010

THE HANNA MINING COMPANY TIFE IUNTH MINING, CONIMNY

ELECTROMGHETIC SURVIS

IANG LHE CLAIN GROUT

RLD LAKL MIMING dIVISION, ONTARID

Jamuary 19th, 1971

During 1970, an electromagnetic survey was done by The llanna
Mining Company on its Lang Lake claim group. Some conductive areas were found, of which, five may be bedrock conductors.

1 OWNERSHIP

The Lang Lake claim group is 124 claims: 239126 to 239186, 239188 to 239206,239208 to 239212,239215 to 239250 , and 251707 to 251709. They are held by The Hanna Mining Company, 100 Erieview Plaza, Cleveland, Ohio 44114.

II LOCATION AND ACCESS

The claim group is within the Stoughton Lake and McYicar Lake claim map areas of the Red Lake Mining Division. It is 100 miles north of Sioux Lookout, and 55 miles west of Pickle Lake.

Access is by float plane fron Sioux Lookout, Pickle Lake, nr Red Inake.

III PREVIOUS WORK

A report of a magnetic suriey $\frac{1971 . *}{\text { a }}$ line cutting, was submitted January 4th, 1971.*

IV PROCEDURE
A) Personnel

Nelson Hogg, Consultant, 805-69 Yonge St., Toronto 215, Ontario February 10 - November 30

Field Work

Days

C. W. Harpur, Party Chief, 7 Linden St., 'foronto, Ontario March 1-March 2911 July 1 - October $17 \quad 28$
L. Fritz, 581 Balloil Ave., Toronto, Ontario
March 1-March $29 \quad 14$
G. Bosshart, 805-69 Yonge St., Toronto 215, Ontario

March 7-March $29 \quad 10$
*B. Hodgins, Magnetic Survey - Hanna Clain Group, submitted as assessment.
L. Ori, 174 Glen Cedar Rd., Toronto, Ontario August 20 - September 816
II. Giroux, P.0. Box 94, Warren, Ontario

August 20 - September 8
E. Crowe, Fort Severn, Ontario August 23 - September $30 \quad 7$
J. Dresna, Box 553, Sioux Lookout, Ontario

September 19 - September 304
7' Keil, 33 Ezra Avenue, Waterloo, Ontarin
August $23 \quad 1$
P. Hibbins, 2 Minden Crescent, Toronte, Ontario

Augitst 23
Days

」

Preparation of Reports and Maps
C. W. Harpur

Apri」 - May 7
D. . Sannes

October - December
L. Fritz

April - May 3
January - 19713
G. Bosshart April. - Nay 2
B) Instrument

A Craclius ABEM Gun was used for this survey. Its rrequencies are 3,520 cycles per second and 880 cycles uar second.
C) Grid

The electromagnetic survey coverci this ureperty and the Nacyillan* and Buchawna properties which adjoin it to the west. Lang, Andy, Lull, and Shonia Jakes were surveycd during Marche 1970 . Baseline No. 3 was established on lang Lake, east-west to line $200+00 \mathrm{E}$, from there $N 73^{\circ} \mathrm{F}$, along Lang and Andy lakes to line 472E. Basejines were als" established, east-west alng Lull Lake, and $N 73^{\circ} E$ along Shonia Lakn. Picket lines were normal $l o$ their baseline, at 400 foot intervals. Line 108 F . was extended to lull lake, and line 376 F , was extended to Shonia lake. The other picket lines were cut 150 leet beyond the shoreline.

The land portion was surveved during the summer of 1970. Baseline No. 1, north of lang lake, was cut east-west to Jine 264L. Baseline No. 4, south of Lang Latic, was cut east-west to line 200 C , then $\mathrm{N} 73^{\circ} \mathrm{F}$, to line 468 E . Land picket lines were normal to their baselinc, at 400 foot interyials.

Seventy-one miles of picket line, and 11 miles of baseline, cross the Lang Lake claim group.
*D. Sannes, Electromagnetic Survey - MacMillan Claim Group, submitted as assessment.

Readings

On the lakes, a 300 fook instrument sevarotion was used, on the land, 200 foot separation. Readings were taken every 100 feet, with the high frequency. If an anomaly was suspected, readings were taken every 50 feet, both high and low frequencies.

3,598 stations were read, and 3,927 readings were taken, on the Lang Lake claim group.

Elevation corrections were made according to a chart supplied with the instrument. Staff separation was kept constant, and the operator estimated the elevation difference.

V INTERPRETATION
A) Geology

No detailed geological mapping was done by The flanna Mining Company.
According to the Ontario Department of Nines geologic map*, the claim group is underlain by volcanic rocks of Archean age. They strike about $N 70^{\circ} \mathrm{E}$. Dips taken on foliation are all 70° or steeper, nearly all are vertical. Both north and south dips are recorded.

The lavas are mafic north of Lang lake and around Andy Lake. They are intermediate under Lang lake and along its south shore, west of Shonia Lake, and north of Lull Lake. They are Jelsic along the south margin of the clain group. There are numerous small iron formations, all of them within the mafic lavas.

The edge of an Archean granitic batholith is under Lull Lake. A granodiorite boss cuts the lavas east of Lull Lake.

Lineaments are shown parallel to the north and south shores of Lang Lake. These could reflect the strike of the Cormations. There are also two lineaments through the lang lake narrows. offsets in the magnetic trends suggest that these are faults.**

The magnetic survey also detected that the granodiorite boss extends north of its outcrop almost across Lang Lake.
*K. G. Fenwick, Preliminary Geological Map No. P 581, Lang-Cannon Lakes Area (West llalf), Ontario Department of Mines, 1969
**B. Hodgins, Magnetic Survey - Hama Claim Group, submitted as assessment.

Anomalous Readings

1. Surficial Conductors

Some conductors have characteristics that suggest flat lying deposits close to surface. These are described and listed below:
a) Near the south boundary of the claim group, on lines 144 E and 148 E , and lines 160 E through 172 E , and in lang lakr, line 2045, $4+00 \mathrm{~N}$ to $12+00 \mathrm{~N}$, and $208 \mathrm{E}, 12400 \mathrm{~N}$ to 16.400 N . These give high values for the in phase component (104 to 1.24), and erratic values for the out of plase component $(+8$ to -4$)$. This is caused by a thin, flat lying conductor. All these taken on land were in swampy areas. These are probably conductive sediment.
b) On Lang Lake, from line 308 E to 400 E , along the north shore of the lake, and between $2+00 \mathrm{~S}$ and $6+00 \mathrm{~S}$. These are zones of low values which are the edges of another thin, flat conductor. This is interpreted to be lake bottom sediment.
c) Also in lang lake, from line 37 LD to 408 L , from $18+00 \mathrm{~S}$ to 24100 S . This gives low values, but it is a particularly poor conductor. The ratio of in phase deviation to out of phase deviation is $1: 3$. This is sediment filling a trough like depression in the lake bottom.
d) Lines 224E, and 228E, in the inlet north of lang Lake. The in phase: out of phase ratio here is $1: 2$. The bay is annther sediment filled trough.
e) All across the east half of Shonia Lake. The conductors are very weak. Their pattern indicates bars of sediment which came from the river which flows from lang Lake.
2. Bedro k Conductors

Five anomalies could be bedrock conductors. These are marked by crosshatching on the maps, or a heavy dashed line if very narrow.

Line 156 E and 160 E , at baseline No. 3. J.f this is a bedrock conductor it is a weak one, but it cannot be rejected with certainty.

Line 168 E , from baseline No. $3,0+10 \mathrm{~N}$ to $0+60 \mathrm{~S}$. The long drawn out high on the north limb of this suggests a gently dipping conductor, as a lake bottom mud. Unfortunately, the line ends without reading the south limb. The ratio of in phase to out of phase deviation is 2:1; this one can not be rejected easily either.

Line 216 E , from baseline No. $3,33+05 \mathrm{~N}$ to $33+27 \mathrm{~N}$. This conductor was not found on adjacent lines, although the line to the west is only 150 feet away, yet a conductor 20 to 25 feet wide is indicated. The shape of the curve is that of a steeply dipping conductor, or several tiny ones less than 50 feet apart. The in phase to out of phase ratio is 9:5.

All of the preceding anomalies are questionable.
Line 248 E , from baseline No. $1,1+30 \mathrm{~N}$, and line 252 E , from baseline No. $1,3+35 \mathrm{~N}$. This is an extremely narrow conductor. Its location, as determined from its EM profiles, is exactly parallel to the magnetic trend in that location. The profile of each line is asymmetrical, with a distinctly larger high on the north than on the south indicating that the conductor dips to the north.*

Line 256, from baseline No. $1,2+40 S$ to $2+80 S$. This conductor also appears to dip north.

$$
\begin{aligned}
& \text { Respectfully submitted, } \\
& \mathcal{P} \text { eoneared Zretz } \\
& \text { Leonard Fritz, } \\
& \text { Gcologist }
\end{aligned}
$$

*D. S. Parasnis, Principles of Applied Geophysics, Methuen and Co., London, 1962

SUBMISSION OF GEOLOGICAL, GEOPIIYSICAL AND GEOCHEMICAL SURVETS

AS ASSESSMENT WORK

In order to simplify the filing of penhgical, geochemical and ground geophysical surveys for assessment work, the Minister has approved the lollowing procedure under Section $8+$ (8a) of the Ontario Mining Act. This special provision does not apply to airborne geophysical surveys.

If, in the opinion of the Minister, a ground geophysical survey mects the requirements prescribed for such a survey, including:
(a) substantial and systematic coverage of cach claim
(b) line spacing not exreeding 400 foot intervals
(c) stations not excecting 100 Foot intervals or
(d) the average number of readings per claim not less than 40 readings
it will qualify for a credit of 40 assessment work days for each daim so covered. It will not be necessary for the applicant to furnish any data or breakdown concerning the persons employed in the survey except for the names and addresses of those in charge of the various phases (linecutting contractor, ete.). It will be assumed that the required number of man days were spent in producing the survey to qualify for the specified credit.

Each additional ground geophysical survey using the same grid system and otherwise meeting these requirements will gualify for an assessment work credit of 20 days.

A geological survev using the same grid system, and meeting the requirements for submission of geological surveys for maximum credits will qualify for an assessment work credit of 20 days. If line cutting has not previously been reported with any other survey and is reported in conjunction with the geological survey a credit of 40 days per claim will be allowed for the survey.

Similarly, a geochemical survey using the same grid sjstem with the average number of collected samples per claim being not less than 40 samples, and meeting the requirements for the submission of geochemical surveys for maximum credits, will qualify for an assessment work credit of 20 days. If line cutting has not previously been reported with any other survey and is reported in conjunction with the geochemical survey a credit of 40 days per claim will be allowed for the survey.

Credits for partial coverage or for surveys not mecting requircments for full credis will be granted on a pro-rata hasis.

If the credits are reduced for any reason, a fifteen day Notice of latent will be issued. During this period, the applicant may apply to the Mining Commissioncr for relief if his claims are jeopardized for lack of work or, if he wishes, may file with the Department, normal assessment work breakdowns listing the names of the employees and
:- Whe-dates of twơrk. The survey would then be re-assessed to determine if higher credits may be allowed under the provisions of subsections 8 and 9 of section 84 of the Mining

If new breakdowns are not submitted, the Peiformance and Coverage credits are 4. confirmed to the Mi,uing Recorder at the end of the fifteen days.

\&

$$
\because: \therefore
$$

ASSESSMENT WORK DETAILS
Township or Area Stoughton Lake \& McYicar Lake

COVERING DATES

Line Cutting

Office December 1×1970 to Jan $13 x y: 7,197$
1970 January 19, 1971

INSTRUMENT DATA

Make, Model and Type ABEM GUN 35/88
Scalle Constant or Sensitivity \qquad
Or provide copy of instrumert data from Manufacturer's brochure.
Radiometric Background Count
Number of Stations Within Claim Group
Number of Readings Within Claim Group

3,398
3,927

Number of Miles of Line cut Within Claim Group_ $\quad 8282$
Number of Samples Collected Within Claim Group \qquad

Cridits requested	$\frac{20 \text { bays }}{\text { per claim }}$	$\frac{40 \text { DAYS }}{\text { per claim }}$	Includes (Line curting)
Gerological Survey	\square	\square	
Geophysical Survey	X ${ }_{\text {x }}$	\square	Show Check \downarrow
Geochemical Survey	\square	\square	

date \qquad
SIGNED F somand Truz

MSINC CL.NIMS TRIYERSEIS
list numerically:

TOTAL \qquad

Sion! in deplicate to:
fREB W. MATTHEWS
Stit. VISOR-PROJECTS SECCION
DEPARTMENT OF MINES \&
NORTIIERN AFFAIRS
WHTNEY BLOCK
QUEEN'S PARK
TORONTO. ONEPARIO

(rountion lake (M 2043) and Mcvicar Lake Area (H 2741)
int accompany
To accomany Report of Work -
TOIAL 124 claims

239126	30 days 10 daya	KRL 239171	20 days
239127	20	KRL 239171	20 days
239128	20	239173	20
239129	20	239174	20
239130	20	239175	20
239131	20	2391\%	20
239132	20	239177	20
239133	20	239178	20
239134	20	2ご179	$2{ }^{1}$
239135	20	2.39180	20
239136	20	239121	20
239137	20	23918:	20
239138	20	2?n?53	20
239139	20	239184	20
239140	20	239185	20
239141.	20	239186	20
239142	20	61 claims	
239143	20		
239144	20		
239145	20	KRL 239188	20 days
239146	20	239189	20
239147	20	239190	20
239148	20	239191	20
239149	20	239192	20
239150	20	239193	20
239151	20	239194	20
239152	20	239195	20
239153	20	239196	20
239154	20	239197	20
239155	20	239198	20
239156	20	239199	20
239157	20	239200	20
239158	20	239201	20
239159	20	239202	20
239160	20	239203	20
239161	20	239204	20
239162	20	239205	20
239163	20	239206232206	20
239164	20	19 clatma	
239165	20	19 claims	
239166	20		
239167	20	KRL 239208	20 days
239168	20	239209	20
239169	20	239210	20
239170	20	239211	20
		239212	20
		5 claims	

SEE ACCOMPANYING

$$
\begin{aligned}
& \text { MAP(S) IDENTIFIED AS } \\
& 520 / 11 S W-0035 \# 1-3
\end{aligned}
$$

LOCATED IN THE MAP

CHANNEL IN THE

FOLLOWING SEQUENCE

FOR ADDITIONAL
INFORMATION
SEE MAPS:
520/IISW-0035 \#4-9

(

