

52011SW2001 2.18309

MCVICAR LAKE

010

Diamond Drilling Report

for

McVicar Minerals Ltd

on their

McVicar Lake Property

in

Northwestern Ontario

APR N 7 1998 GEOSCIENCE / SOFASAJENT

September 12, 1997

Stewart Fumerton, Ph.D. Timmins, Ontario.

SUMMARY

One thousand two hundred metres of thin wall B core was drilled in 10 holes during this program in order to test a number of targets which remained after the BHP exploration program in the area. Five of the holes are located in the Sor Lake area (MV97-1 to MV97-5) which tested the altered Sor Lake Tonalite Sill, and a couple of IP targets on a granite - greenstone contact. An additional five holes in the Lower McVicar Lake area (MV97-6 to MV97-10) tested possible sulphide facies iron formations which were postulated to form possible traps to gold mineralizing fluids.

Some low grade gold values were returned from within quartz veins that contained sulphides in the Sor Lake Tonalite Sill in hole MV97-1. These values averaged 1.65 g/t gold over a true width of 1.75 metres and the host tonalite contained some irregularly distributed anomalous gold concentrations up to 200 ppm. No significant gold concentrations were returned from the other hole (MV97-2) that tested the Sor Lake Sill.

The IP target tested at the north end of the Sor Lake Grid intersected a sequence of intercalated siltstones and mudstones on the contact of a granitic intrusion. No significant assays were returned from either of the two holes that tested the two closely spaced targets (MV97-3 & -4).

One hole targeted to test the east end of the Sor Lake Tonalite Sill intersected a highly sheared and highly altered arenaceous siltstone sequence. Trace amounts of secondary pyrite occur in this hole but only a few samples returned slightly anomalous gold concentrations. Despite the lack of significant assays, the shearing and alteration encountered in this hole are encouraging and further work is recommended in the area.

All five holes in the Lower McVicar Lake intersected a sequence of submarine mafic metavolcanics with local brecciation and alteration intercalated with arenaceous sediments and felsic metavolcanics. The massive and semi-massive sulphide horizons in this sequence are associated with the contacts between mafic metavolcanics and the metasediments but do not appear to form part of a banded iron formation. Rather these sulphide horizons appear to be a favourable environment for VMS base metal deposits. No significant gold mineralization was returned from any of the five holes that tested targets in this area (MV97-6 to -10) but it is recommended that the base metal potential of the area be appraised.

TABLE OF CONTENTS

Page

SUMMARY	II
TABLE OF CONTENTS	III
INTRODUCTION	1
GENERAL GEOLOGY	1
STRUCTURE	3
MINERALIZATION	4
DRILL PROGRAM	5
RESULTS	5
Sor Lake Area	8
MV97-1	8
MV97-2	8
MV97-3	9
MV97-4	9
MV97-5	10
Semia Lake or Lower McVicar Lake Area	10
MV97-6	10
MV97-7	11
MV97-8	12
MV97-9	12
MV97-10	12
RECOMMENDATIONS	13
REFERENCES	13

APPENDIX I

DIAMOND DRILL LOGS

APPENDIX II

ASSAY CERTIFICATES

INTRODUCTION

McVicar Minerals Ltd has leased a property at McVicar Lake from BHP Minerals Canada Ltd. This property covers 5,792 hectares in 275 mineral claims and is located some 80 kilometres west of the town of Pickle Lake in Northwestern Ontario. This is within the Patricia Mining Division and contained within NTS sheets: 520/11 (McVicar Lake) and520/12 (Cat Lake).

Access to the property is by fixed wing aircraft or helicopter from Pickle Lake throughout the year, as no roads presently pass close to the property. In the past, all field activities have been based out of a camp near the eastern end of McVicar Lake. During the coarse of this drill program a new camp was established on the northeastern shore of Sor Lake which is located immediately west of McVicar Lake. All that is left at the old camp on McVicar Lake is a 14' boat and floors for a number of tents. Most of these floors are now rotten and useless.

Previous work in the area, together with a property description are documented by Waldie (1994) and Cargill and Gow (1997).

GENERAL GEOLOGY

The property is centred on the western end of the Lang Lake Greenstone Belt, where it is truncated by the northwest trending Bear Head Fault Zone (Figure 1). The Bear Head Fault (BHFZ) is a regional "left lateral" fault and the western extension of the Lang Lake Greenstone Belt is the Meen-Dempster Greenstone Belt. This latter greenstone belt hosts the now abandoned Golden Patricia Mine which produced 0.554 million ounces of gold from 1,046,700 tonnes of ore at an average grade of 17.2 g/t between 1992 and 1997. Structurally the Golden Patricia Mine is located on a sigmoidal structure adjacent to the Bear Head Fault Zone. Both the Lang Lake and Meen-Dempster Greenstone Belts plus adjacent granites form part of the Uchi Subprovince within the Archean Superior Province (Stott and Corfu 1991).

Isoclinally folded metavolcanic and metasedimentary rocks, intruded by mafic and felsic plutons, form the Lang Lake Greenstone Belt. Within the supracrustal rocks, a tentative regional stratigraphic column has been recognized (Table 1); tholeiitic basalts occur in pillowed and massive flows and are overlain by calc-alkaline dacitic pyroclastic rocks and metasediments (Scott and Corfu 1991, Waldie 1994). The sedimentary rocks at McVicar Lake are not part of the unconformable Billet Lake Assemblage but rather a wacke dominated sequence with intercalated banded iron formations which are more widespread east of the property and in the immediate Lang Lake area in the northwestern part of the property. These supracrustal rocks are intruded by discordant gabbro and anorthositic gabbro plutons that are elongated parallel to the overall trend of the greenstone belt. Subsequent to these mafic intrusions, the whole assemblage was intruded by the regional Dobie Batholith, then smaller granite and tonalite plutons.

From the aeromagnetic data (Figures 4 *in* Diorio 1993 and Figure 3 *in* Waldie 1994) it can be interpreted that there are a number of distinct phases to the metavolcanic - metasediment

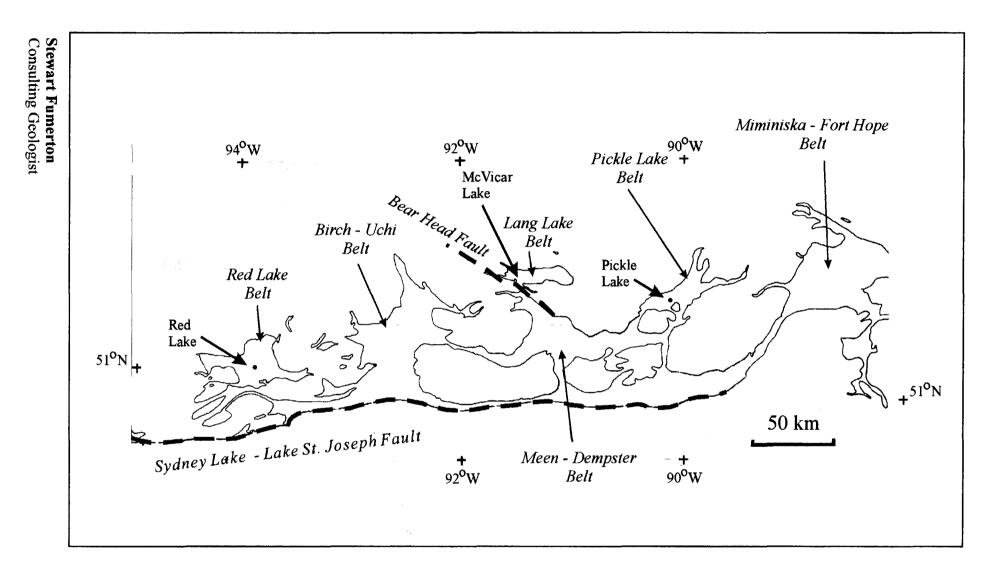


Figure 1

<

Location of the McVicar Lake Property in the Greenstone Terrain of the Uchi Lake Subprovince. The geology map is modified from Stott and Corfu (1991)

AGE	GROUP	LITHOLOGY / TECTONISM
ARCHEA	N	
		Tonalite
	T / T	Granite
	Intrusive	North Flexure, Altered Zone, brecciated
		basalt/gabbro, fault gouge
	Tectonism - – –	
		Dobie Lake Batholith
	Intrusive	Califar
		Gabbro Anorthositic gabbro
	Intrusive	
	Billett Lake	Greywacke
		Mudstone
	Linconformity	Banded Ironstone
	Unconformity	
	Confederation	Dacite
	Assemblage	Basalt

Table 1Stratigraphic Column, McVicar Lake Property. (Taken from Waldie 1994 who
modified the column by Sage and Breaks 1975, Stott and Wallace 1984, Thomas
1988).

sequences within the Lang Lake Greenstone Belt. The greenstone belt contains a folded sequence of banded supracrustal rocks with high magnetic contrast north of Lang Lake separated from similar supracrustals with the same magnetic banding east of Shonia Lake by a terrain with a relatively "flat" magnetic expression. These different magnetic signatures may be due to differing geochemical metavolcanic suites, e.g. Fe Tholeiitic and Calc Alkaline metavolcanics, with possible intercalated metasediments in the high contrast terrains.

STRUCTURE

Isoclinal folding and major crustal faults are the two dominant structural features related to the gold mineralization in the area. The isoclinal folding has an axial plane trending roughly east-west passing close to the "Altered Zone" mineralization at the east end of McVicar Lake. Younger felsic

metavolcanic and metasedimentary rocks occur in the core of this fold and which indicate that the isocline is a syncline plunging to the east.

Three regional faults have been recognized on the property by Waldie (1994), Diorio (1993) and Cargill and Gow (1997) which are labelled 1) Bear Head Fault or BH1, 2) Lower McVicar Fault or BH2, and 3) Altered Zone Fault or BH3. These faults are related to each other, and subdivide the greenstone belt into distinct structural domains (Diorio 1993).

Between the Bear Head and Lower McVicar faults, the supracrustal rocks are folded into "S" shaped sigmoidal folds and splay faults. This would suggest that the movement along the faults had a "right lateral" motion in contradiction to the "left lateral" sense indicated by the regional displacement of the greenstone belt. Within this structural domain there are a number of gold prospects, including: 1) Chellow Vein, 2) AGM Zone, 3) Jay Zone, 4) Sor Lake Sill, and to the southeast of the property, 5) the Golden Patricia Mine.

The Altered Zone Fault is roughly coincident with the axial plane of the regional isoclinal fault though is generally discordant to the axial plane. Three gold prospects are associated with this fault which are:- 1) Altered Zone, 2) North Flexure, and 3) Shonia prospects.

MINERALIZATION

The gold mineralization that has been explored for by BHP and others in the area is associated with quartz veining associated with strong shearing and alteration. Alteration is typically characterized by the formation of sericite, calcite, ferroan dolomite and pyrite. There is also a strong association between the amount of secondary pyrite and gold mineralization (Waldie 1994). The rocks affected by this alteration include both the supracrustal rocks and the intrusive tonalites within the greenstone belt.

Basically three generalized gold targets were to be tested in this drill program. Firstly the Sor Lake Sill which has been interpreted to have anomalous gold concentrations in an altered zone within tonalite some 100 to 300 metres wide by 2 kilometres long and in which a low grade - high tonnage deposit could be hosted. Secondly, IP anomalies coincident with granite - greenstone contacts northeast of Sor Lake. Thirdly, at Lower McVicar Lake a series of sulphide facies iron formations have been inferred to occur striking parallel to the Lower McVicar Fault Zone and related Apple Green Mica (AGM) alteration zone. It has been speculated that these sulphides could be a trap for gold mineralizing fluids (Waldie 1994).

In the past, base metal mineralization has also been sought in the area. At Lower McVicar Lake previous exploration by Kenlew Mines Limited in 1959 had discovered some chalcopyrite, pyrrhotite, pyrite mineralization along the south shore. This mineralization was tested in trenching and five diamond drill holes for a total of 1,175 feet (Fenwick 1971). Subsequently Pickle - Patricia Exploration Ltd explored and drilled to the southeast of Lower McVicar Lake in 1962 as did Duration Mines in 1987. In all three cases no locations are available for any of this drilling on the Government ERLIS system.

DRILL PROGRAM

The drill contract was let to W.G. Langley of Brampton, Ontario who used a JKS 300 drill with BDBGM Rods (Thin wall "BQ"). Typical hole depth was 100 metres which generally took 2 days to drill and drill moves were achieved using a helicopter. Half a shift or more was usually lost waiting for a helicopter to move the rig, then a night shift was also lost while the crews rested after the move.

Drilling was carried out on the old BHP Semia Lake and Sor Lake grids both of which are still in relatively good shape. However, because of the age of the grid, the blazing along the grid lines is now blending with the multiple ages of staking that have occurred in the past.

Drill core was examined and split at the Sor Lake camp site. The split core was shipped to the Chemex Labs Ltd prep facility at Thunder Bay Ontario and then analysed at the Chemex laboratory in Mississauga, Ontario. Sample preparation consisted of preparing a 200 gramme pulp in a two stage crushing procedure, initially a jaw crusher followed by a ring mill. A 30 gramme charge from the pulp of each sample was then analysed using Fire Assay techniques with an Atomic Absorption finish. The detection limit of this analytical methodology is 5 ppb. Though some rocks intersected have a base metal potential, no base metal assays were requested. Despite this, all zones of base metal interest have been split and submitted for gold assay.

The remaining core after sampling has been left at Sor Lake in a crib. The previous core drilled by BHP is stored in seven racks at the old camp site on McVicar Lake. One of these racks which is of bush construction, has collapsed though some of the core could be salvaged. The other racks which are made of 4x4 lumber and steel are still standing.

RESULTS

A total of 1,209.7 metres were drilled in 10 holes during the program. Five holes in the Sor Lake area (MV97-1 to MV97-5) and five holes in the Lower McVicar Lake area (MV97-6 to MV97-10). Drill logs and sections are included in Appendix I, with assays included in Appendix II and the results are summarized below. The general location of the drill holes are shown in Figures 2 and 3 and for detailed setting of each hoe reference is made to the geology maps by Waldie (1993) and geophysic maps by Diorio (1993).

Stewart Fumerton Consulting Geologist

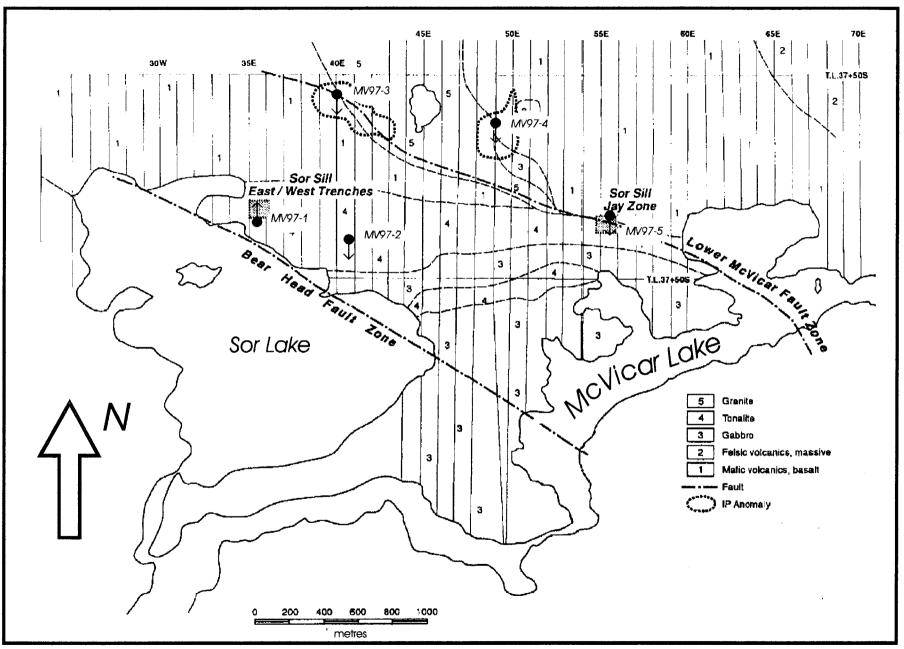


Figure 2

Location of Diamond Drill Hole MV97-1 to MV97-5 on the Sor Lake Grid relative to the IP anomalies and trenching reported Diorio (1993) and Waldie (1994). Figure adapted from Cargill and Gow (1997)

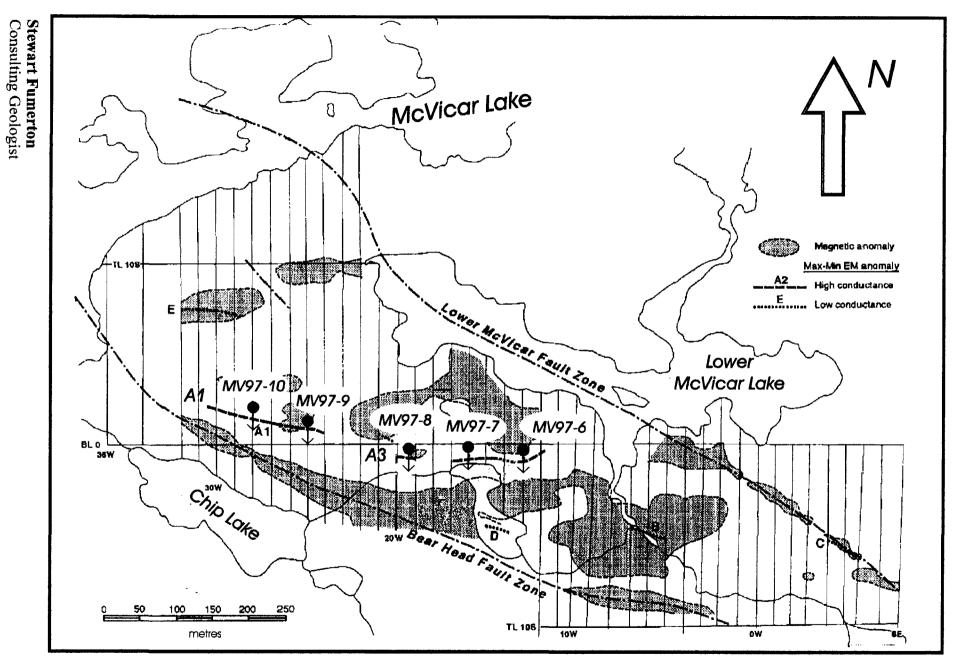


Figure 3

Location of Diamond Drill Holes MV97-6 to MV97-10 on the Semia Lake Grid relative to the EM and Magnetic anomalies reported by Diorio (1993). Figure adapted from Cargill and Gow (1997)

Sor Lake Area

MV97-1

L35+20E / 45+30S @ -45° grid north, 100.3 metres. Originally proposed set-up L35+50E / 44+60S @ -50° grid south

Target: Altered tonalite forming part of the Sor Lake Sill and associated with smoky quartz veins up to 2 metres wide that locally form up to 20% of the outcrop. 2-5% pyrite occurs within the quartz veining and the best assay in channel samples across the quartz veining was 3.8 g/t Au. The set-up was moved to the south of the target as the veining and foliation in the host tonalite varied between 85°S and 90°. The set-up was also moved west a bit to undercut the largest vein exposed at surface which has been extensively tested with deep trenches. In this location there is a cross veining trending 330° within the dominant direction of 070°.

Results: The hole intersected a weakly to moderately altered sericitized and locally carbonatized tonalite. This tonalite contains a number minor shear zones and small quartz veins scattered throughout the hole. Though two larger quartz veins were intersected between 34.9 to 41 metres which contain some massive pyrite and some chalcopyrite. These veins correlate with the veins exposed on surface and explored by an old set of deep trenches.

Assay results confirm a generally anomalous gold concentration in the altered tonalite of 10 to 100 ppb being common but higher concentrations are rare and irregularly distributed. The resilicified crackle quartz veining intersected in the hole contains some low grade gold mineralization with an average gold grade of 1.65 g/t over a true width of 1.75 metres

MV97-2 23 Gram Zone L40+35E / 46+22S @ -45° grid south, 200.9 metres. Originally proposed set-ups L40+80E / 46+10S @ -50° grid south L40+80E / 46+70S @ -50° grid south

Target: The northern part of a strongly altered tonalite with minor disseminated cubic pyrite and quartz veining. In this area the gold concentration correlates with the pyrite abundance. Average gold content in surface grab samples in the area is 2-3 g/t with a maximum value of 23.3 g/t Au. The two holes originally proposed were reduced to one as the original holes formed a "toe to heal section" and by drilling one 200 metre hole rather than two 100 metre holes the same package of rocks would be tested. This would eliminate a drill move and associated lost time. The set-up was also moved west to undercut the best structure on surface and moved south to avoid unsuitable ground for a set-up.

Results: Like the first hole, this hole intersected weakly to moderately altered sericitized and locally carbonatized tonalite and also the tonalite - greenstone contact. This altered tonalite contains a number minor shear zones and small quartz veins and secondary pyrite scattered throughout the hole.

Despite the apparently favourable alteration and secondary pyrite mineralization, the best assay result returned from this hole is 105 ppb Au and not associated with any quartz veining or significant sulphide mineralization. The second highest result is 70 ppb Au associated with higher pyrite concentrations though the gold concentration in adjacent samples is below detection levels.

MV97-3 IP West

L40+00E / 38+25S @ -45° grid south, 100.3 metres

Target: A strong IP chargeability response flanking a moderately magnetic structure correlated with the inferred Lower McVicar Fault Zone on a contact between granite and mafic metavolcanic rocks.

Results: The upper part of the hole passed through a megacrystic granodiorite with abundant fine grained magnetite which explains the flanking magnetic anomaly associated with the IP anomaly. Lower in the hole a sequence of intercalated arenaceous siltstones and mudstones were intersected rather than the expected mafic metavolcanics. Associated with these metasediments is widespread disseminated pyrite which occurs in four modes. 1) as thin lamellae parallel to the bedding which may have formed during diagenesis, 2) fine grains of secondary pyrite disseminated in the matrix, 3) discordant and discontinuous trails of secondary pyrite, and 4) coarser grains in the small quartz / calcite veinlets. The abundance of secondary pyrite explains the IP anomaly but no gold assays above the 5ppb detection limit were returned from these rocks which is discouraging.

MV97-4

IP East L49+00E / 40+25S @ -50° grid south, 185.3 metres

Target: The northern part of a large and strong IP chargeability response associated with the inferred contact between granite and mafic metavolcanic. The anomaly is located in an area with old trenches which returned slightly anomalous gold values. Two holes were originally proposed on this anomaly but this was reduced to one as the original holes formed a "toe to heal section" and by drilling one 200 metre hole rather than two 100 metre holes the same package of rocks would be tested and eliminate a drill move and associated lost time.

Results: From top to bottom, this hole intersected a siltstone and mudstone sequence similar to that intersected in hole MV97-3, though the amount of secondary pyrite is

considerable less. However, like in hole MV97-3 the gold assay values are below the 5 ppb detection level.

MV97-5 Jay Zone L55+80E / 45+50S @ -45° grid south, 109.4 metres Originally proposed set-up L55+80E / 45+75S @ -50° grid south

Target: Strong sericite alteration in sheared tonalite with centimetre to decimetre quartz veins which contain minor pyrite and chalcopyrite associated with weak iron carbonate. The shearing trends $110^{\circ}/80^{\circ}$ N. Previous best assay in the area was a 2.5 g/t Au in a channel sample. The set-up was moved north to step back 60 metres from the best reported mineralization in the vein.

Results: Highly sheared and altered rocks were intersected from top to bottom in this hole. Cataclastic textures are dominant, though the protolith where even slightly discernable is consistently a fine sandstone to siltstone. Within the sheared rocks, some less deformed intersections and trace amounts of secondary pyrite do exist. Despite the extensive shearing, alteration and secondary pyrite, all features favourable to gold mineralization, only two assays from this hole exceeded the 5 ppb detection levels. These two higher values of 190 and 45 ppb are adjacent to each other in a narrow zone where there is an elevated pyrite concentration adjacent to a quartz vein. The shearing and alteration alone can be considered encouragement for further work in the area.

The surface outcrops were re-examined because of the discrepancy between the original outcrop description and the drill log. It was found that the original showing has a central leuco-tonalite sill emplaced in arenaceous sediments. The sill is 2 - 3m thick and attenuated along strike with some shearing on the contacts. This shearing which also hosts the mineralized quartz veins, dips steeply both to the north and south. Other outcrops in the area are arenaceous with no observed tonalite and shearing which is less apparent, dips to the south.

Semia Lake or Lower McVicar Lake Area

A4 Zone L13+00W / 0+30S @ -50° grid south, 121.6 metres Originally proposed set-up L13+00W / 0+40S @ -50° grid south

Target: A Max-Min anomaly with a high conductivity, indicative of massive sulphdes and off-set from a small cliff face which suggests that there is also a fault zone associated with the anomaly. This fault may be a splay of the nearby Bear Head Fault Zone and off-set from the auriferous Chellow Vein which is located to the east. The

MV97-6

main cause of the anomaly is postulated to be sulphide facies iron formations. The set-up was moved north 10 metres to a flat spot near the crest of the hill.

Results: The Max-Min geophysical survey indicates that the rock sequence intersected in holes MV97-6 and MV97-7 are the same and the general impression is that this is so. The apparent difference between the logs for the two holes is greater than reality. Both holes intersected two widely spaced horizons of massive and semi-massive sulphides. In these horizons pyrrhotite primarily occurs with some secondary recrystallized, coarser pyrite and rarer chalcopyrite in thin fractures. These horizons occur within a mafic metavolcanic sequence, are not laminated as would be expected of banded iron formation. The apparent difference between the two holes is in an fine grained siliceous unit towards the bottom of each hole.

In both holes a thin siliceous horizon occurs above the lower conductor. In both holes this unit's identification is problematic though in each case is thought to be a recrystallized felsic metavolcanic. In hole MV97-6 the lower sulphide horizon occurs within a unit that has been brecciated prior to recrystallization. In hole MV97-8 the sulphide horizon is located in the hanging wall of highly altered mafic pillowed flows whose macroscopic appearance resembles the brecciated siliceous unit in hole MV97-6 which was interpreted as a felsic metavolcanic.

In either case the high degree of alteration and brecciation are favourable indicators of a volcanic massive sulphide environment. The gold assay values returned from hole MV97-6 are discouraging for a gold play, but the samples should be re-assayed to determine the base metal concentrations.

MV97-7 A4 Zone

L16+03W/0+23S @ -50° grid south, 121.6 metres, 121.6 metres Originally proposed set-ups L16+00W/0+25S @ -50° grid south

Target: A Max-Min anomaly with a high conductivity indicative of massive sulphdes and off-set from a small cliff face which suggests that there is also an associated fault zone. This fault may be a splay of the nearby Bear Head Fault Zone and off-set from the auriferous Chellow Vein. Again the main cause of the anomaly is thought to be sulphide facies iron formations. The set-up was moved north 10 metres to a flat spot near the crest of the hill.

Results: The general results for this hole are described together with hole MV97-6 above, though in addition there is extensive secondary pyrite mineralization associated with the altered pillowed flows in the footwall of the lower sulphide horizon. This pyrite is part of the alteration assemblage but is not associated with any gold mineralization.

MV97-8 A3 Zone L19+24W / 0+14S @ -50° grid south, 91.1 metres Originally proposed set-up L19+25W / 0+25S @ -50° grid south

Target: A short Max-Min anomaly along strike from the "A4 Zone" and off-set from the same small cliff face and fault zone as in the "A4 Zone". This fault may be a splay of the nearby Bear Head Fault Zone and off-set from the auriferous Chellow Vein. The set-up was moved north 10 metres to a flat spot near the crest of the hill.

Results: A similar package of rocks was intersected in this hole as in holes which suggests that the "A3" electromagnetic anomaly could be a strike extension of the "A4" with two EM conductors being intersected in a mafic volcanic suite of rocks. The hole ended in a problematic siliceous unit with characteristics of both a siltstone and a felsic metavolcanic breccia. Based on observations in hole MV97-10 this unit may best be interpreted as a recrystallized, arenaceous siltstone - sandstone which has undergone some alteration. This alteration does not appear to be related to any tectonism. The massive sulphide horizons are associated with the siliceous unit near the contact with mafic metavolcanic rocks. No anomalous gold concentrations occur in any of the samples from this hole.

MV97-9 A1 Zone L24+98W / 1+32N @ -50° grid south, 88.1 metres

Target: A short Max-Min anomaly along strike from both the "A4 Zone" and "A3 Zones" The strong conductivity and regional alignment of this anomaly together with the other anomalies to the east indicate that the cause is probably a sulphide facies iron formation.

Results: During the drilling of this hole an old drill set-up was found some 60m west and apparently testing the same target. It is not known who did the drilling and logs could not be found but it is suspected that Kenlew Mines (1959) or its successors Pickle Patricia Exploration Ltd (1962) or Duration Mines (1987) were involved.

Together with hole MV97-10 which tested the same target an intercalated sequence of mafic metavolcanics and siltstone - sandstone beds (siliceous unit) were intersected. Like hole MV97-8 the massive sulphide horizons are associated with these sediments and adjacent to mafic metavolcanic flows which are locally pillow flows. No gold values above the 5 ppb detection level were returned for any of the samples.

MV97-10 A1 Zone L27+98W / 2+02N @ -50° grid south

** --- #

Target: This hole together with MV97-10 is designed to test the western extension of a short Max-Min anomaly along strike from both the "A4 Zone" and "A3 Zones"

Results: The general results for this hole are described together with hole MV97-9 above and again no gold values above the 5 ppb detection level were returned for any of the samples.

RECOMMENDATIONS

Any additional exploration of the altered tonalite in the Sor Lake Sill should include a geological re-interpretation carried out in conjunction with small scale outcrop stripping. This should permit a more accurate delimitation of the intrusive. Also during the stripping, the altered tonalite should be extensively sampled in addition to sampling any of the small quartz veins that may occur. This would permit a more accurate appraisal of the low grade - large tonnage potential of the Sill prior to any additional drilling in the area.

No further work is recommended to explore the IP anomalies which occur at the north end of the Sor Lake grid and tested with holes MV97-3 and MV97-4.

The highly sheared and altered rocks intersected in hole MV97-5 are favourable hosts for gold mineralization and it is warranted to explore along strike for gold mineralization. This exploration could initially take the form of additional prospecting and sampling in the area combined with an IP survey in which higher "n" values are surveyed compared to the BHP survey so there is greater resolution and depth penetration.

The geological environment in the Lower McVicar Lake area would appear to be more favourable for base metal VMS deposits than gold mineralization. Therefore, it is initially recommended that the samples collected in this drill program be re-analysed for their base metal concentrations. This should be followed by a re-interpretation of the BHP "EM" and magnetic data to define various possible VMS targets.

REFERENCES

- Cargill, D.G. and Gow, N.N. (1997). Report on the McVicar Lake property for McVicar Minerals Ltd. Unpublished report prepared for McVicar Minerals Ltd, 53p.
- Diorio, P. (1993). McVicar Lake Project, NTS 52O/11, Interpretation of airborne and ground geophysical surveys. Unpublished report prepared for BHP Minerals Canada Limited, 13p.
- Fenwick, K.G. (1971). Lang-Cannon Lakes area (central part), District of Kenora (Patricia Portion): Ontario Dept. Mines and Northern Affairs, Prelim. Map P.665, Geological Series.
- Sage, R.P. and Breaks, F.W. (1982). Geology of the Cat Lake Pickle Lake area, Districts of Kenora and Thunder Bay. Ontario Geological Survey, Report 207, 238p.

- Stott, G.M. and Corfu, F. (1991). Uchi Subprovince, *in*, Geology of Ontario, Ontario Geological Survey Special Volume 4, pp 145-231.
- Stott, G.M. and Wallace, H. (1984). Regional stratigraphy and structure of the Central Uchi Subprovince: Meen Lake - Kasagiminnis Lake and Pashkokogan Lake sections, in, Summary of Field Work, 1984, edited by J. Wood et al., Ontario Geological Survey, MP 119, 309p.
- Thomas, R.N. (1988). Report on diamond drilling work, McVicar Lake area (1446). Unpublished report prepared for BHP Minerals Canada Limited, 54p.
- Waldie, C.J. (1993). McVicar Lake Property, (1446), Report of field activities, McVicar Lake area, Patricia Mining Division, NTS 52O/11 & 12. Unpublished report prepared for BHP Minerals Canada Limited, 23p.
- Waldie, C.J. (1994). McVicar Lake Property, (Project 1446), Patricia Mining Division, NTS 52O/11 & 12, Synoptic Report. Unpublished report prepared for BHP Minerals Canada Limited, 12p.
- Waldie, C.J. (1997). McVicar Project diamond drilling: proposed program and budget (update) Unpublished memorandum prepared for McVicar Minerals Ltd, 7p.

APPENDIX I

DIAMOND DRILL LOGS

McVicar Minera	ls	Diamono	d Drill Log		Page	1	_of	5
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination	
Area	McVicar Lake		Grid	UTM	Surface	Grid N	45	
Hole	MV97-1	Grid	Sor Lake		100m		42	
Core Size	BDBDGM	Easting	L35+20E					
Date started	1st August 1997	Northing	<u>45+30S</u>					
Date finished	4th August 1997	Elevation						
Geologist	Stew Fumerton	Depth	100.3 m					
		Overburden	<u>13 m</u>					
Drill Company	W.G. Langley	Units	Metres					
Casing	45' of BW casing inserted, and rem	oved upon completion of the l	hole.					
	JKS300 drill rig used.				Instrument			
Reason drilled	To test a set of auriferous quartz ve	ins sampled in trenches, exte	nsive early trenches ex	ist and recent channel	Acid	Uncorrected	50 deg	
	samples have returned ore grade va	alues associated with quartz v	eins and adiacent diss	eminated sulphides				

Skeleton Log

From m	To m	Lithology
0.00	13.00	Overburden
13.00	19.25	Weathered Tonalite
19.25	34.90	Tonalite
34.90	38.50	Quartz Vein
38.50	40.70	Tonalite
40.70	41.00	Quartz Vein
41.00	72.70	Attered Tonalite
72.70	75.20	Shear in Tonalite
75.20	89.80	Tonalite
89.80	96.45	Altered Tonalite
96.45	96.80	Mylonite
96.80	100.30	Altered Tonalite
-		

Significant Assays

From m	To m	Value g/t
36.00	37.00	1.900
37.00	38.00	1.465
38.00	38.50	1.520
40.70	41.00	0.770
86.20	87.00	0.500

Diamond Drill Log

Project Hole

McVicar Lake	Page	2 of	5
MV97-1			

Depth		Lithological Description		Alter			Min	eraliza	ition		Sarr	npling		Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	serl- cite	CO3	ру	сру	hm	From	То	Width	Sample	Au	Au
scale	Ŭ		%	0-10	:	0-3	%	%	%	m	m	metres	#	g/t	g/t
11		0-13m Overburden	1				1							Ū	Ū
2		Sandy till overlying assorted boulders													
3															
4		13-19.25m Weathered Tonalite	<1	4	0	0									
5		Buff shades on green -off white, fine										L			
6		grained tonalitegrained tonalite													
7		14.2-14.7m lithified sand seam	1												
8		15.8-16.6m lithified sand seam	_									ļ			
9		17.9-119.25m lithified sand seam			ļ				ļ			ļ			
20		19.25-34.9m Tonalite	2	4	1	0	3	0	0	19.25	20.30	1.05	743201	0.185	
1		Pale green to off white, 1-2 mm grains	1												
2		with a spotty appearance due to Hble +													
3		some chlorite. <<1 mm subhedral pyrite													
4		disseminated in matrix. Locally sericte					1								
5		occurs in fine anatomizing trails of	1												
6		variable intensity, giving a coarse grain													
7		flaser like texture. Coarser pyrite occurs	4							26.00	27.00	1.00	743202	0.050	
8		along these trails. Quartz veins are up	4												
9	25	to 4cm thick with diffuse margins @ 25	1								ļ				
30		degrees to core and locally associated								29.00	30.00	1.00	743203	0.360	
1		with discontinuous pyrite trails.	1]				ļ				
2			4												
3		33-34.9m sericitic alteration zone with			ļ	ļ				32.00	33.00	1.00	743204	<0.005	
4	60	disseminated. Foliation 60 degrees to	1	5	2	0	5	0	0	33.00	34.00	1.00	743205	0.030	
5		core.								34.00	34.90	0.90	743206	0.025	
6		34.9-38.5m Quartz Vein	90	6	0	0	6	0.5	2	34.90	36.00	1.10	743207	0.245	
7		Resilicified crackle vein with massive Py								36.00	37.00	1.00	743208	1.900	
8		veins up to 4cm + disseminated Py &	4							37.00	38.00	1.00	743209	1.465	
9		sparse Cpy + specularite, vuggy,								38.00	38.50	0.50	743210	1.520	
40		38.5-40.7m Tonalite <1cm Py veins +diss Py	1	4	2	0	5	0	0.5	38.50	39.50	1.00	743211	0.110	

Diamond Drill Log

Project Hole

McVicar Lake MV97-1

Page <u>3 of 5</u>

Depth	<u>د</u>	Lithological Description	quartz	Altera hard-	ition serl-		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	сру	hm	From	То	Width	Sample	Au	Au
scale		· · · · · · · · · · · · · · · · · · ·	%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
41		40.7-41m Crackle Quartz Vein	100	6	0	0	1	0	0	39.50	40.70	1.20	743212	0.025	
2		41-72.7m Altered Tonalite	0.5	4	2	0	0.5	0	0	40.70	41.00	0.30	743213	0.770	
3		Similar to material @ 33m but without a					2	0	0	41.00	42.00	1.00	743214	0.070	
4		well developed structural foliation. Buff								42.00	43.00	1.00	743215	0.380	
5		yellow to off-white, "apparent" coarse grain					0.5	0	0	43.00	44.00	1.00	743216	0.015	
6		due to alteration matrix surrounding litho								45.00	46.00	1.00	743217	<0.005	
7		fragments. Green tint between 38.5 to 44m													
8		due to some Hble in matrix, gradational										ļ			
9		boundaries													
50		42 - 44m Py aggregates <4mm in size in													
1	55	trails @ 55 degrees to core.								50.00	51.00	1.00	743218	<0.005	
2		44 + 44.3m, 2cm fine grained mylonite													
3															
4															
5															
6										55.00	56.00	1.00	743219	<0.005	
7															
8												ļ			
9															
60															
1	35	60.8-61.75 shear zone @ 35 to core								60.00	60.80	0.80	743220	<0.005	
2		some chlorite alteration	0	4	2	1	0.5	0	0.5	60.80	61.75	0.95	743221	<0.005	
3			0.5	4	2	0	0.5	0	0		ļ			-	
4															
5											L				
6										65.00	66.00	1.00	743222	<0.005	
7		66.5 -67m F.G. felsic dyke													
8															
9															
70						<u> </u>						[

Project Hole

McVicar Lake MV97-1

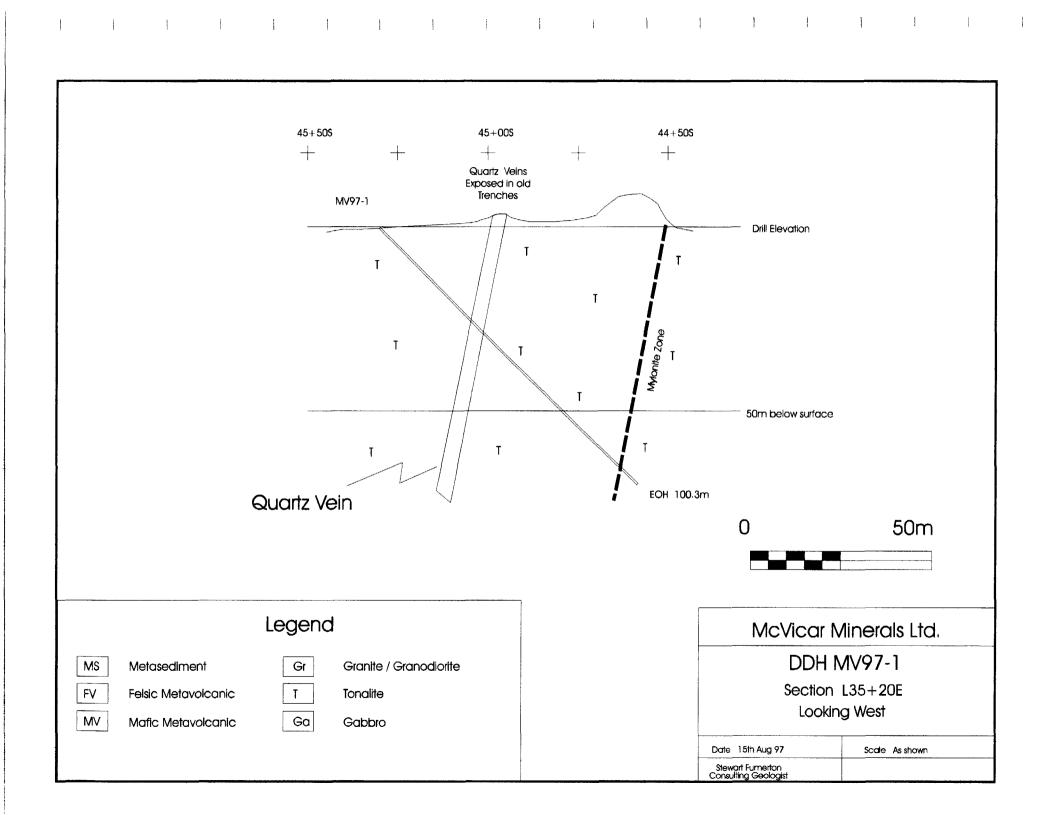
Page _____4 of _____

Diamond Drill Log

And a second second

Depth		Lithological Description	quartz	Altera	ation serl-		Min	eraliza	tion		Sam	npling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	сру	hm	From	То	Width	Sample	Au	Au
scale	Ū		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	a/t	g/t
71		41-72.7m Altered Tonalite, Cont:	0.5	4	2	0	0.5	0	0	1				Ū	Ū
2			1												
3												1	-		
4		72.7-75.2m Shear in Tonalite	0	4	2	0	1	0	0	72.70	74.00	1.30	743223	0.060	
5		Several, variable intensity shears @ 45]							74.00	75.20	1.20	743224	<0.005	
6		75.2-89.8m Tonalite	0	6	0	0	Tr	0	0						
7		Off-white with blotchy pink and green tints													
8		stockwork of chlorite filled joints in C.G.													
9		matrix with Hble aggregates <4mm. Py]												
80		Py concentrated in joints.													
1		77.2-77.9m <20cm mylonite adjacent								80.00	81.00	1.00	743225	0.015	
2		to fault breccia parallel to core then 2nd													
3		10cm mylonite zone @ 50degrees.													
4															
5			4												
6															
7		86.2-87m sheared sericitic zone Py trails	7	4	1	0	2	0	0	86.20	87.00	0.80	743226	0.500	
8		or with quartz veining.	1	5	1	0	0.5	0	0						
9															
90		89.8-96.45m Altered Tonalite	3	5	1	0	5	0	0	89.80	91.00	1.20	743227	0.140	
1		Gradational boundary to off-white with buff													
2		tint similar to 41m. Py disseminated in													
3		matrix as fine grains, coarser Py occurs in													
4		aggregates & in massive veins with quartz.													
5										95.00	96.00	1.00	743228	0.200	
6										96.00	96.45	0.45	743229	0.035	
7		96.45-96.8m Mylonite	10	3	1	1	1	0	Tr		ļ				
8		96.8-100.3m Altered Tonalite	5	4	2	1	3	0	0	96.80	98.00	1.20	743230	0.025	
9		Similar to 89.8m with quartz vein								98.00	99.00	1.00	743231	0.010	
100		stockwork.								99.00	100.30	1.30	743232	0.020	

Diamond Drill Log


Technical Log

5 of

:t		McVicar La					<u> </u>
Core F	Recove	ery Log			RQD	_og	
From	То	Width (metres)	Length of Core	% Core Recovery	From	То	Width (m
14.9	18.0	3.10	1.69	55	14.9	18.0	3.10
18.0	21.0	3.00	2.40	80	18.0	21.0	3.00
21.0	24.1	3.10	3.00	97	21.0	24.1	3.10
24.1	27.1	3.00	3.07	102	24.1	27.1	3.00
27.1	30.2	3.10	3.18	103	27.1	30.2	3.10
30.2	33.2	3.00	2.94	98	30.2	33.2	3.00
33.2	36.3	3.10	2.84	92	33.2	36.3	3.10
36.3	39.3	3.00	2.78	93	36.3	39.3	3.00
39.3	42.4	3.10	2.75	89	39.3	42.4	3.10
42.4	45.4	3.00	2.96	99	42.4	45.4	3.00
45.4	48.5	3.10	2.86	92	45.4	48.5	3.10
48.5	51.5	3.00	3.01	100	48.5	51.5	3.00
51.5	54.6	3.10	2.86	92	51.5	54.6	3.10
54.6	57.6		3.18	106	54.6		
57.6	60.7	3.10	2.82	91	57.6	60.7	3.10
60.7	63.7	3.00	2.74	91	60.7	63.7	3.00
63.7	66.8	3.10	3.02	97	63.7	66.8	3.10
66.8	69.8		2.96	99	66.8	69.8	3.00
69.8	72.8	3.00	2.98	99	69.8	72.8	3.00
72.8	75.9	1	2.94	95	72.8	75.9	3.10
75.9	78.9		3.01	100	75.9		
78.9	82.0		2.96	95	78.9	1	
82.0	85.0	1	2.92	97	82.0		
85.0	88.1	3.10	3.02	97	85.0		3.10
88.1	91.1	3.00	2.98	99	88.1		3.00
91.1	94.2	3.10	3.05	98	91.1		3.10
94.2	97.2	3.00	3.05	102	94.2	-	3.00
97.2	100.3	3.10	3.00	97	97.2		3.10
ļ							
ļ			Total	95		 	

McVicar Minerals

From	То	Width (metres)	Total Core >13cm for BD	RQD
14.9	18.0	3.10	0.27	0.09
18.0	21.0	3.00	1.43	0.48
21.0	24.1	3.10	1.66	0.54
24.1	27.1	3.00	2.71	0.90
27.1	30.2	3.10	2.61	0.84
30.2	33.2	3.00	2.05	0.68
33.2	36.3	3.10	1.47	0.47
36.3	39.3	3.00	1.30	0.43
39.3	42.4	3.10	1.17	0.38
42.4	45.4	3.00	2.28	0.76
45.4	48.5	3.10	1.33	0.43
48.5	51.5	3.00	1.63	0.54
51.5	54.6	3.10	2.39	0.77
54.6	57.6	3.00	2.45	0.82
57.6	60.7	3.10	1.96	0.63
60.7	63.7	3.00	1.50	0.50
63.7	66.8	3.10	2.20	0.71
66.8	69.8	3.00	1.97	0.66
69.8	72.8	3.00	2.21	0.74
72.8	75.9	3.10	1.57	0.51
75.9	78.9	3.00	1.52	0.51
78.9	82.0	3.10	2.09	0.67
82.0	85.0	3.00	1.72	0.57
85.0	88.1	3.10	2.56	0.83
88.1	91.1	3.00	2.25	0.75
91.1	94.2	3.10	2.36	0.76
94.2	97.2	3.00	2.27	0.76
9 7.2	100.3	3.10	2.73	0.88

McVicar Minera		Diamono	d Drill Log		Page	1	_of	11
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination	
Area	McVicar Lake		Grid	UTM	Surface	Grid S	45	ł
Hole	MV97-2	Grid	Sor Lake		118m		40	į.
Core Size	BDBDGM	Easting	L40+35E		201m		41	
Date started	5th August 1997	Northing	46+22S					
Date finished	10th August 1997	Elevation						
Geologist	Stew Fumerton	Depth	200.9 m					
		Overburden	2 m					
Drill Company	W.G. Langley	Units	Metres					
Casing	10' of BW casing inserted and remove	ed at the end of the hole						
					Instrument			
Reason drilled	To test a set of auriferous quartz veins	sampled in trenches and h	osted in sericite and c	arbonate attered tonalite	Acid	Uncorrected	48 deg & 49 deg res	sp
Results	No quartz veining within a zone of dis	seminated pyrite intersected	I in the hole as occurs	at the 23 gramme zone on su	rface. However, extensiv	ve intervals		

Skeleton Log

Significant Assays

From m	To m	Lithology
0.00	2.00	Overburden
2.00	153.00	Altered Tonalite
153.00	162.60	Banded Tonalite
162.60	177.90	Altered Tonalite
177.90	195.40	Greenstone
195.40	197.20	Tonalite Dyke
197.20	200.90	Greenstone
·		

From m	To m	Value g/t	
		None	
L			

Diamond Drill Log

Project Hole

MV97-2

McVicar Lake	Page	of	11

Depth		Lithological Description	<u> </u>	Alter		•	Min	eraliza	tion	-	Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	serl- cite	СОЗ	ру	сру	hm	From	То	Width	Sample	Au	Au
scale	0		%	0-10	0-3		%	%	%	m	m	metres	#	g/t	g/t
1		0-2m Overburden												<u> </u>	Ũ
2															
3		2-153m Altered Tonalite													
4		Variably altered tonalite with 2-3mm grain siz	0	5	1	2	0.5	0	0						
5		size, 25-30% quartz. Colours pale green-													
6		buff to off-white. V.F.G. pyrite dissemin								5.00	6.00	1.00	743233	0.040	
7		in matrix & partially concentrated adjacent													
8		to chlorite filled joints.													
9															
10		9-16m pale buff coloured, altered	0.5	4	2	0	Tr	0	0						
1		tonalite with feldspar matrix altered to FG								10.00	11.00	1.00	743234	<0.005	
2		sericite rich material. Local rotated quartz													
3		veins form rare "augen". Weak foliation													
4	60	at 60 degrees to core.								13.00	14.00	1.00	743235	<0.005	
5										14.00	15.00	1.00	743236	<0.005	
6		16-19m pale green altered tonalite with								15.00	16.00	1.00	743237	<0.005	
7		some chlorite / carbonate alteration.	0	4	1	1	2	0	0	16.00	17.00	1.00	743238	0.070	
8		Disseminated pyrite as single grain +													
9		<3mm aggregates													
20			0	4	1	0	1	0	0						
1										20.00	21.00	1.00	743239	<0.005	
2															
3															
4															
5								_							
6	60	25-25.5m Fragmented zone with kaolin	0	4	2	0	0.5	0	0	25.00	26.00	1.00	734240	<0.005	
7															
8									ļ		ļ				
9															
30						<u> </u>					<u> </u>				

Project Hole

MV97-2

McVicar Lake

Page 3 of 11

Diamond Drill Log

Depth	£	Lithological Description	quartz	Altera hard-	ation serl-		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	сру	hm	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
31		Altered Tonalite Cont:-	0	4	1	1	0.5	0	0	30.00	31.00	1.00	743241	0.085	
2]												
3			1												
4			1												
5			1												
6			1							35.00	36.00	1.00	743242	0.015	
7		36-39m diffuse quartz veins with some	1	4	2	C	0.5	0	0	36.00	37.00	1.00	743243	<0.005	
8	65	Hble, typically <4mm @ 65 degrees to	1							37.00	38.00	1.00	743244	<0.005	
9		core	1												
40		39-40m pale green alteration, CO3 + Chl	0	4	1	1	0.5	0	0						
1		40m onwards. The change between pale	0	4	1	1	0.5	0	0	40.00	41.00	1.00	743245	<0.005	
2		green CO3 +Chl alteration is gradational	1												
3		and repetitive with pale buff sericite]												
4		alteration and commonly on a sub metre	1												
5		scale.													
6			1							45.00	46.00	1.00	743246	0.025	
7															
8			1												
9			1												
50			1												
1	35	Foliation at 35 to core axis, pyrite in	0.5	4	2	0	Tr	0	0	50.00	51.00	1.00	743247	0.105	
2		discontinuous trails & disseminated in	1												
3		matrix. Joints filled with Chl, Qz, Calcite.	1												
4		at 54m, 2cm calcite vein													
5			1												
6										55.00	56.00	1.00	743248	<0.005	
7			1												
8		58 - 60m 2-3% discontinuous calcite veins	0.5	4	1	1	0.5	0	0		[
9			1												
60			1												

Project

McVicar Lake MV97-2

Page 4 of

11

!

Diamond Drill Log Hole

Depth		Lithological Description	quartz	Altera	a tion serl-	<u>, , , , , , , , , , , , , , , , , , , </u>	Min	eraliza	tion		Sam	pling	<u> </u>	Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	сру	hm	From	То	Width	Sample	Au	Au
scale	-		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
61		Altered Tonalite Cont:-	0.5	4	1	1	0.5	0	0	60.00	61.00	1.00	743249	0.205	
2		60-69m pale green alteration with some													
3		Qz/CO3/Chl veinlets << 1cm thick.]												
4		Foliation at 63 degrees to core axis.]												
5	63														
6										65.00	66.00	1.00	743250	0.005	
7															
8															
9						ļ									
70		69-72.7m pink tint to altered tonalite. Py	0.5	4	1	1	Tr	0	0						
1		occurs as small aggregates in some								70.00	71.00	1.00	743251	0.040	
2	61	hair line Qz/Chl/CO3 veinlets. Foliation	1												
3		much weaker	<u> </u>												
4		72.7-76m Pale green + pink altered	0.5	4	1	1	Tr	0	0						
5		tonalite													
6										75.00	76.00	1.00	743252	<0.005	
7		76-87m Less altered tonalite, mottled	Tr	4	1	1	Tr	0	0						
8		with 1cm lithoclasts rather than flaser													
9		or net textured. Very sparse dissem pyrite										ļ	ļ		
80		at 80m, 3cm Chl/CO3/Qz filled shear 20													
1		degrees to core axis	1							80.00	81.00	1.00	743253	<0.005	
2			-												
3															
4	60	Foliation 60 degrees to core	4												
5	i		_												
6		at 85.5m, <2cm chloritic shear at 20								85.00	86.00	1.00	743254	<0.005	
7	-	degrees													
8		87- 91m more intense shearing with	2	4	1	1	Tr	0	0						
9	60	some microbreccia of quartz veins. Very	4												
90		sparse disseminated pyrite.	<u> </u>							89.00	990.00	1.00	743255	<0.005	

Diamond Drill Log

3

Project Hole McVicar Lake _____ MV97-2

Page 5 of

of 11

Depth Lithological Description Mineralization Sampling Assay 1 Assay 2 Alteration quartz hardserl-Graph metres veins ness cite CO3 hm From То Width Sample Au Au сру рy % 0-10 0-3 0-3 % % % # scale metres g/t g/t m m 91 Altered Tonalite Cont:-2 4 1 1 Tr 2 87.2m, 4cm shear filled with Qz + Chl 3 92.10 743256 92.7m on pale green altered tonalite with 2 4 0 2 2 0 0 92.70 0.60 0.030 0 4 some vitrious spinal and very rare specks 0.3 4 1 2 0 0 5 42 of pyrite. Week foliation 42 degrees 6 7 8 9 at 99m, 3cm chlorite/carbonate shear at 100 111.00 743257 <0.005 100.00 1.00 1 50 degrees to core axis 2 3 4 5 6 7 8 58 at 57m, foliation is 58 degrees to core 9 110 111.00 743258 110.00 1.00 <0.005 1 2 3 0 **0** 112.90 743259 < 0.005 112.9-113.2m crackle quartz veins <5cm 30 5 0 3 0 113.20 0.30 4 5 thick plus carbonate & chlorite at 70 deg 0.2 4 1 2 0 0 0 6 115.5m, 10cm Chl/CO3 shear 7 8 9 120

Diamond Drill Log

Project Hole

1

McVicar Lake MV97-2

i i i

Page 6 of

_of __11__

ł

Depth		Lithological Description	quartz	Altera hard-	ition serl-		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness		СОЗ	ру	сру	hm	From	То	Width	Sample	Au	Au
scale	0		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
121		Altered Tonalite Cont:-	0.2	4	1	2	0	0	0	120.00	121.00	1.00	743260	<0.005	
2															
3															
4															
5															
6			-												
7															
8															
9			-												
130										129.00	130.00	1.00	743261	< 0.005	· · · · · · · · · · · · · · · · · · ·
1		130-130.4m, Chl/CO3 shear	10			+	2	0	0		130.40	0.40	743262	< 0.005	
2		130.4-137m, CO3 vein stockwork with	0.5	3	0	2	1			131.00	132.00	1.00	743263	0.010	
3		<5mm veins forming approx 5% of rock.	-							132.00	133.00	1.00	743264	0.850	
4		Pyrite associated with veins and is semi													
5		massive	1							405.00	400.00	4.00	740005	0.020	
6			-							135.00	136.00	1.00	743265	0.020	
7		136.8m, 2cm anastomizing Chl shear	<u> </u>	4	0	2	0	0	0						
8		Rare specks of pyrite in matrix of	0	4	U	2	0	U	U						
9 140		altered tonalite	-												
140			1							140.00	141.00	1.00	743266	< 0.005	
2			1							110.00			1.0200	0.000	
3			-												
4			1												
5			1												
6		145.7m, 10cm Chl/CO3 shear at 48 deg	0	4	0	2	1	0	0	145.00	146.00	1.00	743267	<0.005	
7		with disseminated pyrite	1												
8			1												
9		Pyrite in matrix occurs in <1mm	1												
150		aggregates]												

Diamond Drill Log

i

Project Hole McVicar Lake

Page 7 of

i.

of 11

Alteration Depth Lithological Description Mineralization Sampling Assay 1 Assav 2 hardquartz serl-Graph CO3 Width Imetres ness cite From То Sample Au Au veins cpy hm ру % 0-10 0-3 0-3 % % % # scale metres m m a/t g/t 151 Altered Tonalite Cont:-0 0 2 1 0 0 4 2 3 153-162.6m Banded Tonalite 0 2 2 0 0 153.00 154.00 4 0.2 3 1.00 743268 < 0.005 5 154.00 1.00 743269 <0.005 Gradational boundary to unit with diffuse 155.00 6 155.00 156.00 1.00 743270 < 0.005 chlorite/pyrite banding, probably re-7 crystallized shears. Pyrite occurs in<3mm 156.00 157.00 1.00 743271 <0.005 8 semi massive bands. Pyrite also in matrix 157.00 158.00 1.00 743272 <0.005 9 158.00 159.00 743273 <0.005 as disseminated, <<1mm subhedral grains. 1.00 159.00 160.00 743274 < 0.005 160 65 Foliation 65 deg to core axis. 1.00 160.00 161.00 1.00 743275 < 0.005 1 2 161.00 162.60 1.60 743276 0.015 3 162.6-177.9m Altered Tonalite 0.5 0 2 0.5 0 0 4 4 Gradational boundary to pale to medium 5 green tonalite with carbonate stockwork 6 similar to 130.3m. 2-3mm CO3/Qz 7 aggregates form incipient porphyroblasts 8 Pyrite concentrated along joints and 9 irregularly disseminated in matrix as <1mm 170 grains 0 170.1-170.4m Quartz vein with Chl 50 6 0 1 Tr 0 170.00 170.50 0.50 743277 <0.005 1 2 selvages 3 40 173.7m, 40cm Chloritic greenstone band 4 5 174.4m, 10cm Chloritic greenstone band 6 175m, 80cm Chloritic greenstone band 7 8 177.9-195.4m Greenstone 3 0 2 0 0 3 0 9 Gradual contact, hetrolithic unit. Fine 180 grained, olive green, altered mafic

Diamond Drill Log

Project Hole

MV97-2

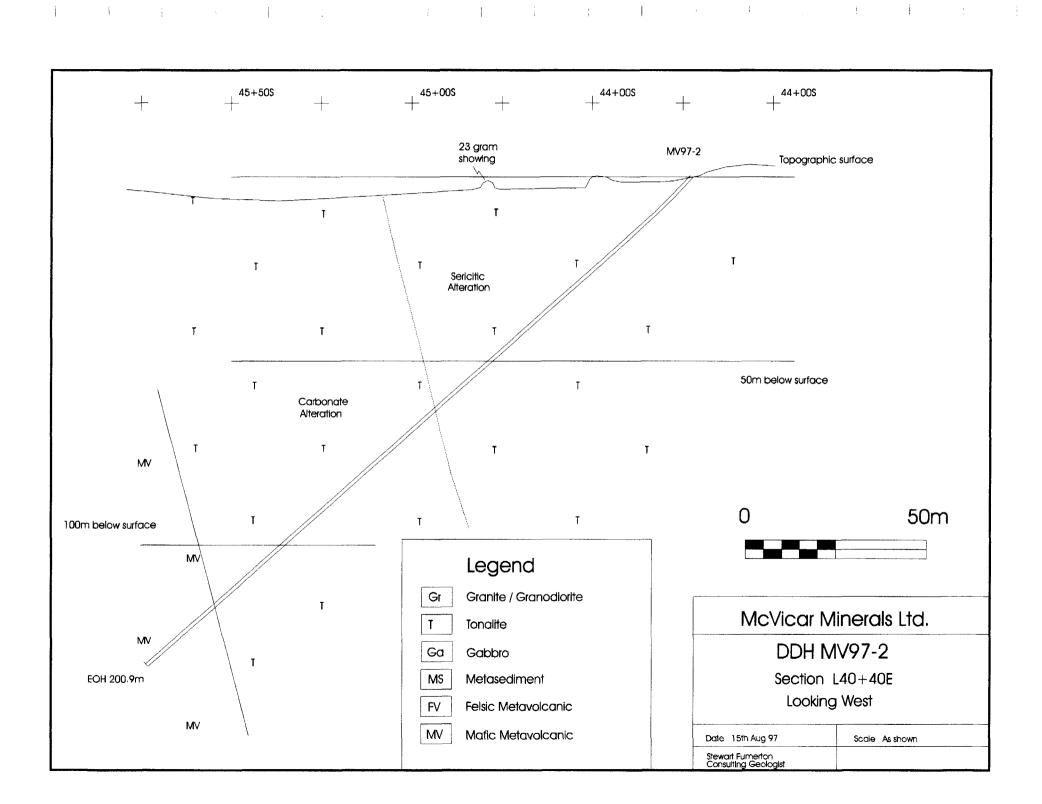
McVicar Lake

Depth		Lithological Description		Altera			Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
	Graph		quartz		serl-	0.00				_	-	14 C HL	0	A	A
metres	ซ็		veins	ness		CO3	ру	сру		From	То	Width	Sample	Au	Au
scale			%	0-10		1	%	%	%	m	m	metres	#	g/t	g/t
181		Greenstone Cont:-	3	3	0	2	0	0	0	180.00	181.00	1.00	743278	< 0.005	
2		volcanic cut by small tonalite dykelets,	-												
3		<20cm, which are faulted. Some quartz]												
4		veins are brecciated and recrystallized, <5cn)]				ļ			ļ					····. · ····
5		Younger Qz/CO3 veins are <2cm. Rare										ļ	ļ		
6		specks of pyrite in matrix.													
7			-				ļ								
8			-							ļ					
9										ļ					
190			4							190.00	191.00	1.00	743279	<0.005	
1	60	Foliation at 60 deg to core axis													
2														:	
3										L					
4															
5															
6		195.4-197.2m Tonalite dyke	0	5	0	2	0	0	0						
7						ļ									
8	65	197.2-200.9m Greenstone	1	5	0	2	0	0	0						
9		Same as at 177.9m					:			199.00	200.00	1.00	743280	<0.005	
200		199.9m, 5cm CO3 vein in 20cm chlorite													
1		shear													
		200.9m, E.O.H.													

8 of 11

i.

Page


Diamond Drill Log

oject		McVicar La	ike	Hole	MV97-2			_ Technical Log				
Core	Recove	ery Log			RQDI	_og						
From	То	Width (metres)	Length of Core	% Core Recovery	From	То	Width (metres)	Total Core >13cm for BD	RQD			
3.0	5.8	2.80	2.30	82	3.0	5.8	2.80	0.75	0.27			
5.8	8.8	3.00	2.93	98	5.8	8.8	3.00	1.04	0.35			
8.8	11.9	3.10	3.00	97	8.8	11.9	3.10	1.77	0.57			
11.9	14.9	3.00	3.04	101	11.9	14.9	3.00	2.44	0.81			
14.9	18.0	3.10	3.06	99	14.9	18.0	3.10	2.41	0.78			
18.0	21.0	3.00	3.01	100	18.0	21.0	3.00	1.60	0.53			
21.0	24.1	3.10	2.96	95	21.0	24.1	3.10	2.30	0.74			
24.1	27.1	3.00	2.90	97	24.1	27.1	3.00	1.84	0.61			
27.1	30.2	3.10	2.93	95	27.1	30.2	3.10	2.03	0.65			
30.2	33.2	3.00	2.93	98	30.2	33.2	3.00	2.03	0.68			
33.2	36.3	3.10	2.98	96	33.2	36.3	3.10	1.94	0.63			
36.3	39.3	3.00	3.03	101	36.3	39.3	3.00	2.73	0.91			
39.3	42.4	3.10	2.92	94	39.3	42.4	3.10	2.02	0.65			
42.4	45.4	3.00	2.90	97	42.4	45.4	3.00	2.17	0.72			
45.4	48.5	3.10	2.94	95	45.4	48.5	3.10	1.91	0.62			
48.5	51.5	3.00	3.05	102	48.5	51.5	3.00	2.62	0.87			
51.5	54.6	3.10	2.89	93	51.5	54.6	3.10	1.44	0.46			
54.6	57.6	3.00	3.01	100	54.6	57.6	3.00	2.82	0.94			
57.6	60.7	3.10	3.00	97	57.6	60.7	3.10	2.27	0.73			
60.7	63.7	3.00	2.87	96	60.7	63.7	3.00	2.21	0.74			
63.7	66.8	3.10	3.02	97	63.7	66.8	3.10	2.29	0.74			
66.8	69.8	3.00	3.00	100	66.8	69.8	3.00	2.79	0.93			
69.8	72.8	3.00	3.00	100	69.8	72.8	3.00	2.61	0.87			
72.8	75.9	3.10	3.04	98	72.8	75.9	3.10	2.06	0.66			
75.9	78.9	3.00	3.01	100	75.9	78.9	3.00	2.62	0.87			
78.9	82.0	3.10	2.98	96	78.9	82.0	3.10	1.61	0.52			
82.0	85.0	3.00	3.05	102	82.0	85.0	3.00	2.50	0.83			
85.0	88.0	3.00	2.99	100	85.0	88.0	3.00	2.88	0.96			
88.0	91.1	3.10	3.03	98	88.0	91.1	3.10	2.46	0.79			
91.1	94.2	3.10	3.05	98	91.1	94.2	3.10	2.58	0.83			
94.2	97.2	3.00	2.99	100	94.2	97.2	3.00	2.65	0.88			

i

ect		McVicar La	ike	_ Hole	MV97-2			Technical Log	J
Core	Recove	ery Log			RQDI	.og			
From	То	Width (metres)	Length of Core	% Core Recovery	From	То	Width (metres)	Total Core >13cm for BD	RQD
97.2	2 100.3	3.10	2.88	93	97.2	100.3	3.10	2.50	0.81
100.3	3 103.3	3.00	3.12	104	100.3	103.3	3.00	2.26	0.75
103.3	106.4	3.10	3.01	97	103.3	106.4	3.10	2.57	0.83
106.4	109.4	3.00	2.95	98	106.4	109.4	3.00	2.20	0.73
109.4	112.5	3.10	3.04	98	109.4	112.5	3.10	2.30	0.74
112.5	5 115.5	3.00	3.05	102	112.5	115.5	3.00	1.65	0.55
115.5	5 118.6	3.10	3.05	98	115.5	118.6	3.10	1.78	0.57
118.6	6 121.6	3.00	3.03	101	118.6	121.6	3.00	2.50	0.83
121.6	124.7	3.10	3.05	98	121.6	124.7	3.10	1.53	0.49
124.7	127.7	3.00	2.90	97	124.7	127.7	3.00	1.96	0.65
127.7	/ 130.8	3.10	3.02	97	127.7	130.8	3.10	2.50	0.81
130.8	133.8	3.00	2.90	97	130.8	133.8	3.00	1.24	0.41
133.8	136.9	3.10	3.08	99	133.8	136.9	3.10	2.12	0.68
136.9	139.9	3.00	3.05	102	136.9	139.9	3.00	2.22	0.74
139.9	142.9	3.00	2.82	94	139.9	142.9	3.00	2.27	0.76
142.9	146.0	3.10	3.05	98	142.9	146.0	3.10	2.50	0.81
146.0	149.0	3.00	2.95	98	146.0	149.0	3.00	2.24	0.75
149.0	152.1	3.10	3.05	98	149.0	152.1	3.10	2.20	0.71
152.1	155.1	3.00	2.99	100	152.1	155.1	3.00	2.77	0.92
155.1	158.2	3.10	2.98	96	155.1	158.2	3.10	2.91	0.94
158.2	161.2	3.00	3.01	100	158.2	161.2	3.00	2.85	0.95
161.2	164.3	3.10	3.05	98	161.2	164.3	3.10	2.83	0.91
164.3	167.3	3.00	3.00	100	164.3	167.3	3.00	2.38	0.79
167.3	170.4	3.10	3.02	97	167.3	170.4	3.10	2.56	0.83
170.4	173.4	3.00	2.94	98	170.4	173.4	3.00	2.74	0.91
173.4	176.5	3.10	3.02	97	173.4	176.5	3.10	2.89	0.93
176.5	5 179.5	3.00	3.05	102	176.5	179.5	3.00	2.80	0.93
179.5	5 182.6	3.10	3.05	98	179.5	182.6	3.10	2.43	0.78
182.6	185.6	3.00	3.01	100	182.6	185.6	3.00	2.75	0.92
185.6	188.7	3.10	3.01	97	185.6	188.7	3.10	2.77	0.89
188.7	191.7	3.00	3.03	101	188.7	191.7	3.00	3.00	1.00

cVicar	Mine	erals				Diamond Drill Log	g	<u> </u>		Page <u>11</u> of <u>11</u>				
oject		•	McVicar La	ke	Hole	MV97-2				Technical Log				
Cor	re Re	ecove	ry Log			RQD	L	og						
From			Width (metres)	Length of Core	% Core Recovery	From			Width (metres)		RQD			
		194.7	3.00	3.00	100	191		194.7		2.45	0.82			
		197.8	3.10	3.01	97	194 197		197.8		2.67	0.86			
19	97.8	200.9	3.10	3.01	97	19/	.8	200.9	3.10	2.51	0.81			
				Total	98									
							_							
							_							
ļ														
						· · · · · · · · · · · · · · · · · · ·	+			······································				
							+							
							+		(
							+							
										+				
							+							
					······································		+			· · · · · · · · · · · · · · · · · · ·				
			····				1							
									· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·											
							\square							
	.													
									· · · · · · · · · · · · · · · · · · ·					
							\square							
ļ							_							

McVicar Minera	Is	Diamone	d Drill Log	Page	1	_of	
Project	McVicar Lake	_ Collar Co-o	rdinates		Survey	Direction	Inclination
Area	McVicar Lake		Grid	UTM	Surface	Grid S	45
Hole	MV97-3	Grid	Sor Lake		100m		41
Core Size	BDBDGM	Easting	L40E				
Date started	11th August 1997	Northing	38+255				
Date finished	13th August 1997	Elevation	363 m				
Geologist	Stew Fumerton	Depth	100.3 m				
		Overburden	1 m				
Drill Company	W.G. Langley	Units	Metres				
Casing	6' of BW casing inserted and remove	ed upon completion of the ho	le.				
			· · · · · · · · · · · · · · · · · · ·		Instrument		
Reason drilled	To test a very strong IP chargeability	anomaly on the granite / gre	enstone contact and c	oincident with the Lower	Acid	Uncorrected	49 deg
	McVicar Fault.						
Results	The hole intersected extensive interv	als of disseminated pyrite an	d discontinuous pyrite	trails. This would explain the I	P anomaly and the seco	ndary nature	
	of most of the pyrite mineralization i	s favourable for gold minerali	zation, but no significa	nt gold assay values were obta	ined. No indications of	major	
	faulting was intersected.						

Skeleton Log

Significant Assays

From m	To m	Lithology
0.00	1.00	Overburden
1.00	19.70	Hornblende Granodiorite
19.70	26.70	Fine grain, chill margin of Granodiorite
26.70	100.30	Interbedded Siltstones and Graphitc Mudstones. Common stockwork
		of calcite / quartz veins and pyrite in four modes. 1) thin
		lamellae which may be primary, 2) disseminated in matrix, 3)
		in irregular discontinuous trails, and 4) associated with the
		calcite / quartz vein stockwork.

From m	To m	Value g/t
		None
	-	

Project Hole

McVicar Lake

Page _____ 2 of _____

Diamond Drill Log

MV97-3

Depth		Lithological Description		Alter			Min	eraliza	tion		Sam	pling	<u>, , , , , , , , , , , , , , , , , , , </u>	Assay 1	Assay 2
metres	Graph		quartz veins	nara- ness	serl- cite	CO3	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale	U		%	0-10	0-3	:	%	%	%	m	m	metres	#	g/t	g/t
1		0-1 m, Overburden								-				.	
2		1-19.7 m, Granodiorite	2	6	0	1	0	0	0						
3		Pale green to of-white, C.G. (2-4mm),									•				
4		anhedral feldspar megacrysts up to 1cm													
5		do occur but uncommon. Hble forms 10%													
6		with minor amounts of V.F.G. Magnetite													
7		disseminated in matrix together with rare													
8		specks of pyrite. Some calcite occurs in													
9		matrix and associated with quartz /													
10	40	feldspar veins which are up to 1 cm thick									ļ				
1		and at 40 deg to core axis.								10.00	11.00	1.00	743281	<0.005	
2															
3															
4															
5										 					
6			-												
7															
8															
9										 					
20											ļ				
1		19.7-26.7 m, Granodiorite Chill Margin.	0.2	6	0	2	Tr	0	0		ļ				
2		Relatively sharp change to M.G - F.G.													
3		phase of the granodiorite. Local													
4		concentrations of Py in trails.													
5		24.5m, 2cm Quartz vein.								24.00	25.00	1.00	743282	0.010	
6										ļ					
7															
8		26.7- 100.3 m, Siltstone / Graphitic Mud	1	4	0	0	0.2	0	0						
9		Sharp contact, off-white siltstone with													
30		some fine arenite grading into cold grey		<u> </u>						l	<u> </u>				

Project Hole

McVicar Lake

Page 3 of

of <u>7</u>

Diamond Drill Log

MV97-3

-

Depth		Lithological Description		Altera	ation serl-		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	ness	cite	СОЗ	ру	сру	aspy	From	To	Width	Sample	Au	Au
scale	0		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
31		Intercalated Siltstone / Mudstone Cont:-	1	1	0	1	0.2	0	0	1	31.00	1.00	743283	<0.005	3.4
2	- -	graphitic mudstone. Bedding in siltstone													
3		<20cm typically 2-3cm. In mudstone <2cm													
4		commonly 0,5cm and down to 0.1cm. Tops													
5		down-hole at 32,33,34, & 36m. Bedding										<u> </u>	1		
6	55									35.00	36.00	1.00	743284	<0.005	
7		faulting. Bedding core angle 50-60 deg													
8		Cal/Qz/Py brittle veins, <1cm, form open													
9	40		10	4	0	1	3	0	0	38.00	39.00	1.00	743285	<0.005	
40		38-39.9m, disrupted, sheared zone with								39.00	39.90	0.90	743285	<0.005	
1		Cal/Qz veins, Py trails parallel to foln & as	2	4	0	0	2	0	0						
2		smears along parting planes @ 40 deg													
3		39.9m onwards. Intercalated siltstone								42.00	43.00	1.00	743287	<0.005	
4		mudstone. Fold axis @ 44.5m with tops													
5		up @ 43m and down at 47,49, 51, 57m.													
6		Calcite veining more common in mud-								45.00	46.00	1.00	743288	<0.005	
7		stone phases. Pyrite occurs in fine &													
8		coarse sediments as V.F.G. dissemin-													
9		ations in matrix + discontinuous trails								48.00	49.00	1.00	743289	<0.005	
50		parallel to bedding and associated with													
1	50	calcite / quartz veins. Bedding at 50 deg												<u>-</u>	
2		at 50m.								51.00	52.00	1.00	743290	<0.005	
3															
4															
5										54.00	55.00	1.00	743291	<0.005	
6		55-78m Siltstone forms approx. 95% &	1	4	0	0	2	0	0		ļ				
7		mudstone forms 5% of the unit.													
8										57.00	58.00	1.00	743292	<0.005	
9		All top measurements from graded beds													
60											L				

Project Hole

McVicar Lake

Page 4 of

1

of 7

1

i

Diamond Drill Log

MV97-3

Depth	1	Lithological Description		Altera			Min	eraliza	tion		Sam	pling	<u> </u>	Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	serl- cite	CO3	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale	Ũ		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
61		Intercalated Siltstone / Mudstone Cont:-	1	4	0	0	2	0	0	60.00	61.00	1.00	743293	<0.005	-
2	Beds	Pyrite disseminated in matrix & in trails													
3	45	subparallel to bedding & in small Calcite /													
4		quartz veinlets. Open stockwork of veins								63.00	64.00	1.00	743294	<0.005	
5		with irregular orientation & <3mm wide.													
6		Less tectonic shuffling of bedding and													
7	60	graded tops down hole at 63, 66, 75,								66.00	67.00	1.00	743295	<0.005	
8		& 77m													
9															
70										69.00	70.00	1.00	743296	<0.005	
1															
2															
3										72.00	73.00	1.00	743297	<0.005	
4		75m, 4 cm semi massive, primary pyrite in										_			
5	60	graphitic mudstone bed.													
6		75.5m, apparent "S" fold in bedding								74.90	76.00	1.10	743298	<0.005	
7															
8	35														
9		78-78.4m shear zone	10	4	0	0	2	0	0	78.00	79.00	1.00	743299	<0.005	
80		78.4-90.6m, 90% siltstone 10% mudstone													
1	45	with graded beds tops down hole at 77,													
2		71, 86, & 89m. Some erosional channels								81.00	82.00	1.00	743300	<0.005	
3		at base of siltstone beds with tops down													
4		hole. Pyrite in addition to being dissemin								04.00	05.00	4.00	740004	-0.005	
5		in matrix & in trails plus veins, also occurs								84.00	85.00	1.00	743301	<0.005	
6 7		as thin lamellae parallel to bedding in													
8		graphitic mudstone beds & are <2mm thick								87.00	88.00	1.00	743302	<0.005	
9	55	Discontinuous quartz veins < 5cmthick at								67.00	00.00	1.00	143302	<u> ~0.005</u>	
90	55	79.5, 84.2, 85.4m in addition to normal calcite / quartz stockwork.													
						!					<u></u>	<u>i</u>	i		

Diamond Drill Log

Project Hole

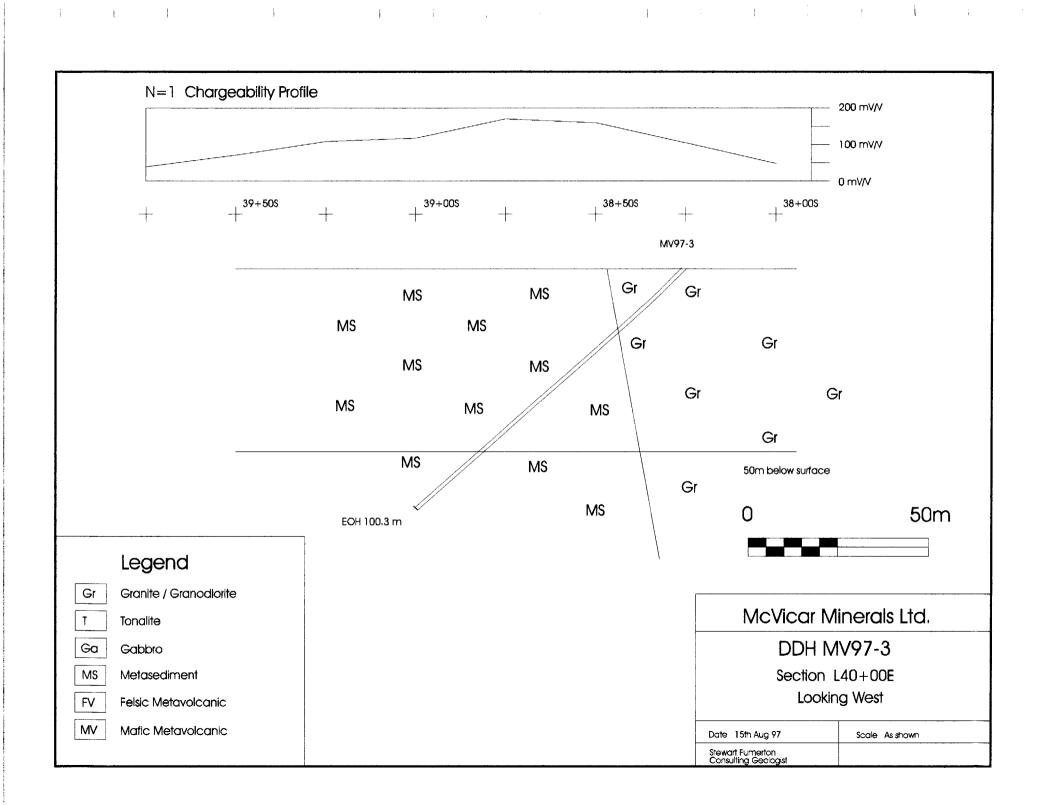
MV97-3

McVicar Lake

i

5_0f

7


Page

Depth		Lithological Description	quartz	Altera	ation serl-		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness		СОЗ	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
91		Intercalated Siltstone / Mudstone Cont:-	10	4	0	0	2	0	0	90.00	91.00	1.00	743303	<0.005	
2		90.6-100.3m, base of siltstone beds													
3		include some coarser arenite. 80% silt-													
4		stone, 20% mudstone and incipient quartz								93.00	94.00	1.00	743304	<0.005	
5		veins formed in silt beds. These are													
6		recrystallized, fractured with secondary													
7		hairline offshoots. Pyrite occurs in 4 modes								96.00	97.00	1.00	743305	<0.005	
8		1 matrix, 2 discontinuous trails, 3 veins													
9		and 4 thin lamellae													
100															
1		100.3m E.O.H.													
		Note, Box with core from 26.9 - 30.9m was dropped while being split .													

Diamond Drill Log

t		McVicar La	ke	_ Hole	MV97-3			Technical Lo	9
Core I	Core Recovery Log			RQD					
From	То	Width (metres)	Length of Core	% Core Recovery	From	То	Width (metres)	Total Core >13cm for BD	RQD
2.70	5.80	3.10	3.03	98	2.70	5.80	3.10	1.79	0.58
5.80	8.80	3.00	3.02	101	5.80	8.80	3.00	2.97	0.99
8.80	11.90	3.10	3.00	97	8.80	11.90	3.10	2.24	0.72
11.90	14.90	3,00	3.05	102	11.90	14.90	3.00	2.67	0.89
14.90	18.00	3.10	3.02	97	14.90	18.00	3.10	2.37	0.76
18.00	21.00	3.00	3.10	103	18.00	21.00	3.00	1.97	0.66
21.00	24.10	3.10	3.15	102	21.00	24.10	3.10	2.55	0.82
24.10	27.10	3.00	2.96	99	24.10	27.10	3.00	1.29	0.43
27.10	30.20	3.10	2.92	94	27.10	30.20	3.10	1.64	0.53
30.20	33.20	3.00	3.03	101	30.20	33.20	3.00	1.81	0.60
33.20	36.30	3.10	2.98	96	33.20	36.30	3.10	1.84	0.59
36.30	39.30	3.00	3.02	101	36.30	39.30	3.00	1.23	0.41
39.30	42.40	3.10	2.99	96	39.30	42.40	3.10	1.47	0.47
42.40	45.40	3.00	2.87	96	42.40	45.40	3.00	0.66	0.22
45.40	48.50	3.10	2.98	96	45.40	48.50	3.10	0.96	0.31
48.50	51.50	3.00	3.03	101	48.50	51.50	3.00	0.48	0.16
51.50	54.60	3.10	2.99	96	51.50	54.60	3.10	0.73	0.24
54.60	57.60	3.00	2.96	99	54.60	57.60	3.00	0.72	0.24
57.60	60.70	3.10	3.04	98	57.60	60.70	3.10	1.04	0.34
60.70	63.70	3.00	2.96	99	60.70	63.70	3.00	2.04	0.68
63.70	66.80	3.10	2.89	93	63.70	66.80	3.10	1.42	0.46
66.80	69.20	2.40	2.51	105	66.80	69.20	2.40	1.67	0.70
69.20	72.40	3.20	3.11	97	69.20	72.40	3.20	2.37	0.74
72.40	72.80	0.40	0.49	123	72.40	72.80	0.40	0.27	0.68
72.80	75.90	3.10	3.08	99	72.80	75.90	3.10	1.62	0.52
75.90	78.90	3.00	3.03	101	75.90	78.90	3.00	2.02	0.67
78.90	82.10	3.20	3.15	98	78.90	82.10	3.20	2.73	0.85
82.10	85.00	2.90	2.86	99	82.10	85.00	2.90	1.80	0.62
85.00	86.80	1.80	1.63	91	85.00	86.80	1.80	1.39	0.77
86.80	88.10	1.30	1.29	99	86.80	88.10	1.30	0.82	0.63
88.10	91.10	3.00	2.97	99	88.10	91.10	3.00	2.51	0.84

McVic	McVicar Minerals			ſ	amond Dri	Diamond Drill Log						
Project	oject <u>McVicar Lake</u>		Hole	Hole <u>MV97-3</u>				Technical Log)			
I	Core F	Recove	ery Log				RQDL	.og				
[i	From	То	Width (metres)	Length of Core	% Core Recovery		From	То	Width (metres)	Total Core >13cm for BD	RQD	
	91.10	94.20	3.10	3.10	100		91.10	94.20	3.10	2.92	0.94	
	94.20	97.20	3.00	3.02	101		94.20	97.20	3.00	2.04	0.68	
	97.20	100.30	3.10	3.00	97		97.20	100.30	3.10	1.87	0.60	
ŀ												
				Total	99							
ŀ												
											[
									· · · · ·			
ŀ												
ŀ											ļ	
ŀ												
-												
ŀ												
ŀ												
					T							

McVicar Minera	ls	Diamone	d Drill Log		Page	1	of	11
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination	
Area	McVicar Lake	_	Grid	UTM	Surface	Grid S	50]
Hole	MV97-4	Grid	Sor Lake		185m		46]
Core Size	BDBDGM	Easting	L49E]
Date started	13th August 1997	Northing	40+25S]
Date finished	16th August 1997	Elevation	376 m					
Geologist	Stew Fumerton	 Depth	185.3 m					
			0 m					1
Drill Company	W.G. Langley	Units	Metres]
Casing	2' of casing inserted and removed up	oon completion of the hole.		• •]
					Instrument			-
Reason drilled	To test a very strong IP chargeability	anomaly east of the anomaly	tested in Hole MV97	-3 and oincident with a granite	Acid	Uncorrected	54 deg	
	/ greenstone contact. Some trenches	in the nearby volcanics retu	rned anomaious gold	values.				
Results	The main unit intersected is a massiv	ve fine grained arenaceous s	andtone. Restricted I	bedding indicates a shallow core a	ngle or parallel to core	indicating		_
	that the hole basically went down dip	. The pyrite wafers in joint p	lanes plus some diss	seminated grains in the matrix could	d explain the chargea	bility anomaly	<u>.</u>	
	The hole was stopped before the plan	nned 200m because of the la	ck of alteration and s	tructural orientation of the hole.				

Skeleton Log

Significant Assays

From m	To m	Lithology
0.00	1.00	Feldspar Porphyry
1.00	13.80	Arenaceous Sandstone
13.80	18.95	Feldspar Porphyry
18.95	161.20	Arenaceous Sandstone
161.20	167.40	Granitic Dyke
167.40	185.30	Arenaceous Sandstone
······		

From m	To m	Value g/t
		None
[
	<u> </u>	

Project Hole

McVicar Lake

Page

2_of

11

Diamond Drill Log

MV97-4

i

Depth		Lithological Description	auart	Altera			Min	eraliza	ition		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	naro- ness	serl- cite	СОЗ	ру	сру	asov	From	То	Width	Sample	Au	Au
scale	Ŭ		%	0-10		0-3	%	%	%	m	m	metres	#	g/t	g/t
1		0-1m, Feldspar Porphyry dyke												3.1	.
2		1-13.8, Arenaceous Sandstone	0.5	5	0	0	0.1								
3		Medium cold grey, typically 0.5-1mm													
4		grains, bedding is poorly developed and					ľ								
5		the unit is generally massive. Pyrite is													
6		associated with chlorite along joint planes.													
7		Qz/Feld veins are < 1cm thick.					l								
8															
9		19m, 2-3cm thick graded beds, sandstone -					ł								
10	30	siltstone over half metre. Tops down hole													
1		with bedding at 30 deg to core axis								10.00	11.00	1.00	743306	<0.005	
2															
3															
4		13.8-18.95m, Feldspar Porphyry	6	6	0	0	0.1								
5		White, subhedral feldspar laths, <4mm													
6		randomly orientated. F.G. felsic matrix													
7		Some <2cm xenoliths. Py + Chlorite plates													
8		along joint planes. Common Qz/Cal veins													
9		16.3 & 18.2m 5 & 10cm Qz/Feld veins													
20		18.95-42.4m, Arenaceous Sandstone	2	5	0	0	0.1								
1		Sharp contact with sandstone similar to								20.00	21.00	1.00	743307	<0.005	
2		unit @ 1m. Pyrite also occurs as minute													
3		specks sparsely disseminated in matrix.									ļ				
4		23.5 & 24m, 3-4cm quartz veins.													
5		Strong set of conjugate veins throughout													
6		the unit.									ļ				
7	40	27m, poorly developed bedding, 5-10cm									L				
8		sand to silt & not graded. 40 deg to core									ļ				
9															
30	45	29m bedding @ 45 deg to core.							<u> </u>		<u> </u>				

Project Hole

McVicar Lake

Page

3 of 11

Diamond Drill Log

MV97-4

Depth		Lithological Description	quartz	Altera	ation serl-		Mine	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness		СОЗ	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale	0		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
31		Arenaceous Sandstone Cont:-	1	1	0	1		0			31.00	1.00	743308	g.t	3.1
2		at 31m, 6cm sausseritized zone. Pyrite													
3		sparsely disseminated in matrix and rarely													
4		in discontinuous trails + in smears along													
5		joints. Unit is typically massive with poor													
6		bedding.													
7		at 36m, 20cm shear zone parallel to bed													
8															
9															
40	25	at 42m, <1cm thick beds at 25 deg to													
1		core, poor grading indicates tops up hole.								40.00	41.00	1.00	743309	<0.005	
2															
3		42.4-42.8m, Granitic Dyke													
4	20	43.8m, 0.5cm beds at 20 deg to core													
5															
6		Open stockwork of Qz/Feld/Cal veins													
7		typically <3mm thick & <4cm long in													
8		multiple structural directions.													
9															
50	0	at 50m, bedding parallel to core													
1		50.8-51m, chloritic shear.								50.00	51.00	1.00	743310	<0.005	
2															
3															
4															
5															
6		56.5m, bedding 35 deg to core.													1
7															
8															
9															
60															

Project Hole

McVicar Lake MV97-4

Page 4 of

of 11

Diamond Drill Log

Depth		Lithological Description		Alter			Min	eraliza	ation		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	nara- ness	serl- cite	CO3	ру	сру	aspv	From	То	Width	Sample	Au	Au
scale	Ŭ		%	0-10	:	:	%	%	%	m	m	metres	#	g/t	g/t
61	25	Arenaceous Sandstone Cont:-	1	1	0	1	0.5	<u>; </u>	· · · ·		61.00	1.00	743311	-	-
2		at 61m, bedding at 25 deg to core													
3															
4		Pyrite also associated with the Quartz /													
5		feldspar veins in addition to the joints.	_												
6															
7															
8			4												
9			-											· · · · · · · · · · · · · · · · · · ·	
70	35	at 70m, bedding 35 deg to core axis.	4								L				
1			-							70.00	71.00	1.00	743312	<0.005	
2		at 71m, 5cm calcite vein.	-							71.00	72.00	2.00	743313	<0.005	
3	25		-												
4		pyrite occurs in thin wafers along the	-												
5		bedding plane.	-												
6 7			_												
8			-												
9			1												
80			1												
1			1							80.00	81.00	1.00	743314	<0.005	
2			1												
3	0	at 83.5m, bedding parallel to the core axis	1												
4			1									· · · · ·			
5	20	at 85m, bedding 20 deg to core]												
6															
7															
8															
9															
90						L		L							

Project	
Hole	

3

McVicar Lake MV97-4

Page	5	of	
i ago	•	U 1	

11

Diamond Drill Log

Depth		Lithological Description		Altera			Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	naro- ness	serl- cite	соз	ру	сру	asov	From	То	Width	Sample	Au	Au
scale	Ū		%	0-10			%	%	%	m	m	metres	#	g/t	g/t
91		Arenaceous Sandstone Cont:-	1	†i		· · · · · · · · · · · · · · · · · · ·				1	91.00	1.00	743315	J	J
2			~								1				
3															
4															
5															
6	10	at 95m, bedding at 10 deg to core.]												
7															
8															
9															
100															
1										100.00	101.00	1.00	743316	<0.005	
2															
3	0	102-104m, graded beds parallel to core									ļ				
4		axis. Small scale faulting has formed									ļ				
5		small off-sets of the bedding, 1-2mm.								ļ					
6			_												
7															
8			-												
9		108.15-108.3m, granitic dyke													
110															
1			0.2	4	0	0	0.5	0	0	110.00	111.00	1.00	743317	<0.005	
2															
3	0	at 112m, bedding 0 deg to core axis.	-												
4			4												
5	20	at 114.5m bedding at 20 deg to core	-												
6			-												
7			-												
8															
9			-												
120			L							I					

Project	
Hole	

McVicar Lake

Page 6 of

11

Diamond Drill Log

MV97-4

Depth	Чd	Lithological Description	quartz	Altera hard-	seri-	<u> </u>	Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness		CO3	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
121		Arenaceous Sandstone Cont:-	0.2	5	0	0	0.1	0	0	120.00	121.00	1.00	743318	<0.005	
2															
3															
4										ļ					
5															
6	30	at 125m, bedding 30 deg to core axis													
7															
8															
9															L
130															
1		130m onwards, pyrite aggregates <3mm	1	5	0	0	0.5	0	0	130.00	131.00	1.00	743319	<0.005	
2		sparsely disseminated in matrix. Magnetite													
3		occurs in some Qz/Cal veins along margins													
4															
5											400.00		-		
6		135.8m, 3cm Qz/Chl/Cal vein								135.00	136.00	1.00	743320	<0.005	
7	43									136.00	137.00	1.00	743321	<0.005	
8		136.5m Cal/Qz vein <5mm has <3mm													
9		galena crystals forming 55 of vein													
140	20	139m, bedding at 20 deg to core axis								140.00	141.00	1.00	743322	<0.005	
1 2										140.00	141.00	1.00	145522	~U.UUD	
2															
4															
6	45	145.8m bedding at 45 deg to core axis								145.00	146.00	1.00	743323	<0.005	
7	.0	& scour channel indicates tops up hole.													
8															
9															
150	40	149.5m, bedding at 40 deg to core axis													

Project Hole

MV97-4

McVicar Lake

Page	7	of	11
-		_	

Diamond Drill Log

Depth		Lithological Description		Altera	ation serl-	un fil, dirrigi	Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	ness		соз	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale	Ŭ		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
151	40	Arenaceous Sandstone Cont:-	2		0	0	0.5	0		150.00	151.00	1.00	743324	<0.005	Ŭ
2		150m, bedding at 40 deg.	1												
3		Pyrite mainly occurs in the matrix at this	1												
4		depth but locally concentrated near veins.]												
5	45	154m, bedding at 45 deg to core axis,]												
6										157.00	158.00	1.00	743325	<0.005	
7		157.8m, 6cm crackle quartz vein.													
8															
9		160.2m, 2cm irregular quartz veìn.													
160															
1		161.2-167.4m,Granitic dyke								160.00	161.20	1.20	743326	<0.005	
2		Medium grain, pale green-grey, strongly	0.5	4	1	2	3	0	0	161.20	162.00	1.00	743327	<0.005	
3		foliated with biotite, chlorite and pyrite								162.00	163.00	1.00	743328	<0.005	
4		as mafic minerals, occurring in foliation								163.00	164.00	1.00	743329	<0.005	
5		plane. Calcite alteration is strong and								164.00	165.00	1.00	743330	<0.005	
6	45	ubiquitous with sericite alteration assoc-								165.00	166.00	1.00	743331	<0.005	
7		iated with mafics. Foln at 45 deg at 166m.								166.00	167.00	1.00	743332	<0.005	
8		167.4-185.3m, Arenaceous Sandstone	1	4	0	0	0.5	0	0	167.00	167.40	0.40	743333	<0.005	
9		Same unit as above.													
170															
1		171.4-172.1m Granitic dyke as above.													
2										171.40	172.10	0.70	743334	<0.005	
3										 	ļ	ļ			
4			L									ļ			
5											ļ	ļ			· · · · · · · · · · · · · · · · · · ·
6	35	176m, graded bedding at 35 deg to	L									ļ			
7		core axis and tops down hole.									ļ	ļ			
8											ļ				
9															
180		179.4m, 2cm quartz vein with pyrite.	L							179.00	180.00	1.00	743335	<0.005	

Project Hole

i a

McVicar Lake MV97-4

90 - 11

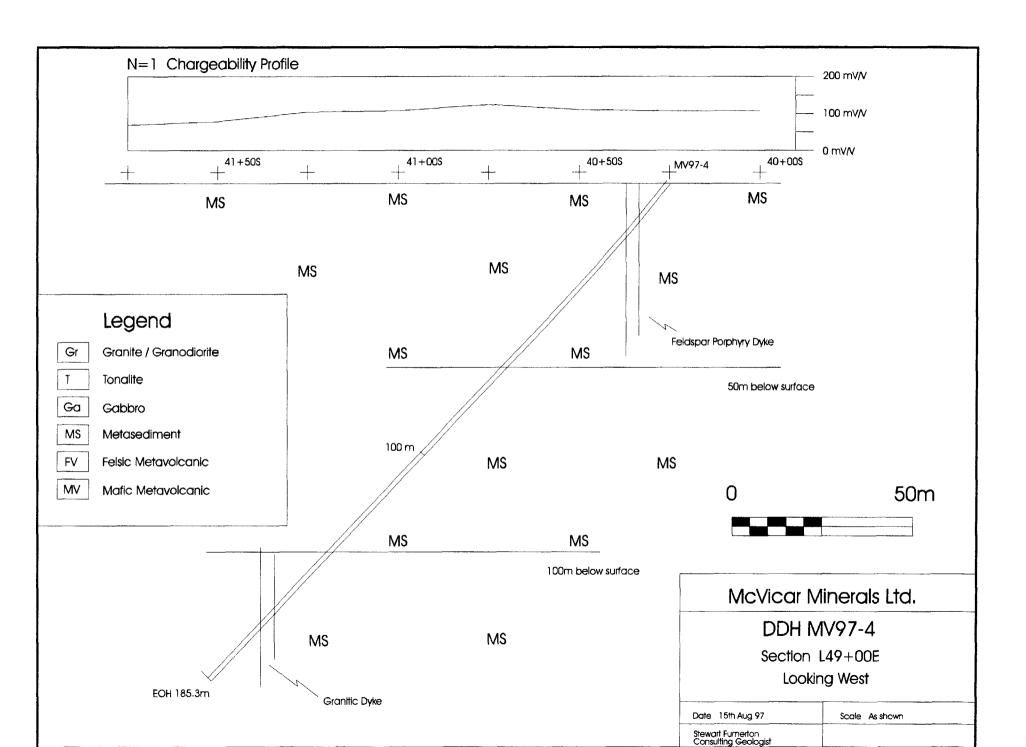
Page	8	of	
-			

11

Diamond Drill Log

Depth		Lithological Description		Altera	ation		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	serl-	СОЗ	ру	сру	asnv	From	То	Width	Sample	Au	Au
scale	U		%			0-3	%	%	%	m	m	metres	#	g/t	g/t
181		Arenaceous Sandstone Cont:-	1		0	*	0.5		0					3.1	9.
2								_							
3	0	183-185.3m, bedding parallel to core													
4		axis	1												
5]												
6		185.3m End of Hole													
7															
8			ł												
9			-												
190															<u> </u>
															u
											<u> </u>				

Diamond Drill Log McVicar Minerals Page 9 of 11 **Technical Log** McVicar Lake Project Hole MV97-4 **Core Recovery Log** RQD Log From From To Length of Core % Core Recovery To Width (metres) Total Core >13cm for BD RQD Width (metres) 0.0 2.7 2.70 1.38 51 0.0 2.7 2.70 0.71 0.26 2.7 5.8 2.7 5.8 3.10 2.57 83 3.10 1.12 0.36 5.8 8.8 3.00 3.00 100 5.8 8.8 3.00 1.48 0.49 8.8 0.70 11.4 2.60 2.56 8.8 11.4 2.60 1.82 98 0.45 0.50 0.15 0.30 11.4 11.9 0.50 90 11.4 11.9 11.9 3.00 0.89 14.9 3.00 3.00 100 11.9 14.9 2.67 14.9 18.0 14.9 0.83 3.10 2.99 96 18.0 3.10 2.56 18.0 20.4 2.40 2.35 98 18.0 20.4 2.40 0.97 0.40 20.4 21.0 0.60 0.56 93 20.4 21.0 0.60 0.37 0.62 21.0 22.7 1.70 1.66 98 21.0 22.7 1.70 0.78 0.46 22.7 22.7 1.40 24.1 1.40 1.35 96 24.1 0.80 0.57 0.17 24.1 25.3 1.20 1.14 95 24.1 25.3 1.20 0.20 25.3 27.1 1.80 25.3 27.1 0.31 1.80 100 1.80 0.56 27.1 2.41 96 27.1 2.50 0.65 29.6 2.50 29.6 1.62 29.6 30.2 0.60 0.65 108 29.6 30.2 0.60 0.38 0.63 30.2 32.5 2.27 99 30.2 2.30 1.02 0.44 2.30 32.5 32.5 33.2 0.70 0.77 110 32.5 33.2 0.70 0.00 0.00 33.2 36.3 3.10 3.02 97 33.2 36.3 3.10 1.99 0.64 36.3 39.3 3.00 3.03 101 36.3 39.3 3.00 2.20 0.73 0.45 39.3 41.5 2.20 1.86 85 39.3 41.5 2.20 1.00 41.5 42.4 0.90 1.13 126 41.5 42.4 0.90 1.00 1.11 42.4 44.2 1.80 1.93 107 42.4 44.2 1.80 0.55 0.31 44.2 45.4 1,20 1.05 88 44.2 45.4 1.20 0.62 0.52 45.4 48.2 2.80 2.67 95 45.4 48.2 2.80 1.56 0.56 48.2 48.5 0.30 0.24 48.5 0.30 0.00 0.00 80 48.2 48.5 51.3 2.80 2.77 99 48.5 51.3 2.80 0.97 0.35 0.00 51.3 51.5 0.20 0.18 90 51.3 51.5 0.20 0.00 51.5 52.6 1.10 1.10 100 51.5 52.6 1.10 0.30 0.27 52.6 54.6 2.00 1.92 96 52.6 54.6 2.00 0.83 0.42 54.6 55.8 1.02 85 54.6 55.8 0.22 0.18 1.20 1.20 55.8 57.6 1.75 97 55.8 57.6 0.63 0.35 1.80 1.80


1

Diamond Drill Log

Page

t		McVicar La	ike	Hole	<u>MV97-4</u>				Technical Log	
Core	Recove	ery Log			R	QD L	og			
From	То	Width (metres)	Length of Core	% Core Recovery	Fro	om	Го	Width (metres)	Total Core >13cm for BD	RQ
57.6	59.6	2.00	2.05	103		57.6	59.6	2.00	0.48	0.24
59.6	60.7	1.10	0.96	87		59.6	60.7	1.10	0.50	0.45
60.7	63.7	3.00	3.01	100		60.7	63.7	3.00	1.58	0.53
63.7	66.8	3.10	3.05	98		63.7	66.8	3.10	2.42	0.78
66.8	69.5	2.70	2.81	104		66.8	69.5	2.70	1.07	0.40
69.5	69.8	0.30	0.25	83		69.5	69.8	0.30	0.00	0.00
69.8	72.8	3.00	3.01	100		69.8	72.8	3.00	1.82	0.61
72.8	75.9	3.10	3.01	97		72.8	75.9	3.10	1.33	0.43
75.9	78.9	3.00	2.97	99		75.9	78.9	3.00	1.70	0.57
78.9	82.0	3.10	2.98	96		78.9	82.0	3.10	1.91	0.62
82.0	85.0	3.00	3.00	100		82.0	85.0	3.00	1.94	0.65
85.0	88.1	3.10	2.92	94		85.0	88.1	3.10	1.06	0.34
88.1	90.4	2.30	2.25	98		88.1	90.4	2.30	0.96	0.42
90.4	91.1	0.70	0.78	111		90.4	91.1	0.70	0.30	0.43
91.1	94.0	2.90	2.84	98		91.1	94.0	2.90	1.30	0.45
94.0	94.2	0.20	0.18	90		94.0	94.2	0.20	0.00	0.00
94.2	97.1	2.90	2.94	101		94.2	97.1	2.90	1.93	0.67
97.1	100.1	3.00	3.09	103		97.1	100.1	3.00	2.40	0.80
100.1	101.2	1.10	0.95	86		100.1	101.2	1.10	0.74	0.67
101.2	103.3	2.10	2.12	101		101.2	103.3	2.10	1.95	0.93
103.3	106.4	3.10	2.96	95		103.3	106.4	3.10	2.00	0.65
106.4	109.4	3.00	3.02	101		106.4	109.4	3.00	2.03	0.68
109.4	112.5	3.10	3.09	100		109.4	112.5	3.10	1.02	0.33
112.5	115.5	3.00	3.02	101		112.5	115.5	3.00	1.30	0.43
115.5	118.0	2.50	2.37	95		115.5	118.0	2.50	1.48	0.59
118.0	118.6	0.60	0.67	112		118.0	118.6	0.60	0.48	0.80
118.6	121.6	3.00	3.09	103		118.6	121.6	3.00	2.01	0.67
121.6	124.7	3.10	3.03	98		121.6	124.7	3.10	1.78	0.57
124.7	127.7	3.00	2.91	97		124.7	127.7	3.00	1.27	0.42
127.7	130.8	3.10	3.06	99		127.7	130.8	3.10	2.25	0.73
130.8	133.8	3.00	3.02	101		130.8	133.8	3.00	2.34	0.78

Core i	Recove	ry Log			RQD I	_og			
From	То	Width (metres)	Length of Core	% Core Recovery	From	То	Width (metres)	Total Core >13cm for BD	RQ
133.8	136.9	3.10	3.01	97	133.8	136.9	3.10	1.88	0.61
136.9	139.9	3.00	3.05	102	136.9	139.9	3.00	2.08	0.69
139.9	143.0	3.10	3.05	98	139.9	143.0	3.10	2.30	0.74
143.0	145.4	2.40	2.41	100	143.0	145.4	2.40	1.52	0.63
145.4	146.0	0.60	0.66	110	145.4	146.0	0.60	0.54	0.90
146.0	148.7	2.70	2.73	101	146.0	148.7	2.70	1.94	0.72
148.7	149.0	0.30	0.33	110	148.7	149.0	0.30	0.21	0.70
149.0	151.6	2.60	2.52	97	149.0	151.6	2.60	2.45	0.94
151.6	152.1	0.50	0.51	102	151.6	152.1	0.50	0.38	0.76
152.1	154.7	2.60	2.62	101	152.1	154.7	2.60	2.10	0.81
154.7	155.1	0.40	0.30	75	154.7	155.1	0.40	0.27	0.67
155.1	156.8	1.70	1.47	86	155.1	156.8	1.70	0.79	0.46
156.8	158.2	1.40	1.62	116	156.8	158.2	1.40	0.92	0.66
158.2	160.9	2.70	2.70	100	158.2	160.9	2.70	1.73	0.64
160.9	161.2	0.30	0.23	77	160.9	161.2	0.30	0.00	0.00
161.2	162.9	1.70	1.25	74	161.2	162.9	1.70	0.00	0.00
162.9	164.0	1.10	1.36	124	162.9	164.0	1.10	0.00	0.00
1 64 .0	164.3	0.30	0.21	70	164.0	164.3	0.30	0.00	0.00
164.3	166.1	1.80	1.55	86	164.3	166.1	1.80	0.35	0.19
166.1	167.3	1.20	1.48	123	166.1	167.3	1.20	0.33	0.27
167.3	169.8	2.50	2.20	88	167.3	169.8	2.50	0.58	0.23
169.8	170.4	0.60	0.63	105	169.8	170.4	0.60	0.00	0.00
170.4	173.4	3.00	2.94	98	170.4	173.4	3.00	1.88	0.63
173.4	175.4	2.00	1.89	95	173.4	175.4	2.00	0.54	0.27
175.4	176.5	1.10	1.08	98	175.4	176.5	1.10	1.03	0.94
176.5	179.5	3.00	2.98	99	176.5	179.5	3.00	1.74	0.58
179.5	180.9	1.40	1.23	88	179.5	180.9	1.40	0.00	0.00
180.9	182.6	1.70	1.70	100	180.9	182.6	1.70	0.63	0.37
182.6	185.5	2.90	2.80	97	182.6	185.5	2.90	1.13	0.39
			+						
L			Total	97					******

McVicar Minera	ls	Diamon	d Drill Log		Page	1	_of	7
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination	
Area	McVicar Lake		Grid	UTM	Surface	Grid S	45]
Hole	MV97-5	Grid	Sor Lake		100m		38]
Core Size	BDBDGM	Easting	L55+80E]
Date started	17th August 1997	Northing	45+50S					
Date finished	19th August 1997	Elevation						
Geologist	Stew Fumerton	 Depth	109.4 m					
		- Overburden	4.6 m					
Drill Company	W.G. Langley	Units	Metres]
Casing	15' of BW casing inserted and remov	wed upon completion of the h	ole.					
					Instrument			-
Reason drilled	To test a series of quartz veins hoste	d in sheared and altered ton	alite that has some iro	n carbonate and	Acid	Uncorrected	46 deg	_
	sericite alteration. The anastomising	veins returned assays up to	2.3 g/t gold in channe	el samples.				
Results	The hole intersected extensive shear	ing and alteration throughout	the hole with some d	isseminated pyrite and mino	r quartz veining. The struc	tural and		_
	alteration are favourable hosts for gol	d mineralization, but no sign	ificant gold values we	re returned. The foliated are	naceous siltstone intersect	d in the hole		_
	corresponds with what has been ma	apped as sheared tonalite on	surface. However, in	the core no quartz veining o	ccurs in the unit.			

Skeleton Log

Significant Assays

ł

From m	To m	Lithology
0.00	4.60	Overburden
4.60	76.50	Chlorite / Carbonate Schist, (Porphyroclastic Mylonitr)
76.50	78.30	Biotite / Carbonate Schist
78.30	84.00	Chlorite / Carbonate Schist
84.00	96.00	Foliated Arenaceous Siltstone
96.00	109.40	Chlorite / Carbonate Schist

From m	To m	Value g/t	
		None	

MCVIC	arr	Allerais Project	MCVI	car L	ake				Pag	e	2	ot			
Diamor	nd D	ill Log Hole	MV97	7-5	· · · · · · ·										
Depth	Ę	Lithological Description	quartz	Altera hard-	ation serl-		Mir	neraliza	ation		San	npling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
1		0-4.6m, Overburden													
2															
3				ļ				ļ		ļ					
4		4.6-76.5m Chlorite / Carbonate Schist	1	3	0	3	Tr	0	0 0						
5		(Porphyroclastic Mylonite)													
6		The unit has a strong schistosity with								5.00	6.00	1.00	743336	<0.005	
7		alternating chlorite rich lamellae and quartz	1									-	ļ		
8		dolomite. Lamellae are <<3mm thick,	-												
9	37	whispy with local kink folds and rotated								8.00	9.00	1.00	743337	<0.005	
10		quartz porphyroclasts which may be													
1		remnants of Qz veins. These are <1cm &											ļ		
2		unevenly distriuted. The matrix typically]							11.00	12.00	1.00	743338	<0.005	
3		has <<1mm grain size, and is medium green	1. T												
4		Locally in less sheared sections (9-11m)													
5		the protolith appears to be the	_							14.00	15.00	1.00	743339	<0.005	
6	34		_												
7		occurs as minute specks sparsely dissem-								16.50	17.50	1.00	743340	<0.005	
8		inated in the matrix. Schistosity 37 deg								L					
9		at9m, 34 deg @ 16m and 30 deg 24m.	-												
20		at 17m a number od Qz/dolomite lamellae	-							19.00	20.00	1.00	743341	<0.005	
1		contain 50% pyrite.	-												
2															
3										22.00	23.00	1.00	743342	<0.005	
4	30		1												
5			ĺ												
6			1							25.00	26.00	1.00	743343	<0.005	
7										l					
8			1							1		1			

Tr

28.00 29.00 1.00 743344

<0.005

Project Hole

McVicar Lake

Page <u>3</u> of

7

Diamond Drill Log

MV97-5

Depth		Lithological Description	quartz	Alter	ation serl-		Min	eraliza	tion	:	Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale	•		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
31		Chlorite / Carbonate Schist Cont:-	1	3	1	2	Tr	0	0					-	
2		29-41.4m, Quartz / Dolomite lamellae are								31.00	32.00	1.00	743345	<0.005	
3		attenuated.													
4		31.5m, 10cm zone of strong bleaching													
5		sericite alteration.								34.00	35.00	1.00	743346	<0.005	
6															
7			0.5	3	0	2	Tr	0	0						
8										37.00	38.00	1.00	743347	<0.005	
9															
40		39.9-42.2m, Quartz vein + some country													
1		rock selvedges	7	3	1	2	1	0	0	39.90	41.00	1.10	743348	<0.005	
2		41.4-42.3m, Py in trails parallel to schist								41.00	41.90	0.90	743349	0.190	
3		42.4m, 10cm arenaceous silt protolith	1	3	0	2	Tr	0	0	41.90	42.30	0.40	743350	0.045	
4		bedding parallel to schistosity													
5		42.4-56.6m, Quartz / dolomite lamellae													
6		poorly developed								45.00	46.00	1.00	743351	<0.005	
7	38		_												
8		47m, schistosity 38 deg to core													
9															
50										49.00	50.00	1.00	743352	<0.005	
1															
2															
3			_							52.00	53.00	1.00	743353	<0.005	
4	30														
5		54m, schistosity 30 deg to core axis													
6				L						55.00	56.00	1.00	743354	<0.005	
7		56.6-57.9m, arenite bedding transposed	0	3	0	1	Tr	0	0						
8		parallel to schistosity.													
9	25		1	3	0	2	Tr	0	0	58.00	59.00	1.00	743355	<0.005	
60		59m, schistosity 25 deg to core axis.													

Project Hole

MV97-5

McVicar Lake

Page ______ of _____

Diamond Drill Log

Depth		Lithological Description		Alter			Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	serl- cite	СОЗ	ру	сру	aspy	From	То	Width	Sample	Au	Au
scale	0		%	0-10	:	0-3	%	%	%	m	m	metres	#	g/t	g/t
61		Chlorite / Carbonate Schist Cont:-	1	3	0	2	Tr	0	0	1					•
2			1							61.00	62.00	1.00	743356	<0.005	
3		62m, 30cm zone with abundant lamellae]												
4															
5		64-76.5m, common quartz porphyroclasts	10	3	0	3	Tr	0	0	64.00	65.00	1.00	743357	<0.005	
6		plus attenuated Qz/Dolomite veins & kink													
7		folds. Very fine grains of pyrite sparsely													
8		disseminated in the matrix.								67.00	68.00	1.00	743358	<0.005	
9	40	68m, schistosity 40 deg to core axis													
70															
1			3	3	0	2	Tr	0	0	70.00	71.00	1.00	743359	<0.005	
2															
3			-												
4										73.00	74.00	1.00	743360	<0.005	
5			4												
6			ļ												
7		76.5-78.3m Biotite / Carbonate Schist	0	4	0	2	0	0	0		77.50	1.00	743361	<0.005	
8		Weak schistosity, 2 colours- dark brown	-							77.50	78.30	0.80	743362	<0.005	
9		off-white, diffuse lamellae, <1% V.F.G.	0.5	3	1	2	0	0	0						
80		magnetite disseminated in matrix.													
1		78.3-84.0m, Chlorite / Carbonate Schist													
2		Same unit as from 4.4 to 76.5m.								81.00	82.00	1.00	743363	<0.005	
3			-												
4															
5		84.0-96.0m Foliated Arenaceous Siltstone	1	4	1	2	0	0	0	84.00	85.00	1.00	743364	<0.005	
6		Gradual contacts, off-white, <0.5mm	-								 				
7		grains, relatively massive with poorly													
8		developed bedding. Pyrite occurs rarely								87.00	88.00	1.00	743365	<0.005	
9		as minute grains disseminated in the matrix	0.5	3	0	2	0	0	0						
90		Local zones with higher shearing + chlorite													

Graph

Depth

metres

scale

91

Project ململ

McVicar Lake MV/07 5

1 1

Page 5 of

metres

1.00

7

Sample

#

743360

Diamond Drill Log

rill Log Hole)	MV97	-5		<u></u>	,					
Lithological Description	<u></u>	quartz	Altera hard-	serl-			eraliza				npling
		veins	ness	cite		ру	сру	:	From	To	Width
		%	0-10	0-3	0-3	%	%	%	m	m	metre
Foliated Arenaceous Silts	tone Cont:-	0	4	1	1	0	0	0	90.00	91.00	1.00
94-96m deforme	d zone with 20cm	_									
recrystalized micr	obreccia at top & 20cm	0	3	1	1	0	0	0	94.00	95.00	1.00
of chloritic / carbo	onate shear near bottom								95.00	96.00	1.00
96.0-109.4m, Chlorite / Car	bonate Schist	1	3	0	2	0	0	0			
Composition from]									

		1 1		1		1	•	1				++		
2										ļ				
3										ļ				
4	94-96m deformed zone with 20cm													
5	recrystalized microbreccia at top & 20cm	0	3	1	1	0	0	0	94.00	95.00	1.00	743369	<0.005	
6	of chloritic / carbonate shear near bottom								95.00	96.00	1.00	743368	<0.005	
7	96.0-109.4m, Chlorite / Carbonate Schist	1	3	- C) 2	0	0	0						
8	Same unit as from 4.4 to 76.5m but rare													
9	specks of pyrite in matrix.								98.00	99.00	1.00	743369	<0.005	
100														
1														
2									101.00	102.00	1.00	743370	<0.005	
3														
4														
5						Ì			104.00	105.00	1.00	743371	<0.005	
6														
7														
8														
9														
110	109.4m, End of Hole													

Assay 2

Au

g/t

Assay 1

Au

g/t

<0.005

Diamond Drill Log McVicar Minerals Page 6 of 7 **Technical Log** Project McVicar Lake Hole MV97-5 **Core Recovery Log** RQD Log From To % Core Recoverv From To Width (metres) Width (metres) Length of Core Total Core >13cm for BD RQD 5.8 1.20 1.07 89 5.8 1.20 0.60 0.50 4.6 4.6 7.9 5.8 7.9 2.10 5.8 2.10 2.08 99 1.41 0.67 7.9 8.8 0.90 0.90 100 7.9 8.8 0.90 0.73 0.81 1.47 92 10.4 0.57 8.8 10.4 1.60 8.8 1.60 0.36 10.4 11.9 1.50 1.51 101 10.4 11.9 1.50 1.13 0.75 14.9 3.00 3.01 100 14.9 3.00 2.10 11.9 11.9 0.70 14.9 18.0 3.10 3.01 97 14.9 18.0 3.10 1.96 0.63 18.0 21.0 3.00 2.99 100 18.0 21.0 3.00 2.82 0.94 23.3 2.30 21.0 23.3 2.30 21.0 2.20 96 1.26 0.55 23.3 24.1 0.80 0.76 95 23.3 24.1 0.80 0.16 0.20 24.1 27.1 102 24.1 27.1 3.00 3.06 3.00 2.36 0.79 27.1 30.2 3.10 27.1 30.2 3.10 2.85 0.92 3.06 99 30.2 30.2 33.2 33.2 3.00 3.04 101 3.00 2.68 0.89 33.2 36.3 3.10 3.05 98 33.2 36.3 3.10 2.49 0.80 36.3 39.3 3.00 3.00 100 36.3 39.3 3.00 1.73 0.58 39.3 42.4 3.10 2.92 94 39.3 42.4 3.10 1.44 0.46 42.4 45.4 3.00 2.91 97 42.4 45.4 3.00 1.58 0.53 48.5 48.5 2.33 45.4 3.10 3.04 98 45.4 3.10 0.75 48.5 50.4 2.02 48.5 50.4 1.90 106 1.90 0.78 0.41 50.4 51.5 1.10 0.98 89 50.4 51.5 1.10 0.43 0.39 51.5 54.6 3.07 51.5 54.6 3.10 2.58 3.10 99 0.83 54.6 54.6 57.6 3.00 3.05 102 57.6 3.00 2.22 0.74 57.6 58.5 0.90 0.68 76 57.6 58.5 0.90 0.18 0.20 58.5 60.7 2.20 2.28 104 58.5 60.7 2.20 1.98 0.90 60.7 62.6 1.90 1.80 95 60.7 62.6 1.90 1.07 0.56 62.6 63.7 1.10 1.15 105 62.6 63.7 1.10 0.28 0.25

63.7

66.8

69.8

71.6

72.8

66.8

69.8

71.6

72.8

74.8

3.10

3.00

1.80

1.20

2.00

2.30

2.07

0.67

0.63

1.13

0.74

0.69

0.37

0.52

0.57

1

1

63.7

66.8

69.8

71.6

72.8

66.8

69.8

71.6

72.8

74.8

3.10

3.00

1.80

1.20

2.00

2.98

3.02

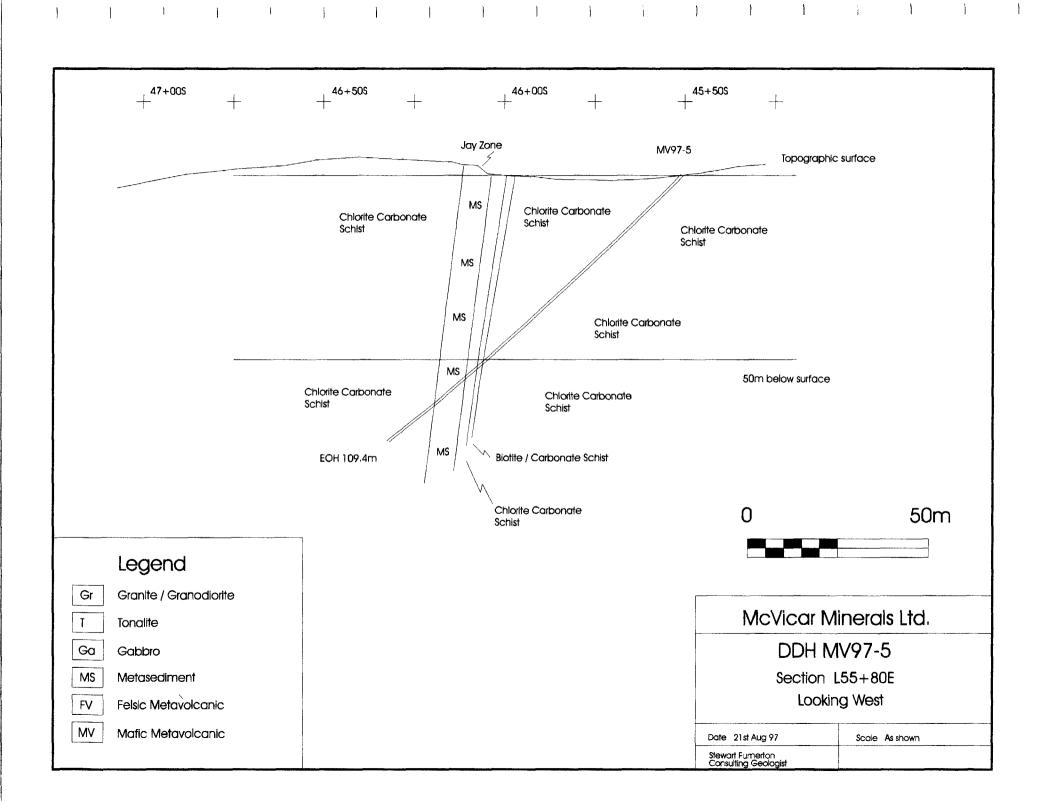
1.67

1.17

1.65

96

101


93

97

Diamond Drill Log

______ of _____

Core	Recove	ery Log			RQDI	00			
From	То	Width (metres)	Length of Core	% Core Recovery	From	То	Width (metres)	Total Core >13cm for BD	RQD
74.8	75.9	1.10	1.32	120	74.8	75.9	1.10	1.09	0.99
75.9	78.9	3.00	2.96	99	75.9	78.9	3.00	2.20	0.73
78.9	80.8	1.90	1.66	87	78.9	80.8	1.90	0.72	0.3
80.8	82.0	1.20	1.32	110	80.8	82.0	1.20	0.82	0.6
82.0	83.8	1.80	1.77	98	82.0	83.8	1.80	0.58	0.3
83.8	85.0	1.20	1.20	100	83.8	85.0	1.20	0.97	0.8
85.0	86.9	1.90	1.90	100	85.0	86.9	1.90	0.70	0.3
86.9	88.1	1.20	1.10	92	86.9	88.1	1.20	0.62	0.5
88.1	91.1	3.00	2.97	99	88.1	91.1	3.00	1.64	0.5
91.1	93.7	2.60	2.47	95	91.1	93.7	2.60	1.22	0.4
93.7	95.4	1.70	1.45	85	93.7	95.4	1.70	0.18	0.1
95.4	96.8	1.40	1.35	96	95.4	96.8	1.40	0.00	0.0
96.8	98.1	1.30	1.22	94	96.8	98.1	1.30	0.30	0.2
98.1	100.3	2.20	2.05	93	98.1	100.3	2.20	0.80	0.3
100.3	102.7	2.40	2.35	98	100.3	102.7	2.40	0.62	0.2
102.7	103.3	0.60	0.60	100	102.7	103.3	0.60	0.36	0.6
103.3	106.4	3.10	3.05	98	103.3	106.4	3.10	2.05	0.6
106.4	109.4	3.00	2.96	99	106.4	109.4	3.00	2.11	0.7
			Total	98					
<u></u>									
									ļ

McVicar Minera	ls	Diamon	d Drill Log			Page	1	of
Project	McVicar Lake	Collar Co-o	rdnates			Survey	Direction	Inclination
Area	McVicar Lake		Grid		UTM	Surface	Grid S	47
Hole	MV97-6	Grid	Semia Lake			121m		44
Core Size	BDBDGM	Easting	L13+00W					
Date started	20th August 97	Northing	0+30S					
Date finished	22nd August 97	Elevation						
Geologist	Stew Fumerton	Depth	121.6 m	-				
		Overburden	4.6 m					
Drill Company	W.G. Langley	Units	Metres					
Casing	20' of BW casing inserted in the hol	e, but 15' had to be abandone	ed after completion of the	a hole.		_		
	The casing deflected while being dr	iven and the drill had to be re-	aligned from the original	1 50 deg	declination	Instrument		
Reason drilled	To test a strong EM anomaly that w	as interpreted to be sulphide	facies iron formation.			<u>A</u>	cid Uncorrected	52 deg
Results	No indication of the interpreted band and associated with some massive							
Skeleton Log	in the upper 25m and associated wi	th the sulphides, could be cha	annels for ground water t		-enforcing the EM Significant			

From m	To m	Lithology
0.00	5.00	Overburden
5.00	7.00	Felsic Dyke
7.00	11.80	Mafic Metavolcanic - Diorite
11.80	16.20	Felsic Dyke
16.20	19.50	Breccia + Massive Sulphides
19.50	27.00	Mafic Metavolcanic - Diorite
27.00	29.50	Quartz / Calcite Stockwork in Mafic Metavolcanics
29.50	69.00	Mafic Metavolcanics
69.00	78.05	Mafic Metvolcanic Breccia
78.05	80.20	Felsic Tuff
80.20	93.00	Granitic Breccia
93.00	117.20	Felsic Metavolcanic Breccia
117.20	121.60	Feldspar Porphyry

From m	To m	Value g/t	
		None	

Project Hole McVicar Lake

Page <u>2</u> of

i

of 7

Ì

Diamond Drill Log

MV97-6

Depth		Lithological Description		Altera			Min	eraliza	ition		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	naro- ness	seri- cite	CO3	ру	po	сру	From	То	Width	Sample	Au	Au
scale	U		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
1		0-5m, Overburden												J.	J J
2													1		
3															
4															
5															
6		5-7m, Felsic Dyke	0	5	0	0	0	0	0						
7		7-11.8m, Mafic Metavolcanic - Diorite													
8		Dark green, <1mm grains, massive, some	0.2	5	0	0	Tr	0	0						
9		feldspar laths, saussuritized fractures.													
10		Pyrite disseminated in matrix.								9.00	10.00	1.00	743372	<0.005	
1		11.2-11.5m pink granitic dyke.													
2		11.8-16.2m, Felsic Dyke													
3		Light grey, VFG with abundant chloritized	1	4	0	1	0	Tr	Tr						
4		mafic volcanic breccia fragments. Cal/Qz								13.00	14.00	1.00	743373	<0.005	
5		stockwork of <3mm veins. Foliation 43deg										L			
6	43	12.3-12.6m Feld Porphyry dyke													
7		16.2-19.5m, Breccia + Massive Sulphides	0	4	0	1	10	2	1	16.20	17.20	1.00	743374	<0.005	
8		Brecciated & chloritic felsic + mafic MV								17.20	18.20	1.00	743375	<0.005	
9		Massive, botryiodal Py in 3x20cm intervals								18.20	19.50	1.30	743376	<0.005	ļ
20		& in fractures. Po + cpy conc at edges							ļ	19.50	20.00	0.50	743377	<0.005	
1		19.5-27m Mafic Metavolcanic - Diorite	0	4	0	1	1	Tr	0	20.00	21.00	1.00	743378	<0.005	
2		Dark green, medium to fine grained,								21.00	22.00	1.00	743379	<0.005	
3		massive mafic volcanic. Some disseminated									ļ	ļ			ļ
4		pyrite + pyrrhotite adjacent to veins +										ļ			
5		fractures & felsic dykelets													
6		22.3-23m, Felsic dyke + breccia.									ļ				ļ
7		26.6-27m Breccia in Felsic Dyke													
8		27-29.5m, Qz/Calcite Stockwork in MV	20	5	0	2	0.1	0	0	27.00	28.00	1.00	743380	<0.005	
9		Some biotite alteration of mafic volcanics								28.00	29.00	1.00	743381	<0.005	
30										29.00	29.50	0.50	743382	<0.005	

Project Hole

McVicar Lake MV97-6

Page 3 of

7

Diamond Drill Log

Depth		Lithological Description					Mine	eraliza	ition		Sam	pling		Assay 1	Assay 2
metres	Graph		1.				by	po	CDV	From	То	Width	Sample	Au	Au
scale	Ũ			: ;		:			:		1	4	:		g/t
31		29.5-69m, Mafic Metavolcanics	50	6		1	1	0	1	1	31.00	1.50	743383	<0.005	
2		quartz hard- seri- veins ness cite CO3py pocpyFromToWidthSampleAu%0-100-30-3%%%mmmetres#g/t													
3		volcanics. Distinct from unit above.	0.2	6	0	0	0	0	0						
4		Hairline calcite/Qz veins which form open													
5		stockwork with some veins <2cm locally.													
6		29.5-32m, 20cm crackle quartz vein													
7		subparallel to the core.													
8											ļ				
9		The matrix of the metavolcanic contains	1							 		L			
40		finely disseminated magnetite									ļ				
1			-							40.00	41.00	1.00	743385	<0.005	
2						ļ		:				L			
3															
4															
5															
6															
7															
8 9															
50											<u> </u>				
1		50 8-51 2m pink felsic dyke								50.00	50.80	0.80	743386	<0.005	
2										00.00	00.00	0.00	140000	-0.000	
3															
4															
5		55.1 & 55.3m 10cm white felsic dykes													
6										<u> </u>					
7															
8															
9															
60		59.5m, 10cm pink felsic dyke													

Project

MV97-6

McVicar Lake

Diamond Drill Log Hole Lithological Description Mineralization Sampling Depth Alteration Assay 1 Assay 2 quartz hard-Seri-Graph metres ness cite CO3 From То Width Sample Au Au veins cpy py po 0-3 % 0-3 % % scale 0-10 % m metres # a/t g/t m 0.2 61 Mafic Metavolcanics Cont:-5 0 0 0 0 0 2 61.00 62.00 1.00 743382 < 0.005 60.4-60.7m, white felsic dyke 3 4 5 6 6 64.5-69m, pink felsic dykelets form a 0 0 0 Tr 0 0 7 stockwork and locally breccia with mafic 8 volcanic rocks as angular fragments. 9 69-78.05m, Mafic Volcanic Breccia 70 0 2 0 0 30% of rock is formed of <5cm angular 1 4 0.1 1 volcanic fragments set in a foliated, 2 off-white, medium grained matrix. Lots of 71.00 72.00 1.00 743388 < 0.005 3 calcite & guartz in matrix and possible 4 0 0 6 1 0.1 0 fine grained biotite in fragments. Py is 1 5 74.00 75.00 1.00 743389 < 0.005 sparsely disseminated. Unit could be an 6 0 2 0.1 0 0 altered hyaloclastite. 1 4 7 73-75m, breccia matrix silicified 8 73-74m, 5cm felsic dykes form stockwork 9 0 5 0 0 78.05-80.2m, Felsic Tuff 1 1 0 79.00 80 F.G & M.G. whispy lamellae <2cm thick 80.20 1.20 743390 < 0.005 0 Tr 6 0 0 1 80.2-93.0m, Granitic Breccia 0 0 2 Stockwork of felsic dykes fragmented the 3 mafic volcanics. Where dykes are up to 4 0.5m true agmatitic breccia. Disseminated 5 pyrite adjacent to some felsic dykes. 6 85.00 86.00 1.00 743390 0.015 7 8 9 5 0 Tr 0 0 88.8-90.2m, Fine grained felsic dyke 0 0 90 89.00 90.00 1.00 743392 < 0.005

ł

Page

3

4 of

1

Project

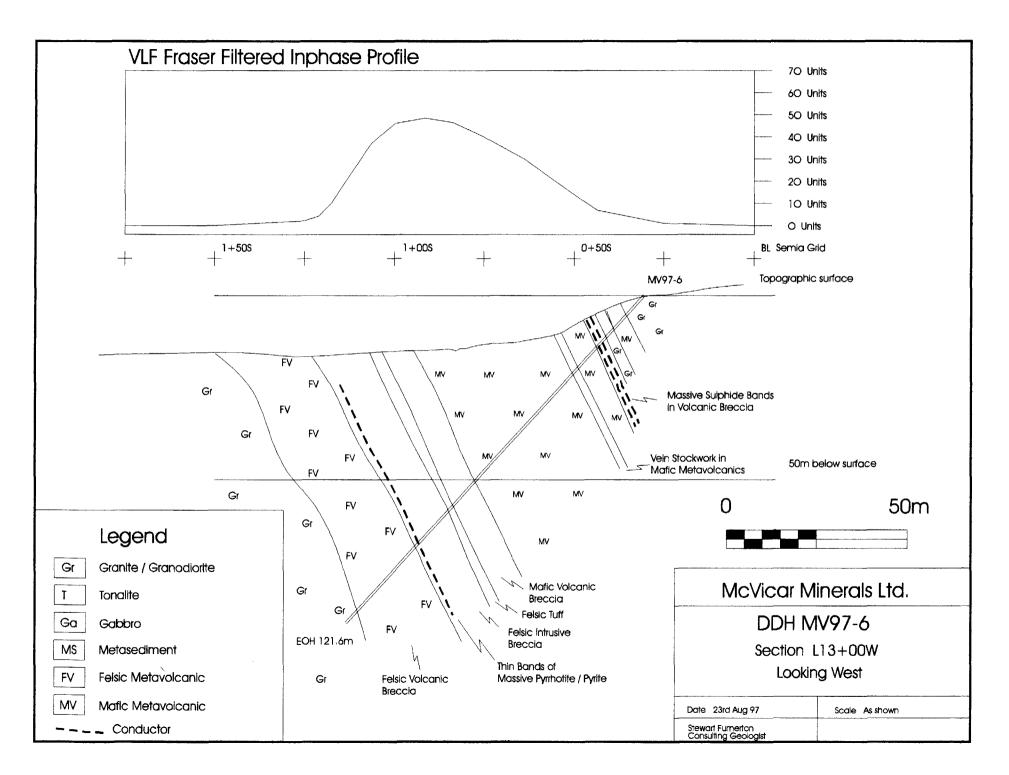
Hole

MV97-6

McVicar Lake

_____5 of _____7 Page

Diamond Drill Log


Depth	بر د	Lithological Description	Alteration quartz hard- Seri-				Mineralization				Sam		Assay 1	Assay 2	
metres	Graph		veins	ness	cite	CO3	ру.	po	сру	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
91		Breccia Cont:-	0	5	0	0	Tr	0	0						
2		92.1-93m, several 2cm bands of 1mm,													
3	50	massive pyrrhotite grains with some	0	5	0	1	1	6	0	92.10	93.00	0.90	743393	0.025	
4		pyrite grains in the centre of the bands.	0	5	1	1	Tr	0	0						
5		93-101.25m, Felsic Volcanic Breccia													
6		Angular to rounded felsic volcanic								95.00	96.00	1.00	743394	<0.005	
7		fragments in light grey, aphanitic felsic													
8		volcanic matrix. Polymictic fragments &	_												
9	70	some tuff bands <5cm. Some sericite +													
100		minor pyrite & ilmenite on foliation planes													
1										100.00	101.00	1.00	743395	<0.005	
2		101.25-103.95m, Mafic Volcanic Breccia	4	5	0	1	0.1	0	0						
3		Same as at 69m. Pyrite disseminated]												
4		in mafic fragments.													
5		103.95-117.2m, Felsic Volcanic Breccia	1	5	1	1	0	0	0	103.95	105.00	1.05	743396	0.005	
6		Similar to 93m. Most quartz veining +													
7		sericite concentrated at top contact.	_												
8		Fragments more visible than at 93m and	1												
9		includes some <5cm felsic dykelets													
110										L					
1			1												
2		11.6-112.8m, mafic volcanic horizon													
3	75	112.8-113.2m sericitic shear zone at 75													
4		deg to core							. 1	112.80	114.00	1.20	743397	0.015	
5											L				
6															
7															
8		117.2-121.6m, Feldspar Porphyry	0	5	0	1	Tr	0	0						
9		<1cm clusters of feldspar phenocrysts													
120		form 15% in F.G. green-grey felsic matrix													

McVicar M	inerals			Dia	amond Drill Log		Page <u>6</u>	_of _7	
Project <u>McVicar Lake</u>			Technical Log	9					
Core	Recove	ery Log			RQD L	og			
From	То	Width (metres)	Length of Core	% Core Recovery	From	Го	Width (metres)	Total Core >13cm for BD	RQD
6.			1.83	68	6.1	8.8		0.91	0.34
8.	8 10.7	1.90	1.78	94	8.8	10.7	1.90	0.56	0.29
10.			1.21	101	10.7	11.9		0.80	0.67
11.	9 14.9	3.00	2.70	90	11.9	14.9		0.90	0.30
14.			1.48	93	14.9	16.5	1.60	0.13	0.08
16.	5 18.0	1.50	1.46	97	16.5	18.0	1.50	0.67	0.45
18.	0 21.0	3.00	2.94	98	18.0	21.0	3.00	1.71	0.57
21.	0 23.5	2.50	2.35	94	21.0	23.5	2.50	1.30	0.52
23.	5 24.1	0.60	0.59	98	23.5	24.1	0.60	0.20	0.33
24.	1 25.8	1.70	1.48	87	24.1	25.8	1.70	0.43	0.25
25.	-		0.41	103	25.8	26.2	0.40	0.00	0.00
26.	2 27.1	0.90	0.82	91	26.2	27.1	0.90	0.40	0.44
27.			3.00	97	27.1	30.2	3.10	2.30	0.74
30.	2 33.2	3.00	3.00	100	30.2	33.2	3.00	2.40	0.80
33.		· · · · · · · · · · · · · · · · · · ·	3.15	102	33.2	36.3	3.10	2.53	0.82
36.	3 39.3	3.00	3.05	102	36.3	39.3	3.00	2.24	0.75
39.			3.04	98	39.3	42.4	3.10	2.72	0.88
42.			3.07	102	42.4	45.4	3.00	2.10	0.70
45.			3.04	98	45.4	48.5	3.10	2.85	0.92
48.			3.00	100	48.5	51.5	3.00	2.39	0.80
51.			3.07	99	51.5	54.6	3.10	2.15	0.69
54.			3.01	100	54.6	57.6	3.00	2.64	0.88
57.	1		3.06	99	57.6	60.7	3.10	2.60	0.84
<u>60</u> .		1	3.03	101	60.7	63.7	3.00	2.31	0.77
63.			3.07	99	63.7	66.8	3.10	2.63	0.85
66.			3.03	101	66.8	69.8	3.00	2.25	0.75
69.			3.04	101	69.8	72.8	3.00	2.22	0.74
72.		1	3.06	99	72.8	75.9	3.10	2.37	0.76
75.			3.05	102	75.9	78.9	3.00	2.49	0.83
78.	- (· · · · · · · · · · · · · · · · · ·	1	2.98	96	78.9	82.0	3.10	2.60	0.84
82.	0 85.0	3.00	3.04	101	82.0	85.0	3.00	2.36	0.79

Diamond Drill Log

t		McVicar La	ke	Hole	MV97-6			Technical Log	9	
Core l	Recove	ery Log			RQDI	_og				
From	To	Width (metres)	Length of Core	% Core Recovery	From	То	Width (metres)	Total Core >13cm for BD	RQD	
85.0	88.1	3.10	3.02	97	85.0	88.1	3.10	2.81	0.9	
88.1	91.1	3.00	3.03	101	88.1	91.1	3.00	1.95	0.6	
91.1	94.2	3.10	3.03	98	91.1	94.2	3.10	2.72	0.8	
94.2	97.2	3.00	3.01	100	94.2	97.2	3.00	2.15	0.7	
97.2	100.3	3.10	3.04	98	97.2	100.3	3.10	2.25	0.7	
100.3	103.3	3.00	3.02	101	100.3	103.3	3.00	2.26	0.7	
103.3	106.1	2.80	2.62	94	103.3	106.1	2.80	1.07	0.3	
106.1	109.1	3.00	3.08	103	106.1	109.1	3.00	1.62	0.5	
109.1	112.2	3.10	3.03	98	109.1	112.2	3.10	1.85	0.6	
112.2	115.2	3.00	2.98	99	112.2	115.2	3.00	1.27	0.4	
115.2	118.3	3.10	2.97	96	115.2	118.3	3.10	2.38	0.7	
118.3	121.3	3.00	3.06	102	118.3	121.3	3.00	2.78	0.9	
121.3	121.6	0.30	0.35	117	121.3	121.6	0.30	0.23	0.7	
·			Total	98						
									<u> </u>	
					=				ļ	
					ļ					
	ļ									
	<u> </u>				 	<u> </u>			<u> </u>	
									<u> </u>	
i									ļ	
	ļ					 			<u> </u>	
					ļ	 				
	ļ									
					ļ				 	

McVicar Minera	ls	Diamone	d Drill Log		Page	1	_of	8
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination	
Area	McVicar Lake		Grid	UTM	Surface	Grid S	50	
Hole	MV97-7	Grid	Semia Lake		120m		43	ļ
Core Size	BDBDGM	Easting	L26+03W					
Date started	22nd August 97	Northing	0+23\$					
Date finished	24th August 97	Elevation						
Geologist	Stew Fumerton	Depth	121.6 m					
		Overburden	2.7 m					
Drill Company	W.G. Langley	Units	Metres					
Casing	Inserted 7' of BW casing in the hole	which was recovered upon c	ompletion.					
	JKS300 drill rig used.				instrument			
Reason drilled	To test a strong EM anomaly that v	vas interpreted to be sulphide	facies iron formation.		Acid	Uncorrected	51 deg	_
Results	The hole did not intersect any iron t	formation sequence but did int	ersect a massive and se	emi massive sulphide inte	rsection overlying an altered	sequence of		_
	mafic pillowed flows which contain	disseminated pyrite and pyrrh	notite. Little chalcopyrite	e occurs in the core and n	o sphalerite but the environn	nent appears	to	_
	be favourable for a base metal volc	anic massive sulphide deposit	No significant gold val	lues were obtained.				
Skeleton Log				Significant	Assays			

From m	To m	Lithology
0.00	2.70	Overburden
2.70	6.00	Mafic Metavolcanics
6.00	14.80	Altered & Brecciated Mafic Metavolcanics
14.80	21.00	Pillowed Mafic Metavolcanics
21.00	31.90	Fragmental Metavolcanics
31.90	44.20	Mafic Metavolcanic Flow
44.20	61.50	Felsic Dyke Stockwork in Mafic Metavolcanics.
61.50	68.00	Mafic Metavolcanics
68.00	72.60	Sheared Mafic Metavolcanics
72.60	76.00	"Tuffwacke"
76.00	79.00	Felsic Metavolcanics
79.00	83.40	Massive and Semi Massive Sulphides
83.40	97.00	Altered Mafic Pillowed Metavolcanics + Sulphides
97.00	120.40	Altered Mafic Metavolcanics

From m	To m	Value g/t Au
		None

Diamond Drill Log

r I i I

Project Hole

McVicar Lake MV97-7

Page

1 :

8

2 of

Depth	بر بر	Lithological Description	quartz	Alter hard-	ation seri-		Min	eraliza	ation		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	ро	сру	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
1		0-2.7m, Overburden													
2					ļ										
3		2.7-6m, Mafic Metavolcanics	0	5	0	0	0	0	0						
4		Dark green, fine grain, massive with some													
5		<1cm calcite/quartz veins. Possible													
6		Fe Tholeiite													
7		6-14.8m, Altered Brecciated Mafic Volc	2	5	1	1	Tr	Tr	0						
8		Variable alteration, mostly near top from								7.00	8.00	1.00	743398	<0.005	
9		light grey to dark green. Sericite, carb &								8.00	9.00	1.00	743399	<0.005	
10		local shearing + brecciation. Common								8.00	10.00	1.00	743400	<0.005	
1		granodiorite dykes <0.5m which are locally								9.00	11.00	1.00	743401	<0.005	
2		saussuritized. Two ages of quartz veins.													
3		VFG quartz, <2cm associated with													
4		hydraulic fractures. These are cut by													
5		hairline calcite / quartz veins.				_									
6		14.8-21m, Pillowed Mafic Volcanics	0	5	0	0	0.5	0.5	0						
7		Dark green, fine grained massive rock													
8		with pillow selvages about a metre apart.													
9		<3mm calcite veins + some py & po veins.													
20		Sulphides sparsely disseminated in matrix.													
1															
2		21.4-31.9m, Fragmental Metavolcanics.	0.5	3	1	1	0.5	0.5	0						
3		Off-white to buff with local ghost								22.00	23.00	1.00	743402	<0.005	
4		fragments and local weak foliation.													
5		Fragments are <3cm, angular & rounded.								24.00	25.00	1.00	743403	<0.005	
6	70	Fragments have <2mm quartz grain in matrix													
7		Gradual upper contact and foliated parts								26.00	27.00	1.00	743404	0.01	
8		are <1mm grains, coarser than fragmental													
9		and may contain some sediment. Py & Po													
30		disseminated in matrix & in trails.													

Diamond Drill Log

Project Hole

McVicar Lake MV97-7

i

Page

ł

1

Depth Lithological Description Alteration Mineralization Sampling Assav 1 Assav 2 quartz hardseri-Graph cite CO3 Imetres veins ness рy po cpy From То Width Sample Au Au 0-3 % 0-10 0-3 % % % # metres g/t scale m m g/t 3 3 30.2 & 30.9m <2cm band semi massive Po 0.5 1 0 30.00 31.00 1.00 743405 < 0.005 31 1 1 2 31.00 31.90 0.90 743406 < 0.005 31.5m, 20cm of Po & Py in breccia matrix 0.1 5 0 0 Tr 0 0 3 31.9-44.2m, Mafic Flow Sheared contact to Very fine grained, 4 5 dark green metavolcanic that becomes 6 coarser grained down hole. Second chill 35.00 36.00 1.00 743407 < 0.005 7 at 33.9m. Anhedral feldspar phenocrysts 8 <3mm between 34 &38m. Pink felsic dykes 9 1 - 10cm form 10% of unit. Qz / Calcite 40 veins are <2mm thick. Medium grained py rare & in trails associated with some veins 1 2 3 43.1m, pillow selvage 4 1 5 0 Tr 0.1 0 5 44-61.5m, Felsic dyke stockwork 1 6 Similar matic metavolcanics as above with 7 local 20cm zones of breccia cemented with 46.00 47.00 1.00 743408 < 0.005 8 carbonate + quartz. The unit is cut by 9 numerous felsic dykes. Both fine grained 50 pink & porphyritic off-white which are typically 2-20cm thick and form 20% of 1 2 unit. First 60cm of unit is a pink dyke. 3 Trails of pyrrhotite + pyrite locally 4 associated with dyke contacts. Some 5 quartz / calcite vein occur throughout 6 and are < 1cm thick. 7 57.00 58.00 1.00 743409 8 0.01 9 60 60.5-61.5m, off-white porphyritic dyke.

8

1

3 of

Diamond Drill Log

Project Hole

McVicar Lake MV97-7

Depth		Lithological Description	quartz	Altera	ation seri-		Min	eraliza	tion		San	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	po	сру	From	То	Width	Sample	Au	Au
scale	-		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
61		Felsic dyke stockwork Cont:-	1	5	0	1	Tr	0.1	0					-	_
2															
3		61.5-68m, Mafic Metavolcanics	2	4	0	2	Tr	0	0						
4		Similar to unit above without the dykes													
5		but more calcite veins. These locally are													
6		diffuse with lower quartz content.								65.00	66.00	1.00	743410	<0.005	
7		63.6m, 20cm quartz vein													
8		63.8m, 30cm porphyritic dyke.													
9		68-72.6m, Sheared Mafic Metavolcanics	2	4	1	1	0.1	0	0	68.00	69.00	1.00	743411	<0.005	
70		Gradual upper contact & variable shearing													
1	60	Pale green, fine grained some bio alteration								70.00	71.00	1.00	743412	<0.005	
2		Pyrite unevenly distributed in unit.								71.00	72.00	1.00	743413	<0.005	
3		72.6-76m, "Tuffwacke"								72.00	72.60	0.60	743414	<0.005	
4		Variable mafic tuff to arenite grading to	1	4	1	1	Tr	4	0	72.60	73.40	0.80	743415	<0.005	
5		breccia and graphitic shale with Po + Py								73.40	74.30	0.90	743416	<0.005	
6		trails. 73.4m 10cm massive pyrrhotite													
7		75-76m felsic dyke with 30cm mafic dyke	0	5	1	0	0	Tr	0						
8		76-79m, Felsic volcanics								77.00	78.00	1.00	743417	<0.005	
9		Off-white-buff, F.G. massive, looks like													
80		felsic volcanic wet & siltstone dry.	0	5	0	0	3	20	0.1	79.00	79.35	0.35	743418	<0.005	
1		78.6-79m, mafic dyke													
2		79- 83.4m Massive-Semi Massive Sulphide								81.50	82.50	1.00	743419	<0.005	
3		Coarse grain, Po & Py, some graphite	0	5	0	0	5	2	0	82.50	83.40	0.90	743420	<0.005	
4		Cpy in late fractures. Some graphitic shale								83.40	84.00	0.60	743421	<0.005	
5		Altered volc 79.35 - 81.5m.								84.00	85.00	1.00	743422	<0.005	
6		83.4-97.4m, Altered Pillowed Flows								85.00	86.00	1.00	743423	<0.005	
7		Medium grey, F.G. altered mafic pillowed								86.00	87.00	1.00	743424	<0.005	
8		flows. Sulphides disseminated through-								87.00	88.00	1.00	743425	<0.005	
9		out with local concentrations in core of								88.00	89.00	1.00	743426	<0.005	
90		pillows. Po also in hairline fractures. Py								89.00	90.00	1.00	743427	<0.005	

1

8

|

1

l

Page

1

4 of

Diamond Drill Log

Project Hole)

McVicar Lake MV97-7

Depth		Lithological Description	quartz	Altera	ation seri-		Min	eraliza	ition		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness		соз	ру	po	сру	From	То	Width	Sample	Au	Au
scale	Ū		%	0-10	:	0-3	%	%	%	m	m	metres	#	g/t	g/t
91		Altered Pillowed Flows Cont:-	0	5		1	5	2	0	90.00	91.00	1.00	743428	<0.005	-
2		at <1mm is coarser than Po and also								91.00	92.00	1.00	743429	<0.005	
3		occurs locally in aggregates.													
4		94-97.4m gradual change into unaltered													
5		mafic pillowed flows.	0.5	5	0	0	Tr	0	0)					
6															
7	ļ														
8		97.4- 120.4m, Altered Mafic Metavolcanics	2	4	0	1	Tr	0.1	0						
9		Light grey to medium green, F.G. with	1												
100		irregular & diffuse carbonate veins. Local	ļ -							L					
1		20-50cm brecciated sections with	-												
2		carbonate cement. Po occurs locally with													
3	ľ	carbonate veins. 5% f unit intruded with													
4		stockwork of off-white porphyritic dykes	-							·····-					
5	ľ	<3cm thick.	1												
6	60		_												
7		107-107.6m, Po trials parallel to	ł												
8		foliation at 60 deg to core axis								107.00	108.00	1.00	7E+06	<0.005	
9	ľ										ļ				
110	l		-								 	ļ	ļ		
1															
2	ſ		-								 				
3															
4	I		-							444.00	445.00	1.00	740400	-0.005	
5		114.3-114.7m, quartz vein	ł							114.00	115.00	1.00	743433	<0.005	
6 7		116.6-116.8m, quartz vein			1					440.00	447.00	1.00	740404	-0.005	
	ſ	116.8-119m, breccia phase	ł							116.00	117.00	1.00	743434	<0.005	
8										117.00	118.00	1.00	743435	<0.005	
120	I		1							<u> </u>					
120				<u> </u>		<u>i</u>]			<u> </u>	1				<u> </u>)

8

1

ł

1

Page

}

5 of

Diamond Drill Log

Project Hole

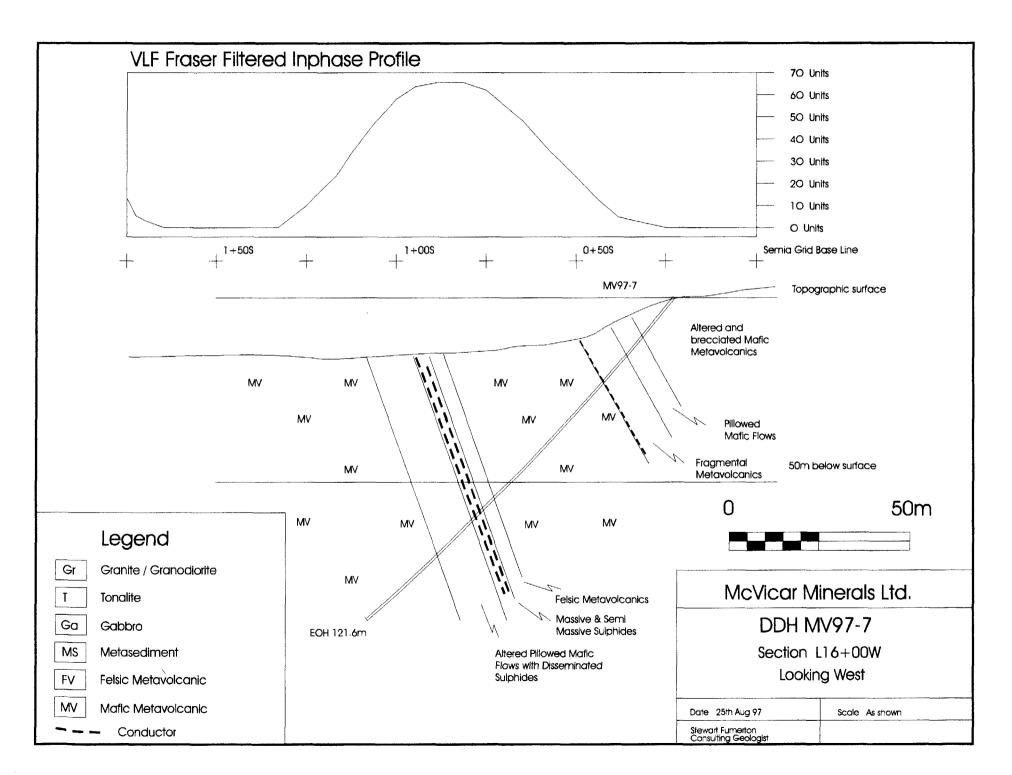
McVicar Lake	Page	6	of
MV97-7			

Depth	Ę	Litholog	gical Description	quartz	Altera hard-	ation seri-		Min	eraliza	ation		San	npling		Assay 1	Assay 2
metres	Graph	ļ		veins	ness		CO3	ру	ро	сру	From	То	Width	Sample	Au	Au
scale	·			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
121		120.4-1	21.6m, Felsic Metavolcanic	0	4	1	1	0	0							
2			Same as at 76m.	<u> </u>						Ļ		ļ				
3		121.6m	End of Hole													
4											ļ					
5																
6							-									
7																
8		1														
9		ļ									ļ					ļ
130																1
		N.B.	The felsic metavolcanics at 76m and again	•												
			at 120.4m have an inconclusive appearance	e. 												1
			Dry the unit is a relatively uniform off-													
		1	white and relatively soft which may	ļ											l	
			indicate that the fine grains are not tightly bound as may be the case with a siltstone.													
			The unit has a blotchy off white to buff													
			colour and is somewhat translucent like								ļ					
			an aphanitic felsic rock and is cut by													
			a stockwork of irregular hairline													
			fractures.													
										Į	Į					
			Within the massive sulphide unit at 79m													
			there is a barren section of mafic													-
		}	metavolcanics which was not sampled.								l ł					
		ļ														
		1														
											{				i	

McVicar Minerals Diamond Drill Log Page 7 of 8 Project McVicar Lake Hole MV97-7 Technical Log

Core Recovery Log

From	То	Width (metres)	Length of Core	% Core Recovery
2.7	5.8	3.10	2.70	87
5.8	8.8	3.00	3.05	102
8.8	11.9	3.10	2.98	96
11.9	14.9	3.00	3.09	103
14.9	18.0	3.10	3.01	97
18.0	21.0	3.00	3.09	103
21.0	24.1	3.10	3.05	98
24.1	27.1	3.00	2.97	99
27.1	30.2	3.10	3.00	97
30.2	32.3	2.10	1.85	88
32.3	33.2	0.90	1.02	113
33.2	36.3	3.10	3.02	97
36.3	39.3	3.00	3.02	101
39.3	42.2	2.90	3.03	104
42.2	45.4	3.20	3.03	95
45.4	48.5	3.10	2.98	96
48.5	51.5	3.00	2.99	100
51.5	54.6	3.10	3.07	99
54.6	57.6	3.00	3.06	102
57.6	60.7	3.10	3.00	97
60.7	63.7	3.00	3.04	101
63.7	66.8	3.10	3.02	97
66.8	69.8	3.00	3.04	101
69.8	72.8	3.00	2.96	99
72.8	75.9	3.10	3.07	99
75.9	78.9	3.00	3.04	101
78.9	82.0	3.10	3.03	98
82.0	85.0	3.00	3.07	102
85.0	88.1	3.10	3.03	98
88.1	91.1	3.00	2.95	98
91.1	94.2	3.10	2.94	95


RQD Log

From	То	Width (metres)	Total Core >13cm for BD	RQD
2.7	5.8	3.10	1.29	0.42
5.8	8.8	3.00	2.22	0.74
8.8	11.9	3.10	2.05	0.66
11.9	14.9	3.00	2.73	0.91
14.9	18.0	3.10	1.83	0.59
18.0	21.0	3.00	2.22	0.74
21.0	24.1	3.10	2.57	0.83
24.1	27.1	3.00	1.67	0.56
27.1	30.2	3.10	1.61	0.52
30.2	32.3	2.10	0.66	0.31
32.3	33.2	0.90	0.85	0.94
33.2	36.3	3.10	2.18	0.70
36.3	39.3	3.00	1.87	0.62
39.3	42.2	2.90	2.42	0.83
42.2	45.4	3.20	2.28	0.71
45.4	48.5	3.10	1.86	0.60
48.5	51.5	3.00	1.73	0.58
51.5	54.6	3.10	2.48	0.80
54.6	57.6	3.00	1.66	0.55
57.6	60.7	3.10	2.25	0.73
60.7	63.7	3.00	2.56	0.85
63.7	66.8	3.10	2.47	0.80
66.8	69.8	3.00	2.70	0.90
69.8	72.8	3.00	1.98	0.66
72.8	75.9	3.10	1.55	0.50
75.9	78.9	3.00	2.25	0.75
78.9	82.0	3.10	2.16	0.70
82.0	85.0	3.00	2.85	0.95
85.0	88.1	3.10	2.55	0.82
88.1	91.1	3.00	2.48	0.83
91.1	94.2	3.10	2.50	0.81

ł

NCVICA	r Min	erals				Diamond Drill	Log			Page <u>8</u>	_of <u>8</u>
Project			McVicar La	ike	_ Hole	<u>MV97</u>	-7			Technical Lo	9
Ce	ore R	ecove	ry Log				RQD L	.og			
Fro	om ^r	Го	Width (metres)	Length of Core	% Core Recovery		From	To	Width (metres)	Total Core >13cm for BD	RQD
	94.2	97.2	3.00	3.06	102		94.2	97.2	3.00	2.53	0.84
	97.2	100.3	3.10	3.07	99		97.2	100.3	3.10	2.45	0.79
	100.3	103.3	3.00	3.01	100		100.3	103.3	3.00	2.08	0.69
	103.3	106.4	3.10	3.05	98		103.3	106.4	3.10	1.48	0.48
	106.4	109.4	3.00	3.04	101		106.4	109.4	3.00	2.80	0.93
	109.4	112.5	3.10	3.01	97		109.4	112.5	3.10	2.59	0.84
	112.5	115.5	3.00	3.04	101		112.5	115.5	3.00	2.49	0.83
	115.5	118.6	3.10	3.08	99		115.5	118.6	3.10	2,43	0.78
	118.6	121.6	3.00	2.96	99	_	118.6	121.6	3.00	2.55	0.85
				Total	99						
						-1					
						-					
						-					
						4					

McVicar Minera	lls	Diamon	d Drill Log		Page	1	_of	5
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination	
Area	McVicar Lake		Grid	UTM	Surface	Grid S	50	
Hole	MV97-8	Grid	McVicar Lake		91		49	
Core Size	BDBDGM	Easting	L19+24W					
Date started	24th August 97	Northing	0+14S					
Date finished	26th August 97	Elevation						
Geologist	Stew Fumerton	Depth	91.1 m					
		Overburden	1m					
Drill Company	W.G. Langley	Units	Metres					
Casing	2' of BW casing was inserted at the start of	of the hole and recovere	ad at the end of the hole.					
	JKS300 drill rig used.		·		Instrument			
Reason drilled	To test a short EM conductor thought to b	e associated with band	ed iron formations.		Acid	Uncorrected	57 deg	
Results	The hole intersected a highly variable and	locally altered mafic m	etavolcanics. Within this	sequence there are three z	ones of semi massive su	ulphides in the	matrix	

Skeleton Log

Significant Assays

From m	To m	Lithology	
0.00	1.00	Overburden	
1.00	37.85	Mixed Mafic Metavolcanics	
37.85	40.20	Siliceous Breccia	
40.20	42.10	Semi Massive Sulphides in Volcanic Breccia	
42.10	46.80	Mafic Metavolcanic Breccia	
46.80	48.60	Semi Massive Sulphides in Volcanic Breccia	
48.60	84.90	Mixed Mafic Metavolcanics	
84.90	91.10	Siliceous Unit	

From	m	To m	Value g/t Au
			None
L			<u> </u>

 McVicar Minerals
 Project
 McVicar Lake
 Page
 2 of
 5

1

McVicar Minerals
Diamond Drill Log

Hole

MV97-8

Depth		Lithological Description	quartz	Altera	ation serl-	44.6	Min	eraliza	ition		Sar	npling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	po	сру	From	То	Width	Sample	Au	Au
scale	0		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
1		0-1m, Overburden.												J.	<u>j</u>
2		1-37.85m, Mixed Mafic Metavolcanics	0.5	5	0	1	Tr	Tr	0			1			
3		Dark green, fine grained, mostly massive.													
4		Pillowed flows are locally recognizable &													
5		there Po with lesser Py occurs along the													
6		pillow margins and in nearby suassuritized													
7		joints. F.G. Ilmenite occurs in the matrix]												
8															
9															
10															
1		10-12.5m, Altered and coarser grained	0	4	0	1	0.1	0	0						
2		phase, paler green with 20% carbonate/										ļ			
3		quartz veins <5cm, biotite grains form	ļ									ļ			
4		small aggregates. Some felsic dykes &	2	5	0	0	Tr	Tr	0						
5		Py sparsely disseminated in matrix	-												
6			_											i I F	
7			-												
8												-			
9		18-20m, Altered & coarser as at 10m	0	4	0	0	0	0	0						
20		possible pyroxene occurs.													
1		20-23m, brecciated phase with carbonate	0.2	5	0	0	Tr	0	0			ļ			
2		in matrix cement, with some remnant.	1												
3		hyaloclastite & vesicular pillows													
4		23-27m, common <20cm CG, white felsic	0.2	5	0	0	Tr	Tr	0						
5		dykes form 30% of interval.													
6															
7															
8		27-28.9m, Qz/Calcite veins <2cm thick.	3	5	0	1	Tr	0	0			-			
9															
30		28.9-32.8m Altered brecciated phase	2	4	0	2	0.1	0	0						

Diamond Drill Log

Project

Hole

McVicar	Lake	
MV97-8		

Depth	£	Lithological Description	quartz	Altera hard-	ation serl-		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	ро	сру	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
31		The breccia has whispy lamellae and foln	2	4	0	2	0.1	0	0			L			
2	70	at 70 deg to core. Also crenulation									<u> </u>				
3		cleavage. FG Pt sparsely disseminated in													
4		original clasts & breccia matrix.	0.2	5	0	0	0	0	0						
5		32.8-37.85m, felsic dykes <40cm form													
6		stockwork & 30% of interval										L	[
7															
8		37.85-40.2m, Siliceous Breccia	0	6	0	0	Tr	0	0						
9		Foliated, whispy chloritic lamellae, zoned													
40		mafic volc fragments + Feld porphyry								39.00	40.20	1.20	743436	<0.005	
1		Sharp contacts with Py along foliation.	1	4	0	1	2	10	0	40.20	41.00	0.80	743437	<0.005	·
2		40.2-42.1m Sulphides in Volcanic Breccia								41.00	42.10	1.10	743438	<0.005	
3		Sulphides in breccia matrix surrounding	0.5	4	0	2	0	0.1	0	42.10	43.00	0.90	743439	<0.005	
4		off-white volcanic fragments.													
5	75	42.1-46.8m, Mafic Volcanic Breccia													
6		Similar to 28.9m	_												
7		44.7-45.2m, siliceous unit													
8		46.8-48.6m Sulphides in Volcanic Breccia	0	6	0	0	2	15	0	46.80	47.80	1.00	743440	<0.005	
9		Similar to 40.2m								47.80	48.60	0.80	743441	<0.005	
50		48.6-84.9m, Mixed Mafic Metavolcanics	5	4	0	2	Tr	Tr	0						
1		Variable unit with shorts sections of FG													
2		flows cut by Calcite/Quartz veins,													
3	73	brecciated sections as 28.9m, zones with								52.00	53.00	1.00	743442	<0.005	
4		<20cm felsic dykes and sections with	3	5	0	2	0.1	0.1	0						
5		siliceous laminated material.													
6		53.4 & 57.3m, 10cm quartz vein								55.15	55.60	0.45	743443	<0.005	
7		55.15-55.6m, laminated siliceous unit with													
8		sulphides													
9															
60		59.4-61.8m light grey siliceous band	0	5	0	0	Tr	Tr	0						

______ 3_ of _____5___

Page

McVicar Lake

4 of 5

1

1

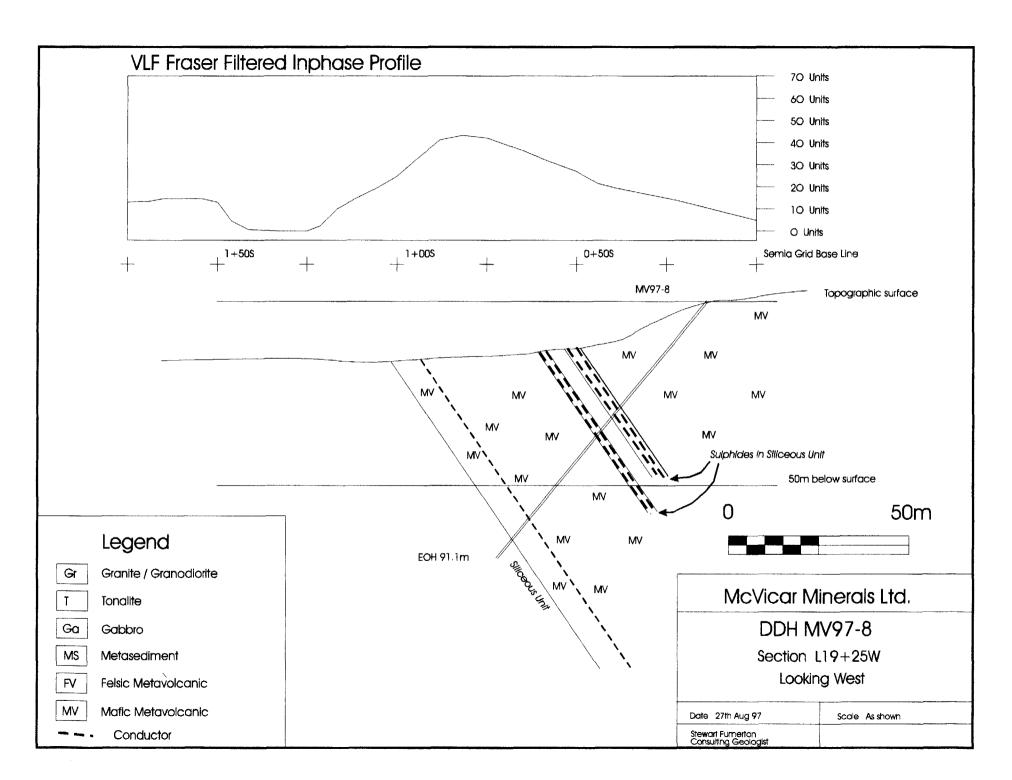
1

Page

McVicar Minerals

Diamond Drill Log

Project Hole


MV97-8

Depth	<u></u>	Lithological Description		Altera			Mine	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	serl- cite	CO3	ру	ро	сру	From	То	Width	Sample	Au	Au
scale	U		%	0-10		0-3	%	%	%	m	m	metres	#	g/t	g/t
61		Mixed Mafic Metavolcanic Cont:	0		0	†	Tr	Tr						3	3
2	50				•							1			
3		63-63.7m number of 10cm quartz veins.	5	5	0	1	0	0	0						
4			-							63.00	63.70	0.70	743444	<0.005	
5		63.8-64.2m Siliceous zone	1								1	1			
6		65.2-66.05m, Siliceous zone													
7)	50	5	0	0	0	0	0	66.05	67.00	0.95	743445	<0.005	
8			1							67.00	68.00	1.00	743446	<0.005	
9			0.2	5	0	1	Tr	0	0						
70		70.5m, amygdules in mafic volcanics													
1															
2	65	71.9-74m, foliated - laminated siliceous													
3		band with alternating FG and CG horizons	1	4	1	1	Tr	0	0			ļ			
4		Possible arenite mixed in with a tuff.								73.00	74.00	1.00	743447	<0.005	
5			1	5	0	2	0.1	Tr	0			ļ			
6						L									
7		76.5-77.7m, laminated siliceous band	0.5	4	1	1	1	10	0	76.50	77.70	1.20	743448	<0.005	
8		77.7-78m, Mafic volcanic breccia									ļ	ļ			
9		78-80.7m siliceous unit	0.3	5	0	2	Tr	0.5	0		79.00	1.00	743449	<0.005	
80		•	ļ							79.00	80.00	1.00	743450	<0.005	
1			0	5	0	0	0	0	0						
2		81.2-81.8m, laminated mafic volcanics	0	4	0	2	1	6	0	81.20	81.80	0.60	743451	<0.005	
3		with carbonate and biotite alteration with	0.1	5	0	0	0	0	0						
4		sulphide trails													
5		84.9-91.1m, Siliceous Unit	 								<u> </u>				
6		FG, off-white unit that has a buff and	1	5	0	1	Tr	0	0		ļ				
7		translucent tint when wet. Contacts are													
8		very sharp with an intrusive discordant	-								ļ				
9	1	style. The origin of the unit is not	-												
90		definite but probably a modified primary	I			<u> </u>					<u> </u>	l			

1

	Minerals			D	Diamond Drill Log		wa diana wata wa a	Page <u>5</u>	_of _5
Project		McVicar La	ke	Hole	MV97-8			Technical Log	g
Co	ore Recove	ery Log			RQD Lo	g			
Fro	m To	Width (metres)	Length of Core	% Core Recovery	From T	0	Width (metres)	Total Core >13cm for BD	RQD
	2.7 5.8	3.1	2.94	95	2.7	5.8	3.1	1.30	0.42
	5.8 8.8		3.05	102	5.8	8.8	3.0	1.73	0.58
ļ	8.8 9.8		0.77	77	8.8	9.8	1.0	0.32	0.32
ļ	9.8 11.9		2.22	106	9.8	11.9	2.1	1.88	0.90
	11.9 14.9		3.00	100	11.9	14.9	3.0	2.17	0.72
	14.9 18.0	<u>† · · · · · · · · · · · · · · · · · · ·</u>	3.01	97	14.9	18.0	3.1	2.27	0.73
ļ	18.0 21.0		3.11	104	18.0	21.0	3.0	2.20	0.73
	21.0 24.1		3.01	97	21.0	24.1	3.1	2.39	0.77
1	24.1 27.1		3.02	101	24.1	27.1	3.0	2.31	0.77
	27.1 30.2		3.05	98	27.1	30.2	3.1	2.71	0.87
	30.2 33.2		3.04	101	30.2	33.2	3.0	2.71	0.90
	33.2 36.3	· · · · · · · · · · · · · · · · · · ·	3.03	98	33.2	36.3	3.1	2.20	0.71
h	36.3 39.3		3.07	102	36.3	39.3	3.0	2.64	0.88
	39.3 42.4		3.04	98	39.3	42.4	3.1	2.55	0.82
	42.4 45.4		3.04	101	42.4	45.4	3.0	2.19	0.73
	45.4 48.4		3.04	101	45.4	48.4	3.0	2.45	0.82
	48.4 51.5		2.96	95	48.4	51.5	3.1	2.50	0.81
	51.5 54.6		3.05	98	51.5	54.6	3.1	1.90	0.61
	54.6 57.6	· · · · · · · · · · · · · · · · · · ·	3.02	101	54.6	57.6	3.0	2.63	0.88
	57.6 60.7		3.01	97	57.6	60.7	3.1	1.94	0.63
<u> </u>	60.7 63.7		2.98	99	60.7	63.7	3.0	2.49	0.83
<u> </u>	63.7 66.8		3.02	97	63.7	66.8	3.1	2.59	0.84
	66.8 69.8 60.8 73.8		3.00	100	66.8	69.8	3.0	1.58	0.53
	69.8 72.8 73.8 75.0		3.05	102 97	69.8	72.8	3.0	2.56	0.85
	72.8 75.9		3.02		72.8	75.9	3.1	2.09	0.67
	75.9 78.9		2.97	99	75.9	78.9	3.0	2.17	0.72
l	78.9 82.0		3.07	99	78.9	82.0	3.1	1.98	0.64
	82.0 85.0		3.00	100	82.0	85.0	3.0	2.05	0.68
	85.0 88.1		3.07	99	85.0	88.1	3.1	1.97	0.64
	88.1 91.1	3.0	2.99 Total	100 99	88.1	91.1	3.0	2.02	0.67

McVicar Minera	lls	Diamono	d Drill Log		Page	1	of	
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination	
Area	McVicar Lake		Grid	UTM	Surface	Grid S	50	
Hole	MV97-9	Grid	Semia Lake		88m		50	
Core Size	BDBDGM	Easting	L24+98W					
Date started	27th August 97	Northing	1+32N					
Date finished	29th August 97	Elevation						
Geologist	Stew Fumerton	Depth	88.1 m		· · · · · · · · · · · · · · · · · · ·			
		Overburden	2.7 m					
Drill Company	W.G. Langley	Units	Metres			_		
Casing	7' of BW casing was inserted to start the I	nole and retrieved upon	completion.					
	JKS300 drill rig used.				Instrument			
Reason drilled	To test a strong EM anomaly that was inte	erpreted to be sulphide t	facies iron formation.		Acid	Uncorrected :	58 deg	ŝ

Skeleton Log

Significant Assays

From m	To m	Lithology
0.00	2.70	Overburden
2.70	31.20	Mafic Metavolcanics
31.20	37.50	Siliceous Unit, Possible tectonised arenaceous sandstone
37.50	51.10	Mafic Metavolcanics
51.10	52.10	Semi Massive Sulphides in Breccia Matrix
52.10	61.50	Siliceous unit
61.50	63.50	Semi Massive Sulphides in Breccia + Massive Sulphides
63.50	67.50	Mafic Metavolcanic Flow
67.50	83.00	Siliceous unit
83.00	87.20	Mafic Metavolcanic Flow
87.20	88.10	Siliceous unit

From m	To m	Value g/t Au	
		None	

Diamond Drill Log

Project Hole

McVicar	Lake
MV97-9	

Depth		Lithological Description		Altera			Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	sei- cite	CO3	ру	po	сру	From	То	Width	Sample	Au	Au
scale			%	0-10		0-3	%	%	%	m	m	metres	#	g/t	g/t
1		0-2.7m, Overburden												3.1	<u>g</u> .
2			1									· · · · · · · · · · · · · · · · · · ·			
3		2.7-31.2m, Mafic Metavolcanics	0.3	5	0	2	Tr	0	0						
4		Dark green, fine grained with open stock-													
5		work of carbonate / quartz veins <1.5cm.													
6		Rock is mainly massive and probably a													
7		flow but locally sections are brecciated													
8		with carbonate rich matrix that may be								7.00	8.00	1.00	743452	<0.005	
9		derived from hyaloclastites or flow top													
10		breccias. Sulphides occur in uncommon													
1		trails <2mm thick								10.00	11.00	1.00	743453	<0.005	
2	65	12-13m, foliated breccia at 65 deg to													
3		core													
4										13.00	14.30	1.30	743454	<0.005	
5		14.3-14.8m, biotite alteration of mafic	2	4	0	0	1	0	0	14.30	14.80	0.50	743455	<0.005	
6	-	volcanics. <1mm grain pyrite disseminated	1	5	0	2	0.5	0	0	14.80	16.00	1.20	743456	<0.005	
7		14.8-19.3m, breccia phase. Pyrite in trails													
8		parallel to foliation. 18.5m 10cm quartz												-	
9		vein								18.00	19.00	1.00	743357	<0.005	
20		19.3-28.5m, Saussuritized M.G. felsic	0.2	5	0	2	Tr	0	0						
1		dykes form a stockwork in mafic													
2		volcanics. Variable carbonate alteration.								_					
3		Pyrite disseminated in both felsic dykes													
4		and mafic volcanics.													
5															
6										25.00	26.00	1.00	743458	<0.005	
7															
8															
9	50	28.5-31.2m, breccia phase													
30			0	5	0	1	0	0	0						

2 of 5

Page

Diamond Drill Log

Project Hole

McVicar Lake MV97-9

Page

_____ of

Depth		Lithological Description		Altera			Mine	eraliza	tion	1	Sam	pling		Assay 1	Assay 2
metres	Graph		quartz veins	hard- ness	seri- cite	соз	ру	po	сру	From	То	Width	Sample	Au	Au
scale	U		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
31			0	5	0		0	0	<u> </u>					9.	y.
2		31.2-37.5m, "Arenite"	0.5	5	1	1	0.1	0	·						
3		Fine grain, Light grey, to buff, the latter													
4		due to alteration. Common 2-3cm whispy													
5		bands of mafics. and crack & seal fractures.								34.00	35.00	1.00	743459	<0.005	
6		Pyrite in wafers along joints.													
7	65	35.6-36.5m breccia MV & sediment bed	1	4	0	5 m	0	Tr	0						
8		37.5-51.1m, Mafic Metavolcanics	0.2	5	0		0	0	0						
9		Tabular though angular mafic volcanic													
40		fragments aligned parallel to foliation set													
1		in carbonate rich matrix. Locally diffuse								40.00	41.00	1.00	743460	<0.005	
2		pyrrhotite trails up to 4mm thick occur.													
3		at 65 deg to core													
4	65														
5										44.00	45.00	1.00	743461	<0.005	
6															
7		47.5m, 6cm quartz vein													
8		48-50m, weaker foliation													
9															
50			0	4	0	2	5	0	0	50.00	51.10	1.10	743462	<0.005	
1		51.1-52.1m, Semi Massive Sulphide	1	6	0	1	1	25	0		52.10	1.00	743463	<0.005	
2		Po forms matrix net with felsic clasts	0.5	5	1	1	3	Tr	0	52.10	53.00	0.90	743464	<0.005	
3		52.1-61.5m, Siliceous Unit								53.00	54.00	1.00	743465	<0.005	
4		Light buff, very fine grained, locally	0.1	6	1	1	Tr	Tr	0						
5	60	foliated but mostly "massive" with some													
6		fractures filled with pyrrhotite and pyrite.								55.00	56.00	1.00	743466	<0.005	
7		65m, foliation60 deg to core axis													
8										.,	ļ				
9											ļ				
60										59.00	60.00	1.00	743467	<0.005	

Diamond Drill Log

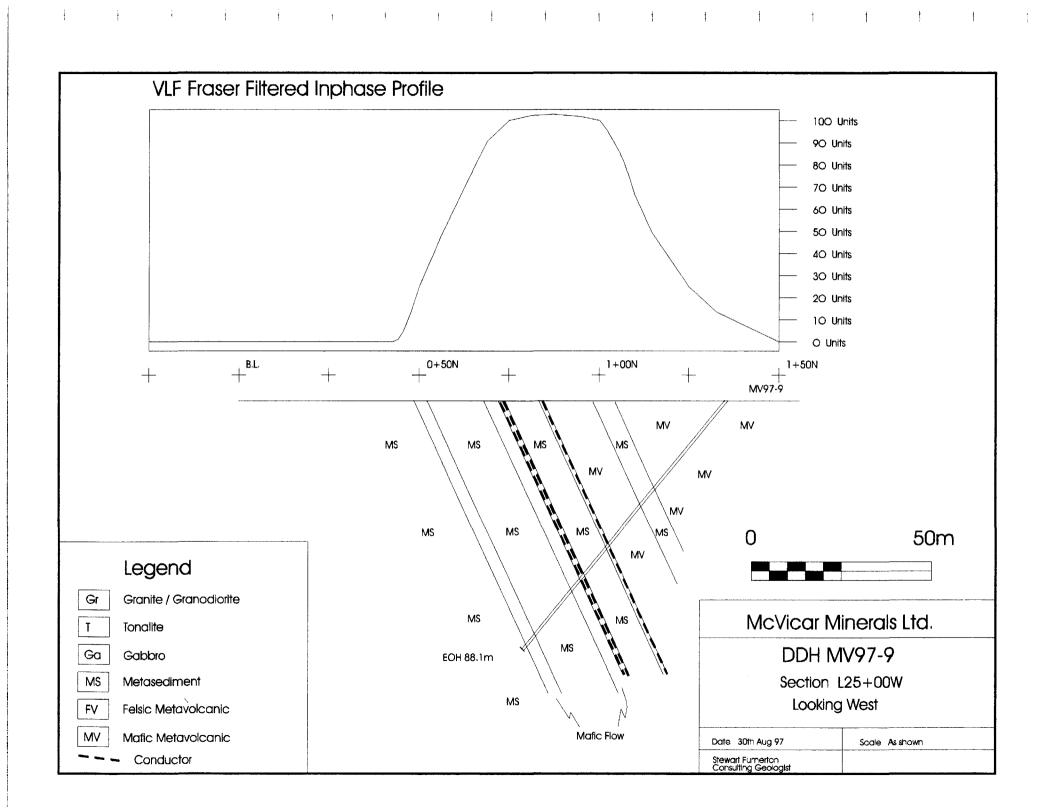
Project

Hole

McVicar Lake MV97-9

ţ

5


4 of

Page

4 1 1 mg

Depth		Lithological Description	quartz	Altera	ation seri-		Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	po	сру	From	То	Width	Sample	Au	Au
scale	Ŭ		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
61		61.4-63.5m, Sulphide Breccia	0.1	6	1	1	Tr	Tr		1	1			, The second sec	Ū
2		Altered mafic volcanic clasts in Po + C.G.	5	4	0	1	4	20	0	61.40	62.00	0.60	743468	<0.005	
3		secondary Py matrix. Local solid sulphide								62.00	62.80	0.80	743469	<0.005	
4		bands from 62.5-62.8m	2	5	0	0	Tr	0	0	62.80	63.50	0.70	743470	<0.005	
5		63.5-67.5m, Mafic Flow													
6		Medium grain, massive, dark green. Last	1												
7		half metre brecciated with carbonate rich]												
8		matrix with rare specks of pyrite.	0.2	6	1	0	0.1	0	0						
9		67.5-83m, Siliceous Unit.													
70		Fine grain, gritty, off-white to buff unit.													
1		This may be a recrystalized, tectonized								70.00	71.00	1.00	743471	<0.005	
2		fine sandstone. No recognizable beds													
3		but may be imbricated by small scale													
4		faulting. Whispy mafic bands <3cm thick													
5		could be mafic tuffs or wackes.													
6										75.00	76.00	1.00	743472	<0.005	
7															
8															
9		78.6-80.2m, mafic volcanic breccia	3	5	0	1	1	0	0	78.60	79.20	0.60	743473	0.030	
80										79.20	80.20	1.00	743474	<0.005	
1	75	81m, foliation at 75 deg to core axis	0.2	6	1	0	0.1	0	0						
2															
3										82.00	83.00	1.00	743475	<0.005	
4		83-87.2m, Mafic Flow	1	4	0	0	0.1	0	0						
5		Similar to unit at 63.5m. Pyrite locally													
6		disseminated about saussuritized													
7		fractures													
8		87.2-88.1m, Siliceous Unit	1	6	0	0	0.1	0	0						
9		Same as at 67.5m.			_										
90		88.1m, End of Hole													

	nerals			Dia	amond Drill Log			Page <u>5</u>	_of _ <u>5</u>
oject		McVicar La	ike	Hole	MV97-9			Technical Log	9
Core I	Recove	ery Log			RQD	.og			
From	То	Width (metres)	Length of Core	% Core Recovery		To	Width (metres)	Total Core >13cm for BD	RQD
2.7	5.8		2.84	92	2.7			1.70	0.55
5.8			3.02	101	5.8		ł	2.54	0.85
8.8	11.9		3.06	99	8.8			2.13	0.69
11.9	14.9		2.99	100	11.9			1.67	0.56
14.9			3.04	98	14.9			2.27	0.73
18.0	21.0		2.97 3.06	<u>99</u> 99	<u>18.0</u> 21.0		3.00 3.10	2.53	0.84 0.67
21.0					-	24.1			
24.1 27.1	27.1 30.2	1	3.04	101 98	<u>24.1</u> 27.1	30.2	3.00 3.10	2.54 2.70	0.85
30.2	33.2		3.04	100	30.2			1.19	0.40
33.2	36.3		3.06	99	33.2		1	1.19	0.63
36.3	39.3	1	3.04	101	36.3			2.42	0.81
39.3	42.4		3.01	97	39.3		3.10	2.99	0.96
42.4	45.4		3.05	102	42.4		3.00	2.62	0.87
45.4	48.5		2.94	95	45.4	48.5	· · · · · · · · · · · · · · · · · · ·	2.27	0.73
48.5	51.5		3.03	101	48.5			1.84	0.61
51.5	54.6		3.07	99	51.5			2.18	0.70
54.6	57.6		3.05	102	54.6			2.57	0.86
57.6	60.7		3.06	99	57.6	60.7	3.10	1.80	0.58
60.7	63.7	3.00	3.06	102	60.7	63.7	3.00	2.20	0.73
63.7	66.8	3.10	2.99	96	63.7	66.8	3.10	1.88	0.61
66.8	69.8	3.00	3.04	101	66.8	69.8	3.00	2.08	0.69
69.8	72.8	3.00	3.03	101	69.8	72.8	3.00	2.22	0.74
72.8	75.9	3.10	3.03	98	72.8	75.9	3.10	1.75	0.56
75.9	78.9	3.00	3.06	102	75.9	78.9	3.00	1.84	0.61
78.9	82.0	3.10	3.00	97	78.9	82.0	3.10	2.39	0.77
82.0	85.0	3.00	3.01	100	82.0	85.0	3.00	2.31	0.77
85.0	88.1	3.10	2.99	96	85.0	88.1	3.10	2.45	0.79

McVicar Minera	ls	Diamone	d Drill Log		Page	1	of
Project	McVicar Lake	Collar Co-o	rdinates		Survey	Direction	Inclination
Area	McVicar Lake		Grid	UTM	Surface	Grid S	50
Hole	MV97-10	Grid	Semia Lake		88		49
Core Size	BDBDGM	Easting	L27+98W				
Date started	29th August 97	Northing	2+02N				
Date finished	31st August 97	Elevation					
Geologist	Stew Fumerton	Depth	91.1 m				
		Overburden	3.7 m				
Drill Company	W.G. Langley	Units	Metres				
Casing	12' of BW casing inserted at the st	art of the hole.			_		1
	JKS300 drill rig used.			AND 844	Instrument		
Reason drilled	To test a strong EM anomaly that v	vas interpreted to be sulphide	facies iron formation.		Acid	Uncorrected	57 deg
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1			
Results	Two massive and semi massive su	Iphide horizons were intersect	ed in the hole in a seque	nce of mafic metavolcani	cs and dirty arenaceous sa	ndstone. Pyrit	e is a
	secondary mineral growing in open	cavities and the environment	could be favourable for t	ase metal mineralization	. Gold assays returned from	n the hole are	
	uniformly below detection levels.						

Skeleton Log

Significant Assays

From m	To m	Lithology
0.00	3.70	Overburden
3.70	18.00	Mafic Metavolcanics
18.00	39.40	Variolitic Mafic Metavolcanics
39.40	42.60	Siltstone
42.60	59.00	Mafic Metavolcanic Pillows
59.00	59.80	Siltstone - Graphitic Shale
59.80	62.80	Mafic Metavolcanic Breccia
62.80	65.70	Net Sulphides in Breccia
65.70	72.30	Siliceous Unit
72.30	75.90	Mafic Variolitic Pillows
75.90	77.00	Bedded Siltstone - Sandstone
77.00	77.30	Massive Pyrrhotite and Pyrite
77.30	86.00	Bedded Siltstone - Sandstone
86.00	91.10	Mafic Pillowed Flow

From m	To m	Value g/t Au	
		None	

Diamond Drill Log

Project Hole

McVicar Lake MV97-10

Depth Lithological Description Alteration Mineralization Sampling Assay 1 Assay 2 quartz hardsei-Graph То Width Au metres veins ness cite CO3 сру From Sample Au po py 0-3 % % % scale % 0-10 0-3 metres # a/t m m a/t 0-3.7m, Overburden 1 2 3 4 3.7-18m, Mafic Metavolcanics 10 4 0 2 0 0 0 5.00 6.00 1.00 743476 0.020 5 743437 < 0.005 Dark green fine grain massive unit. 6.00 7.00 1.00 6 3.7-7m, strong carbonate alteration and 7 brecciation of the metavolcanics 8 0 5 Tr 0 6-6.5m, stockwork of quartz veins. 0 0 1 9 9-19m, open stockwork of small white 10 (<10cm), feldspar porphyritic dykelets 1 that are saussurtized and form 1% of the 10.00 11.00 1.00 743478 < 0.005 2 interval. 3 4 5 14.00 15.00 743479 < 0.005 14-16m, volcanic breccia with carbonate 2 4 0 2 0.1 0 0 1.00 6 15.00 16.00 1.00 743480 0.030 rich matrix, probably altered hyaloclastite 7 5 0 0 1 Tr 0 0 8 18-39.4m, Variolitic Mafic Metavolcanic 9 2 6 0 0 0 0 Less 5mm light green varioles form up to 0 20 30% of the unit locally and set in dark green < 0.005 1 fine grain matrix with brown tints. Unit is 20.00 21.00 1.00 743481 2 brecciated locally with <2cm angular 3 fragments set in slightly altered matrix 4 over 10cm. This breccia unlike others 5 intersected appears to be a flow top 6 breccia. Elsewhere pillow selvages are 7 recognizable 8 0 Tr 0.1 27.00 28.00 1.00 743482 < 0.005 24-26m, M.G., massive flow 3 6 0 0 9 27-39.4m, pillowed flows cut by guartz 30 veins. some white feld porph dykes are

1

5

1

ł.

1

2 of

Page

Diamond Drill Log

. .

Project Hole

ł

McVicar Lake MV97-10

· · · · ·

Depth		Lithological Description		Alter			Min	eraliza	tion		Sam	pling		Assay 1	Assay 2
metres	Graph		quartz	naro- ness	seri- cite	CO3	ру	po	сру	From	То	Width	Sample	Au	Au
scale	0		%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
31		Variolitic Mafic Metavolcanic Cont:	3	1	0	1					31.00	1.00	743483	<0.005	-
2		The sulphides typically occur between								<u> </u>					
3		pillows as discontinuous trails.													
4										33.00	34.00	1.00	743484	<0.005	
5															
6															
7															
8										37.00	38.00	1.00	743485	<0.005	
9															
40		39.4-42.6m, Siltstone	2	5	0	2	2	0	0	39.40	40.00	0.60	743486	<0.005	
1		Light brown, fine sand, unbedded with								40.00	40.90	0.90	743487	<0.005	
2		FG disseminated pyrite.													
3		40.9-41.5m, white porphyritic granite								41.50	42.60	1.10	743488	<0.005	
4		42.6-59m, Mafic Metavolcanic Pillows	1	5	0	0	0	Tr	0						
5		Dark green pillowed metavolcanics													
6		flooded by a stockwork of white									·				
7		feldspar porphyritic dykes up to 30cm									ļ				
8		thick which form 30% of the interval.								······					
9		Pyrrhotite occurs in trails along dyke													
50		contacts in places. The unit is locally													
1		brecciated.	_												
2			_							ļ					
3			4												
4		······································		ļ											
5		54-54.9m, 50cm quartz vein on contact	70	+	0		0				54.90	0.90	743489	<0.005	
6		of felsic dyke	1	5	0	0	0	0.1	0						
7				 											
8															
9				<u> </u>						50.00			740400		
60		59-59.8m, Siltstone - Graphitic Shale	0	6	0	0	1	10	0	59.00	59.80	0.80	743490	<0.005	L

Page 3 of

•

+ +

5

•

ł

Diamond Drill Log

•

.

÷

Project Hole

÷

McVicar Lake MV97-10

1

7

1

1 1

Depth	Ę	Lithological Description	quartz	Altera hard-	ation seri-		Min	eraliza	tion		San	pling		Assay 1	Assay 2
metres	Graph		veins	ness	cite	CO3	ру	ро	сру	From	То	Width	Sample	Au	Au
scale			%	0-10	0-3	0-3	%	%	%	m	m	metres	#	g/t	g/t
61		59.8-62.8m, Mafic Volcanic Breccia	5	4	0	2	0	1	0						
2		Dark green mafic volcanic breccia clasts			ĺ					61.00	62.00	1.00	743491	<0.005	
3		in carbonate rich matrix, Most Po in vein,								62.00	62.80	0.80	743392	<0.005	
4		62.8-65.7m, Net Sulphides in Breccia	0	4	0	0	2	15	0	62.80	64.00	1.20	743493	<0.005	
5		Most sulphides in matrix within 30cm of								64.00	65.00	1.00	743494	<0.005	
6		top & bottom contact. Off-white FG clasts								65.00	65.70	0.70	743495	<0.005	
7		65.7-66.7m, Mafic Metavolcanic	1	4	1	0	0	0	0						
8		66.4-72.3m, Siliceous Unit													
9		Fine grained, off-white to buff unit with													
70		some bands of mafic volcanics up to 3cm.													
1		No bedding discernible													
2															
3		72.3-75.9m, Mafic Variolitic Pillows	1	5	0	1	1	0	0						
4		Dark green, fine grained,													
5										74.00	75.00	1.00	743496	<0.005	
6															
7		75.9-86m, Bedded Siltstone-Sandstone	1	4	1	1	0	0	0	76.00	77.00	1.00	743497	<0.005	
8		Fine-medium sand with local 3mm scale	1	4	1	1	5	30	0	77.00	77.30	0.30	743498	<0.005	
9		bedding & <3cm mafic tuff bands.	1 1	4	1	1	0	0	0						
80		77-77.3m, Massive, MG, Po with 2nd													
1		<0.5cm crystals of Py in open vuggy band	0	5	0	1	0	0	0						
2		<4cm thick.	1	5	1	1	0	0	0						
3		79.8-81m, Mafic Metavolcanic													
4															
5										84.00	85.00	1.00	743499	<0.005	
6															
7		86-91.1m, Mafic Pillowed Flow	10	5	0	1	0.5	0	0						
8		Dark green, fine grained with very FG								87.00	88.00	1.00	743500	<0.005	
9		pyrite disseminated													
90		91-91.1m, Siliceous Unit as above													

1

1

Page

•

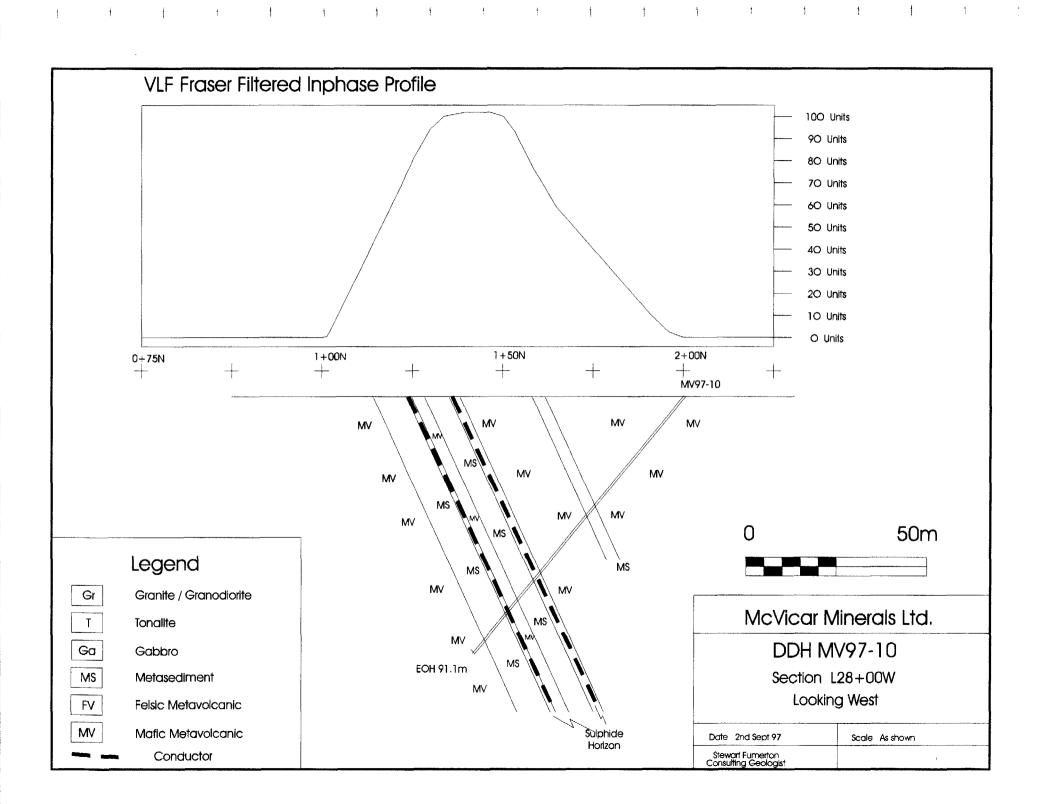
1

4 of

t

5

1


ţ

McVicar Minerals Diamond Drill Log Page 5 of 5

t		McVicar La	ike	Hole	M	V97-10		
Core I	Recove	ery Log				RQDI	_og	
From	То	Width (metres)	Length of Core	% Core Recovery		From	То	Width (metres
5.8	8.8	3.00	2.95	98	_	5.8	8.8	3.00
8.8	11.9	3.10	3.03	98		8.8	11.9	3.10
11.9	14.9	3.00	3.05	102		11.9	14.9	3.00
14.9	18.0	3.10	2.99	96		14.9	18.0	3.10
18.0	21.0	3.00	3.06	102		18.0	21.0	3.00
21.0	24.1	3.10	3.06	99		21.0	24.1	3.10
24.1	27.1	3.00	3.02	101		24.1	27.1	3.00
27.1	30.2	3.10	3.02	97]	27.1	30.2	3.10
30.2	33.2	3.00	2.99	100		30.2	33.2	3.00
33.2	36.3	3.10	3.00	97		33.2	36.3	3.10
36.3	39.3	3.00	2.93	98		36.3	39.3	3.00
39.3	42.4	3.10	3.00	97	-	39.3	42.4	3.10
42.4	45.4	3.00	3.01	100		42.4	45.4	3.00
45.4	48.5	3.10	3.04	98		45.4	48.5	3.10
18.5	51.5	3.00	2.98	99		48.5	51.5	3.00
51.5	54.6	3.10	3.08	99		51.5	54.6	3.10
54.6		3.00	3.08	103		54.6	57.6	3.00
57.6			3.04	98		57.6	60.7	3.10
60.7	63.7		3.03	101	1	60.7	63.7	3.00
63.7	66.8		3.06	99		63.7	66.8	3.10
66.8	69.8		3.02	101		66.8	69.8	3.00
69.8	72.8		3.03	101	1	69.8	72.8	3.00
72.8	75.9		3.02	97	1	72.8	75.9	3.10
75.9	78.9		3.00	100	1	75.9	78.9	3.00
78.9	· · · · ·		2.98	96	1	78.9	82.0	3.10
82.0		1	3.06	102	1	82.0	85.0	3.00
85.0	t		3.05	98	1	85.0	88.1	3,10
88.1	91.1		3.05	102	-	88.1	91.1	3.00
			Total	99	-			

From	То	Width (metres)	Total Core >13cm for BD	RQD
5.8	8.8	3.00	1.84	0.61
8.8	11.9	3.10	1.12	0.36
11.9	14.9	3.00	1.66	0.55
14.9	18.0	3.10	2.26	0.73
18.0	21.0	3.00	2.74	0.91
21.0	24.1	3.10	1.98	0.64
24.1	27.1	3.00	2.60	0.87
27.1	30.2	3.10	2.73	0.88
	33.2	3.00	1.90	0.63
33.2	36.3	3.10	2.53	0.82
36.3	39.3	3.00	1.60	0.53
39.3	42.4	3.10	2.28	0.74
42.4	45.4	3.00	2.07	0.69
45.4	48.5	3.10	2.36	0.76
48.5	51.5	3.00	2.37	0.79
51.5	54.6	3.10	2.53	0.82
54.6	57.6	3.00	2.20	0.73
57.6	60.7	3.10	2.53	0.82
60.7	63.7	3.00	1.43	0.48
63.7	66.8	3.10	2.82	0.91
66.8	69.8	3.00	2.45	0.82
69.8	72.8	3.00	2.24	0.75
72.8	75.9	3.10	2.33	0.75
75.9	78.9	3.00	1.40	0.47
78.9	82.0	3.10	2.10	0.68
82.0	85.0	3.00	2.26	0.75
85.0	88.1	3.10	2.72	0.88
88.1	91.1	3.00	2.55	0.85
L		······		[

Technical Log

APPENDIX II

ASSAY CERTIFICATES

Chemex Labs L

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: McVICAR MINERALS

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3

1

Page Number : 1 Total Pages :2 Certificate Date: 25-AUG-97 Invoice No. : P.O. Number : :19738204 PGP Account

ł

1

Project : Comments: ATTN: GANG CHAI

CC: STEW FUMERTON

ł

CERTIFICATE OF ANALYSIS A9738204

ł

SAMPLE	PREP CODE	Au ppb FA+AA								
743201 743202 743203 743204 743205	205226205226205226205226205226	185 50 360 < 5 30								
743206 743207 743208 743209 743210	205 226 205 226 205 226 205 226 205 226 205 226	25 245 1900 1465 1520								
743211 743212 743213 743214 743215	205 226 205 226 205 226 205 226 205 226 205 226	110 25 770 70 380								
743216 743217 743218 743219 743220	205 226 205 226 205 226 205 226 205 226 205 226	15 < 5 < 5 < 5 < 5 < 5								
743221 743222 743223 743224 743225	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 60 < 5 15</pre>								
743226 743227 743228 743229 743230	205 226 205 226 205 226 205 226 205 226 205 226	500 140 200 35 25								
743231 743232 743233 743234 743235	205 226 205 226 205 226 205 226 205 226 205 226	10 20 40 < 5 < 5								
743236 743237 743238 743239 743240	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 70 < 5 < 5 </pre>								
		_	L	<u> </u>	<u> </u>	<u> </u>	l	N:	where V	mh

¢,

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

ł

To: McVICAR MINERALS

1

ł

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3

Page Number :2 Total Pages :2 Certificate Date: 25-AUG-97 Invoice No. :19738204 P.O. Number : PGP Account

Project : Comments: ATTN: GANG CHAI

CC: STEW FUMERTON

A9738204 **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Au ppb FA+AA						
743241 743242 743243 743244 743244 743245	205 226 205 226 205 226 205 226 205 226 205 226	85 15 < 5 < 5 < 5 < 5						
743246 743247 743248 743249 743250	205 226 205 226 205 226 205 226 205 226 205 226	25 105 < 5 205 5						
743251 743252 743253 743254 743255	205 226 205 226 205 226 205 226 205 226 205 226	40 < 5 < 5 < 5 < 5 < 5						
743256 743257 743258 743259 743260	205 226 205 226 205 226 205 226 205 226 205 226	30 < 5 < 5 < 5 < 5 < 5						
743261 743262 743263 743264 743265	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 10 85 20</pre>						
743266 743267 743268 743269 743270	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>						
743271 743272 743273 743274 743275	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5</pre>						
743276 743277 743278 743279 743280	205 226 205 226 205 226 205 226 205 226 205 226	15 < 5 < 5 < 5 < 5 < 5						
<u></u>	L	<u>l</u>	 <u>I</u>	<u>_</u>	1		N:	 t so al con

C	Analytical Chemists 5175 Timberle Ontario, Cana	ex Lab * Geochemists * Regist a Blvd., Mis da 624-2806 FAX: 905-	ered Assayers sissauga I 4W 2S3	۲ ۸ Proiect	402 - 1 DUNDAS ORONTO, ON 45G 1Z3 : MCVICAR ents: ATTN: GA	1	C: STEW FUMERTO	N	Total Pages :1 Certificate Date: 25-AUG Invoice No. :1973839 P.O. Number : Account :PGP
					CERTIFIC	CATE OF A	ANALYSIS	A973	3397
SAMPLE	PREP CODE	Au ppb FA+AA							
743281 743282 743283 743284 743284 743285	205 226 205 226 205 226 205 226 205 226	10 < 5 < 5							
743286 743287 743288 743288 743289 743290	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>							
743291 743292 743293 743294 743295	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>							
743296 743297 743298 743299 743300	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>							
743301 743302 743303 743304 743305	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>							

1

Chemex Labs Ltd.

1

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: McVICAR MINERALS

1

1

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3

Page Number :1 Total Pages :1 Certificate Date: 28-AUG-97 Invoice No. : 19739508 P.O. Number : PGP Account

McVICAR Project : Comments: ATTN: DR. GANG CHAI CC: STEW FUMERTON

1

CERTIFICATE OF ANALYSIS A9739508

			ULINI	IFICATE OF ANALTSIS	5 AS105000	A9739508		
SAMPLE	PREP CODE	Au ppb RUSH			1 1 -	t		
743336 743337 743338 743339 743340	255 295 255 295 255 295 255 295 255 295 255 295	<pre>< 5 < 5<</pre>						
743341 743342 743343 743344 743344 743345	255 295 255 295 255 295 255 295 255 295 255 295	<pre>< 5 < 5</pre>						
743346 743347 743348 743349 743350	255 295 255 295 255 295 255 295 255 295 255 295	<pre>< 5 < 5 < 5 < 5 190 45</pre>						
743351 743352 743353 743354 743355	255 295 255 295 255 295 255 295 255 295 255 295	<pre>< 5 < 5 </pre>						
743356 743357 743358 743359 743360	255 295 255 295 255 295 255 295 255 295 255 295	<pre>< 5 < 5</pre>						
743361 743362 743363 743364 743365	255 295 255 295 255 295 255 295 255 295 255 295	<pre>< 5 < 5</pre>						
743366 743367 743368 743369 743370	255 295 255 295 255 295 255 295 255 295 255 295	<pre>< 5 < 5</pre>						
743371	255 295	< 5						

certification florande

1

1

+

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

1

1

1 1 1

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

1	1	
To:	McVICAR M	INERALS

1

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3

1

Page Number :1 Total Pages :2 Certificate Date: 02-SEP-97 Invoice No. :19739572 P.O. Number : PGP Account

1

1

1

1

Project : Project : McVICAR Comments: MTTN: DR. GANG CHAI CC: STEW FUMERTON

1

A9739572 **CERTIFICATE OF ANALYSIS**

	1	_	T	1	1		T	
SAMPLE	PREP CODE	Au ppb FA+AA						
743306 743307 743308 743309 743310	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5<</pre>						
743311 743312 743313 743314 743315	205 226 205 226 205 226 205 226 205 226 205 226	<pre></pre>						
743316 743317 743318 743319 743320	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>						
743321 743322 743323 743324 743325	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>						
743326 743327 743328 743329 743330	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>						
743331 743332 743333 743334 743335	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>						
743372 743373 743374 743375 743376	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>						
743377 743378 743379 743380 743381	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>						

CERTIFICATION Alexandre

ł

ł

Chemex Labs L Analytical Chemists * Geochemists * Registered Assayers

Mississauga L4W 2S3 5175 Timberlea Blvd., Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

1 To: McVICAR MINERALS

1

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3

Page Number :2 Total Pages :2 Certificate Date: 02-SEP-97 Invoice No. :19739572 P.O. Number : PGP Account

1

Project : McVICAR Comments: ATTN: DR. GANG CHAI CC: STEW FUMERTON

1

CERTIFICATE OF ANALYSIS A9739572

SAMPLE	PREP CODE	Au ppb FA+AA				-			
743382 743383 743384 743385 743385 743386	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 < 5 < 5</pre>							
743387 743388 743389 743390 743391	205 226 205 226 205 226 205 226 205 226 205 226	<pre>< 5 < 5 15</pre>							
743392 743393 743394 743395 743395 743396	205 226 205 226 205 226 205 226 205 226 205 226	25 < 5 < 5							
743397	205 226	15							
					(liau	a fle	Caude	? K

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,No1h VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: McVICAR MINERALS

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3

Project :

Comments: ATTN: GANG CHAI CC: STEW FUMERTON

Page Number 1 Total Pages 1 Certificate Date:10-SEP-97 Invoice No. I-9740127 P.O Number : Account

4

			(ERTIFIC	ATE OF A	NALYSIS	A97	40127	
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA							
743398 743399 743400 743401	205 226 205 226 205 226 205 226 205 226	< 5 < 5							
743402	205 226								
743403 743404 743405 743405 743406 743407	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 < 5							
743408 743409 743410 743411 743411 743412	205 226 205 226 205 226 205 226 205 226 205 226	5 < 5 < 5							
743413 743414 743415 743415 743416 743417	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5	 						
743418 743419 743420 743421 743422	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5							
743423 743424 743425 743426 743426 743427	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5							
743428 743429 743430 743431 743431 743432	205 226 205 226 205 226 205 226 205 226 205 226	< 5 < 5 < 5							
743433 743434 743435	205 226 205 226 205 226 205 226	< 5							

Chemex Labs Ltd. Analytical Chemists ' Geochemists ' Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: McVICAR MINERALS

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3 Page Number 1 Total Pages 2 Certificate Date10-SEP-97 Invoice No. I-9740626 P.O. Number : Account :

Project : Comments: ATTN: GANG CHAI CC: STEW FUMERTON

			CERTIFICATE OF ANALYSIS	A9740626
SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA		
743436	205 226	< 5		
743437	205 226	< 5		
743438	205 226	< 5		
743439	205 226	< 5		
743440	205 226	< 5		
743441	205 226	< 5		
743442	205 226	< 5		
743443	205 226			
743444	205 226			
743445	205 226	< 5		
743446	205 226			
743447	205 226			
743448	205 226			
743449	205 226			
743450	205 226	< 5		
743451	205 226			
743452	205 226			
743453	205 226			
743454	205 226			
743455	205 226	< 5		
743456	205 226			
743457	205 226			
743458	205 226			
743459	205 226	< 5		
743460	205 226	< 5		
743461	205 226			
743462	205 226			
743463	205 226			
743464	205 226			
743465	205 226	< 5		
743466	205 226			
743467	205 226	< 5		
743468	205 226			
743469	205 226			
743470	205 226	< 5		
743471	205 226			
743472	205 226			
743473	205 226			
743474	205 226			
743475	205 226	< 5		

1 1

1

ł

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

1

1

1

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: McVICAR MINERALS

2402 - 1 DUNDAS ST. W. TORONTO, ON M5G 1Z3

1

Project :

1 1 1

Comments: ATTN: GANG CHAI CC: STEW FUMERTON

1

1

ł

ł

1

Page Number 2 Total Pages 2 Certificate Date 10-SEP-97 Invoice No. I-9740626 P.O. Number Account

1

1

				C	CERTIFICATE OF ANALYSIS A			A97	A9740626	
SANPLE DESCRIPTION	PREP CODE	Au ppb FA+AA								
743476	205 226	20								
743477	205 226									
743478	205 226	< 5					}		ļ]
743479 743480	205 226									
743480	205 226	30		ļ						ļ
743481	205 226	< 5								
743482	205 226	< 5								
743483	205 226	< 5				1	Í		ļ	ĺ
743484	205 226									
743485	205 226	< 5		Ì			(
743486	205 226	< 5							t	+
743487	205 226						}		1	
743488	205 226								1	
743489	205 226	< 5					}			
743490	205 226	< 5								1
743491	205 226	< 5								
743492	205 226									
743493	205 226								1	
743494	205 226						İ			1
743495	205 226	< 5]	
743496	205 226	< 5				+ ·····			····	
743497	205 226					1]	1
743498	205 226	< 5								
743499	205 226	< 5								
743500	205 226	< 5								1
				1		1				
				1		}				
				1						
	1			1		[
		1								

CA-				
Ontario	Ministry of Northern Development and Mines	Declaration of Performed on	f Assessment Work Mining Land	Assessment Files Research Imaging
2011SW2001 2.18309 MCVICAR L	ake 900	on 65(2) and 66(3) the assessment wo	(2) and 88(3), R.B.O. 1985 of the Mining Act. Under section with and correspond with the mini- velopment and Mines, 8th Floor	ing land holder.
Instructions: -For work performed -Please type or print	l on Crown Lands before rec in ink.	cording a claim, use form	0240.	* 4 -
1. Recorded holder(s). (Attach a lis	st if necessary.)		Client Number	
BHP MINERALS CANADA LTD.			108137 Telephone Number	
1597 Cole Blvd., Suite 250			(303) 232-7779	
GOLDEN, Colorado, USA 80401			(303) 235-0267	
Address			Telephone Number	
Adjuss				
			Fax Number	
2. Type of work performed: Check Geotechnical: prospecting, surveys, assay and work under Section 18 (regs) Work Type		illing, stripping, trenching	Rehabilitation	ation. fice Use
Diamond Drilling			Total \$ Value of Work Claimed	
Assays			19	5,966
Date Work Performed From To			NTS Reference	7
26 7 97 Day Month Year Di	6 9.97 ny Month Year			
Global Positions System Data (if available)	Township/Area	uahtaa	Mining Division	trinia
	McVicar / Sto M or G-Plan Numbe	er	Resident Geologist District	tricia up fockout
-provide a proper i -provide a map sh -complete a attach	mit from the Ministry of Natural notice to surface rights holders owing contiguous mining land a Statement of Costs, form 02 s of your technical report.	s before starting work; s that are linked for assigni	ng work;	
3. Person or companies who prepa	red the technical repor	rt (Attach a list if neces	SSAFY) Telephone Number	
Stewart Fumerton			(705) 268-7945	
Address			Fax Number	
#205, 44 Brousseau Ave. Timmins, Or Name			Telephone Number	
WG Langley Drilling			(905) 791-5534 Fax Number	
49 Jayfield Rd., Brampton, Ontario L6	<u>S 3G3</u>		(905 791-3671 Telephone Number	· · · · · · · · · · · · · · · · · · ·
Address			Fax Number	
4. Certification by Recorded Holder I, <u>Gang Chai</u> (Print Nerre) Work having caused the work to be performed o	, do hereby certify that I		of the facts set forth in this Decla to the best of my knowledge, the	
report is true. Signature of Recorded Holder or Agent	aren Ce	0)	Date Mind &	5, 199£
Agent's Address McVicar Minerals #2402, 1 Dundas St. W Toronto, Ont	,	Telephone Number (416) 977-7420	Fax Number (416) 977-8335	,
Deened 2	July 6/9		R 0 7 1993 100)
	· 0 ·	AP GEOSCIEN	K U 7 1993 100 K	

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

accompa	ny this form.		and the second	- A - A		W9830.004
work was do mining land,	m Number. Or if one on other eligible show in this column number indicated on ap.	Number of Claim Units. For other mining land, list hectares.	Value of work (performed on this claim or other mining land.		Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	o	\$24,000	0	0
eg	1234568	-2	\$8,892	\$4,000	-0	\$4,892
1	1144671	1	¥ \$17,637	800	\$16,000	\$837
2	1144676	1		800	-	
3	1144678	1		800	1	
4	1144679	1		800	-	
5	1144680	1		800	1	
6	1144683	1		800	1	
7	1144684	1		800	-	
8	1144685	1		800	1	
9	1144686	1		800	1	
10	1144687	1		800	1	
11	1144688	1		800	r	
12	1144689	1		800	1	
13	1144690	1		800	-	
14	1144691	1		800	1	
15	1144694	1		800	1	
		Column Totals	\$17,637	\$12,000	\$16,000	\$837

I, Gang Chai

, do hereby certify that the above work credits are eligible under subsection 7(1) of the

3

Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	CC	Dato Mil 6	, 19PF

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

	RECEIVED	
	APR 0 7 1998	γ
i Tra	om the Bank first	

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		_
Received Stamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
	Approved for Recording by Mining Recorder (Sig	nature)
0241 (02/96)		

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form.

1.

work was do mining land,	m Number. Or if ne on other eligible show in this column number indicated on up.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work 🥌 🔇 applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	0
eg	1234568 -	2	\$ 8,892	\$ 4,000	9	\$4,892
16	1144695	1		800	,	
17	1144696	1		800	1	
18	1144697	1		800	1	
19	1144698	1		800	-	
20	1144699	1		800	1	
21	1144700	1		800	1	
22		1				
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33	<u></u>					
34						
35						
36						
37						
38						
39	-					
40		1	1			
المحجين يتشيعه وجير	<u> </u>	Column Totals	\$17,637	\$16,800	\$16,000	\$837

Gang Chai , do hereby certify that the above work credits are eligible under subsection 7(1) of the

Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing

11

APR 0 7 1998 GEOSCIENCE ASSESSMENT

Bril 6, 139 +

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form

accompar	ny this form.		12 0) 9	9835,00047
work was do mining land,	m Number. Or if ne on other eligible show in this column number indicated on p.	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	
eg	1234568	2	\$8,892	-\$4,000	0	\$4,892
1	1144746	11	v \$16,265	800	\$ 11,200	\$4,265
2	1144744	11		800	/	
3	1144745	11		800	/	
4	1144747	1		800	1	
5	1144748	11		800	/	
6	1144776	1		800	/	
7	1144777	11		800	1	
8	1144778	1		800	/	
9	1144779	1		800	1	
10	1144780	1		800	1	
11	1144782	1		800	1	
12	1144783	1		800	1	
13	1144784	1		800)	
14	1144785	1		800	1	
15	1144786	1		800	1	
		Column Totals	\$16,265	\$12,000	\$11,200	\$4,265

I, Gang Chai

, do hereby certify that the above work credits are eligible under subsection 7(1) of the

Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

ĊĊ	

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe)

RECEIVED	
APR 0 7 1958 DOM	2
GEOSCIENCE ASSESSMENT	

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Stamp	Deemed Approved Date	Date Notification Sent
]
		<u> </u>
	Date Approved	Total Value of Credit Approved
		l
	Approved for Recording by Mining Recorder (Signature)	
0241 (02/96)		

5. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the mining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form

Mining Clair work was do mining land,	y this form. m Number. Or if ne on other eligible show in this column number indicated on n	Number of Claim Units. For other mining land, list hectares.	Value of work 4 2 performed on this claim or other mining land.	Value of work applied to this claim.	Value of work assigned to other mining claims.	78 30 . 00047 Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	0	\$24,000	0	C
eg	1234508	-2-	\$8,692	\$4,000	-0	\$4,892
1	1144777	1	\$16,265	0		\$16,265
2	1144784	1	\$32,530	0		\$32,530
3	1144974	16	\$83,286	\$12,800	\$63,200	\$7,286
4	846035	1		\$800	1	
5	846036	1		\$800	1	
6	886072	1		\$800	1	
7	903209	1		\$800	1	
8	903210	1		\$800	1	
9	903217	1		\$800	1	
10	903218	1		\$800	1	
11	1144973	16		\$12,800	1	
12	1145280	2		\$1,600	1	
13	1169292	1		\$800	1	
14	1169293	1		\$800	1	
15	1179715	1		\$800	1	
		Column Totals	\$132,081	\$35,200	\$63,200	\$56,081

I, Gang Chai

. •-

, do hereby certify that the above work credits are eligible under subsection 7(1) of the

Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing	Date
ang (Any 6, 1398

6. Instructions for cutting back credits that are not approved.

Some of the credits claimed in this declaration may be cut back. Please check (\checkmark) in the boxes below to show how you wish to prioritize the deletion of credits:

1. Credits are to be cut back from the Bank first, followed by option 2 or 3 or 4 as indicated.

2. Credits are to be cut back starting with the claims listed last, working backwards; or

3. Credits are to be cut back equally over all claims listed in this declaration; or

4. Credits are to be cut back as prioritized on the attached appendix or as follows (describe):

RECEIVED	
APR 0 7 1993	
GEOSCIENCE ASSESSMENT	5

Note: If you have not indicated how your credits are to be deleted, credits will be cut back from the Bank first, followed by option number 2 if necessary.

For Office Use Only		
Received Stamp	Deemed Approved Date	Date Notification Sent
	Date Approved	Total Value of Credit Approved
	Approved for Recording by Mining Recorder (Sign	iature)
0241 (02/96)		

6. Work to be recorded and distributed. Work can only be assigned to claims that are contiguous (adjoining) to the inlining land where work was performed, at the time work was performed. A map showing the contiguous link must accompany this form. $\Gamma(NAC REVISIN) = 9830$, O(NC)

0

· · ·

1

<u>009</u>

work was do mining land,	Im Number. Or If one on other eligible , show in this column number indicated on 8p;	Number of Claim Units. For other mining land, list hectares.	Value of work performed on this claim or other mining land,	Value of work applied to this cleim.	Value of work assigned to other mining claims.	Bank. Value of work to be distributed at a future date.
eg	TB 7827	16 ha	\$26,825	N/A	\$24,000	\$2,825
eg	1234567	12	. 0	\$24,000	Ū	
eg	-1234568-	2	\$8,802		<u>_</u>	\$4,892
16	1179716	1		\$800	Z., .	
17 ;	1179719	1		\$600		· · · · · · ·
18	1179720	1		\$800	Z	
19	1179725	1		5800		
20	1179605	16	÷	\$12,800	1	
21	1179606	12		\$9,600		
22	1179807	12		\$9,600	· · ·	
23	1180581	1		\$800	1	
24	1180003	4		\$3,200	/ .	
25	1160840	1		\$800		
28		1		\$800	/	
27	(144747	1	\$ 29, 983	0		\$ 29,983
28				· · · · · · · ·		4.7-0
29 ·						
.30					·	· · · · · · · · · · · · · · · · · · ·
31		· · · · ·				
32		· · · · · · · · · · · · · · · · · · ·				
33	· <u>····································</u>					
34					BEC	FIVED
35				·		
36			<u></u>	··	APR	1 4 1958
37	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		┟╴┨╼╼╍┶╍╧╼╼╼╸	
38					GEOSCIENC	E ASSESSMENT
	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
39				·		
40	.		s 162,064			¹ B6,064 555,081

I. <u>Gang Chai</u>, do hereby certify that the above work credits are eligible under subsection 7(1) of the Assessment Work Regulation 6/96 for assignment to contiguous claims or for application to the claim where the work was done.

Signature of Recorded Holder or Agent Authorized in Writing

€ an APR 0 7 1993 GEOSCIENCE ASSESSMENT. OFFICE

LIgge

Ministry of Northern Development and Mines	Ministère du Développement du l et des Mines	Nord		(Y)	Ontario)
				Geoscience	e Assessment Office	
				933 Ramse	ey Lake Road	
June 17, 1998				6th Floor		
				Sudbury, O	Intario	
BHP MINERALS CANADA I 33 YONGE STREET	TD.			P3E 6B5		
SUITE 610				Telephone:	(888) 415-9846	
TORONTO, ONTARIO M5E-1G4				Fax:	(705) 670-5881	
				r website at: v.on.ca/MN	: DM/MINES/LANDS/mismi	npge.htm
Dear Sir or Madam:			Submis	sion Numb	ber: 2 .18309	
			Status			
Subject: Transaction Num	ber(s): WS	9830.00047	Approval			

We have reviewed your Assessment Work submission with the above noted Transaction Number(s). The attached summary page(s) indicate the results of the review. WE RECOMMEND YOU READ THIS SUMMARY FOR THE DETAILS PERTAINING TO YOUR ASSESSMENT WORK.

If the status for a transaction is a 45 Day Notice, the summary will outline the reasons for the notice, and any steps you can take to remedy deficiencies. The 90-day deemed approval provision, subsection 6(7) of the Assessment Work Regulation, will no longer be in effect for assessment work which has received a 45 Day Notice. Allowable changes to your credit distribution can be made by contacting the Geoscience Assessment Office within this 45 Day period, otherwise assessment credit will be cut back and distributed as outlined in Section #6 of the Declaration of Assessment work form.

Please note any revisions must be submitted in DUPLICATE to the Geoscience Assessment Office, by the response date on the summary.

If you have any questions regarding this correspondence, please contact Lucille Jerome by e-mail at jeromel2@epo.gov.on.ca or by telephone at (705) 670-5858.

Yours sincerely,

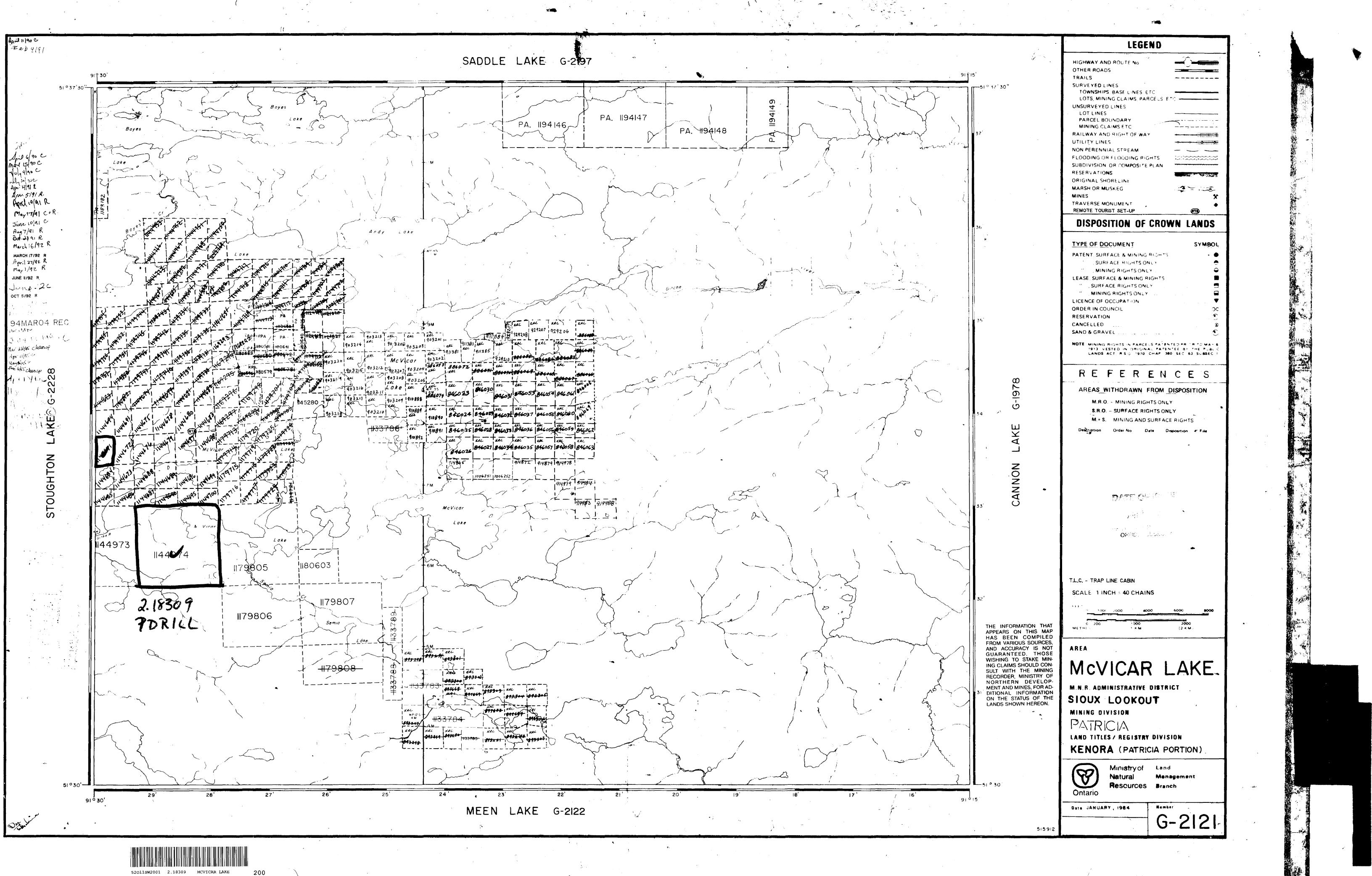
Sla Ha

ORIGINAL SIGNED BY Blair Kite Supervisor, Geoscience Assessment Office Mining Lands Section

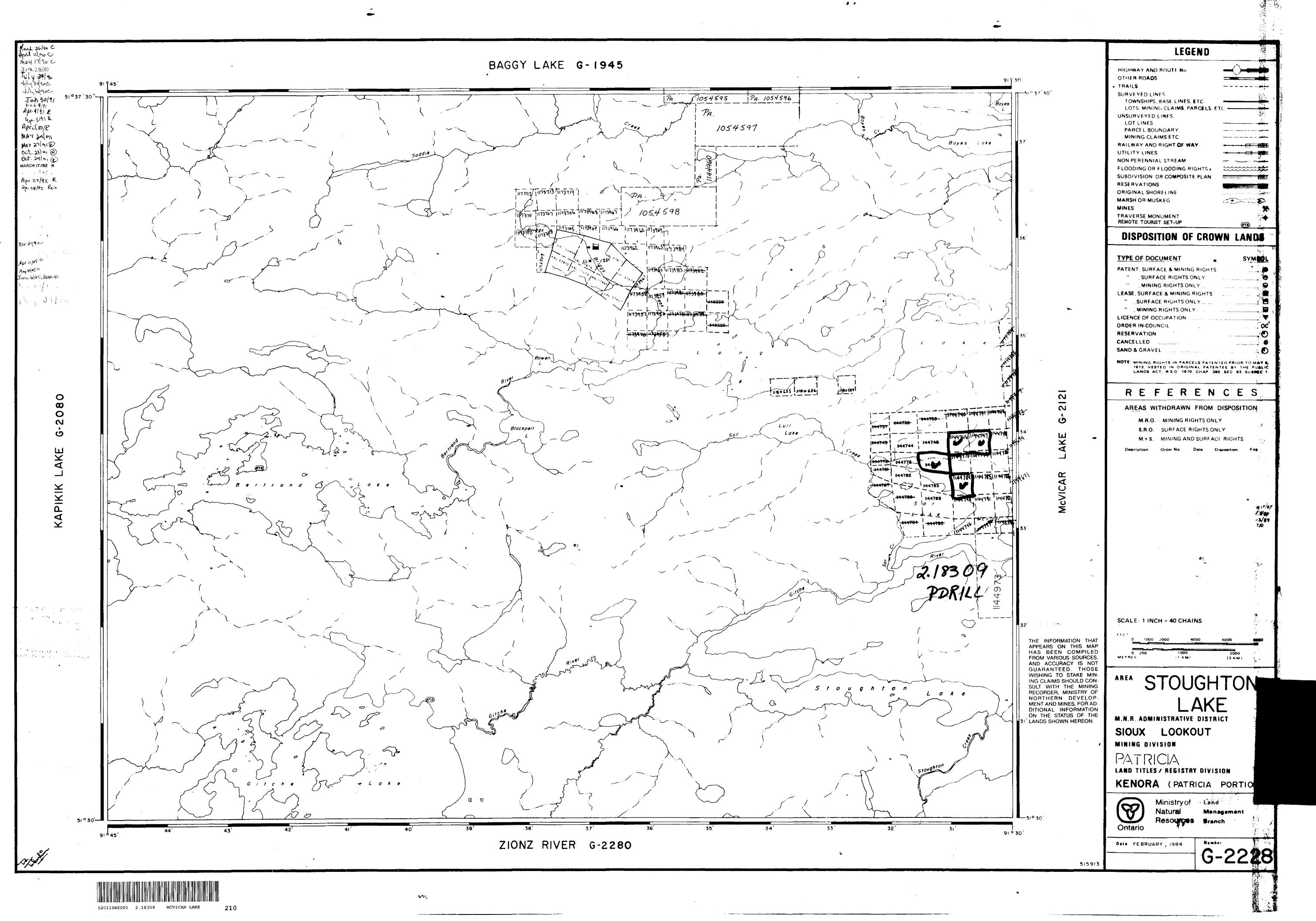
Correspondence ID: 12448 Copy for: Assessment Library

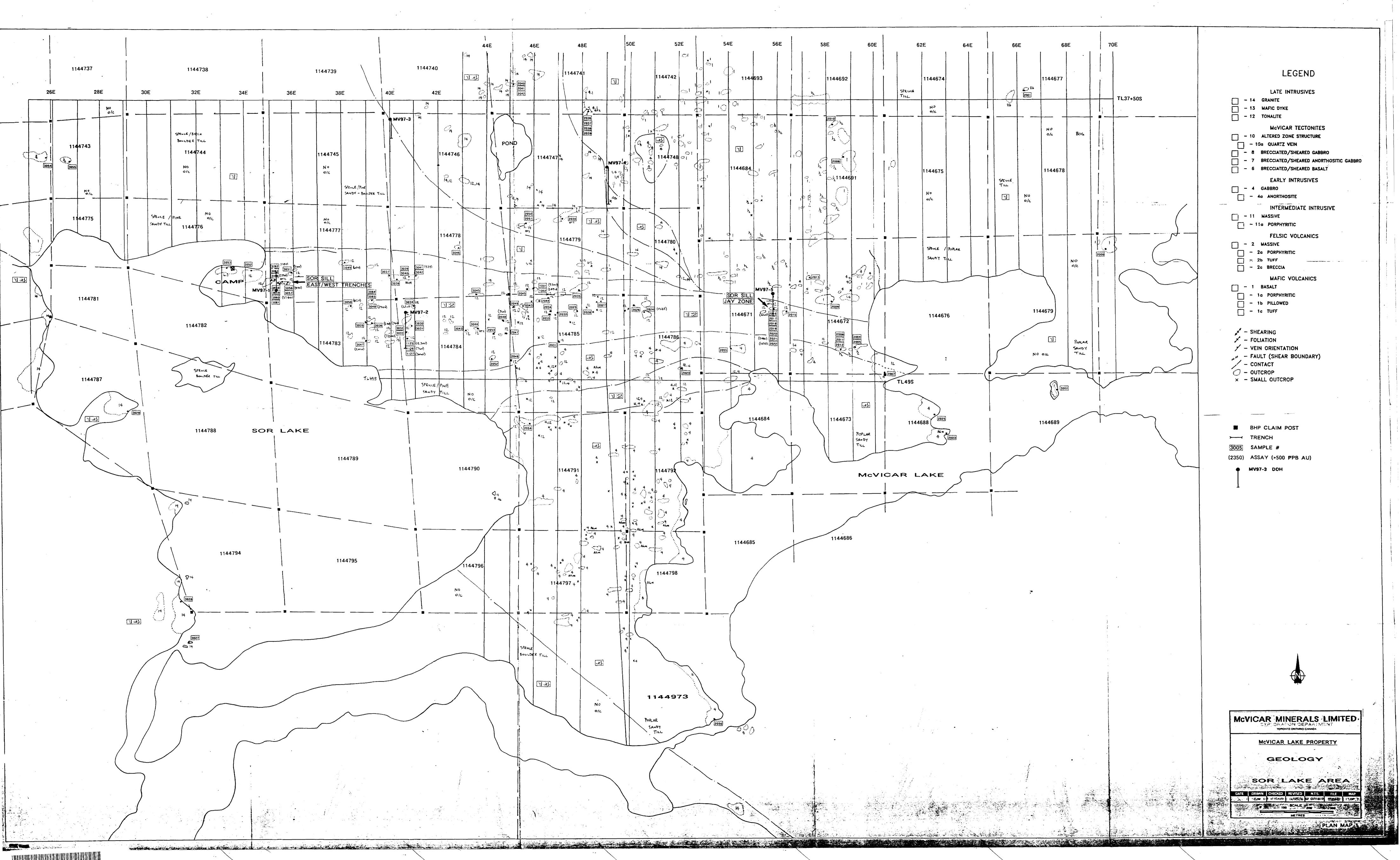
Work Report Assessment Results

Submission Number: 2.18309

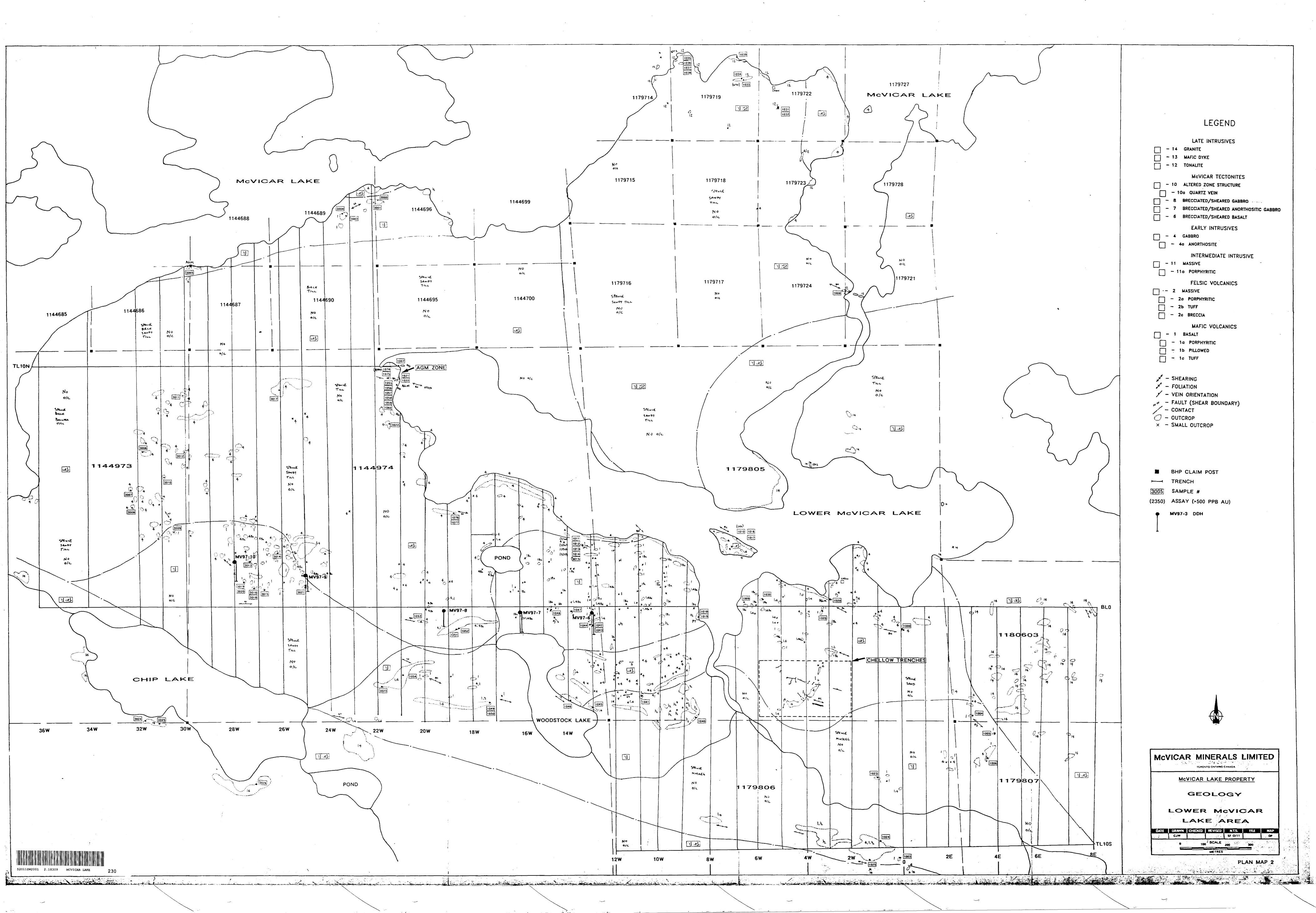

Date Correspondence Sent: June 17, 1998

Assessor:Lucille Jerome


General Comment:

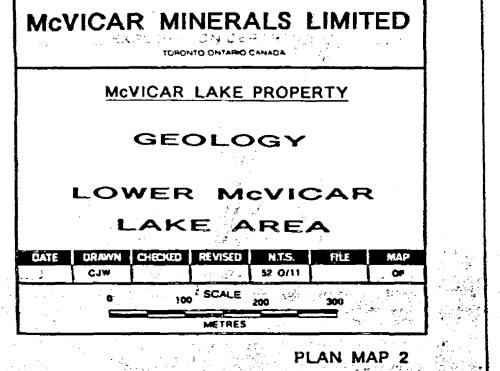

In all future assessment work submissions, please provide a better breakdown of the costs of the work. In this case, helicopter and or fixed wing costs could have been separated from the drilling costs. Without the proper cost breakdown, you may have to provide your receipts and cancelled cheques for future submissions.

Transaction Number	First Claim Number	Township(s) / Area(s)	Status	Approval Date	
W9830.00047	11 44 671	MCVICAR LAKE, STOUGHTON LAKE	Approval	June 17, 1998	
Section: 16 Drilling PDRILL					
Correspondence to	o:		Recorded I	Holder(s) and/or Agent(s):	
Resident Geologist			Gang Chai		
Sioux Lookout, ON			TORONTO	, ON, CAN	
Assessment Files L Sudbury, ON	ibrary		BHP MINER TORONTO	RALS CANADA LTD. , ONTARIO	



52011SW2001 2.18309 MCVICAR LAKE

220


LEGEND

LATE INTRUSIVES
- 14 GRANITE
- 13 MAFIC DYKE
- 12 TONALITE
McVICAR TECTONITES
- 10 ALTERED ZONE STRUCTURE
- 10a QUARTZ VEIN
- 8 BRECCIATED/SHEARED GABBRO
- 7 BRECCIATED/SHEARED ANORTHOSITIC GABBRO
- 6 BRECCIATED/SHEARED BASALT
EARLY INTRUSIVES
- 4 GABBRO
INTERMEDIATE INTRUSIVE
FELSIC VOLCANICS
- 2b TUFF
MAFIC VOLCANICS
- 15 PILLOWED
💉 – SHEARING 🗡 – FOLIATION
y' = VEIN ORIENTATION
ر مر – FAULT (SHEAR BOUNDARY)
- CONTACT
O - OUTCROP
× - SMALL OUTCROP

BHP CLAIM POST H TRENCH 3005 SAMPLE # (2350) ASSAY (>500 PPB AU) MV97-3 DDH

-