censenrth consultanis limited

Electromagnetic and Magnetic Surveys by
Geosearch Consultants Limited for
Placer Dome Inc. on
Project 282
Keezhik Lake, Ontario
(To Accompany Maps 87-200, 201 \#1, 3, 4, 5, 6, $8,9,10,12,13,16,17,25,26,27,28)$

$$
\text { July } 25,1988
$$

INTRODUCTION

An electromagnetic and magnetic survey were carried out for Placer Dome Inc. on Project 282, Keezhik Lake, Ontario in September 1986, and March and September 1987. The south west corner of the claim group was completed in February and March 1988, in conjunction with the adjoining project 318.

A list of the 31 claims covered by this assessment report is appended to the report. The claim group is located on and north of Keezhik Lake, which is located 120 km . east from the town of Pickle Lake, Ontario. Access to the property was made via fixed wing aircraft from Pickle Lake, Ontario.

The purpose of the survey was to locate subsurface, geoelectrical conductors, and outline geological structures as defined by the magnetics, which may prove conducive for gold mineralization.

Fifteen conductors were located. The magnetic survey outlines a major iron formation unit which reveals one tight fold, plus six transcurrent faults.

The accompanying maps show the area surveyed and the results obtained.

A technical data sheet is appended to the report.

Approximate Grid Location
scale $1: 506,880$

METHOD AND INTERPRETATION OF RESULTS - ELECTROMAGNETIC SURVEY .

Operating Principle: When an electrical conductor is subjected to a primary alternating field, a secondary current is induced in the conductor. This current produces a secondary alternating field which together with the primary field produces a resultant field of different amplitude and phase from the applied primary field. These differences may indicate the presence of a conductor.

Operation: The battery-powered transmitter sets up a primary field while the in-phase and out-of-phase (quadrature) components of the complex secondary vertical field are detected by a receiving coil and measured by means of a compensatoramplifier unit located a fixed distance from the transmitter unit. These parameters are expressed in percentage of the primary field.

Conductor Recognition: The typical curve over a steeply-dipping conductor shows a low (negative - greater than 5\%) over the centre of the conductor, flanked by positive readings on both sides of the conductor. Both the in-phase and the out-ofphase components usually produce the same general shape of curve. An asymmetrical curve may indicate one or more of the following conditions: (1) more than one conductor (2) variable conductive overburden (3) a shallow dipping conductor. Conductivity Determination: The ratio of the amplitudes of the two measured components, in-phase to out-of-phase, is directly proportional to the conductivity of the conductor, in areas of non-conductive overburden.

Conductor Location: For a single conductor, both component readings are normally zero when either the transmitting or receiving coil is directly above the conductor. The location of the conductor is calculated by adding one-half the distance between the transmitting coil and the receiving coil (coil interval) to the co-ordinate at which the readings are zero. A unique solution is generally not possible in the case of multiple conductors spaced less than one coil interval apart. This results in the possibility that an apparently wide conductor may actually consist of two or more narrow conductors.

Depth of Penetration: The maximum depth of penetration for detection of a steeplydipping conductor in a geo-electrically neutral background is about 0.7 times the coil interval. Over horizontal or flatly-dipping conductors, penetration of up to 1.5 times the coil interval is possible.

RESULTS

The magnetic data collected was contoured by Dome Exploration (Canada) Ltd.

The magnetic survey outlines a broad band of highly magnetized rock with amplitudes in excess of 60,000 gammas above a background of 59,000 gammas.

This banded iron formation reveals many structural features, namely a tight fold and six apparent transcurrent faults. To aid in the discussion of these features, reference will be made to numbers on the accompanying schematic of the magnetic anomalies, Fig. IV. Two base lines were used in this survey, with similar line numbers. To avoid confusion, reference will be made when a line is part of the Brash Lake Grid and none will be made when the lines correspond to the Keezhik Lake Grid (Fig. III). 1. This long, linear IF band extends from L14+00E, $5+25 \mathrm{~N}$ (Brash Grid, Map 16) to L39+00E, 7+00N (Brash Grid, llap 13). This vertical dipping band is less than 100 metres wide. Magnetic values are up to 46,000 gammas above background, being highest on L21+00E (Brash Grid, Map 17) where the band is widest.
2. Parallel to this is a second band of IF. This latter unit is the north limb of a tight fold. It extends from the edge of the surveyed area at $114+00 E, 1+50 S$ (Brash Grid, Map 16) to the nose of the fold at L45+00E, $3+00 \mathrm{~S}$ (Brash Grid, Map 13). The southern limb extends from the
nose to $131+00 E, 2+00 N$ (Hap 12), where it is truncated by a fault, F2. The northern limb is approximately 100 metres wide and is vertically dipping. The nose of the fold is elongated with a large concentration of magnetite at its tip, centred on $L 41+00 E, 3+00 S$ (Brash Grid, Map 13). The southern 1 imb , which is wider than the northern limb, dips to the south/southeast. The western extremity of this band is over 300 metres wide and consists of two distinct magnetic bands, 250 metres apart.
ie) $1-L 32+00 E, 2+00 N$ to L36+00E, $0+00(M a p 12)$
$2-L 32+00 E, 0+50 S(M a p 12)$ to L38+00E, 3+00S (Map 13).
There appears to be a dextral fault, $F 1$, passing through this fold. The fault axis is almost coincident with L40+00E of the Keezhik Lake grid. The fault is suggested by the narrowing of the magnetic contours on the southern limb between $L 40+00 E$ and $L 41+00 E$ at $6+25 S(M a p 13)$ and the break in the contour lines of the northern limb at $\mathrm{L} 20+00 \mathrm{E}, 1+50 \mathrm{~S}$ (Brash Grid, Map 17). The fault appears to displace the southern limb by 100 metres. No displacement is observed on the northern limb.

Fault F2 displaces the southern limb of the fold approximately 600 metres to the south east. This sinistral fault is located along a line connecting L33+00E, 8+00S (Map 13) and L31+00E, $2+00 \mathrm{~N}$ (Map 12).
3.

The IF unit to the south west of this fault, F2,
is over 300 metres wide and also consists of two narrower highly magnetic bands. One of these narrow bands extends from L29+00E, $3+62 S$ to $L 12+00 E, 0+25 S$, (Map 9). It is 50 metres wide and appears to be slightly folded, the nose of which is centred on L23+00E, 250 S (Map 9). The second more southerly band extends from L31+00E, $6+00 \mathrm{~S}$ to $L 11+00 \mathrm{E}, 1+25 \mathrm{~S}$ (llap 9). It has a variable width on the order of 150 metres. The entire unit dips to the southeast.

This $I F$ band is truncated by a dextral fault, $F 3$, located from $L 7+00 E, 6+00 N$ (Map 8) to L12+00E, $4+25 S$ (Map 9. There is an apparent 200 metre displacement along this fault.
4.

The IF unit continues southwest of the fault, $F 3$, extending from L9+00E, $0+50 \mathrm{~N}$ (Map 9) to L6+00W, $2+50 \mathrm{~S}$ (Map 6). This 400 metre wide unit dips to the southeast and still consists of two narrow bands, however the two bands become less distinct toward the western fault, F4, boundary.

There is a very pronounced break in the IF unit between units 4 and 5. A dextral fault extends from

L4+00W, $8+00 \mathrm{~S}$ (Map6) to L10+00W, $3+50 \mathrm{~N}$ (Map 8) yielding a 300 metre displacement.
5. Southwest of this fault, F4, the IF extends from L9+00W, $0+00(\operatorname{Map} 8)$ to L15+00W, $3+00 \mathrm{~S}$ (Map 6). The IF unit continues to consist of two narrow bands which are 200 metres apart. The individual bands are becoming more narrow. This IF unit dips to the south east, however the strike is becoming more northerly due to the series of dextral faults. This unit terminates on dextral fault, F5, located between L13+00W, $7+25 \mathrm{~S}$ to L18+00W, $3+75 \mathrm{~N}$ (Map 6). The apparent displacement is 130 metres.
6. The IF band south west of fault F5 extends from L16+00W, $2+75 \mathrm{~S}$ (Map 6) to L29+00W, 7+00S (Map 4). The pair of narrow IF bands are still distinct however they are becoming narrower and more closely spaced. The entire unit still dips to the south east. A narrowing of the contour lines at $L 29+00 W, 7+00 S(M a p 4)$ suggests a dextral fault, F6.
7. The iron formation extends from this fault, F6, to the edge of the surveyed area at L52+00W, $3+50 \mathrm{~S}$ (Map 3). Within this section the magnetic high values are spotted creating less resolution for the pair of narrow magnetic bands. This unit dips to the south east and is on the order of 200 metres wide. It is within this section that conductors \#13 and 14 are located.
8.

Parallel to this highly magnetic If there are a number of less magnetic, 5000 gamma, lineaments. These are located approximately 200 to 400 metres north of the IF extending from L22+00E, $4+00 \mathrm{~N}$ (Map 12) to L53+00W, $0+00$ (Map 3). These are narrow, non-continuous linear features which form a definite trend parallel to the IF units. It is within these lineaments that most of the conductors are located.

The horizontal loop electromagnetic survey located fourteen conductors. \#6 and \#7 are long parallel conductors. \#13 and \#14 are associated with the iron formation. Many are one line, short strike length conductors. The following table lists the conductors and defines their characteristics. The depth estimates and conductivity thickness product are calculated using the thin ribbon model.

RECOMMENDATIONS

The magnetic survey outlines a long IF unit which is broken up by many apparent faults. These structural features should be investigated and verified by geological mapping. The absence of outcroppings may require drilling for geology.

The conductors are concentrated in one general
area, mostly away from the iron formation. Based on conductivity and width the following are recommended drill targets.

	Conductor \#	Line	Map
1)	3	$12+00 \mathrm{~W}$	8
$2)$	6	$27+00 \mathrm{~W}$	5
$3)$	7	$30+00 \mathrm{~W}$	5
4)	12	$42+00 \mathrm{~W}$	3
5)	13	$45+00 \mathrm{~W}$	3

GEOSEARCH CONSULTANTS LTD.

Louis Racic, B. Sc.
Geophysicist
2 neal
2.8011

Cond. \#	Map Sheet	$\underset{\#}{\text { Line }}$	Station	Max. App. Width (m)		LF	Mag. Corr.	Mag. Val. (gammas)		Est. s) LF	$\begin{gathered} \sigma t \\ \text { (mhos } \\ H F \end{gathered}$		Remarks
7	6	25+00W	0+84N	Min.	1	. 6	yes	3349	20	51	2.8	13.2	
	6	$26+00 \mathrm{~W}$	0+37N	Min.	. 9	. 4	yes	5112	28	44	2.8	12.8	
	6	$27+00 \mathrm{~W}$	0+03S	Min.	1.1	. 9	yes	684	33	42	6.1	17.0	
	5	$28+00 \mathrm{~W}$	0+24S	Min.	2	1	yes	8266	29	29	7.5	13.3	
	5	$29+00 \mathrm{~W}$	0+61S	Min.	1	1	yes	-1163	31	53	5.1	23	
	5	$30+00 \mathrm{~W}$	0+795	Min.	4	3	yes	4046	27	29	15.7	40	
	5	$31+00 \mathrm{~W}$	1+13S	Min.	2	1	yes	3257	29	41	11.5	53	
8	6	18+00W	$3+70 \mathrm{~N}$	Min.	-	-	yes	838	\square	-	-	-	very indefinite on lines $18+00 \mathrm{~W}$ \& $20+00 \mathrm{~W}$
	6	19+00W	$3+21 \mathrm{~N}$	Min.	. 6	. 5	yes	2874	11	33	2.3	7.3	
	6	$20+00 \mathrm{~W}$	$2+75 \mathrm{~N}$	Min.	. 4	-	yes	9580	5	-	1.2	-	
9	5	37+00W	$\begin{aligned} & 2+00 \mathrm{~N}- \\ & 2+19 \mathrm{~N} \\ & 1+94 \mathrm{~N} \end{aligned}$	19	1	. 6	no	-	31	36	4.9	10	
	5	38+00W		Min.	1.5	1.2	no	-	38	53	7.5	30	
10	3	$37+00 \mathrm{~W}$	0+04N	Min	1.5	1.3	yes	10142	30	38	9.7	33	weak conductor over magnetic high
	3	$38+00 \mathrm{~W}$	0+00	Min.	1.5	1.3	yes	5042	35	41	12.6	32	
11	3	44+00W	$2+40 \mathrm{~N}$	Min.	. 5	-	no	-	14	36	1.3	4.1	indefinite conductor
12	3	42+00W	2+48S	Min.	2	1.3	yes	4666	51	53	20	30	indefinite conductor
13	3	45+00W	4+78S	Min.	2	2	yes	44076	28	41	6.4	32	weak conductor over extreme magnetic anomaly.
14	3	47+00W	4+16S	Min.	1.6	1	yes	18762	11	19	5.5	12.5	conductor 'strongest or$L 47+00 \mathrm{~W}$
	3	48+00W	$4+085$	Min.	1.3	1	yes	13110	22	40	4.7	20	
	3	$49+00 \mathrm{~W}$	$3+995$	Min.	1	1	yes	31510	20	41	2.2	13.0	
15	3	$55+00 \mathrm{~W}$	$2+00 \mathrm{~N}$	Min.	8	5	flank	2879	53	65	29	139	

Your Files M8804-388
Our File: 2.11494

Mining Recorder
Ministry of Northern Development and Mines 435 James Street South
P.O. BOX 5000

Thunder Bay, Ontario
PXC 56
Dear Madems
RE: Notice of Intent dated August 23, 1988. Geophysical (Electromagnetic \& Magnetometer) Survey subraitted on Mining Claims TB 913005 et al in the Area of Keezhik Lake.

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and 80 indicate on your records.

Yours sincerely,
W.R. Cowan, Manager

Mining Lands Soction
Mines a Minerals Division
Whitnoy Block, Roam 6610
ONTAMIO OEOLOQICAL SURVEY
ASSESSMENT FILES OFFICE.

SEP 81988

Queen's Park
Toronto, Ontario
M7A 1W3
Telephone: (416) 965-4888
8Hz80

Technical Assessment Work Credits

Recorded Holder	Placer Dome Inc.
	Keezhik Lake

Type of survey and number of Assessment days credit per claim	Mining Claims Assossed
	TB 913005 to 015 inclusive 914944 to 950 inclusive 927577 to 586 inclusive

Special credits under section 77 (16) for the following mining claims

20 days Electromagnetic

10 days Magnetometer
TB 914951

No credits have been allowed for the following mining claims
[X] not sufficiently covered by the survey
TB 913004

X insufficient technical data filed
TB 914952

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

Type of Survey(s)	Electromagnetic and Magnetic
Township or Area	Keezhik Lake, North Bay Area
Claim Holder(s)_ Placer Dome Inc.	

Survey Company Geosearch Consultants Limited
Author of Report Louis Racic
Address of Author 360-111 Queen St. E., Toronto Covering Dates of Survey $\frac{05 / 09 / 87-25 / 07 / 88}{\text { (linecutting to office) }}$
Total Miles of Line Cut 46.7 km .

SPECIAL PROVISIONS	DAYS
CREDITS REQUESTED	Geophysical per claim
ENTER 40 days (includes line cutting) for first survey.	-Electromagnetic 40
	-Magnetometer_20
	-Radiometric
ENTER 20 days for each additional survey using same grid.	-Other
	Geological
	Geochemical

AIRBORNE CREDITS (Special provision credits do not apply to airborne survery)

Res. Geol. \qquad Qualifications
Previous Surveys

File No.	Type	Date	Claim Holder

GEOPHYSICAL TECHNICAL DATA

GRO D SURVEYS -- If more than one survey, specify data for each type of survey

Instrument Gem Systems GSM-18 Memory Magnetometer
Accuracy - Scale constant 0.1 Camunas
Diurnal correction method Base station recorder with readings taken at
Base Station check-in interval (hours) 3 second intervals
Base Station location and value Line $12+00 \mathrm{~W}, \quad 8+75 \mathrm{~S} \quad 59,971$

Instrument Apex Maxmin II
Coil configuration Co-planar
Coil separation 100 metres
Accuracy $\quad 1 \%$
Method:
\square Fixed transmitter

Shoot back
米 In line
Parallel line
Frequency 444 llz . and 1777 Hz .
(specify V.L.F. station)
Parameters measured Inphase and quadrature of the vertical secondary field

Instrument \qquad
Scale constant
Corrections made \qquad

Base station value and location \qquad

Elevation accuracy

Instrument
Method \square Time Domain
Frequency Domain
Parameters - On time
Frequency

- Off time Range
\qquad
- Delay time \qquad
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode

P．O．Box 350，IBM Tower			
Geosearch Consultants Limite Name end Address of Aurhor（of Geo－Tachnical report） Louis Racic，360－111 Queen			
Credits Requested per Each Claim in Columns at righ：			
Specis！Provisions For first survev： Enter 40 days．TThis includes line cutting） For each additional survey； using the same grid： Enter 20 days（lior each）	Geophysical －Electromagnetic －Magnatometer －Radiometric －Othar Geological Geochemical	Dave per Claim	
		40	
		20	
		\cdots	
Man Davs Complete reverse side and enter total（s）here	Geophysicel －Electromagnetic －Magnetometer －Rediometric －Other Geological Geochemics！	Davs per Claim	
Airborne Cradits Note：Special provisions credits do not apply to Airborne Surveys．		Deve per Claim	
	Electromagnetic		
	Magnetometer		
	Radiometric		
Expenditures（excludes power stripping）			
Type of Work Parformed			
Partormed on Claim（s）			
Calculation of Expenditure Dave CreditsTotal ExpendituresTotalDavs Credits$\$ \square$			
Instructions Total Days Credits may be apportioned at the claim holder＇s choice．Enter number of davs credits per claimselected in columns at right．			

$\sqrt{D a t}$	Recgrded．Holder or Agent（Signature）新

Cerification Verifying Repor of Work

Patix mano cosmer	Exame	\％	mano cium	Esperaci
		TB	27578	
913004			227578	
913005			927579	
913006			927580	
913007			927581	
213008			927582	
W $+\quad 913009$			927583	
（3）$\chi^{2} 913010$			927584	
6 213011			927585	
（3x ${ }^{\text {c／}} 913012$			927586	
W緆 213013			$\stackrel{\circ}{5}$	
\％ 4213014			\bigcirc	
政䌐 913015			\％	
14601914944			\cdots	
繰綧 214945			－	
＊ 214246			－	
W．4 214947				
\％${ }^{4}$ 214948				
＊摡 214949				
（4） 2914950				
4 4				
Wrig 927577				
4 ${ }^{\text {a }}$				

[^0]Name and Postal Address of Person Certifying
Louis Racic，360－111 queen St．East，Toronto，Ontario，M5C 1S2 ${ }^{\prime}$

Ministry of Northern Development and Mines

Geophysloal-Geological-Geochemical

 Technical Data StatementFlle

TO BE ATTACHED AS AN APPENDIX TOTECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Electromagnetic and Magnetio Township or Area Keezhik Lake, North Bay Area Claim Holder(s)_ Placer Dome Inc.
Survey Company \quad Geosearch Consultants Limited
Author of Report Louis Racic
Address of Author $\frac{360-111 \text { Queen St. E., Toronto }}{}$
Covering Dates of Survey $\frac{05 / 09 / 87-25 / 07 / 88}{\text { (linecutting to office) }}$
Total Miles of Line Cut $\quad 46.7 \mathrm{~km}$.

SPECIAL PROVISIONS		DAYs Per clalm
CREDITS REQUESTED	Geophysical	40
	-Electromagnetic	40
ENTER 40 days (includes	-Magnetometer-	20
line cutting) for first	-Radiometric	
survey.	-Other	
ENTER 20 days for each additional survey using Geological same grid. Geochemical		

AIRBORNE CREDITS (Special provision creditu do not apply to airborse zuvey)

Previous Surveys		Date	Claim Holder
File No.	Type		
			,
-		

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

Instrument ___ Gem Systems GSM-18 Memory Magnetometer
Accuracy - Scale constant 0,1 gammas
Diurnal correction method Base station recorder with readings, taken at
Base Station check-in interval (hours) 3 second intervals
Base Station location and value Line $12+00 \mathrm{~W}, ~ 8+75 \mathrm{~S} \quad 59,971$

Instrument

\qquad
Scale constant \qquad
Corrections made \qquad
Base station value and location

Elevation accuracy

Instrument \qquad
Method \square Time Domain \square Frequency Domain
Parameters - On time Frequency

- Off time ___ Range \qquad
- Delay time
- Integration time \qquad
Power
Electrode array
Electrode spacing
Type of electrode \qquad

2.11494

秋

[^0]: I hereby certify that I have personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto，having performed the work or witnessed same during and／or after its completion and the annexed report is true．

