GEOPHYSICAL REPORT OF AN ELECTROMAGNETIC SURVEY

OPAPIMISKAN NORTH GROUP

PATRICIA MINING DIVISION

DISTRICT OF KENORA

NTS: 53-B-9

E.K. Berrer, M.Sc.
Staff Geophysicist
Canadian Nickel Company Limited
Copper Cliff, Ontario
April, 1983

RECEIVED
JUN 9 1983
MINING LANDS SECTION
INTRODUCTION

An exploration program consisting of magnetometer and HLEM surveys was carried out over the property during the summer of 1981 and winter of 1982.

A report (Gereghty, G.J.) covering the magnetic survey was submitted for assessment credits in 1982.

LOCATION AND ACCESS (Fig. 1)

The claim block is located in the Area of Skinner Lake, Patricia Mining Division, District of Kenora, about 130 km north of Pickle Lake, Ontario. The property lies immediately north of Opapimiskan Lake and east of North Caribou Lake.

Access to the property is by float plane or helicopter from Pickle Lake. A winter road branches off from Highway 808, about 100 km north of Pickle Lake, and crosses Neawagank Lake en route to Zeemel Lake which is located about 10 km south of the Canico claims.

PROPERTY

This report covers the electromagnetic survey of the following group of seven claims. (Fig. 2)

PA 588086 to 588088
PA 588091 - 92
PA 588095 - 96

Details of location and geological information are described in a separate assessment report on these claims.

Gridding

The survey baseline was established with an azimuth of 340° at an arbitrary point determined to be 40°00E. Two tie lines, 28°00E and 52°00E,
were also cut together with several local off-set base lines which were necessary to maintain grid control. Cross lines were cut at 100 m intervals and this grid system was established over the whole block; pickets were chained in at 25 m stations along the cross lines.

The area underlain by the claims is low lying with a fair portion covered by muskeg swamps or lakes. Outcrop coincides with the topographic highs although in some areas the high ground consists only of glacial boulder debris. Much of the tree cover was burned over about 8(?) years ago and this factor aided access and the locating of outcrops.

PREVIOUS EXPLORATION

The property forms part of a much larger area which was examined between 1961 and 1963 by Canadian Nickel Company Limited. This regional exploration program consisted of an airborne mag and EM survey with subsequent ground follow-up surveys and diamond drilling of EM conductors.

To the south of the property, adjacent to Opapimiskan Lake, the Musselwhite brothers discovered a number of gold showings c. 1973. Recent follow-up work in this area by Dome Mines, in a Joint Venture with Canico, Esso Minerals, and Lacana, has outlined gold mineralization in two zones. The main deposit is reported (Globe and Mail, 27/2/81) to contain about 1 million tons at 0.20 oz/ton gold in a folded iron formation.

GEOPHYSICAL SURVEY

A report (Gereghty, 1982) covering the magnetometer survey carried out over the property was submitted earlier to the Ontario Ministry of Natural Resources for assessment credits. This geophysical survey was performed during the period from March 20 to March 23, 1982.

General

The horizontal lpop system will indicate the presence of conductive materials in the ground such as sulfides, graphite or fractured zones. Eddy currents are produced if such an electric conductor is positioned in the electromagnetic field sent out by a transmitter. These eddy currents in the conductor produce a new electromagnetic field that is then superimposed on the primary field. The difference to the primary field is measured with a receiver. With this the in-phase and out-of-phase components of the secondary field are measured as percent of the primary field. When plotted as a profile the location of a conductor is indicated by a negative deflection flanked by two smaller positive deflections. The ratio of the in-phase to the out-of-phase values to the peak of the anomaly will give a measure of the quality of the conductor.
Instrument

A Max Min II horizontal loop electromagnetic unit was used - built by Apex Parametrics Ltd. of Toronto. The specifications given by the manufacturer are attached to this report. The system was used in the horizontal coplanar configuration.

Survey Procedure

The survey was conducted with a receiver coil separation of 100 metres. Readings were taken at 25 metre intervals along the cut and chained lines at a frequency of 888 Hz for in-phase and out-of-phase.

Plotting (Fig. 3 and 4)

The values of the in-phase and out-of-phase readings were plotted showing the surveyed lines on a plan at a scale of 1:2500. The readings are marked halfway between the receiver and transmitter locations. The location of the conductor axis is presented as a heavy solid or broken line depending on the conductor classification. A priority was assigned to each conductor. This will allow an easier recognition of the conductor quality with "1" being the highest priority.

Results

Several conductors were found to strike from north to south through the area covered by the group of claims. Their priority rating ranges from high to low. Their ratio of in-phase to out-of-phase however is mainly high indicating that the conductors are also in most cases of good quality but being quite narrow. The strongest conductor was located near the west side of the claim group. Their association with magnetic anomalies indicates that they are caused by sulfides or magnetite in a sedimentary environment. (See previous assessment report submitted in June, 1982.)

Conclusions

A number of conductors were located, caused generally by a narrow zone of conductive and magnetic material, with very little structural folding apparent.

Statistics

- Lines covered: 8.4 km
- Readings taken: 336

E.K. Derrer, M.Sc.
Staff Geophysicist
APEX MAXMIN II EM SYSTEM:
Preliminary Specifications:

OPERATING FREQUENCIES: 220, 440, 880 and 1760 Hz.

COIL SEPARATIONS: 200, 300, 400, 600 and 800 feet.

MODES OF OPERATION:
- a) Tx coil plane horizontal and Rx coil plane horizontal (Horizontal loop mode).
- b) Tx coil plane horizontal and Rx coil plane vertical (Minimum coupled mode).

PARAMETERS MEASURED: In Phase and Quadrature component of the secondary field.

READOUTS: Automatic direct, from 3½" type meter.

SCALE RANGES:
- In Phase ±20% normal, ±100% by switch.
- Quadrature ±20% normal, ±100% by switch.
- Inclinometers ±50%

READING REPEATABILITY: ±½% to ±1%

RX BANDWIDTH (-3dB): 0.3 Hz normal, 0.03 Hz by switch

RX INTERNAL NOISE: Negligible

TX DIPOLE MOMENT: 150 @ 220 Hz, 150 @ 440 Hz, 75 @ 880 Hz, 38 @ 1760 Hz.

RX POWER SUPPLY: Ten 1.5 V penlight cells, type AA

TX POWER SUPPLY: Three 6 V lantern batteries in a battery pack. Optionally two 12 V 8Ah rechargeable Gel Cells.

REFERENCE CABLE: Light weight, low friction unshielded.
Unit supplied with 200, 400 and 600 ft. cables, other lengths optional.

WEIGHT OF RX UNIT: Approx. 10 lbs.

WEIGHT OF TX UNIT: Approx. 27 lbs.

APEX 2-74
This equipment is being built by Apex Parametrics to the specifications set by Mr. J. E. Betz, geophysical consultant. It is intended for all types of conditions, but most importantly to insure a consistently deep searching capability for metallic ore-bodies under such adverse conditions as overlying conductive cover, strong power line and atmospheric noise, and rough terrain. The start of production is planned for the spring of 1974, at a price of about $4,500.

The equipment will be thoroughly field tested under all of the adverse conditions described above and the results will be included in the instruction manual.

This is a two-man portable in-line system in which the receiving coil can be operated in both a maximum and a minimum coupled configuration with the transmitting coil - the underlined words combining to give the equipment its name, MaxMin II. The most common mode of operation is with the transmitting and receiving coils in a maximum coupled horizontal coplanar configuration. This is the well known horizontal loop mode, which measures the vertical in-phase and out-of-phase components of the anomalous field. There are conducting situations, however, for which the horizontal components of the anomalous field are stronger, e.g. deep very wide conductors, and for these the facility of operating the receiving coil with its turns vertical and across the traverse line is provided. In this position, the receiving coil is minimum coupled with the transmitting coil.

Each coil contains an inclinometer, which permits accurate control of its tilt, and subsequent elimination of coil-geometry errors. The effective use of the inclinometer is extensively described in the instruction manual.

The range of the in-phase and out-of-phase dual scales is ±100% and ±20% (of primary field). The readout is automatic with a scale resolution of 1/4%. The reading repeatability is ±1/4%.

There are four drift-free operating frequencies in ratios of 1:2:4:8 apart. The lowest frequency is below that of any offered to date in this type of equipment. The operator has a choice of five coil spacings, 200, 300, 400, 600 and 800 ft.

A cable link (reference cable) is used between transmitter and receiver to get the clean reference signal necessary to drive the synchronous detectors -- one of the factors in effective power line noise rejection. A light, strong, low-friction, cold-temperature-resistant cable is used. Experiments have shown that 600 feet of this cable is quite easy to pull along picket lines -- easier than shorter lengths of other types of cable in use at present.
The reference cable doubles as part of a simple-to-operate voice communication link between the transmitter and receiver operators — an essential factor whenever it is necessary to break the normal operating routine at the large coil spacings required for deep search. It is also strong enough to assist one operator or the other to negotiate difficult places in the terrain. This advantage is particularly easy to reap with good voice contact between the operators. Examples of this are given in the instruction manual.

Special design considerations have gone into the receiver to give it both sharp tuning and phase stability from -40°C to +60°C. The sharp tuning combined with the synchronous detectors makes it possible to get repeatable data very close to major power lines. The phase stability results in no significant mixing of the in-phase and out-of-phase components at any temperature over the operating range.

The system is engineered to have no stray coupling. It is possible for this type of coupling to exist in any poorly designed cable-linked system, and in practice it results in a change in reading with a change in the operators' position and condition (wet-dry) with respect to the coils and the ground. It is essential that no "stray" effects exist if small readings are to be of interpretive significance.

Although the equipment is primarily designed for mineral exploration, it can also be used to determine the resistivity and thickness of conductive overburden. Determining these overburden properties is not necessarily unrelated to mineral exploration, because knowledge of them can lead to the appropriate choice of coil spacing and frequency.

Mr. Betz has used considerable field and scaled modelling data to determine the optimum combination of frequency and coil spacing for various conditions of conductive overburden, while still striving for a two-man continuously portable system. Both the attenuating effect, and the "geological" noise related to conductive overburden on an irregular bedrock surface, have been taken into account. The types of conductive overburden considered in this study are the varved and silty clays found in the Timmins area of Ontario and in other parts of the Canadian Shield. The resistivity of which is around 30 ohm meters.

In addition to the present study, Mr. Betz has determined from his extensive modelling the best combinations of frequency and coil spacing for massive sulphide detection in areas of extremely conductive overburden, such as in Southwestern Australia. It is the intention of Apex Parametrics to develop a three-man continuously portable equipment (the MaxMin III) to cope with such problem areas.
Mining Lands Section

Mining Claim Traversed (List in numerical sequence)

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa</td>
<td>588086</td>
</tr>
<tr>
<td></td>
<td>588087</td>
</tr>
<tr>
<td></td>
<td>588088</td>
</tr>
<tr>
<td></td>
<td>588091</td>
</tr>
<tr>
<td></td>
<td>588092</td>
</tr>
<tr>
<td></td>
<td>588095</td>
</tr>
<tr>
<td></td>
<td>588096</td>
</tr>
</tbody>
</table>

Special Provisions

For first survey:
- Enter 40 days. (This includes line cutting)

For each additional survey:
- Using the same grid: Enter 20 days (for each)

Expenditures (excludes power stripping)

<table>
<thead>
<tr>
<th>Type of Work Performed</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysical</td>
<td></td>
</tr>
<tr>
<td>- Electromagnetic</td>
<td></td>
</tr>
<tr>
<td>- Magnetometer</td>
<td></td>
</tr>
<tr>
<td>- Radiometric</td>
<td></td>
</tr>
<tr>
<td>- Other</td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

Credits Requested per Each Claim in Columns at right

<table>
<thead>
<tr>
<th>Mining Claim</th>
<th>Exp. Days Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Number</td>
</tr>
<tr>
<td>Pa</td>
<td>588086</td>
</tr>
<tr>
<td></td>
<td>588087</td>
</tr>
<tr>
<td></td>
<td>588088</td>
</tr>
<tr>
<td></td>
<td>588091</td>
</tr>
<tr>
<td></td>
<td>588092</td>
</tr>
<tr>
<td></td>
<td>588095</td>
</tr>
<tr>
<td></td>
<td>588096</td>
</tr>
</tbody>
</table>

Instructions

Total Days Credits may be apportioned at the claim holder's choice. Enter number of days credits per claim selected in columns at right.

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

I. D. McCaskill, c/o Canadian Nickel Company Limited

Copper Cliff, Ontario POM INO

Date Certified: April 25, 1983

Certified by (Signature): [Signature]

Date Approved as Recorded: June 20, 1983

[Stamp]
Assessment Work Breakdown

Man Days are based on eight (8) hour Technical or Line-cutting days. Technical days include work performed by consultants, draftsmen, etc.

Type of Survey

Geophysical (Horizontal Loop E.M.)

<table>
<thead>
<tr>
<th>Technical Days</th>
<th>Technical Days Credits</th>
<th>Line-cutting Days</th>
<th>Total Credits</th>
<th>No. of Claims</th>
<th>Days per Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 X 7</td>
<td>112</td>
<td>0</td>
<td>112</td>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

Technical Days Breakdown

- **Field Work:** (4) 12 hour days x 2 men = 12 Technical Days
- **Drafting:** 2 " "
- **Consulting and Report Writing:** (E. K. Berrr) 2 " "

Total = 16 Technical Days
Ministry of Natural Resources

GEOPHYSICAL – GEOLOGICAL – GECOCHEMICAL
TECHNICAL DATA STATEMENT

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT
FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT
TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Survey(s) Geophysical (Horizontal loop E.M.)

Township or Area Area of Skinner Lake (M-2707)

Claim Holder(s) Canadian Nickel Company Limited

Survey Company Canadian Nickel Co. Limited

Author of Report E. K. Berrer

Address of Author c/o Canadian Nickel Company Ltd., Copper Cliff, Ontario P0M 1NO

Covering Dates of Survey Sept. 21/81 to Feb. 25/83 (linecutting to office)

Total Miles of Line Cut 12 km

<table>
<thead>
<tr>
<th>MINING CLAIMS TRAVERSED</th>
</tr>
</thead>
<tbody>
<tr>
<td>List numerically</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(prefix)</th>
<th>(number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pa. 588086</td>
<td></td>
</tr>
<tr>
<td>Pa. 588087</td>
<td></td>
</tr>
<tr>
<td>Pa. 588088</td>
<td></td>
</tr>
<tr>
<td>Pa. 588091</td>
<td></td>
</tr>
<tr>
<td>Pa. 588092</td>
<td></td>
</tr>
<tr>
<td>Pa. 588095</td>
<td></td>
</tr>
<tr>
<td>Pa. 588096</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL PROVISIONS

CREDITS REQUESTED

<table>
<thead>
<tr>
<th>Geophysical</th>
<th>DAYS per claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic</td>
<td>16</td>
</tr>
<tr>
<td>Magnetometer</td>
<td></td>
</tr>
<tr>
<td>Radiometric</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Geological</td>
<td></td>
</tr>
<tr>
<td>Geochemical</td>
<td></td>
</tr>
</tbody>
</table>

AIRBORNE CREDITS (Special provision credits do not apply to airborne surveys)

<table>
<thead>
<tr>
<th>Magnetometer</th>
<th>Electromagnetic</th>
<th>Radiometric</th>
</tr>
</thead>
</table>

DATE: June 3, 1983

SIGNATURE:__________________________

Author of Report or Agent

Res. Geol.__________________________ Qualifications: 2, 15, 26

Previous Surveys

<table>
<thead>
<tr>
<th>File No.</th>
<th>Type</th>
<th>Date</th>
<th>Claim Holder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CLAIMS 7
GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS
- If more than one survey, specify data for each type of survey

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Stations</td>
<td>336</td>
</tr>
<tr>
<td>Number of Readings</td>
<td>336</td>
</tr>
<tr>
<td>Station interval</td>
<td>25 metres</td>
</tr>
<tr>
<td>Line spacing</td>
<td>100 metres</td>
</tr>
<tr>
<td>Profile scale</td>
<td></td>
</tr>
<tr>
<td>Contour interval</td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC
- **Instrument**: APEX MAX MIN II
- **Accuracy** - Scale constant
- **Diurnal correction method**
- **Base Station check-in interval (hours)**
- **Base Station location and value**

ELECTROMAGNETIC
- **Instrument**: APEX PARAMETRICS MAX MIN II
- **Coil configuration**: Horizontal coplanar configuration
- **Coil separation**: 100 metres
- **Accuracy**: ±1%
- **Method**: [] Fixed transmitter [] Shoot back [] In line [] Parallel line
- **Frequency**: 0.08 Hz
- **Parameters measured**: In phase and quadrature components of secondary field.

GRAVITY
- **Instrument**
- **Scale constant**
- **Corrections made**
- **Base station value and location**
- **Elevation accuracy**

RESISTIVITY
- **Instrument**
- **Method**: [] Time Domain [] Frequency Domain
- **Parameters** - On time
 - Off time
 - Delay time
 - Integration time
- **Frequency**
 - Range
- **Power**
- **Electrode array**
- **Electrode spacing**
- **Type of electrode**
To: Geophysics

MR. BARLOW

Comments
HEM maps should be profiled

☐ Approved ☐ Wish to see again with corrections Date: Signature:

To: Geology - Expenditures

Comments

☐ Approved ☐ Wish to see again with corrections Date Signature

To: Geochemistry

Comments

☐ Approved ☐ Wish to see again with corrections Date Signature

To: Mining Lands Section, Room 6462, Whitney Block. (Tel: 5-1380)
Dear Mr. Matthews:

Enclosed are geological, geophysical (HLEM) and expenditure reports in duplicate, being submitted as assessment work on the following claims located in the Area of Skinner Lake (M-2707) Patricia Mining Division.

Pa 588074 - 089 incl.
Pa 588091 - 096 "
Pa 605212 - 215 "
Pa 605228 - 233 "
Pa 605245 - 251 "
Pa 606001 - 005 "
Pa 606038 - 085 "
Pa 606781 - 786 "
Pa 606788 - 790 "
Pa 606807 - 832 "
Pa 606836 - 889 "
Pa 606892 - 894 "
Pa 606897 - 900 "
Pa 606902 - 934 "
Pa 606951 - 981 "

The work reports covering this submission were forwarded to Mr. Albert Hanson in Sioux Lookout on April 26, 1983.

I trust that these reports will be considered satisfactory by your department.

Yours truly,

W.V. Rodney
IM/cb

INCO LIMITED
Mr. Albert Hanson
Mining Recorder
Ministry of Natural Resources
P.O. Box 669
Sioux Lookout, Ontario
POV 2T0

Dear Sir:

We have received reports and maps for a Geophysical
(Electromagnetic) survey submitted under Special Provisions
(Credit for Performance and Coverage) on mining claims
EA 588086 et al in the Area of Skinner Lake.

This material will be examined and assessed and a statement
of assessment work credits will be issued.

We do not have a copy of the report of work which is normally
filed with you prior to the submission of this technical data.
Please forward a copy as soon as possible.

Yours very truly,

E.F. Anderson
Director
Land Management Branch

Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone: (416) 965-1380

A. Barr:me

cc: Canadian Nickel Company Limited
Copper Cliff, Ontario
POM 1NO

Attention: Mr. E.K. Berrer
October 7, 1983

Mr. F.W. Matthews
Supervisor, Projects Section
Ministry of Natural Resources
Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3

Dear Mr. Matthews:

Re: File 2.5612 (Geophysical (HLEM) Survey - Area of Skinner Lake)

Enclosed are the HLEM survey plans with profiles as requested.

Yours truly,

W.V. Rodney

IM/cb

Enclosure
September 15, 1983

Canadian Nickel Company Limited
Copper Cliff, Ontario
POM 1NO

Attention: W.V. Rodney

Dear Sir:

RE: Geophysical (Electromagnetic) Survey on Mining Claims PA 588074 et al in the area of Skinner Lake

Enclosed are the two plans (In duplicate) for the above-mentioned survey.

Please profile each plan and return them to this office quoting file 2.5612.

For further information, please contact Mr. F.W. Matthews at (416)965-1380.

Yours very truly,

E.F. Anderson
Director
Land Management Branch

Whitney Block, Room 6450
Queen's Park
Toronto, Ontario
M7A 1W3
Phone:(416)965-1380

S. Hurst:mc

Encl.

cc: Mining Recorder
Sioux Lookout, Ontario
Canadian Nickel Company Limited
Copper Cliff, Ontario P0M 1N0

EQUIPMENT TRANSFER

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parcel</td>
<td>Skinner Lake Reports</td>
</tr>
</tbody>
</table>

Dispatched by

Radio copy - Field Office
Pink copy - Shipper
Blue copy - Consignee - initial and return to shipper
Green copy - Packing Slip

RECEIVED

JUN 9 1963
MINING LANDS SECTION
MAP(S) IDENTIFIED AS

53B/09NW-0022, #1, 2, 3

LOCATED IN THE MAP CHANNEL IN THE FOLLOWING SEQUENCE (X)
Station location and readings (l.P-in phQSft, O.P.-out of phase)

In Phase Profile - 1888 Hz
Out of Phase Profile - 388 Hz
Profile Scale: 1 cm -
Station Interval - 25 m
Coil Separation: 0:1000 m
Conductor Priority
Conductor Classification
Strong
Medium
Weak
Very Weak

Canadian Nickel Company Limited
Copper Cliff, Ontario

HLEM SURVEY
PAPIMISKAN NORTH GRID
PAPIMISKAN LAKE, ONTARIO (Tern AEMJ

* PEX

Frequency: 1888 Hz

Drawn by RMK K.O.

220
Table:

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Reading Type</th>
<th>Frequency</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In Phase</td>
<td>888 Hz</td>
<td>1 cm = 1%</td>
</tr>
<tr>
<td></td>
<td>Out of Phase</td>
<td>888 Hz</td>
<td>1 cm = 1%</td>
</tr>
</tbody>
</table>

Legend:

- **Strong**
- **Medium**
- **Weak**
- **Very Weak**

Sheet Index:

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Canadian Nickel Company Limited

Survey Details:

- **Survey Date:** Feb - Mar /82
- **Drawn By:** Juns /82
- **Revised:**

Survey Location:

- **Opapimiskan Lake, Ontario**
- **APEX Max-Min II**
- **Frequency:** 888 Hz

Note:

- **Scale:** 1 cm = 1%