAMOND DRILL RECORD**

NAME OF PROPERTY	FOOTAGE	DIP	AZIMUTH	FOOTAGE	OIP	AZIMUTH
HOLE NO. GH87-11 LENGTH						
LOCATION						
LATITUDE DEPARTURE						
ELEVATION AZIMUTH DIP						
STARTED FINISHED			L,	ii		L

HOLE NO. GH87-11 SHEET NO. 2 of 3

REMARKS _____

LOGGED BY ___

FOOT	AGE				SAMP	L. E			p	SSAY	15	
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE	TOTAL	%	76	AU oz/ton	OZ/TON	
		277.0-481.0- speckled appearance (blue quartz eyes), more massive, equigranular, ½-2% magnetite, slightly banded @ 50° to core axis, slightly chloritic (increasi with depth)	ag									
		300.0-302.0- pyrite/carbonate/silica rich seams @ 50° to core axis	8711	4	300.0	302.0	2.0'			Tr.		
		@ 343.0- pyrite/carbonate/quartz seams @ 50 ⁰ to core axis	8711	5	342.5	343•5	1.0'			Tr.		
		@ 358.0- pyrite/carbonate/quartz seams @ 50 ⁰ to core axis	8711	6	357•5	358.5	1.0'			0.10		
		@ 359.0- odd quartz seam with low chalcopyrite										
		@ 449.5- ½" <u>Quartz seam</u> @ 55 ⁰ to core axis, grey colour, with low pyrite	8711	7	471.9	473.2	1.3'			Tr.		
481.0	551.0	Coarse Grained Metavolcanic Flow										
		481.0-547.0- slight chlorite content, increase in	8711	8	479.0	483•5	4.5'		-	0.02		
		silica content	8711	9	483.5	487.0	3.5'			Tr.		
		481.0-504.0- low magnetite content	8711	10	487.0	492.0	5.0'			Tr.		
		471.9-473.2- pyrite/silica rich bands @ 35° to core axis	8711	11	500.2	504.2	4.0'			0.06		
:		479.0-492.0- pyrrhotite/pyrite rich seams with minor chalcopyrite, slightly siliceous										
		479.0-483.5- 5-7% sulphides, silica rich							~			
		500.2-504.0- 1-4% disseminated/seam magnetite, silica bands @ 55°	•A.						Ĥ	Ind	lored	,

GOLD WILL RESOURCES INC. DIAMOND DRILL RECORD

DIP	AZIMUTH	HOLE NO. $GH87-11$ SHEET NO.	3	of	3
		REMARKS			_

NAME OF PROPERTY			FOOTAGE	DIP	AZIMUTH	FOOTAGE
HOLE NO	LENGTH	·····				
LOCATION						<u> </u>
LATITUDE	DEPARTURE					<u>}</u>
ELEVATION	AZIMUTH	DIP				

- 366-1168

TARTED	<u> </u>	FINISHED							LCGGED BY				
FOOT	AGE					SAMP	LE			Δ	SSA	(5	
FROM	то			NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	33	%	OZ/TON	OZ/TON	
		530.8-543.0- increase in silica o low disseminated pyr pyrrhotite, low magn chalcopyrite	content, cite/ netite/	8711 8711	12 13	530.8 535.2	533•2 537•9	2.4' 2.7'			Tr. 0.06		
		535.2-537.9- silica rich with pyrite/pyrrhotit	n up to 1% te	8711	14	537•9	543.0	5.1'			Tr.		
		547.0-551.0- massive, less siliceous, incr chlorite content	rease in										
	551.0	End of Hole											
								:					
										\bigcirc			
										5	ja~	hlafd	

10- -

GOLD WILL RESOURCES INC. DIAMOND DRILL RECORD 87-12

1 - i

NAME O HOLE N LOCATIO LATITUD ELEVATI STARTEO	$\begin{array}{c} F & PROPI\\ GH8\\ 0. & GH8\\ 0 & 6'\\ 0 & 6'\\ 0 & 0+8\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0\\ 0 & 0& 0& 0\\ 0 & 0& 0\\ 0 & 0& 0& 0& 0\\ 0 & 0& 0& 0& 0\\ 0 & 0& 0& 0& 0\\ 0 & 0& 0& 0& 0\\ 0 & 0& 0& 0& 0\\ 0 & 0& 0& 0& 0\\ 0 & 0& $	Poplar Bay/Minerva Mine, Kenora, Ontario 7-12 LENGTH 200.0' in front of 87-3, 75' from vein, 100' NW shaft 5 m. West DEPARTURE 2+00 m. south B.L. above lake AZIMUTH N136°E mag DIP -45° 29, 1987 FINISHED July 31, 1987	ютаде 1)0'_/	91P 48 ⁰	AZIMUTH	FOOTAGE		AZIMUTH	HOLE REMA	NO. <u>GHE</u> .rks d by_ <u>F</u>	.T.Arc	EET NO.	<u>1 of 3</u>
. F00	TAGE	DESCRIPTION				SAMF	'LE			A 1	SSA	(5	
FROM	то			N	0. SULPI	FROM	FOOTAG TO	E TOTAL	76	%	OZ/TON	OZ/TON	
0	6.0'	Casing											
6.0	17.0	(Int-Mafic) Coarse Grained Metavolcanic Flow											
		dark grey colour, equigranular/medium grained,m blue quartz eyes, odd speck pyrite/pyrrhotite,	massiv	e									
		6.0-7.0- carbonate rich fractures											
17.0	33.0	<u>Coarse Grained Flow (Metavolcanic</u>)											
		altered/silica rich, light green colour, slight chlorite content	t										
		17.0-26.0- talcose/hematite rich seams, porphyr texture	ritic										
33.0	66.0	Mafic Metavolcanic Flow- fine grained								l			
		massive with slight siliceous fracturing @ 35-9 core axis, odd speck pyrite/pyrrhotite/chalcopy	90 ⁰ to yrite										
88		33.0-47.0- dark grey colour, increasing mafic c with depth, slight to moderately chl (increasing chlorite with depth), fi siliceous fracturing @ 30-60° to cor slight felsic/bleached in sections	conten Loritio Ine re axis	t 2									
66-11		@ 62.0- pyrite rich seam		87	7121	62.0	64.0	2.0'			Tr.		
0NTO - 3		@ 38.5- 1" Quartz seam @ 50 ⁰ to core axis, barr sulphides	ren of										
g 66.0	105.0	Mafic Metavolcanic Flow- fine grained		87	7122	67.0	69.2	2 2.2'					
IGRIDGES -	-	fine grained, moderately-highly chloritic, mass with slight silica fracturing @ 20° & 50° to com axis	ive ore				- / • /					-0-0	2
LAN		66.0-81.8- moderately chloritic		87	7123	81.8	83.8	3 2.0'		00) //// Tr.	nia	

GOLD MILL RESOURCES INC. **DIAMOND DRILL RECORD**

NAME OF PROPERTY

HOLE NO. <u>GH 87-12</u> LENGTH _____

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HOLE NO. GH87-12 SHEET NO. 2 of 3

REMARKS _

LOGGED BY _____

LOCATION _____

· · · · ·

LATITUDE _____ DEPARTURE _____

ELEVATION _____ AZIMUTH _____ DIP _____ CT.0.7.50

ENLOYER

FOOTAGE			SAMPLE					ASSAYS			
FROM	то	DESCRIPTION	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	%	К	AU OZ/TON	OZ/TON
		81.8-83.8- <u>siliceous rich bands</u> @ 55 ⁰ to core axis grey/white quartz, sugary textured quartz, up to 1% pyrite with odd speck galena									
		83.8-93.8- highly chloritic, crenulated flow banding	B712	¥	93.8	96.0	2.2'			0.88	
		<pre>@ 89.4- silica seams @ 30-60⁰ to core axis, white quartz (barren of sulphides)</pre>	8712	5	96.0	98.7	2.7'			Tr.	
		93.8-96.0- <u>Quartz Vein</u> @ 55 ⁰ to core axis, <u>brecciated</u> , grey/white quartz, sugary textured quartz,	8712	5	98.7	102.0	3.3'			0.01	
		up to 1% pyrite (disseminated/seam), odd speck molybdenum	8712'	7	102.0	105.0	3.0'			Tr.	
		96.0-102.0- slightly chloritic	8712	8	115.6	120.0	4.4'			Tr.	
		96.0-98.7- siliceous rich, slightly cherty texture low (fine disseminated) pyrite		4 							
		102.0-105.0- dark grey colour, cherty texture, chlorit rich fractures									
05.0	115.6	Feldspar Porphyry Intrusive									
		pink/grey colour, medium grained, feldspar phenocrysts to $\frac{1}{4}$ cm. diameter (euhedral/anhedral)		- - -	-						
15.6	201.0	Mafic Metavolcanic Flow- fine grained		-							
		115.6-153.0- massive with slight siliceous fracturing	-	2							
		115.6-120.0- cherty texture, carbonate rich banding @ 30° to core axis, odd speck pyrite		•							
		124.5-125.2- carbonate rich banding									
		130.0-132.0- carbonate rich banding							(BO	hon

GOLD NILL RESOURCES INC. DIAMOND DRILL RECORD

LOCATION _____

LATITUDE ______ DEPARTURE _____ ELEVATION ______ AZIMUTH _____ DIP _____

1 - L

	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUT
l						

HOLE NO. GH87-12SHEET NO. 3 of 3

REMARKS

LOSGED BY

FOOTAGE			SAMPLE					ASSAYS			
ROM	то	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	25	76	AU oz/ton	OZ/TON
		153.0-201.0- massive									
		153.0-159.5- high chlorite content									
		157.0-158.0- silica rich	8712	9	124.5	125.2	0.7'			Tr.	
		159.5-168.0- cherty texture									
		168.0-177.0- chlorite rich	8712	10	157.0	158.0	1.0'			Tr.	
		177.0-178.0- cherty/siliceous rich									
		178.0-187.3- massive	8712	11	177.0	178.0	1.0'			Tr.	
		187.3-189.6- cherty/siliceous banding									
		189.6-201.0- grey colour, fine grained, massive	8712	12	187.3	189.6	2.3'			Tr.	
	201.0	End of Hole		5 5 7							
					÷.						
				-							
									De	0 0	ō ol
[1				03	June	www

900

OM 86-3-C-147

THIS SUBMITTAL CONSISTED OF VARIOUS REPORTS, SOME OF WHICH HAVE BEEN CULLED FROM THIS FILE. THE CULLED MATERIAL HAD BEEN PREVIOUSLY SUBMITTED UNDER THE FOLLOWING RECORD SERIES (THE DOCUMENTS CAN BE VIEWED IN THESE SERIES):

VLF-EM survey and	see TORONTO file							
Magnetometer survey,	#2.9976							
Goold Hill Resources	R.O.W unknown							
Inc., Frederick T.	· · · · · · · · · · · · · · · · · · ·							
Archibald, 1987								
· · · · · · · · · · · · · · · · · · ·								
Diamond drill logs +	sec TORONTO File							
assays DDIt 87-1 to -8,	Clearwater Bay Area DDR #18							
incl., Gold Hill Resources	R.O.W. #105 For 1987							
Inc., F.T. Archibald, M87								
	i.							
	· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · · · · ·								

