

DIAMOND DRILLING

AREA: ZEEMEL LAKE

REPORT NO: 29

WORK PERFORMED FOR: Santa Maria Resources Ltd.

RECORDED HOLDER: Same as above [xx] : Other []

L	Λ	А
ſ		
L		

Claim No.	Hole No.	Footage	<u>Date</u>	Note
861431	SMZ-87-1 SMZ-87-2	297 ' 457 '	Sept/87 Sept/87	(1) (1)
861426	SMZ-87-3 SMZ-87-4	456 ' 457 '	Sept/87 Sept/87	(1) (1)
861425	SMZ-87-5	467'	Sept/87	(1)
861521	SMZ-87-6	627'	Sept/87	(1)
861518	SMZ-87-7 SMZ-87-8	346' 392'	Sept/87 Sept/87	(1) (1)
861520	SMZ-87-9	427'	Sept/87	(1)
861518	SMZ-87-10	407'	Sept/87	(1)
861520	SMZ-87-11 SMZ-87-12	335 ' 400 '	Sept/87 Sept/87	(1) (1)
861517	SMZ-87-13 SMZ-87-14 SMZ-87-15 SMZ-87-15B SMZ-87-16 SMZ-87-17 SMZ-87-18	325' 397' 131.7' 162' 497' 807' 485'	Sept/87 Sept/87 Sept/87 Sept/87 Sept/87 Sept/87	(1) (1) (1) (1) (1) (1)
861514	SMZ-87-19 SMZ-87-20 SMZ-87-21	353 ' 375 ' 337 '	Oct/87 Oct/87 Oct/87	(1) (1) (1)
861513	SMZ-87-22	357'	0ct/87	(1)
861512	SMZ-87-23	477 '	Oct/87	(1)

DIAMOND DRILLING

AREA: ZEEMEL LAKE REPORT NO: 29

WORK PERFORMED FOR: Santa Maria Resources Ltd.

RECORDED HOLDER: Same as above [xx] : Other []

Claim No.	Hole No.	Footage	Date	Note
861426	SMZ-87-24 SMZ-87-25 SMZ-87-26	297 ' 397 ' 397 '	0ct/87 0ct/87 0ct/87	(1) (1) (1)
861419	SMZ-88-1	407 '	Jan/88	(1)
861420	SMZ-88-2	376'	Jan/88	(1)
861419	SMZ-88-3	274'	Feb/88	(1)
861432	SMZ-88-4	506'	Feb/88	(1)
861418	SMZ-88-5	997'	Feb/88	(1)
861430	SMZ-88-6	346'	Feb/88	(1)
861514	SMZ-88-7	406'	Feb/88	(1)
861512	SMZ-88-8	347'	Feb/88	(1)
861524	SMZ-88-9	396 '	Feb/88	(1)

REPORT

ON

DIAMOND DRILLING

ZEEMEL LAKE PROPERTY

DISTRICT OF KENORA, PATRICIA MINING DIVISION

NORTHWESTERN ONTARIO

FOR

SANTA MARIA RESOURCES LTD.

NTS 53-B/9 SW

ONTARIO GEOLOGICAL SURVEY
ASSESSMENT FILES
OFFICE

PATRICIA MINING DIVISION

SEP 6 1988

RECEIVED

TABLE OF CO.

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	PROPERTY DESCRIPTION	4
4.0	LOCATION, ACCESS AND SERVICES	4
5.0	PHYSIOGRAPHY AND VEGETATION	6
6.0	PREVIOUS WORK	6
7.0	REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION	9
	7.1 Regional Geology7.2 Economic Mineralization	9 10
8.0	PROPERTY GEOLOGY	13
	8.1 General 8.2 Lithologies 8.2.1 Supracrustal Rocks 8.2.2 Intrusives 8.2.3 Chemical Metasediments 8.3 Structure 8.4 Metamorphism 8.5 Alteration	13 13 13 14 15 15 15
9.0	SUMMARY OF GEOPHYSICS	16
10.0	DESCRIPTION OF PROGRAM	17
	10.1 Description of Program 10.2 Discussion of Results	17 18
11.0	CONCLUSIONS	22
12.0	RECOMMENDATIONS	22
13.0	ESTIMATED COST OF RECOMMENDED EXPLORATION PROGRAM	29
14.0	REFERENCES	30

TABLE OF CONTENTS (Cont'd)

APPENDICES

A	CERT	ΙF	ICA	ΥF	ES OF	QUALIF	CATION		Back	of	repor	:t
В	DIAM	ON:	D E	RI	LL I	JOGS			u	11	11	
С	LEGE	ND	AN	1D	DIAN	MOND DRI	LL SECT	IONS	п	11	н	
D	ASSA	Υ (CEF	(TS	FICE	ATES			н	u	H	
						<u>I</u>	IST OF	TABLES				
TABLI	E NO.	1	-	st	JMMAI	RY OF DE	ILL HOL	E DATA			Page	23
						LI	ST OF F	IGURES				
FIGUE	RE NO		1	-	LOCA	ATION MA	·P				Page	3
FIGUE	RE NO	•	2	-	CLA	M SKETO	Н				Page	5
FIGUE	RE NO	•	3	_	PRO	PERTY LO	CATION	AND REGI	ONAL GEOLOGY	Y	Page	11
FIGUE	RE NO		4	_	PLAN	OF DRI	LLING				Page	19
FIGUE	RE NO		5	-	LEGI	END				API	PENDI	K C
FIGUE	RE NO		6	_	DDH	SECTION	56+00E	HOLE	SMZ-88-2		11	11
FIGUE	RE NO	•	7	-	DDH	SECTION	40+00E	HOLE	SMZ-88-6		11	11
FIGUE	RE NO		8	-	DDH	SECTION	36+00E	HOLES	S SMZ-88-1,3	, 5	11	10
FIGUI	RE NO		9	-	DDH	SECTION	28+50E	HOLE	SMZ-87-26		н	II
FIGU	RE NO	•	10	-	DDH	SECTION	28+00E		S SMZ-87-1, 2 4, 24	2,	11	11
FIGUE	RE NO		11	_	DDH	SECTION	27+50E	HOLE	SMZ-87-25		11	**
FIGUE	RE NO		12	_	DDH	SECTION	15+00E	HOLE	SMZ-87-5		н	10
FIGU	RE NO		13	-	DDH	SECTION	12+00E	HOLE	SMZ-88-4		11	11
FIGUE	RE NO	٠.	14	_	DDH	SECTION	5+00E	HOLE	SMZ-87-6		11	11

TABLE OF CONTENTS (Cont'd)

LIST OF FIGURES

ETCUDE NO. 16 DOU CEOMION 4.000	ıı
FIGURE NO. 16 - DDH SECTION 4+00W HOLES SMZ-87-23; 88-8	
FIGURE NO. 17 - DDH SECTION 18+00w (A) HOLE SMZ-87-22	11
FIGURE NO. 18 - DDH SECTION 18+00W (B) HOLES SMZ-87-7, 8, 10	n
FIGURE NO. 19 - DDH SECTION 24+00W HOLE SMZ-88-10	
FIGURE NO. 20 - DDH SECTION 32+00W "HOLES SMZ-87-13, 15, 15B, 17	11
FIGURE NO. 21 - DDH SECTION 36+00W (A) HOLE SMZ-88-7	11
FIGURE NO. 22 - DDH SECTION 36+00W (B) HOLE SMZ-88-9	n
FIGURE NO. 23 - DDH SECTION 42+00W "HOLES SMZ-87-19, 20, 21	10
FIGURE NO. 24 - DDH SECTION 44+00W "HOLES SMZ-87-14, 16, 18	11

1.0 SUMMARY

A diamond drilling program, consisting of 15,325 feet of B.Q. coring in 37 holes, was carried out between September 3, 1987 and February 9, 1988, on the Zeemel Lake property of Santa Maria Resources Ltd. The group of 45 claims is located approximately 75 miles north of Pickle Lake, Ontario and approximately 3 miles south of the Snoppy Lake gold discovery of Dome Mines Ltd.

The claim group is located on the southern boundary of the North Caribou Greenstone Belt, part of the Sachigo Subprovince, at the junction of two major lobes, and is underlain by mafic and ultramafic metavolcanics and clastic metasediments with lesser amounts of chert and banded iron formation as well as minor intermediate to felsic volcanics and felsic to mafic dykes.

Sub-economic gold mineralization was discovered in four areas on the property. In Area 1, mafic metavolcanics in contact with felsic intrusives yielded 0.54 ounces of gold per ton over 4.1 feet as well as several lower grade intersections. In Area 2, a gold value of .07 ounces per ton was returned from an area around a crosscutting diabase dyke. In Area 3, a series of subconcordant VLF-EM conductors yielded four gold values in excess of .01 ounces per ton. In Area 4, a large fault zone was intersected and showed heavy alteration. A sample near this fault yielded a gold value of .017 ounces per ton over 2.0 feet.

A recommended follow-up program of core resampling and 3,000 feet of additional diamond drilling is estimated to cost \$127,440.00.

2.0 INTRODUCTION

The Zeemel Lake property of Santa Maria Resources Ltd. comprises 45 unpatented mining claims located in the south-central part of the North Caribou Lake greenstone belt, approximately 75 miles north of Pickle Lake, Ontario and 3 miles south of the Musselwhite and Snoppy Lake gold deposits discovered by a consortium of companies headed by Dome Mines Ltd. (Fig. No. 1).

The contractor, Midwest Diamond Drilling, carried out a diamond drilling program between September 3 and October 15, 1987 and January 29 and February 9, 1988 on behalf of Santa Maria Resources Ltd. The program consisted of 15,325 feet of drilling in 37 holes.

B.Q. sized core was logged and features of potential economic interest were sampled and analyzed for gold.

The following personnel were involved in the work:

В.	A. Huston	Geologist/Supervisor	Kingston, Ontario
Ε.	Timoshenko	Geologist	Brampton, Ontario
Μ.	Stevens	Splitter	London, Ontario
Ε.	Pashawon	Splitter	Pickle Lake, Ontario
N.	Bell	Splitter	Toronto, Ontario
Μ.	Kowalchuk	Splitter	Dryden, Ontario

The results of the program are described in this report and a proposal is made for further work.

3.0 PROPERTY DESCRIPTION

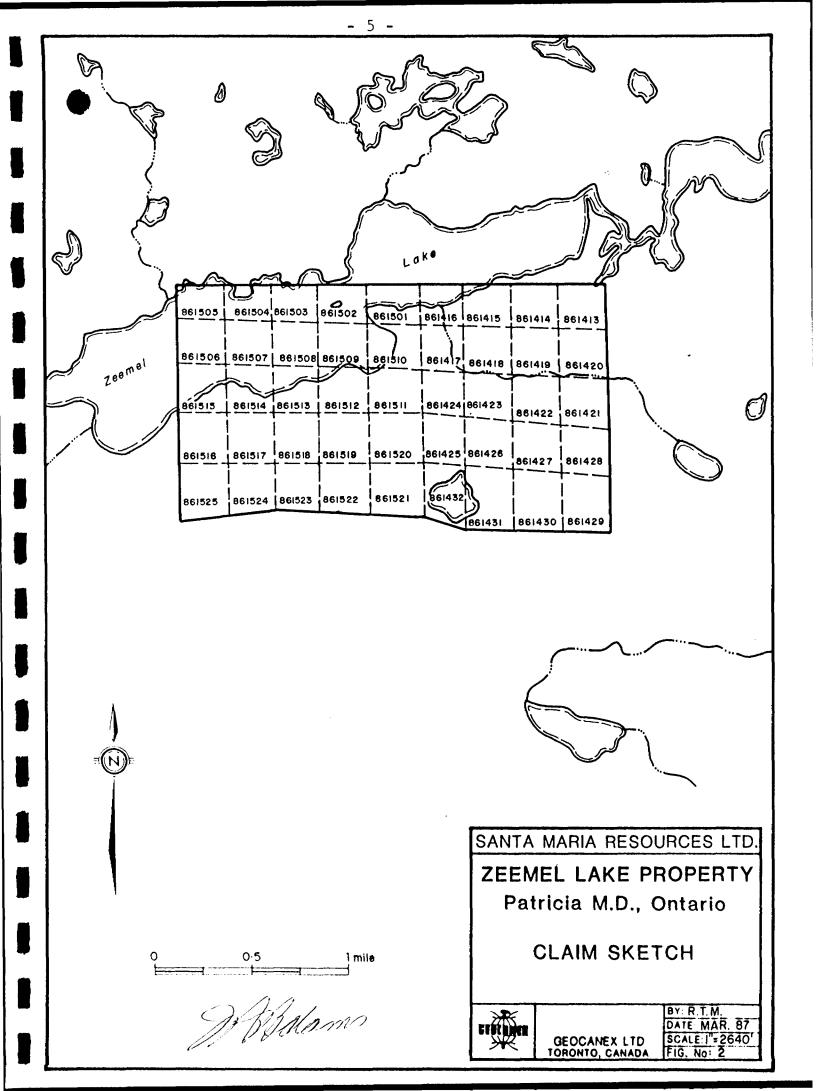
The Zeemel Lake property comprises 45 contiguous, unpatented mining claims, totalling approximately 1,800 acres located in the Patricia Mining Division. The claims are shown on Ministry of Natural Resources claim sheet G-2278, Zeemel Lake (Fig. No. 2).

Claim numbers and recording dates are as follows:

Claim Numbers

Recording Dates

Pa 861413-861432 inclusive (20) February 7, 1986
Pa 861501-861525 inclusive (25) February 7, 1986


Total 45 Claims

The claims are wholly owned by Santa Maria Resources Ltd. of 808-85 Richmond Street West, Toronto, Ontario, M5H 2C9.

4.0 LOCATION, ACCESS AND SERVICES

The property is located in northwestern Ontario (Lat.52°34'N, Long.90°23'W; NTS Co-ordinates 53/B9 SW), approximately 75 miles north of the town of Pickle Lake, Ontario and 300 miles north of Thunder Bay, Ontario.

Access to the property is gained by helicopter or float or ski-equipped aircraft from Pickle Lake. Winter access is possible by a winter road which runs from the nearby Mussel-white discovery to Highway 808, passing less than one mile west of the property. Highway 808 is an all-weather gravel road which runs south to Pickle Lake. Highway 599, a paved

all-weather road connects Pickle Lake to the Canadian National Railway line at Savant Lake, 90 miles to the south, and the Trans-Canada Highway at Ignace, 185 miles to the south.

Services, supplies and manpower can be obtained from Pickle Lake, a mining and transportation centre with a population of approximately 350 people.

5.0 PHYSIOGRAPHY AND VEGETATION

Much of the area is relatively flat, slightly swampy woodland. Several low hills composed mainly of sand and boulder glacial till, show a maximum relief of about 50 feet. Bedrock exposure is sparse.

Most of the property is covered by spruce, mixed with jackpine, birch and poplar in elevated areas, and tamarack in low-lying muskeg covered sections.

The northwest part of the property is covered by Zeemel Lake, which forms part of the Paseminon River system.

6.0 PREVIOUS WORK

1950's Ben Ohman

Ben Ohman, a prospector working for the Kovals of Pickle Lake, discovered gold in the Libert Lake area in iron formation and put down several trenches.

1962 The Musselwhite Brothers

Gold was discovered on the adjacent Dome-Inco-Esso-Lacana property by the Musselwhite brothers.

1962-1963 Kenpat Mines Ltd.

The Musselwhite property was optioned to Kenpat Mines Ltd., who carried out trenching, geological and geophysical surveys and diamond drilling. Two gold bearing zones were discovered.

1962-1963 Inco Ltd.

Eighteen diamond drill holes were drilled in the vicinity of Zeemel Lake by Inco Ltd. Two of the holes (#15800 and #23107) were drilled along strike to the east and west, respectively, of the Zeemel Lake property. They encountered chlorite schist and intermediate to mafic metavolcanics with up to 15% pyrrhotite and pyrite.

1973-1981

In 1973, the Musselwhite brothers optioned their property to a consortium consisting of Dome Exploration (Canada) Ltd., Esso Minerals Canada, Canadian Nickel Company Ltd. and Lacana Mining Corp. (1981) and it was operated by the Dome Mines Group. Subsequent exploration activity, including geophysical and geochemical surveying, prospecting, geological mapping, trenching and diamond drilling led to the discovery of the "West Anticline Zone" in 1980.

1976 John Reed

Prospecting, trenching and diamond drilling were carried out by John Reed in the Libert Lake area to the southwest of the present Zeemel Lake property.

1981

An airborne magnetic and electromagnetic survey, part of which covered the present Zeemel Lake property, was conducted by Aerodat Ltd. over the area surrounding the Musselwhite deposit.

1981-1982 Canico (Inco Ltd.)

A ground magnetic survey and geological mapping were carried out in the Graff Lake - Karl Lake area to the east of the present Zeemel Lake property.

1981-Present Various Companies

Extensive exploration activities, including geological mapping, geophysical and geochemical surveys and diamond drilling have been conducted by a number of companies and individuals, including: H.J. Hodge; 493217 Ontario Ltd.; Van Horne Gold Exploration Inc.; Legion Resources Ltd.; and G. Armstrong, A. Best, B. Reid and S. Johnson.

1984-Present

In 1984, the Dome consortium developed an exploration decline and crosscut into the West Anticline Zone and delineated gold deposits containing 3.2 million tons grading 0.17 ounces gold per ton. Since then, surface drilling has outlined the East

Bay (Snoppy Lake) deposit to the east, with reported reserves of 6.0 million tons grading .20 ounces of gold per ton.

1985 Ontario Geological Survey

An airborne magnetic and electromagnetic survey was performed by Aerodat Ltd. over the North Caribou belt. Maps 80743 and 80744 (scale 1:20,000) cover the present Zeemel Lake property.

1986

The Zeemel Lake property was staked by Santa Maria Resources Ltd. and ground magnetic and VLF-EM surveys were carried out by Geocanex Ltd. on their behalf.

1986

Reconnaissance geological mapping (scale: 1 inch to 1/2 mile) was carried out over the North Caribou belt, including the Zeemel Lake property, by the Ontario Geological Survey.

1987

Mapping and rock sampling was carried over the property by Geocanex Ltd. on behalf of Santa Maria Resources Ltd.

7.0 REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION

7.1 Regional Geology

The Zeemel Lake property is located in the southeastern portion of the North Caribou Lake greenstone belt, located within the Sachigo Subprovince, a part of the Canadian Shield.

The North Caribou belt is an arcuate, horn-shaped assemblage of metavolcanic and metasedimentary rocks extending from Weagamow Lake in the northwest to Opapimiskan Lake in the southeast. South of Opapimiskan Lake, the belt bifurcates into two major lobes; one extending south through Libert Lake, the other east through the Forester-Neawagank Lakes area (Fig. No. 3).

The mapping of Satterly (1939) and Thurston et al. (1971) suggests that the volcanic-sedimentary complex has been folded into a gross synclinal or basinal structure, with dominantly clastic metasedimentary rocks occupying the core of the syncline. The fold axis of the syncline is approximately coincident with Eyapamikama Lake. The metasediments are underlain by the somewhat older volcanics of the system, dominantly mafic in character with lesser ultramafic components. Two fairly continuous bands of iron formation and chemical sediments mark the contact between volcanics and sediments throughout most of the belt.

Regional geologic maps indicate that the belt is bounded by paragneiss and migmatized rock in the north and by felsic intrusives in the west and south (O.G.S. Map P.3080, Opapimiskan-Neawagank Lakes Area).

Metamorphic grades in the belt range from upper greenschist to middle amphibolite facies.

7.2 Economic Mineralization

Gold is the principal metal of economic interest in the North Caribou Lake greenstone belt. Numerous gold showings have been located, generally in spatial association with iron formation.

Two closely associated gold deposits on the Musselwhite property of the consortium led by Placer-Dome Inc. consist of several stratabound zones within highly folded iron formation. The deposits, known as the West Anticline and East Bay Zones, are two miles apart, located on the south shore of Opapimiskan Lake. The gold bearing zones are concentrated in the noses of parasitic folds within garnet-hornblende-chertgrunerite iron formation. The majority of gold occurs as disseminated mineralization stratabound zones of pyrrhotite. A second and much smaller proportion of the mineralization is in quartz-pyrrhotite veinlets occupying dilated portions of the dominant axial planar cleavage (S2) associated with the second major folding event (D_2) .

Surface drilling has delineated 6 million tons of 0.2 ounces gold per ton in the East Bay Syncline Zone (Northern Miner, Nov. 23, 1987). Published reserves for the West Anticline Zone are over 3.2 million tons grading 0.17 ounces gold per ton.

The Santa Maria Resources Ltd. Zeemel Lake property adjoins Musselwhite to the north and has encountered numerous significant gold intersections within the same iron formation.

Several occurrences of gold are found in other sections of the belt. In the northwest, a few gold showings have been partially explored. Northern Dynasty Explorations' Arseno Lake prospect has yielded significant gold and base metal values. Moss Resources Ltd. has found several significant gold-bearing zones along a section of the North Caribou River Fault. The Agutua Arm and Teal prospects consist of gold-silver mineralization in sulphide-bearing quartz-carbonate veins in sheared mafic metavolcanics.

Significant gold has also been discovered in the southeastern section of the belt. In the Sage Lake area, Inco Ltd. has encountered significant gold in quartz veins and iron formation. Northeast of Wesley Lake, Tex U.S. Oil and Gas intersected gold mineralization in quartz-arsenopyritecarbonate veins in sheared gabbro.

8.0 PROPERTY GEOLOGY

8.1 General

The Zeemel Lake property straddles the boundary between the North Caribou Lake greenstone belt and the granitic batholith to the south. The supracrustal rocks belong to two main units, the predominantly mafic to ultramafic Opapimiskan-Markop Metavolcanics and the Zeemel-Pipestone-Heaton Clastic Sequence, consisting of predominantly wackes, arenites and pelitic metasediments, with some conglomerates. Structurally, the property covers the junction of two major lobes of the North Caribou belt (Jolliffe, 1987).

8.2 <u>Lithologies</u>

8.2.1 Supracrustal Rocks

Three main supracrustal packages were investigated during the recent drilling program. The first package, along the south shore of Zeemel Lake, is a 1,000 foot wide sequence consisting predominantly of mafic to ultramafic metavolcanics with interbedded pelitic metasediments and quartz-feldspathic wackes. The metavolcanics are green to greenish-grey, fine to medium-grained, poorly to moderately foliated and consist

of a hornblende-chlorite-plagioclase + talc/serpentine mineralogy. The clastic sediments are generally green/brown, poorly to well foliated rocks with very little evidence of primary structures.

The second package, to the south of the first is believed to consist dominantly of wackes and arenites, with lesser amounts of siltstone and argillite and minor mafic volcanics and volcaniclastics. This unit, however, has not been fully tested by drilling to date.

The third and southernmost supracrustal package consists predominantly of ultramafic and mafic to ultramafic metavolcanics with interbeds of pelitic metasediments and wackes. The metavolcanics in this package are grey to greenish-grey, massive to poorly foliated, with a dominant mineralogy of amphibole-chlorite-plagioclase-talc-serpentine with 5-10% magnetite locally.

8.2.2 Intrusives

The southernmost portion of the property is underlain by granitic to granodioritic intrusives of the batholith to the south. Over most of the property, the contact is subconcordant with the foliation, however in the eastern portion, the batholith crosscuts the stratigraphy and is interfingered with the supracrustal rocks.

A large diabase dyke crosses the property in a northeasterly direction, crosscutting the stratigraphy.

8.2.3 Chemical Metasediments

Chert and banded iron formation were intersected in the first supracrustal package near the south shore of Zeemel Lake.

The iron formation is a dominantly chert-magnetite + grunerite assemblage with minor garnets and minor interbeds of volcaniclastic and clastic sedimentary material.

8.3 Structure

The dominant structural pattern on the Zeemel Lake property is an east-west foliation resulting from regional folding. Minor smaller scale folds occur in some units, but are very localized.

Concordant to semi-concordant shearing has been located throughout the property, but is not a predominant feature.

A large east-west trending fault was encountered during the drilling program at L36E from 1+00N to 4+00N. The rocks within this feature have been strongly altered to clay assemblages and the rocks to either side have been strongly sheared and mylonitized.

8.4 Metamorphism

The rocks appear to have undergone lower amphibolite facies metamorphism. Along the south shore of Zeemel Lake and in some shear zones, however, retrograde metamorphism to upper greenschist facies appears to have occurred.

8.5 Alteration

The dominant type of alteration is talc-serpentine alteration of the ultramafic metavolcanics. Silicification occurs in many of the rock units particularly in areas of shearing and faulting. Silicification is manifested in the iron formation as gruneritization. In addition, the magnetite in some iron formation horizons has been altered to pyrrhotite around fractures and veins.

9.0 SUMMARY OF GEOPHYSICS

Ground magnetics and VLF-EM surveys were carried out over the Zeemel Lake property in 1986 by Geocanex Ltd.

The magnetometer survey indicated two major zones of higher magnetic intensity crossing the property, which were interpreted as mafic metavolcanic packages with several bands of iron formation underlying areas of high magnetic gradient. Areas of lower magnetic intensity in the northern and central portions of the property were interpreted as dominantly clastic sedimentary packages and the area to the south as part of the tonalitic batholith at the boundary of the North Caribou belt. A northeast-trending linear zone of high magnetic intensity in the north-central part of the property was inferred to be an intermediate to mafic dyke.

VLF-EM conductors, concordant and coincident with magnetic bands of high gradient, were considered indicative of possible sulphide facies iron formation or sulphide-bearing concordant shear zones within iron formation.

Airborne survey data provided evidence for several regional crosscutting faults running northeast to northwest and east-northeast. Two areas of possible small scale folding and five areas of possible hydrothermal alteration were outlined based on magnetic survey results.

10.0 DESCRIPTION OF PROGRAM

10.1 Description of Program

From September 3 to October 15, 1987 and January 29 to February 9, 1988, a total of 15,325 feet of diamond drilling was completed in 37 holes by Midwest Diamond Drilling of Winnipeg, Manitoba. The B.Q. sized core was logged and features of potential economic interest were sampled and analyzed for gold.

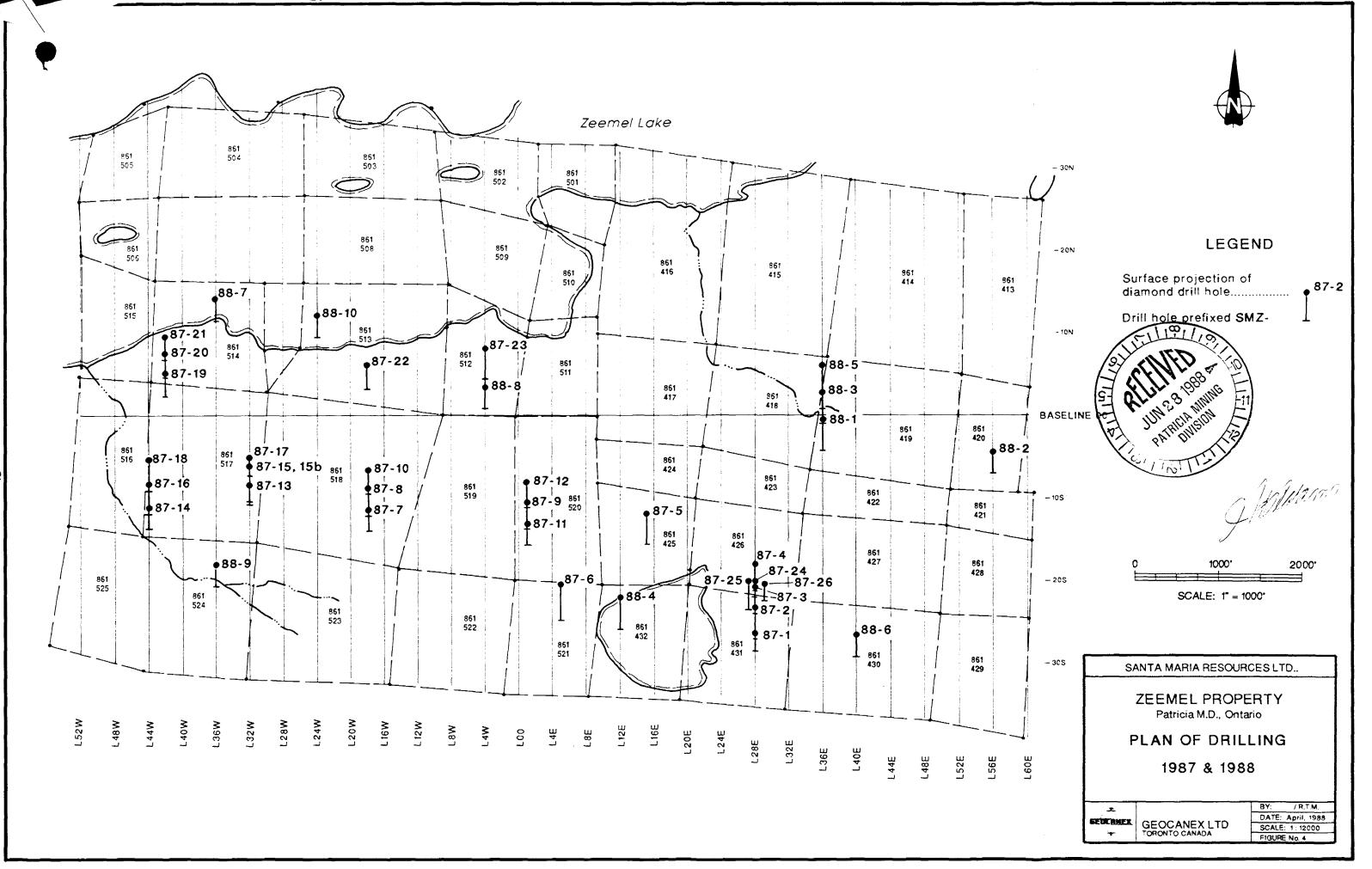
The samples were sent by courier and bus to Assayers (Ontario) Ltd. of Toronto, Ontario and were analyzed by standard fire assay techniques.

Target selection was based primarily on geophysical data and concentrated on areas with evidence of structural and lithological favourability for gold mineralization. These features include:

- Magnetic Anomalies: including highs, lows, flexures and repetitions.
- 2. Combined VLF-EM and magnetic anomalies, both concordant and disconcordant.

- 3. Combined repetitions in magnetic anomalies and inferred regional faults.
- 4. VLF-EM anomalies.

Hole locations are shown on the Plan of Drilling (Fig. No. 4). Detailed logs with assay results are compiled in Appendix B. Drill sections and legend are shown in Appendix C. All assay certificates are shown in Appendix D.


10.2 Discussion of Results

Five areas of potential economic significance have been outlined by the recent drilling. They are as follows:

Area 1 - A zone located in the southeastern portion of the property was intersected by holes SMZ-87-3 and 4 at 28+02E, 20+79S and 28+01E, 18+02S respectively. Hole SMZ-87-3 intersected a 4.1 foot interval of mafic volcanics with minor quartz carbonate stringers which yielded 0.54 ounces of gold per ton. A second interval of the same unit 8.6 feet below the first yielded 0.010 ounces of gold per ton over 4.4 feet. This hole also yielded a gold value of .015 ounces per ton over 4.8 feet in a mafic to ultramafic volcanic which had been serpentinized and weakly silicified.

Hole SMZ-87-4 intersected an interval of felsic volcanics with trace fine-grained disseminated pyrite which yielded .015 ounces of gold per ton over 7.0 feet.

Holes SMZ-87-24, SMZ-87-25 and SMZ-87-26 were drilled 50 feet behind and 50 feet to either side of SMZ-87-3, but yielded no significant values.

Core from this area should be extensively resampled before any further work is planned.

Area 2 - A diabase dyke is inferred to cross the property from southwest to northeast. In the area where this feature crosses a series of stratigraphically concordant magnetic anomalies, hole SMZ-87-22 intersected an ultramafic metavolcanic which yielded .070 ounces of gold per ton over 4.7 feet. This hole also intersected 5.0 feet of quartz wacke which yielded .017 ounces of gold per ton.

The location of this dyke may represent a zone of possible shearing or faulting as it appears to cross at least one horizon of banded iron formation.

Holes SMZ-87-23 and SMZ-88-8 where drilled to the east of this area, but may have been too far from the crosscutting feature to be a representative test.

Area 3 - A pair of 3 hole fences was drilled on L1+00E and 18+00W across an east-west stratigraphic sequence of metavolcanics with minor clastic metasediments in which several VLF-EM conductors were running subconcordant to the foliation.

Hole SMZ-87-10, at 18+01W, 6+47S, intersected 2.1 feet of vein quartz with chlorite and amphibole inclusions and trace pyrite in a mafic metavolcanic. This yielded a gold value of .022 ounces per ton. In the same hole, a 3.0 foot interval of sheared and serpentinized ultramafic metavolcanics yielded a gold value of .016 ounces per ton.

Hole SMZ-87-12, at 1+00W, 8+00S, intersected a 35 foot interval of quartz wackes with a high pelitic content which yield intersections of .011 ounces of gold per ton over 10.0 feet and .010 ounces of gold per ton over 4.0 feet.

This hole also intersected two separate intervals of talcrich ultramafic metavolcanics which yielded two values of .012 ounces of gold per ton over 5.0 feet.

Area 4 - Drilling near the baseline on L36+00E encountered a large fault zone in a sequence of metavolcanics and clastic metasediments. Hole SMZ-88-3 was drilled to 274 feet, but failed to intersect bedrock. Hole SMZ-88-5, at 36+00E, 6+00N, was drilled to pass underneath the entire area and intersected 85 feet of heavily deformed and altered metasediments within 290 feet of sediments and volcanics of varying degrees of deformation. The weakly deformed areas exhibit up to 15% sulphides, particularly in intersections of graphitic argillite.

To the east of this, the accompanying VLF-EM conductor coincides with an increased magnetic peak. This may represent an increased pyrrhotite content and warrants further investigation.

South of the deformation zone, hole SMZ-88-5 intersected 2.0 feet of silicified, brecciated mafic metavolcanics which yielded a gold value of .017 ounces per ton.

Area 5 - In the western portion of the property, hole SMZ-87-20 at L42+00W, 7+34N and hole SMZ-87-21 at 42+00W, 9+51N intersected a horizon of banded iron formation which has been gruneritized and contains up to 3% garnet and 5%

pyrrhotite in stringers and lenses. This area did not yield any significant gold values, however, the favourable lithology and alteration suggests that further investigation is warranted. Table 1 provides a summary of all drill holes including significant assays.

11.0 CONCLUSIONS

Subeconomic gold mineralization has been found in four areas on the Zeemel Lake property.

The gold in Area 1 occurs in both mafic metavolcanics and in felsic intrusives and may be related to the nearby granitic batholith.

The gold in Area 2 occurs in ultramafic metavolcanics near a crosscutting diabase dyke. This dyke may represent a fault or shear which may be significant for gold mineralization.

The gold in Area 3 is associated with stratigraphically subconcordant VLF-EM conductors.

Area 4 is a zone of heavy faulting and shearing.

In addition to these areas, a banded iron formation horizon in the western portion of the property was found to contain evidence of silicification as well as secondary pyrrhotite.

12.0 RECOMMENDATIONS

Resampling of the drill core from Area 1 should be carried out before further drilling is planned for this area.

TABLE I
SUMMARY OF DRILL HOLE DATA

Dominantly pelitic metasediments with minor quartz wacke, underlain by talc-bearing ultramafic metavolcanic. Felsic intrusives occur at the top of the hole and over the last 120 feet. SMZ-87-2 L28+01E, 23+568								
Dominantly pelitic metasediments with minor quartz wacke, underlain by tale-bearing ultramsfic metavolcanic. Felsic intrusives occur at the top of the hole and over the last 120 feet. SMZ-87-2 L28+01E, 23+565 457 0-86.5 - Casing Mafic to ultramsfic metavolcanics with minor chlorite-biotite schist (pelitic?), intruded in several places by felsic intrusive. SMZ-87-3 128+02E, 20+79S Predominantly amphibole-chlorite plagicclase mafic to ultramsfic metavolcanics with lesser talcose ultramsfic to ultramsfic metavolcanics with lesser talcose ultramsfic hetavolcanics, intruded by numerous felsic intrusives. SMZ-87-4 128+01E, 457 0-62.0 - Casing Predominantly mafic (to ultramsfic) metavolcanics with lesser amounts of ultramsfic metavolcanics, crosscut by minor felsic intrusives. SMZ-87-5 115+01E, 11+99S 10-24.6 - Casing Intercalated mafic metavolcanics and quartz wacke with minor pelitic metasediments, underlain and crosscut by felsic intrusives. SMZ-87-6 14+98E, 627 0-18-9 - Casing Dominantly medium-grained equigranular felsic intrusives with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry, mafic metavolcanics with lesser intersections of quartz feldspar porphyry.					Section		oz Au/	
Mafic to ultramafic metavolcanics with minor chlorite-biotite schist (pelitic?), intruded in several places by felsic intrusives. Magic to ultramafic metavolcanics with minor chlorite-biotite places by felsic intrusives. Magic to ultramafic metavolcanics with lesser talcose ultramafic magnetic to ultramafic metavolcanics with lesser talcose ultramafic metavolcanics, intruded by numerous felsic intrusives. Magic to ultramafic metavolcanics with lesser talcose ultramafic magnetic metavolcanics with lesser talcose ultramafic magnetic metavolcanics, intruded by numerous felsic intrusives. Magic to ultramafic metavolcanics with lesser talcose ultramafic magnetic to ultramafic metavolcanics with lesser amounts of ultramafic metavolcanics with lesser amounts of ultramafic metavolcanics, crosscut by minor felsic intrusives. Magic to ultramafic metavolcanics with lesser mounts with lesser amounts of ultramafic metavolcanics with lesser amounts of ultramafic metavolcanics, crosscut by minor felsic intrusives. Magic to ultramafic metavolcanics with lesser mounts with lesser mounts of ultramafic metavolcanics with lesser mounts of ultramafic metavolcanics and quartz wacke with minor pelitic metasediments, underlain and crosscut by felsic intrusives. Magic to ultramafic metavolcanics with lesser mounts of ultramafic metavolcanics with lesser mounts of ultramafic metavolcanics with minor pelitic metasediments, underlain and crosscut by felsic intrusives. Magic 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	SMZ-87-1		297	Dominantly pelitic metasediments with minor quartz wacke, underlain by talc-bearing ultramafic metavolcanic. Felsic intrusives occur at the top of the hole and over	187.5-188.6	1.1	,004	Randomly oriented quartz veins in a felsic intrusive.
Predominantly amphibole-chlorite plagicalse mafic to ultramafic metavolcanics with lesser talcose ultramafic 156.3-160.7 4.4 0.010 pyrrhotite. MEZ-87-4 1.28+01E, 457 0-62.0 - Casing Predominantly mafic (to ultramafic) metavolcanics with lesser amounts of ultramafic metavolcanics, crosscut by minor felsic intrusives. MEZ-87-5 1.15+01E, 11998 1 0-24.6 - Casing Intercalated mafic metavolcanics and quartz wacke with minor pelitic metasediments, underlain and crosscut by felsic intrusives. Minor pyrite, pyrrhotite and quartz feldspar porphyries are found in the mafics. MEZ-87-6 1.4+98E, 20+50S 20+50S 20+50S 20-50S 20-50	SMZ-87-2	•	457	Mafic to ultramafic metavolcanics with minor chlorite- biotite schist (pelitic?), intruded in several places by	96.0-97.0	1.0	.007	
Predominantly mafic (to ultramafic) metavolcanics with lesser amounts of ultramafic metavolcanics, crosscut by minor felsic intrusives. SMZ-87-5 Il5+01E, 467 O-24.6 - Casing Intercalated mafic metavolcanics and quartz wacke with minor pelitic metasediments, underlain and crosscut by felsic intrusives. Minor pyrite, pyrrhotite and quartz feldspar porphyries are found in the mafics. SMZ-87-6 IA+98E, 627 O-18.9 - Casing Dominantly medium-grained equigranular felsic intrusives with lesser intersections of quartz feldspar porphyry, mafic metavolcanics and chlorite biotite schist.	SMZ-87-3	-	456	Predominantly amphibole-chlorite plagicclase mafic to ultramafic metavolcanics with lesser talcose ultramafic	156.3-160.7	4.4	(.520) 0.010	pyrrhotite. Serpentinized ultramafic flow,
Intercalated mafic metavolcanics and quartz wacke with minor pelitic metasediments, underlain and crosscut by felsic intrusives. Minor pyrite, pyrrhotite and quartz feldspar porphyries are found in the mafics. SMZ-87-6 I.4+98E, 627 O-18.9 - Casing 20+50S Dominantly medium-grained equigranular felsic intrusives with lesser intersections of quartz feldspar porphyry, mafic meta- volcanics and chlorite biotite schist.	SMZ-87-4		457	Predominantly mafic (to ultramafic) metavolcanics with lesser amounts of ultramafic metavolcanics, crosscut by minor	376.0-383.0	7.0*	.015	Trace fine-grained disseminated pyrite in a felsic intrusive.
Dominantly medium-grained equigranular felsic intrusives with sheared. Quartz feldspar lesser intersections of quartz feldspar porphyry, mafic meta-porphyry. volcanics and chlorite biotite schist.	SMZ-87-5		467	Intercalated mafic metavolcanics and quartz wacke with minor pelitic metasediments, underlain and crosscut by felsic intrusives. Minor pyrite, pyrrhotite and quartz feldspar		*		
		20+50s		Dominantly medium-grained equigranular felsic intrusives with lesser intersections of quartz feldspar porphyry, mafic meta-		2.9	.008	sheared. Quartz feldspar

^{*} Combines two or more samples

TABLE I
SUMMARY OF DRILL HOLE DATA

Drill Hole Number	Grid Location	Length (feet)	Summary Description	Inter- Section (feet)	Width (feet)	Assay oz Au/ ton	SAMPLE DESCRIPTION
SMZ-87-7	L18+01W, 11+47S	346	0-49.0 - Casing Dominantly mafic to ultramafic metavolcanics with inter- bedded wackes and siltstones. Minor intersections of felsic intrusives.				
SMZ-87-8	L18+00W, 8+99S	392	O-57.5 - Casing Dominantly interbedded mafic and ultramafic metavolcanics with lesser interbeds of pelitic metasediments and wackes. 114 feet of diabase intersected at the bottom of the hole.				
SMZ-87-9	L1+04E, 10+50S	427	0-77.0 - Casing Dominantly interbedded mafic and ultramafic metavolcanics crosscut by felsic intrusives. Minor quartz feldspar porphyry intersections.	9 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 1			
SMZ-87-10	1.18+01W, 6+47S	407	0-160.0 - Casing Dominantly interbedded mafic and ultramafic metavolcanics with minor intersections of pelitic metasediments and and wackes.	174.9-177.0 247.0-250.0		0.022	mafic metavolcanic.
SMZ-87-11	L1+01E, 13+00S	335	0-32.1 - Casing Dominantly mafic metavolcanics with minor intersections of feldspathic wacke and ultramafic metavolcanic, crosscut by numerous felsic intrusives.	1947 (1944 - 1945 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -		- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 	
\$MZ-87-12	L1+00E, 8+00S	400	O-111.0 - Casing Dominantly mafic to ultramafic metavolcanics with lesser intersections of chloritic biotite schist, quartz wacke, and metapelite, several intersections of felsic porphyries near the top of the hole.	252.0-262.0 274.5-278.5 321.9-326.9 340.9-345.9	4.0	0.011 0.010 0.012 0.012	Intermixed quartz wacke and lesser metapelite. As above. Ultramafic metavolcanic. Ultramafic metavolcanic (intrusive?)

TABLE I
SUMMARY OF DRILL HOLE DATA

Drill Hole Number	Grid Location	Length (feet)	Summary Description	Inter- Section (feet)	Width (feet)	Assay oz Au/ ton	SAMPLE DESCRIPTION
SMZ-87-13	L32+00W, 8+53S	325	O-152.3 - Casing Single large intersection of feldspathic wacke with interbedded mafic metavolcanics and metapelites above and below.				
SMZ-87-14	1.44+00W, 11+12S	397	0-81.4 - Casing Interbedded metapelites, wackes, mafic metavolcanics and ultramafic metavolcanics. Single 40 foot intersection of felsic intrusive.	261.3-263.8	2.5	.007	Ultramafic metavolcanic.
SMZ-87-15	L32+00W, 6+04S	184.0	0-111.8 - Casing Pelitic metasediment with a single 3 foot intersection of a quartz feldspar porphyry. Hole lost when bedrock encountered at 131.7'. Tri-coned to 184.0.				
SMZ-87-15B	L32+00W, 6+04S	162.0	0-113.6 - Casing Pelitic metasediment with single quartz feldspar porphyry. 130.9-142.0 - Overburden Mafic metavolcanics. Hole abandoned at 162.0 feet.				
SMZ-87-16	1.44+01W, 8+30S	497	0-90.3 - Casing Interbedded ultramafic metavolcanics mafic metavolcanics, wackes and metapelites. Single 5 foot intersection of a granitic intrusive.				
SMZ-87-17	L32+00W, 5+01S	807	0-82.4 - Casing Interbedded mafic metavolcanics and quartz wacke underlain by interbedded ultramafic metavolcanics and metapelite. Minor intersections of quartz feldspar porphyries.				
SMZ-87-18	1.44+00w, 5+50s	485	O-116.8 - Casing Dominantly mafic to ultramafic metavolcanics with minor metapelite intersections.				

TABLE I
SUMMARY OF DRILL HOLE DATA

Drill Hole Number	Grid Location	Length (feet)	Summary Description	Inter- Section (feet)	Width (feet)	Assay oz Au/ ton	SAMPLE DESCRIPTION
SMZ-87-19	1.42+00W, 4+97N	353	0-51.6 - Casing Dominantly interbedded mafic to ultramafic metavolcanics and pelitic metasediments with lesser intersections of wackes and felsic tuff.	· · · · · · · · · · · · · · · · · · ·			
SMZ-87-20	1.42+00w, 7+34N	375	0-12.4 - Casing 20 foot intersection of folded, pyrrhotite-rich, grunerite iron formation underlain by interbedded metapelite and chert with lesser mafic metavolcanics.				
SMZ-87-21	1.42+00w, 9+51N	337	0-3.9 - Casing Dominantly interbedded mafic metavolcanics and metapelites. Single 21 foot intersection of pyrrhotite-rich grunerite iron formation.				
SMZ-87-22	L18+03W, 6+01N	357	0-125.2 - Casing Interbedded ultramafic metavolcanics, metapelite and quartz wacke.	182.7-187.4	4.7	.070	Trace pyrite in an ultramafic metavolcanic.
				299.7-304.7	5.0	.017	Trace pyrite in a quartz wacke.
SMZ-87-23	1.4+01W, 8+00N	477	O-102.4 - Casing Dominantly interbedded mafic metavolcanics and metapelite overlain by a large intersection of feldspathic wacke, single 33 foot intersection of pyrrhotite-rich grunerite iron formation at 358.7 feet.				
SMZ-87-24	L28+00E, 20+30S	297	0-57.2 - Casing Dominantly ultramafic metavolcanic with minor chlorite horn- blende schist, crosscut in several places by felsic intrusives.	172.3-177.0	4.7	.008	Ultramafic metavolcanics.

TABLE I
SUMMARY OF DRILL HOLE DATA

Drill Hole Number	Grid Location	Length (feet)	Summary Description	Inter- Section (feet)	Width (feet)	Assay oz Au/ ton	SAMPLE DESCRIPTION
SMZ-87-25	L27+49E, 20+79S	397	Dominantly ultramafic to mafic metavolcanic with minor chlorite-biotite schist, crosscut and underlain by felsic intrusives.	72.1-76.7 377.0-378.9	4.6 1.9	.005	Ultramafic to mafic meta- volcanic. Felsic intrusive fine-grained, sericitized.
SMZ-87-26	1.28+50E, 20+81S	397	0-65.5 - Casing Dominantly ultramafic to mafic metavolcanic with minor chlorite-biotite schist near the bottom of the hole crosscut by felsic intrusives.				
SMZ-88-1	L36+01E, 1+60S	407	O-18.3 - Casing Interbedded ultramafic and mafic metavolcanics, wacke, silt- stone, argillite and chert. Minor garnets in some of the mafic metavolcanics.				
SMZ-88-1	L36+01E, 1+60S	407	0-18.3 - Casing Upper 120 feet consists of ultramafic to mafic volcanics; interbedded volcanics and sediments (mostly wacke, minor argillite and chert) occur between 120-282 feet (volcanics: sediments = 60:40); remainder of the hole consists of inter- bedded siltstone and wacke.	251.8-256.8 280.5-281.5		.009	Talc-rich ultramafic volcanics, trace pyrite. Garnetiferous mafic volcanics, 2-3% pyrite, trace chalcopyrite possible shear.
SMZ-88-2	L56+00E, 4+49S	376	Upper 168 feet consists dominantly of mafic and ultramafic volcanics with minor intercalations of argillite; remainder of the hole consists of interbedded mafic volcanics and sediments (mainly wacke, minor siltstone and chert).	168.6-171.7	3.1	.007	Chert, 5% pyrite.
SMZ-88-3	L36+00E, 2+75N	274	Entirely overburden; hole abandoned.				
SMZ-88-4	L12+00E, 22+35S	506	O-20.7 - Casing Granitic and intermediate intrusives intercalated with volcanics (dominantly mafic, minor ultramafics); lower 175 feet is composed entirely of intrusives.	54.4-56.8	2.4	.008	Mafic volcanics in contact with granitic intrusive; trace pyrite and chalcopyrite.

TABLE I
SUMMARY OF DRILL HOLE DATA

Drill Hole Number	Grid Location	Length (feet)	Summary Description	Inter- Section (feet)	Width (feet)	Assay oz Au/ ton	SAMPLE DESCRIPTION
SMZ-88-5	L36+00E, 6+00N	997	0-31.3 - Casing Upper 220 feet consists of dominantly mafic volcanics with minor intercalations of chert, wacke and siltstone; dominantly sediments between 220-296 feet, including well mineralized argillite and lean iron formation; 100 feet of mafic to	705.5-707.5	2.0	.017	Heavily silicified, weakly brecciated mafic volcanics; trace-1% pyrrhotite.
			intermediate volcanics follows this, which in turn is under- lain by 300 feet of sediments (with minor volcanic inter- calations); a section of probable fault gouge occurs between 393-419 feet in clastic sediments; lower part of the hole consists of ultramafic and mafic volcanics.	872.9-877.0 881.0-886.0		.009	Ultramafic volcanics with abundant talc and magnetite; trace pyrite in quartz-carbonate stringers.
SMZ-88-6	140+00E, 26+50S	346	0-48.8 - Casing Entirely felsic to intermediate intrusives (dominantly granite and granodiorite with minor tonalite).				
SMZ-88-7	L36+00W, 14+00N	406	0-121.6 - Casing Upper 183 feet consists of intercalated mafic volcanics and stone; remainder of the hole is entirely mafic volcanics (minosilicified intervals).	r			
SMZ-88-8	1.4+00w, 3+25N	347	0-71.0 - Casing kelatively narrow units of intercalated mafic and ultramafic volcanics, greywacke and siltstone (roughly 60% volcanics, 40% sediments).			<u> </u>	
SMZ-88-9	L36+00W, 18+00S	396	0-26.3 - Casing Upper 193 feet consists of mafic volcanics intercalated with greywacke and minor arenite; remainder of the hole is composed entirely of granite (locally grades into granodiorite).				
SMZ-88-10	L24+00W, 12+00N	407	0-190.8 - Casing Upper 63 feet consist of oxide iron formation containing 2-5% pyrite, tr-2% pyrrhotite; this is followed by interbedded clastic sediments (wacke, siltstone, minor conglomerate); between 292-407 feet is entirely mafic volcanics.				

A 3,000 foot drilling program is warranted to further test other areas of favourable structure and alteration found in the recent program.

13.0 ESTIMATED COST OF RECOMMENDED EXPLORATION PROGRAM

Resampling of Drill Core:
100 samples at \$12/sample-----\$ 1,200.00

Diamond Drilling:

3,000 feet at \$35/foot, all inclusive-----\$105,000.00

Contingency 20%-----\$ 21,240.00

Total Estimated Cost------<u>\$127,440.00</u>

Respectfully submitted,

B.A. Huston, B.Sc. (Eng.)

E. Town when Rome

B. Tusto

E.D. Timoshenko, B.Sc.

Geocanex Ltd.

14.0 REFERENCES

- Breaks, F.W., et al., 1984. Opapimiskan Lake Project: Precambrian Geology, Quaternary Geology, and Mineral Deposits of the North Caribou Lake Belt, District of Kenora, Patricia Portion; p.258-273 in Summary of Field Work, 1984, Ontario Geological Survey, Miscellaneous Paper 119.
- Breaks, F.W., et al., 1985. Opapimiskan Lake Project: Precambrian and Quaternary Geology of the North Caribou Lake Area, District of Kenora, Patricia Portion; p.268-276 in Summary of Field Work and Other Activities 1985, Ontario Geological Survey, Miscellaneous Paper 126.
- Breaks, F.W., et al., 1986. Opapimiskan Lake Project:
 Precambrian Geology of the Opapimiskan-Forester
 Lakes Area, District of Kenora, Patricia Portion;
 p.368-378 in Summary of Field Work and Other
 Activities, 1986, Ontario Geological Survey,
 Miscellaneous Paper 132.
- Breaks, F.W., et al., 1987. Precambrian Geology of the Opapimiskan-Neawagank Lakes Area, Western Part (Opapimiskan Lake Project), Kenora District (Patricia Portion); Ontario Geological Survey, Map P. 3080), Geological Series Preliminary Map, scale 1:31680. Geology 1986.
- Hall, R.S. and Rigg, D.M., 1986. Geology of the West Anticline Zone, Musselwhite Prospect, Opapimiskan Lake, Ontario, Canada; p.124-136 in Proceedings of Gold '86 Symposium, Toronto, 1986, 517p.
- Hodge, H.J., 1982. Report on Geological Mapping, Geochemical Sampling and Prospecting, Libert Lake Property of 493217 Ontario Ltd., District of Kenora, Patricia Portion, Patricia Mining Division, Ontario.
- Jolliffe, T.S., 1987. Report on Geological Mapping, Zeemel Lake Property, District of Kenora, Patricia Mining Division, Ontario, for Santa Maria Resources Ltd.
- Medd, S.B., 1987. Report on Magnetic and VLF-EM Surveys on the Zeemel Lake property, District of Kenora, Patricia Mining Division, Northwestern Ontario for Santa Maria Resources Ltd.

14.0 REFERENCES (Cont'd)

- Ontario Geological Survey, 1985. Airborne Electromagnetic and Total Intensity Magnetic Survey, Opapimiskan Lake Area, District of Kenora, Patricia Portion; by Aerodat Limited for Ontario Geological survey, Geophysical/Geochemical Series, Maps 80743 and 80744, scale 1:20,000.
- Ontario Geological Survey, Resident Geologist Files Toronto and Sioux Lookout. Various unpublished assessment reports.
- Piroshco, D.P., 1986. Structural Geology and Gold Mineralization of the Eyapamikama Lake Area of the North Caribou Lake Greenstone Belt, District of Kenora (Patricia Portion); p.379-384 in Summary of Field Work and Other Activities, 1986, Ontario Geological Survey, Miscellaneous Paper 132.
- Piroshco, D.P. and Shields, H.N., 1985. Geology and Gold Mineralization of the Eyapamikama Lake Area of the North Caribou Lake Greenstone Belt, District of Kenora (Patricia Poriton); p.277-286 in Summary of Field Work and Other Activities, 1985, Ontario Geological Survey, Miscellaneous Paper 126.

APPENDIX B
DIAMOND DRILL LOGS

NAME (DΕ	PROPERTY	<u>Santa</u>	<u>Maria Ze</u>	<u>emel La</u>	ke			
HOLE N	10.	SMZ-87-1		LENGTH_	297.0				
LOCATE	он	28+00E	26+37 S					engan menengan an inggan pengangan bahara	
ELEVAT	ION			AZIMUTH	_180°		DIP	<u>-45⁰</u>	
CTADIC	n	Sept. 3, 1	987	EINTENER	Sept.	4. 1987			

FOOTAGE		AZIMUTH	F00TAGE	DIP	AZIMUTH
200	-43 ⁰				
297	-41 ⁰				
	-				

HOLE NO. SMZ-87-1 SHEET NO. 1 of 1

REMARKS Claim #861431

Summary Log

F 0 0 1	AGE	DESCRIPTION '			5 A M P	LE			A	SSA	Y S	
FROM	10	SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	26	3%	OFFION	ςhes≱	
0	59.3	Casing										
59.3	76.7	Felsic Intrusive - 1% fine grained disseminated pyrite										
76.7	93.9	Pelitic Metasediment - minor quartz stringers										
93.9	97.6	Quartz Wacke	}									
97.6	117.2	Pelitic Metasediment - up to 1% garnets. Phlogopitic in some places.										
117.2	122.5	Ultramafic Metavolcanic - 1% pyrite (and chalcopyrite?)										į
122.5	176.7	Talc Bearing Chlorite Schist - 3-5% disseminated magnetite, 0.5% disseminated pyrite.				l						ļ
		122.5 - 137.0 - Carbonitized										
176.7	297.0	Felsic Intrusive										Ì
	297.0	E.O.H.										
		Casing pulled										
										i		

NAME	OF	PROPERTY	<u>Santa</u>	Maria Ze	eemel Lak	е			
HOLE	NO,	SMZ-87-1		LENGTH	297.0 f	t			
LOCAT	ION	28+00E	26+75\$						
LATIT	UDE			DEPARTU	RE				
ELEVA	TION			AZIMUTH	180°		DIP	45 ⁰	
START	ED_	Sept. 3,	1987	FINISHED	Sept.	4, 1987			

FOOT AGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-43 ⁰				
297	-41 ⁰				
			ļ		

HOLE NO. SMZ-87-1 SHEET NO. 1 Of 4
REMARKS Claim #861431

001	AGE	0.5.5.0.0.1.0.1	l l		S A M P	L E		ĺ	A	SSA	Y S	
ROM	0.1	DESCRIPTION	ю.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	26	3%	OZ HON	Sty98k	
0	59.3	Casing										
59.3	76.7	Felsic Intrusive - light to medium grey, fine to medium grained, massive										
		Average Modes		 								
		Quartz 40% Plagioclase 25-30% Potassium Feldspar 15-20% Biotite 15%		 		:			•			
		Biotite 15% Pyrite 1%										
		Fine grained disseminated pyrite is predominantly found within the biotite. Possible sausseritization of plagioclase grains.										
		76.3 - 76.7 - Contact zone, very coarse grained.	19001	1	76.0	77.0	1.0			.002		
76.7	93.9	Pelitic Metasediment - medium green/brown mottled appearance, weak foliation at 25° to CA.										
				!			!					

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-1 SHEET NO. 2 Of 4

F001	IAGE				SAMPL	E				ASSAYS	
FROM	10	DESCRIPTION	NO.	3. SUL PH	FROM	FOOTAGE	JATOT	3		.AU.	Çheçk
		Average Modes Biotite 40-45% Chlorite 35-40% Quartz 20% Pyrite tr Minor quartz stringers throughout unit.		ints	TAUM	10	Will				
		76.7 - 86.4 - More chloritic section, up to 60% chlorite.	1900	tr	78.5	83.4	4.9			.002	
		86.4 - 93.9 - Typical, as above	1900	tr	88.4	93.3	4.9			.001	
93.9	97.6	Quartz Wacke - light grey/green, weakly foliated at 40° to CA Average Modes Framework 80-85% Quartz 90% Feldspar 10% Matrix 15-20% Chlorite 95% Biotite 5% Minor sericitization of feldspar.									
97.6	117.2	Pelitic Metasediment - typical, as above, weak remnant foliation at 30° to CA, evidence of extensive recrystalization. Very rich in biotite (also phlogopite?).	19004		102.1 112.8		4.9 2.8			.002	

NAME OF PROPERTY Santa Maria Zeemel Lake

SMZ-87-1 SHEET NO. 3 of 4

FOOTA	viriariame v VGE				SAMP	E				ASSAYS	
ROM	70	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	`	^	o Ayon	Check
		Fewer quartz stringers in this interval. Up to 1% pink garnets (1/16" to 1/8") in places.									
7.2	22.5	Ultramafic Metavolcanic - medium to dark green, medium to coarse grained, weakly foliated at 30° to CA.	19006 19007	1	117.2 119.8		2.6 2.7			.001 .001	
		Average Modes									
		Amphibole 50-55% (tremolite/Actinolite?) Chlorite 35-40% Talc/Serpentine 5-10% Pyrite 1% (+ Chalcopyrite?)									
2.5	76.7	Talc-Bearing Chlorite Schist - medium grey/green, very fine grained, strongly foliated at 40° to CA. Mineral assemblage is predominantly chlorite and talc (+ serpentine?) with 3-5% disseminated magnetite and 0.5 to 1% disseminated pyrite.									
		122.5 - 137.0 - Approximately 80% core recovery. Moderately carbonatized.	19009	0.5-1	122.5 127.0 130.5	127.0 130.5 134.4	4.5 3.5 3.9			.001 .001 .002	
		134.8 - 135.1 - Quartz veining - composite vein at 30° to CA.	19011	b.5-1	134.4	135.5	1.1			.002	

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. ... SMZ-87-1 SHEET NO. 4. 0f. 4

FOO I	LAGE.			****	SAMPI	. E		ſ ~~~		ASSAYS		······································
FROM	10	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	3.	٩.	.AK.	८ ५६६,	<u></u>
		137.0 - 155.8 - Typical. Darker green colour, probably lower talc content, weakly carbonatized.										
		153.0 - 153.2 - Pyrite blebs parallel to foliation surfaces.	19013	3-5	152.6	153.6	1.0			.002		
		155.8 - 176.7 - Generally a lower talc content. Talc is restricted to more locallized zones. Abundant quartz stringers appear throughout this interval.	19015 19016 19017	0.5-1 0.5-1 0.5-	155.8 160.0 165.0 170.0 174.0	165.0 170.0 174.0				.002 .001 <.001 .001		
176.7	297.0	Felsic Intrusive - Typical as above, medium to coarse grained, medium grey to pink.										
	i.	176.7 - 187.5 - Contact Zone - fine to medium grained, abundant chlorite stringers.	9019 19020 19021	tr	176.7 180.0 183.5	180.0 183.5 187.5	3.5			.002 .001 .002		
		187.5 - 297.0 - Typical as above.	3021	(1	103.5	107.5	₩.∪			.002		
		187.5 - 188.6 - Quartz veining, random apparent directions, milky white quartz.	9022 9023 9024	tr	187.5 197.0 215.7	188.6 201.9 220.4	4.9			.004 .003 .003		
	297.0	E.O.H.	9025	tr	234.4 253.2	239.0 258.1				k.001 k.001		
		Casing pulled	9027 9028	tr	272.5 287.0	277.4 291.9	4.9			.001 .001		
:			}									
) }- i	Mal	ANY C	9
								1	[yeu		

NAME OF	PROPE	RTY	_Santa	Maria Ze	emel_La	ke			
HOLE NO.	SMZ-	37-2		LENGTH	457.0				
LOCATION	28+0	1 E	23+565						
LATITUDE				DEPARTU	IRE	~			
ELEVATION				AZIMUTH	180°		_ DIP	-48.5°	
CAMBIEN	ent :	1 10	วล7	EINTENEE	Sent	7 199	37		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200' 457'	-47 ⁰				

HOLE NO. SMZ-87-2 SHEET NO. 1 of 1

REMARKS Claim #861431

Summary Log

F 0 0 1	AGE				SAMP	L E			Α	5 5 A 1	Y S	
FROM	10	DESCRIPTION SUMMARY LOG	NO,	SUL PH-	FROM	FOOTAGE TO	TOTAL	26	%	огЖон	Shefik	
0	86.5	Casing										
86.5	100.6	Felsic Intrusive - light to dark grey and pink										Į
100.6	120.1	Mafic Metavolcanic - 100.6 - 106.8 - fine grained biotite rich zone										
120.1	135.8	Ultramafic Metavolcanic - serpentinized, 3-5% magnetite, 0.5% pyrite										Ī
135.8	186.4	Felsic Intrusive										
186.4	195.6	Chlorite Biotite Schist										
195.6	200.8	Felsic Intrusive							i I			
200.8	207.1	Chlorite Biotite Schist							i			
207.1	240.5	Mafic Metavolcanic 217.7 - 225.7 - heavily stlicified 225.7 - 240.5 - intercalated talc-bearing zones										
240.5	315.2	Felsic Intrusive										
315.2	355.5	Mafic Metavolcanic										
355.5	364.7	Felsic Intrusive										
364.7	435.8	Mafic Metavolcanic							!			
435.8	457.0	Felsic Intrusive										
	457.0	END OF HOLE Casing pulled							; ;			

NAME	OF	PROPERTY	Santa	<u>Maria Zeer</u>	<u>nel La</u>	<u>ke</u>			
HOLE	NO.	SMZ-87-2		LENGTH	157.0				
LOCATI		28+01E	23+56\$						
L A 7 I 7 U	DΕ			DEPARTURE					
EL EVAT	ION			AZIMUTH	1800		DIP	-48.5°	
CTADI	- n	Sent. 4. 1	1987	EINICHED					

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200' 457'	-47 ⁰				
457'	-42 ⁰				

HOLE NO. SMZ-87-2 SHEET NO. 1 Of 4
REMARKS Claim # 861431

FOO	TAGE	DESCRIPTION			SAMP	L E			А	SSAY	' S	
FROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	26	36	о₽Жом	629F&1	
0	86.5	Casing										
86.5	100.6	 light to dark grey and pink, medium to coarse grained, massive Average Modes 									-	
		Quartz 50% Potassium Feldspar 25-30% Plagioclase 20-25% Biotite 5-10%	0020		20. 0	07.0	1.0			007		
100.6	120.1	massive to poorly foliated at 90° to C.A.	9029 9030		96.0 97.0	97.0 100.6	1.0 3.6			.007 .001		
o o		Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 10-15% Plagioclase 10-15%										
2666		100.6 to 106.8 - fine grained zone with 5% biotite, minor quartz carbonate stringers - 100.6 to 102.4 - 50% biotite, heavily carbonatized	9031 9032		100.6 102.4		1.8 4.2			<.001 .001		
- 0200.40km		106.8 to 120.1 - typical - 119.8 to 120.1 - quartz vein at 30° to C.A.	9033	-	119.1	120.1	1.0			.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO . . SMZ-87-2 SHEET NO. 2 of 4

	DESCRIPTION SAMPLE							ASSAY5		ASSAY5					
FROM TO	DE SCRIPTION	140	SILL PH	FRUM	FOOTAGE	10 TAL	 ,	or Ay,	Check						
120.1 135.	Ultramafic Metavolcanic - Pale green, fine grained, massive to weakly foliated at 50° to C.A.			No.			 7 - 1000 -								
	Average Modes Chlorite 75-80% Amphibole 5-10% Talc/Serpentine 5-10% Magnetite 3-5% Pyrite 0-5%														
	Amphibole is actinolite/tremolite. Magnetite and pyrite both occur as fine disseminated grains. Serpentine is asbestiform in most places.														
	- 124.9 to 125.5 - Biotite schist surrounding a 0.2' felsic dikelet. Dikelet appears rich in potassium feldspar	19035 19036 19037 19038	0.5 0.5	124.7 125.7 129.0 132.3	125.7 129.0 132.3 135.8	1.0 3.3 3.3 3.5		<.001 .001 .001 <.001							
135.8 186.	Felsic Intrusive - typical, as above, medium to coarse grained, massive	1,000	0.5	132.0	133.0	3.3		1,001							
	135.8 to 137.5 - pink granite, rich in potassium feldspars 137.5 to 160.8 - light grey, coarse grained 160.8 to 171.4 - dark grey, fine to medium grained 171.4 to 173.6 - white/grey, coarse grained quartz-rich 173.6 to 186.4 - dark grey and tan, coarse grained, possible sausseritization of the plagioclase	19039 19040 19041 19042 19043 19044	-	135.8 156.2 166.0 171.4 180.5 185.5	137.5 160.8 169.3 173.6 185.5 186.4	1.7 4.6 3.3 2.2 5.0 0.9		<.001 <.001 <.001 <.001 .001							
186.4 195.	Chlorite Biotite Schist - probable pelitic metasediment, dark brown/green, fine grained, well foliated at 45° to C.A approximately 70% biotite and 30% chlorite														
	186.4 to 191.0 - strong foliation (crenulated) 191.0 to 193.8 - typical 193.8 to 195.6 - strong crenulations distoring foliation	19045 19046 19047	-	186.4 191.0 193.8	193.8	4.6 2.8 1.8		<.001 <.001 <.001							

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-2 SHELT NO. 3 of 4

1001	AGE		Î		SAMPL	. E			ASSAY5		
FROM	10	DESCRIPTION	но	SULPI IDES	FROM	FOOTAGE TO	101AL	:	 AU oz ton	Check	
195.6	200.8	Felsic Intrusive - typical, as above, pink, medium to coarse grained, massive									
	1	195.6 to 197.8 - fine grained, biotite rich 197.8 to 200.8 - typical	19048 19049		195.6 197.8	197.8 200.8			<.001 <.001		
200.8	207.1	Chlorite Biotite Schist - as above, more chloritic in this interval, minor quartz stringers	19050 19051		200.8 203.5	203.5 207.1			<.001 <.001		
207.1	240.5	Mafic Metavolcanic - typical, as above, fine to medium grained, massive, grey/green									
		207.1 to 217.7 - typical 217.7 to 225.7 - heavily silicified, up to 40% fine grained, minor stringers 225.7 to 240.5 - intercalated talc-bearing zones	19052 19053 19054 19055	- - -	217.7 221.7 225.7	217.7 221.7 225.7 230.7	4.0 4.0 5.0		<.001 <.001 <.001 <.001		
240.5	315.2	Felsic Intrusive - typical, as above, light pinkish grey, medium grained massive	19056 19057 19058 19059	- -	230.7 235.7 256.6 275.6	235.7 240.5 261.4 280.2	5.0 4.8 4.8 4.6		<.001 <.001 <.001 <.001		
315.2	355.5	Mafic Metavolcanic - typical, as above, light to medium green, medium grained, massive, minor quartz carbonate stringers - 331.2 to 332.4 - quartz carbonate stringers with random orientations - 354.5 to 354.6 - quartz filled fracture at 40° to C.A. with epidote rich halo	19060 19061 19062 19063 19064	-	293.5 315.2 324.8 331.2 344.5 354.4	297.9 317.0 329.3 332.4 348.7 355.5	4.4 1.8 4.5 1.2 4.2		.001 .001 <.001 <.001 <.001 <.001		
355.5	364.7	Felsic Intrusive - typical, as above, light grey/pink, fine to medium grained, massive - 355.5 - upper contact at 50° to C.A 364.7 - lower contact at 35° to C.A.									

NAME OF PROPERTY, Santa Maria Zeemel Lake

HOLE NO SMZ-87-2 SHEFT NO. 4 of 4

F 00	TAGE	OL CORDINAL	DESCRIPTION SUIPH FOOTAGE					and the same of	-	ASSAYS		
FROM	10	OF SCREETION	но	SULPH IDES	FROM	FOOTAGE 10	TOTAL			AU TON	Check	
364.7	435.8	Mafic Metavolcanic - typical, as above, light to medium green, medium grained, massive, minor quartz carbonate stringers	19066 19067 19068 19069 19070 19071 19073		364.7 370.7 375.8 385.1 395.1 404.2 413.6 423.1 432.1	375.8 380.1 389.7 399.9 408.9 418.3 427.7	5.1 4.3 4.6 4.8 4.7 4.7			<.001 <.001 <.001 <.001 <.001 .001 .002 .002		
435.8	457.0	Felsic Intrusive - typical, as above, light grey with a slight pink hue, medium grained, massive	19075 19076		437.2 450.0					.002 .004		
	457.0	END OF HOLE Casing pulled										

					Maria Zeem				_
						10010			
LOCAT	ION	281 02	<u>'E 20</u>)+/95		and and an experience of the second s			
LATIT	UDE				DEPARTURE	·			
ELEVA	1101	******			AZIMUTH	180	DIP	-45 ⁰	
START	ED_	Sept. 7	, 1987	· 	FINISHED	Sept. 8,	1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIР	AZIMUTH
200	-42°				
456	-40°				

HOLE NO. SMZ-87-3 SHEET NO. 1 of 1
REMARKS Claim #861426
Summary Lbg

FOG	1 A G E	DESCRIPTION			SAMP				A	SSA		
FROM	1 10	SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	76	2%	OZ/YON	Check oz/Ton	
0	76.3	Casing						ľ				
76.	3 118.9	Mafic Metavolcanic - 2 to 3% magnetite - 116.9 to 118.9 - contact zone, 1 to 2% pyrite		 								
118.	9 143.5	Felsic Intrusive	1							•		
143.	5 187.0	Mafic Metavolcanic - 1 to 2% magnetite	9088 9089		143.5 156.3		4.1			0.560	0.520	
187.	0 198.2	<u> Talc Chlorite Schist</u> - 1% magnetite	19089	11	150.3	160.7	4.4			0.010		ļ
198.	2 211.4	Felsic Intrusive - 1% pyrrhotite in place										1
211.	4 215.7	Mafic Metavolcanic - 3 to 5% biotite							j			
215.	7 227.7	Felsic Intrusive										ļ
227.	7 256.5	Ultramafic Metavolcanic - 5 to 10% magnetite, - 2 to 3% pyrrhotite										
256.	5 345.3	Felsic Intrusive										
345.	3 347.2	Mafic Metavolcanic								i		
347.	2 384.1	Felsic Intrusive				i I						
384.	1 456.0	Mafic to Ultramafic Metavolcanic - 1% magnetite	9121	-	416.4	421.2	4.8			0.015		
1 (456.0	END OF HOLE Casing pulled										
8001-00A												
1,							1					

NAME O	FPROPERTY	Santa Maria Z	Zeemel Lake		
HOLE NO	SMZ-87-3	LENGTH.	456.0		
LOCATIO	N 28+02E	20+795			
LATITUD	Ε	DEPARTU	RE		
ELEVATI	он	DEPARTU AZIMUTH	180	DIP	-45 ⁰
		1997			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200 456	-42 ⁰				

HOLE NO. SMZ-87-3 SHEET NO. 1 Of 4
REMARKS Claim #861426

F O O 1	AGE	DESCRIPTION	1		SAMP	L E		ASSAYS					
FROM	0.5	DESCRIPTION	ΝО.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	76	36	AU OZ/TON	Check oz/10N		
0	76.3	Casing											
76.3			19077 19078 19080 19081 19082 19083 19084	-	76.3 77.3 79.5 83.5 97.0 106.2 110.9 113.3	79.5 83.5 88.1 101.8 110.9 113.3 116.9	2.2 4.0 4.6 4.8			.001 <.001 <.001 <.001 <.001 <.001 <.001			
ANG HOUSE													

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-3 SHEET NO. 2 of 4

£ 00 1	AGE	DESCRIPTION			SAMPL	E			ASSAYS		
FROM	10	W. SCHILL LINE	110	SULPH IDES	FROM	FOOTAGE To	TOTAL		AU	Check	
118.9	143.5	Felsic Intrusive - light grey/pink, fine to medium grained, massive	19086 19087		124.0 133.8	128.7 138.6	4.7 4.8		<.001		**************************************
		Average Modes Quartz 60% Plagioclase 20-25% Potassium Feldspar 10-15% Biolite 5-10%	19669		138.6	143.5			<.001		
		- very minor fracturing at low angles to the core axis									
143.5	187.0	Mafic Metavolcanic - typical, light to medium green, fine to medium grained, massive, minor quartz carbonate stringers, 1% disseminated magnetite	19088 19670 19671 19089 19672 19090 19673 19674 19091 19675	tr tr tr tr tr tr tr	143.5 147.6 152.6 156.3 160.7 165.3 169.7 171.7 174.8 179.4 180.8	147.6 152.6 156.3 160.7 165.3 169.7 171.7 174.8 179.4 180.8 184.3	4.1 5.0 3.7 4.4 4.6 4.4 2.0 3.1 4.6 1.4 3.5		.56 (<.001 <.001 .010 .001 .002 <.001 <.001 .001 <.001	52 che	ck)
187.0	198.2	- medium to dark green, fine grained, foliated at 70° to the core axis, probable shear zone, 1% disseminated magnetite	19092 19093 19094	-	187.0 190.6 193.6	190.6 193.6 198.2	3.6 3.0 4.6		<.001 .001 .001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-3 SHEET NO. 3 of 4

F00	IAGE	DESCRIPTION			SAMPI	E			**************************************	ASSAYS		
FROM	10	DESCRIPTION	110	501 Pa 406 S	FROM	FOOTAGE TO	10141	,		JAY.	Çħēçķ	
198.2	,	Felsic Intrusive - typical, as above, slightly porphyritic in places, light grey/pink, 1% massive pyrrhotite in places	19095 19096 19097 19098	- - -	198.2 201.0 204.1 207.0	201.0 204.1 207.0 209.0	2.8 3.1 2.9 2.0			.001 .001 .001		
211.4	215.7	Mafic Metavolcanic - typical, as above, foliated at 60° to C.A., no magnetite in this interval, 3-5% biotite	19099 19100		209.0 211.4	211.4 215.7	2.4 4.3			.002 .001		
215.7	227.7	Felsic Intrusive - typical, as above, light grey/pink, medium to coarse grained, massive	19101	-	218.6	223.3	4.7			<.001	l	
227.7	256.5	Ultramafic Metavolcanic - light to medium green, fine grained, foliated at 65° to core axis Average Modes Chlorite 45-50% Amphibole 30-35% Talc/Serpentine 10-15% Magnetite 5-10% Pyrrhotite 2-3% - minor quartz stringers occur throughout the unit	19102 19103 19104 19105 19106 19107 19108 19109 19110	2-3 2-3 2-3 2-3 2-3 2-3 2-3 2-3	227.7 230.0 233.0 236.0 239.0 242.0 245.0 248.0 251.0 254.0		2.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			<.001 <.001 <.001 <.001 <.001 <.001 .001		
256.5		Felsic Intrusive - typical, as above, medium grained, light grey (leucocratic), massive	19112 19113 19114	-	275.0 294.2 303.6	279.9 298.9 308.4	4.9 4.7 4.8			.001 .001 .001		
345.3	347.2	Mafic Metavolcanic - typical, as above, medium green, foliated at 70° to C.A., biotite rich	19115		327.0 345.3	331.6 347.2	4.6 1.9			.001 .001		

NAME OF PROPERTY | Santa Maria Zeemel Lake

HOLE NO SMZ-87-3 SHEET NO. 4 of 4

FOOTAG	s f				SAMPI	E			ASSAYS	
FROM	10	DESCRIPTION	110	501 PH 10E S	FROM	FOOT AGE	TOTAL	 	Auron	ghes,k
347.2	84.1	Felsic Intrusive - typical, as above, medium grained, light grey (leucocratic), massive	19117 19118		354.5 372.7	359.0 377.4	4.5 4.7		.002	
	56.0	Mafic to Ultramafic Metavolcanic - serpentinized with 1% disseminated magnetite throughout. Light to medium green, massive, possible silicification in place END OF HOLE Casing pulled	19187 1035 1036 19119 1037 19120 1038 19121 1040 19123 1041 19124 1042 1043		384.1 387.0 391.8 396.8 401.5 416.5 411.3 416.4 421.2 426.0 430.7 435.6 440.3 445.1 449.8 454.7	391.8 396.8 401.5 406.5 411.3 416.4 421.2 426.0 430.7 435.6 440.3 445.1 449.8	2.9 4.8 5.0 4.7 5.0 4.8 4.7 4.9 4.7 4.9 1.3		.009 .001 .001 .008 .002 .015 .003 .009 .002 .008 .002 .007	

10001

NAME OF	PROPERTY	Santa Maria	Zeenie I Lake		
HOLE NO	SMZ-87-4	LENG	1H 457.0		
LOCATION	28+01F	18+025			- provide the state of the stat
LATITUDE		DEPA	RTURE		
ELEVATIO	он	A Z IM L	лтн 180 ⁰	DIP	-45 ⁰
STARTED	Sept. 9,	1987 FINIS	BED Sept. 10.	, 1987	-

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZIMUTH
200	-440				
457	-41°				

HOLE NO.SMZ-87-4 SHEET NO.1 Of 1
REMARKS Claim #861426
Summary Log

001	AGE	DESCRIPTION	Ĭ		SAMP	L. E		il	,	SSA		
юм	10	SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL.	3%	1%	AU OZ/TON	Check oz/TON	
0	62.0	Casing										
62.0	354.9	Mafic Metavolcanic - 5% disseminated magnetite, quartz stringers throughout unit										
54.9	360.6	Ultramafic Metavolcanic - 5% magnetite 359.9 to 360.6 - Schistose zone with 1-2% pyrite								İ		
60.6	392.0	Felsic Intrusive	19172		376.0		4.0			0.019		
92.0	401.0	Ultramafic Metavolcanic - typical	19173	tr	380.0	383.0	3.0			0.010		
1.0	402.4	Felsic Intrusive - quartz feldspar porphyry										
2.4	413.6	Mafic Metavolcanic - typical		•								ĺ
3.6	423.6	Ultramafic Metavolcanic - typical				'		Ì				
3.6	457.0	Felsic Intrusive - typical										
	457.0	END OF HOLE Casing pulled										
[

NAME OF	PROPERTY	Santa	Maria Zee	mel Lake		
	SMZ-87-4		LENGTH	457.0		
	28+01E					
LATITUDE				E		
ELEVATION			AZIMUTH	180 ⁰	DIP .	-45°
STARTED_	Sept. 9, 1	987	FINISHED .	Sept. 10, 1987		

FOOTAGE	DIP	AZIMUTH	F00TAGE	DIP	AZIMUTH
200 457	-44 ⁰				
437	-41				

HOLE NO. SMZ-87-4 SHEET NO. 1 of 4
REMARKS Claim #861426

FOOTA	GE	DESCRIPTION			SAMP	L. E			,	SSAY		
FROM T	10	DESCRIFTION	NO.	SUĽPH IDES	FROM	FOOTAGE TO	TOTAL	3%	ઢ	AU OZ/TON	Check oz/TON	
0	62.0	Casing										
62.0	354.9	Mafic Metavolcanics - light to medium grey/green, fine to medium grained, massive Average Modes Amphibole 60-65% Plagioclase 20-25% Chlorite 10-15% Magnetite 5% - Magnetite is disseminated throughout unit, minor quartz stringers occur throughout the unit, many with minor associated epidote - 188.8 to 214.3 - abundant quartz carbonate stringers at random angles to the core axis - 223.3 to 223.6 - abundant quartz and carbonate infilling a breccia, possible fault or shear - 236.9 to 237.1 - quartz carbonate vein oriented at 70° to the core axis	19125 19126 19127 19128 19129 19130 19131 19135 19136 19137 19138 19140 19141 19142 19143 19144 19145 19146 19147		66.8 76.4 85.8 95.6 103.6 112.7 122.5 137.0 145.9 155.2 164.5 173.9 184.3 188.8 192.0 195.1 198.0 201.0 204.0 207.0 212.5 223.0	141.8 150.5 159.9 169.2 178.5 188.8 192.0 195.1 198.0 201.0 204.0 207.0 210.0 212.5 214.3 224.0	4.7 4.8 4.6 4.7 4.6 4.5 3.2 3.1 2.9 3.0 3.0 3.0 2.5 1.8			.002 .001 .002 .001 .002 .001 .002 .001 .002 .001 .001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-4 SHEET NO. 2 of 4

ſ	1001	AGE				SAMPL	ŧ			ASSAYS		
}	FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE TO	TOTAL	 *	oz Ajg _N	Chęck	
			- 240.1 to 253.9 - minor brecciation and infilling with quartz carbonate stringers at random angles to the core axis	19150 19151 19152 19153 19154	-	240.1 243.0 246.0 249.0 252.0	249.0 252.0	2.9 3.0 3.0 3.0		.002 .002 .001 .002		
			- 304.5' - 1 to 2% Galena on fracture plane	19155 19156 19157 19158 19159 19282 19160 19161 19162 19163	1-2	253.9 262.5 276.7 285.8 294.9 305.2 313.3 326.4 336.0 344.8	258.7 267.3 281.3 290.4 299.8 305.2 308.8 317.7 331.2 340.1	4.8 4.6 4.6 4.9 1.0 4.6 4.6 4.8 4.1		.001 .001 .001 .001 .001 .001 .001 .001		
	354.9	360.6	Ultramafic Metavolcanic - light grey/green, fine grained, weakly foliated at 80° to C.A.									
			Average Modes Amphibole 35-40% Chlorite 30-35% Talc/Serpentine 20-25% Magnetite 5%									
5-1-58			 serpentine appears in asbestiform fibres along fractures. Magnetite is disseminated throughout the unit. Unit is moderately carbonatized. 					! '				
ANGPIDGES - TORCNTO - 366-1168			354.9 - 359.9 - typical weakly foliated zone 359.9 - 360.6 - schistose zone with 1-2% pyrite	19165 19166		354.9 359.0				.001		
CIADVA												

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-4 SHEET NO. 3 of 4

F001	AGE	DESCRIPTION		10001 C1 11 11	SAMPL	E			ASSAY5		
FROM	10	OA SCRIP HUN	110	SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU 07 TON	Check	
360.6	392.0	Felsic Intrusive - pink, medium grained (slightly porphyritic?), massive	19167 19168		360.6 364.0		3.4 4.0		.001 .001		
		Average Modes Quartz 50% Plagioclase 25% Potassium Feldspar 20% Mafic Minerals 5%									
		 - 368.0 to 373.7 - quartz vein, milky white quartz - 373.7 to 392.0 - trace fine grained disseminated pyrite 	19169 19170 19171 19172 19173 19174 19175	tr tr tr tr tr	368.0 370.7 373.7 376.0 380.0 383.0	370.7 373.7 376.0 380.0 383.0 386.0 389.0	2.7 3.0 2.3 4.0 3.0 3.0		0.009 .001 .001 0.019 0.010 0.005		
392.0	401.0	Ultramafic Metavolcanic - typical, as above, light grey/green, higher asbestiform serpentine content here, biotite-rich near contact zones	19176 19177 19178	-	389.0 392.0 397.0	392.0 397.0 401.0	3.0 5.0 4.0		<.001 <.001 .001		
401.0	402.4	Felsic Intrusive - quartz feldspar porphyry equivalent of above intrusive, pink, massive	19179	-	401.0	402.4	1.4		<.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-4 SHEET NO. 4 of 4

1001	AGE	DESCRIPTION		Tributer - And	SAMPI	. E		***************************************	ASSAYS	
FROM	10	Of SCRIPTION	110	n Sul Ph IDES	FROM	FOOTAGE TO	TOTAL		JAV.	Check
402.4	413.6	Mafic Metavolcanic - typical, as above, medium grey/green, medium grained, massive, abundant quartz stringers throughout unit at random angles to core axis	19180 19181 19182 19183	-	402.4 405.0 408.0 411.0		2.6 3.0 3.0 2.6		<.001 .001 .001 <.001	
413.6	423.6	Ultramafic Metavolcanic - typical, as above, moderately to well foliated at 50° to the core axis, minor quartz stringers	19184 19185	-	413.6 418.6	418.6 423.6	5.0 5.0		<.001 <.001	
423.6	457.0	Felsic Intrusive - typical, as above, light grey with a pinkish hue, medium to coarse grained (equigranular), massive	19186	-	444.1	448.5	4.4		<.001	
	457.0	END OF HOLE Casing pulled								

NAME OF	PROPERTY	San	ta Maria	Zeemel	Lake			
HOLE NO.	SMZ-87-5		LENGTH .	467.0				
LOCATION	15+01E	11+995						
L.ATITUDE			DEPARTU	RE				
ELEVATION	Sept. 11, 1		AZIMUTH	1800		DIP	-45	
	sept. 11, 1	987		Sept.	12,	1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-38°				<u> </u>
467	-36°				

HOLE NO. SMZ-87-5 SHEET NO. 1 of 1

Claim #861425

Summary Log

F 0 0 1	AGE		H		SAMP	L E			A	SSA		
FROM	10	DESCRIPTION SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL.	76	ı,	AU OZ/TON	Check oz/TON	
0	24.6	Casing										
24.6	31.8	Pelitic Metasediment					:					
31.8	45.2	Quartz Wacke	II.									
45.2	91.1	Mafic to Ultramafic Metavolcanic - 2 to 3% pyrite							i.			
91.1	127.4	Quartz Wacke - 1 to 2% pyrite	· ·		}							
127.4	156.4	Mafic Metavolcanic										
156.4	233.9	Quartz Wacke	i i		İ							
233.9	347.6	Mafic Metavolcanic - 2 to 3% pyrrhotite stringers										
347.6	379.2	Felsic Intrusive										
379.2	445.5	Mafic Metavolcanic - 1 to 2% pyrrhotite and 1% pyrite in fractures										
445.5	467.0	Felsic Intrusive										
	467.0	END OF HOLE Casing pulled										

				a Maria Zeemel Lake
HOL E	NO.	SMZ-87-5		LENGTH 467.0
LOCATI			11+995	and the same of the same and th
LATITU	DE			DEPARTURE
ELEVAT	ION			AZIMUTH 180° DIP -45°
STARTE	: O _	Sept. 11,	1987	FINISHED Sept. 12, 1987

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-38 ⁰	1			
467	-360				

HOLE NO. MZ-87-5 SHEET NO. Of 6
REMARKS Claim #861425

B.A. Huston

F 0 0 1	AGE				SAMP	LE		ASSAYS					
FROM	10	DESCRIPTION	ИО.	SUĽPH· IDES	FROM	FOOTAGE TO	TOTAL	26	ઢ	AU OZ/TON	Check oz/TON		
0	24.6	Casing											
24.6	31.8	Pelitic Metasediment - light green/brown, fine grained, moderately foliated at 50° to C.A. Quartz 60% Biotite 30% Chlorite 10% - minor quartz (+ carbonate) veins appear throughout the unit	19188	-	27.0	31.8	4.8			.001			
31.8	45.2	Quartz Wacke - dark green, massive, large angular sand-sized grains in a fine grained matrix Average Modes Framework 35-40%											
		Quartz 100% Matrix 60-65% Biotite 40% Chlorite 20% Quartz 40% 31.8 to 40.6 - typical											
		- 32.0 to 32.1 - quartz vein at 50° to core axis - 32.5 to 32.6 - quartz vein, as above 40.6 to 45.2 - predominantly quartz wacke with minor interbedded metapelite	19189	-	31.8	32.8	1.0			•001			

NAME OF PROPERTY Santa Maria Zeemel Lake
SMZ-87-5 2 of 6
HOLE NO SHEET NO.

LOOTAGE	DE COLD TO THE STATE OF THE PARTY OF THE STATE OF THE STA	SAMPLE					ASSAY5			
FROM 10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE 10	TOTAL		AU OZ TON	Check	
45.2 91.1	Mafic to Ultramafic Metavolcanic - medium to dark green, fine grained, moderately foliated at 50° to C.A. Average Modes Amphibole 55-60% Chlorite 15-20% Plagioclase 10-15% Quartz 5-10% Biotite 5% Talc 2-3%	19190 19191 19192 19193 19194 19195 19196	2-3 2-3 2-3 2-3 2-3 2-3	45.2 48.0 51.0 54.0 57.0 60.0 63.0 66.0	48.0 51.0 54.0 57.0 60.0 63.0 66.0 69.0	2.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0		<.001 <.001 <.001 <.001 <.001 .001 .001		
91.1 127.4 91.1 127.4	Pyrite 2-3% - pyrite occurs as discreet 1/32" blebs throughout the unit - 69.4 to 69.8 - shear zone, heavy limonite staining - 72.0 to 73.7 - brecciated quartz vein Quartz Wacke - typical, as above, minor interbedded metapelite layers, 1-2% pyrite disseminated throughout the unit. Unit has probably been weakly sheared at 60° to core axis	19198 19199 19200 19201 19203 19204 19205 19206 19207 19208 19211 19212	2-3 2-3 2-3 2-3 2-3 2-3 2-3 1-2 1-2 1-2	69.0 70.0 72.0 73.7 77.0 80.0 86.0 88.5 91.1 95.0 98.0 102.0 112.0	91.1 95.0 98.0 102.0 107.0	1.0 2.0 1.7 3.3 3.0 3.0 2.5 2.6 3.9 3.0 4.0 5.0 5.0		<.001 .001 .001 .001 .001 .001 .001 .001		

NAME OF PROPERTY.

Santa Maria Zeemel Lake

HOLE NO . SMZ-87-5

SHEET NO. 3 of 6

F001	IAGE	DE SCRIPTION		· · · · · · · · · · · · · · · · · · ·	SAMPL			ASSAYS				
FROM	10	the schill from	110	SUL PH	FROM	FOOTAGE	TOTAL			OZ YUN	Çħeck	
127.4	156.4	Mafic Metavolcanic - medium green, fine grained, foliated at 45° to core axis, trace fine grained disseminated pyrite	19213 19214 19215 19216 19217	1-2 1-2 tr	117.0 122.0 125.0 137.0 146.4	125.0 127.4	5.0 3.0 2.4 4.6 3.1			.001 <.001 <.001 <.001		
156.4	233.9	 typical, as above, well foliated at 55° to the core axis, probably weakly sheared, shows minor evidence of rotation of quartz grains, very minor quartz (+ carbonate) veinlets occur throughout the unit. Very 	19218 19219 19220 19221	tr tr	149.5 150.6 154.0 161.0	154.0 156.4	1.1 3.4 2.4 5.0			<.001 <.001 .001		
		minor metapelite layers. - 172.1 to 172.3 - quartz vein at 55° to core axis (parallel to foliation) - 176.4 to 176.6 - quartz vein at 55° to core axis (parallel to foliation) - 186.2 to 186.4 - quartz vein at 50° to core axis (parallel to foliation), 3-5% pyrite along contact - 223.6 to 223.8 - quartz vein at 60° to core axis	19222 19223 19224 19225 19226	1 -	171.7 176.0 185.8 194.9 204.5	l	1.0 1.0 1.0 4.7 4.8			.001 .001 .001 .001 <.001		
89 388 - 0. 2010 - 1.5300 -		(subparallel to foliation) - 224.4 to 224.6 - quartz vein at 50° to core axis (parallel to foliation)	19227 19228 19229	-	214.3 223.6 230.0	219.0 224.6 233.9	4.7 1.0 3.9			.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-5 SHEET NO. 4 OF 6

FOOTAGE	DESCRIPTION			SAMPL	-		l	ASSAYS	
ROM TO	1/1 SCRIP HON	но	SULPH IDES	FROM	FOOTAGE	TOTAL		. Au	Check,
233.9 347.6	Mafic Metavolcanic - light to medium green, fine to medium grained, massive, mineralogy as above. Abundant fractures infilled with quartz pyrrhotite stringers. Pyrrhotite smears found in many fractures (slip surfaces ?)	19230 19231 19232 19233 19234 19235	2-3 2-3 2-3 2-3 2-3 2-3	233.9 237.0 240.0 243.0 246.0 249.0	237.0 240.0 243.0 246.0 249.0 252.0	3.1 3.0 3.0 3.0 3.0 3.0		.001 .001 .001 .001 .001	
	- 261.7 to 261.8 - quartz vein at 50° to core axis - 262.1 to 262.7 - quartz vein at 90° to core axis - 263.3 to 263.5 - quartz vein at 65° to core axis,	19236 19237 19238 19239 19240	2-3 2-3 1-2	252.0 254.0 257.0 261.7 262.7	257.0 261.7 262.7	2.0 3.0 4.7 1.0 2.1		.001 .001 .001 .001	
	3-5% pyrite and pyrrhotite along contact - 264.4 to 264.8 - quartz vein at 90° to core axis - 270.3 to 272.2 - felsic dyke - quartz feldspar porphyry, 2-3% pyrrhotite - 280.7 to 281.5 - quartz vein - pyrrhotite along contacts	19241 19242 19243 19244 19245	2-3 2-3 2-3 2-3 2-3	264.8 267.5 270.3 272.2 275.0 278.0	270.3 272.2 275.0 278.0 280.6	2.7 2.8 1.9 2.8 3.0 2.6		.001 .001 <.001 .001 .001 <.001	
		19247 19248 19249 19250 19251 19252	2-3 2-3 2-3 2-3 2-3 2-3	280.6 281.6 284.0 287.0 292.0 297.0 302.0	284.0 287.0 292.0 297.0 302.0 307.0	1.0 2.4 3.0 5.0 5.0 5.0		.001 .001 <.001 <.001 <.001 <.001	
		19254 19255 19256 19257 19258 19259 19260	2-3 2-3 2-3 2-3 2-3 2-3	307.0 312.0 317.0 322.0 327.0 332.0 337.0 342.0	317.0 322.0 327.0 332.0 337.0 342.0	5.0 5.0 5.0 5.0 5.0 5.0 4.6		<.001 .001 .001 <.001 <.001 <.001	
	346.8 to 347.2 - quartz vein at 80° to core axis	19262		346.6		1.0		.001	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-5 SHEET NO. 5 of 6

FOOT	AGE	TO SECONDATION			SAMPI					ASSAYS	01 1	. K. J. B. J. B. B.
FROM	10	DESCRIPTION	110	5HEPH IDES	FROM	FOOTAGE TO	TOTAL	-	.	Au OZ TON	Check T	
347.6	379.2	Felsic Intrusive - quartz porphyry, light grey with large white quartz grains, very fine grained groundmass	19263	-	347.6	350.0	2.4	TOTAL RESIDENCE METERS I		<.001		
		Phenocrysts 20% Quartz 100% Groundmass 80% Fine grained quartz, + feldspar, + biotite										
		- 361.0 to 363.1 - quartz vein (composite), includes both white and clear quartz - 365.9 to 367.5 - felsic (granitic) intrusive,	19264 19265	ĺ	361.0 365.9	f	2.1 1.6			.002 <.001		
379.2	445.5	equigranular, minor potassium feldspar Mafic Metavolcanic - typical, as above, 1-2% pyrrhotite infilling small fractures in the rock (+ 1% pyrite) 379.2 to 394.2 - typical	19266 19267 19268	2-3	379.2 382.0 387.0	382.0 387.0 392.0	2.8 5.0 5.0			<.001 <.001		
		394.2 to 395.0 - zone of potassic alteration, wisps of biotite appear throughout the volcanic 395.0 to 397.0 - felsic dyke, weakly porphyritic 397.0 to 399.2 - zone of potassic alteration, as above 399.2 to 411.7 - typical	19269 19270 19271 19272 19273 19274	2-3 - 2-3 2-3 2-3	392.0 394.0 395.0 397.0 399.2 402.0	399.2 402.0 407.0	2.0 1.0 2.0 2.2 2.8 5.0			.001 .001 .002 .001 .001		
1080NTO - 3855-158		411.7 to 414.6 - zone of quartz veining and silicification 414.6 to 422.0 - typical 422.0 to 445.5 - medium grained, decrease in amount of fracturing and sulphides	19275 19276 19277 19278 19279 19280	2-3 2-3 tr	407.0 411.7 414.7 417.0 434.0 443.5	422.0 438.8	4.7 2.9 2.3 5.0 4.8 2.0			.001 .001 <.001 .001 <.001		
0 - 9880 - 988 - 1												

NAME OF PROPERTY..... Santa Maria Zeemel Lake

HOLE NO SMZ-87-5 SHEET NO 6 of 6

1001	AGE.				SAMPL	. E			de d'Elever punty de la cons	ASSAY5		
FROM	10	DE SCRIPTION	110	SUL PH IUES	FROM	FOOTAGE	TOTAL			AU DZ TON	Check	
445.5	467.0	- light grey, medium grained (equigranular) massive	19281		452.7					.001		province of the second second
		Average Modes Quartz Feldspar Biotite										
		- feldspar appears to be predominantly plagicclase										
	467.0	END OF HOLE Casing pulled										
	İ							;				
i								\sim /	92	,		

NAME OF	PROPER	RTY	Santa	Maria Zeo	emel La	<u>ke</u>			
HOLE NO.	<u>SMZ-8</u>	7-6		LENGTH _	527.0				
LOCATION	4+98E	20+5	Q\$						
LATITUDE				DEPARTUR	Ε			n	
L ATITUDE EL EVATION				AZIMUTH _	180		DIP	-50°	
STARTED	Sept.	13, 19	87	FINISHED	Sept.	17,	1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-470				
400	-440				
627	-41°				

HOLE NO. SMZ-87-6 SHEET NO. 1 of 1

REMARKS Claim #861521

Summary Log

F	001	AGE	DESCRIPTION			SAMP				A	SSAY		
F	ROM	10	SUMMARY LOG	ΝО.	SUL PH- IDES	FROM	FOOTAGE TO	TOTAL	26	16	OZ/10N	Check oz/TON	
	0	18.9	Casing							į			
1	18.9	53.6	Quartz Feldspar Porphyry										
	53.6	63.1	Felsic Intrusive - 1% Pyrite										
	63.1	82.6	Felsic Intrusive - sheared Quartz Feldspar Porphyry (), Sericitic, 0.5 Pyrite										
	82.6	156.1	Felsic Intrusive - as in 53.6 to 63.1										
1	56.1	167.0	Quartz Feldspar Porphyry										
1	67.0	190.2	Mafic Metavolcanic - trace Pyrite (+ Chalcopyrite(?))										
1	90.2	304.9	Felsic Intrusive 272.4 to 304.9 - Quartz Feldspar Porphyry, 1-2% Pyrite				•						
3	04.9	400.4	Mafic Metavolcanic								İ		
	00.4	407.4	Chlorite Biotite Schist - Pelitic Metasediment (?)										
999	07.4	470.4	Mafic to Ultramafic Metavolcanic - 1-2% magnetite				İ						
891.798 - 01.0000	70.4	627.0	Felsic Intrusive										
ANG#:06ES - 70#0.		627.0	END OF HOLE Casing pulled										
BNA													

NAME	OF	PROPERTY	Santa	a Maria Zeer	nel Lake		
HOLE	NO.	SMZ-87-	6	LENGTH	627.0		
LOCAT		4+98E	20+50S				
LATIT	JDE			DEPARTURE			
ELEVA	TION	Sept. 13,		AZIMUTH	1800	DIP	-50°
CTADT	5 ک	Sept. 13,	1987	EMICHED	Sept. 1	7, 1987	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-47 ⁰				
400	-440				
627	-410				

HOLE NO. SMZ-87-6 SHEET NO. 1 OF 6
REMARKS Claim #861521

B.A. Huston

F 0 0	TAGE	D E S C R I P I I O N			SAMP	L E			-	5 S A '	y S	
FROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	TO TAGE	TOTAL	36	જ	OZ/10N	Check oz/Ton	
0	18.9	Casing										
18.9	53.6	Quartz Feldspar Porphyry - grey, massive, 1/18" phenocrysts	19283	tr	18.9	21.0	2.1			.001		
		Average Modes Phenocrysts 25% Quartz 60% Feldspar 40% Groundmass 75% Very fine grained, predominantly quartz, trace pyrite - 21.0 to 32.5 - L.O.C. (ledge in bedrock ?) - 32.5 to 33.9 - medium grained equigranular granitoid dyke, trace garnets with associated pyrite - 47.7 to 48.9 - light grey, medium to fine grained granitoid	19284 19285 19286 19287 19288 19289	tr tr tr tr	32.5 33.9 37.0 41.0 45.0 47.7 48.9	33.9 37.0 41.0 45.0 47.7 48.9 53.6	1.4 3.1 4.0 4.0 2.7 1.2 4.7			.007 <.001 .001 .001 .006 <.001 <.001		
53.6	63.1	Felsic Intrusive - light grey, medium grained (equigranular) massive Average Modes Quartz 40-45% Plagioclase 25-30% Potassium Feldspar 10-15% Amphibole 15-20% Garnet trace Pyrite 1% - pyrite appears on minor fracture surfaces	19291 19292 19293	1	53.6 57.0 60.5	57.0 60.5 63.1	3.4 3.5 2.6			.001 .001 .003		

NAME OF PROPERTY Santa Maria Zeemel Lake

SMZ-87-6

HEET NO 2 of 6

FOOTAGE	UE SCRIPTION			SAMFI				SSAY5		-
FROM 10	DESCRIPTION	140	501 PH 10E S	FROM	FOOTAGE	TOTAL	. 17	AU TON	Check	
63.1 82.6	Felsic Intrusive - grey/buff, remnant porphyritic texture, very well foliated at 40-45° to the core axis Average Modes Quartz 65-70% Sericite 10-15% Biotite 10-15% Feldspar 5-10% Pyrite 0.5%	19294 19295 19296 19297 19298 19299 19300	0.5 0.5 0.5 0.5 0.5	63.1 66.0 69.0 72.0 75.0 78.0 80.0	66.0 69.0 72.0 75.0 78.0 80.0 82.6	2.9 3.0 3.0 3.0 3.0 2.0 2.6		008 001 001 002 004 001 002		
82.6 156.1	- probable sheared quartz feldspar porphyry. Moderately carbonatized Felsic Intrusive - as in 53.6 to 63.1, trace pyrite, trace sericite in fractures - 82.6 to 84.2 - contact zone, coarse grained, white - 91.4 to 92.8 - meandering quartz (+ carbonate) vein at low angles to the core axis - 115.6 to 115.7 - quartz vein at 55° to the core axis - 120.6 to 120.8 - quartz vein at 55° to the core axis - 141.5 to 141.8 - quartz vein - subnormal to the core axis - 142.1 to 143.2 - quartz vein - subnormal to the core axis, 0.5% chalcopyrite - 149.2 to 149.4 - quartz vein - subnormal to the core axis - 149.8 to 150.1 - quartz vein - subnormal to the core axis	19301 19302 19303 19304 19306 19306 19308 19309	tr tr tr tr tr tr	82.6 91.4 92.8 95.2 104.8 115.0 120.2 133.6 141.5	150.1	1.6 1.4 2.4 4.7 4.7 1.0 1.0 3.7 1.7		001 002 006 004 002 003 002 003		

NAME OF PROPERTY..... Santa Maria Zeemel Lake

HOLE NO SMZ-87-6 SHEET NO. 3 of 6

1.001	AGE	DESCRIPTION			SAMPI	E		 	ASSAYS		
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU oz Ton	Check	
156.1	167.0	Quartz Feldspar Porphyry - typical, as above, massive, trace pyrite	19312 19313 19314	tr	156.1 160.0 163.5	160.0 163.5 167.0	3.9 3.5 3.5		.002 .003		
167.0	190.2	Mafic Metavolcanic - medium green, fine to medium grained, massive to weakly foliated at 55° to core axis	19315 19316	tr	167.0 170.5		3.5		.002		
		Average Modes Amphibole 65-70% Plagioclase 20-25% Chlorite 10%								į	
		 numerous quartz (+ carbonate) filled fractures, trace pyrite (+ chalcopyrite ?) 174.1 to 175.1 - series of quartz carbonate stringers and veinlets 	19317	tr	174.1	175.1	1.0		.002		
		- 175.1 to 181.4 - coarse grained, massive	19318 19319 19320 19321	tr tr	175.1 177.0 181.4 186.3	177.0 181.4 186.3 188.3	1.9 4.4 4.9 2.0		.003 .001 .003 .002		
		- 188.3 to 190.2 - chlorite biotite schist, numerous quartz carbonate stringers	19322		188.3	190.2	1.9		.002		
190.2	304.9	Felsic Intrusive - several phases of intrusion, predominantly medium to dark grey, very weakly porphyritic, massive	19323	-	190.2	192.0	1.8		.002		
		- 192.0 to 192.9 - light beige colour, weak iron stain - 194.2 to 196.3 - light grey, fine grained - 200.1 to 200.5 - white, very siliceous, trace pyrite	19324 19325 19326 19327 19328 19329	- - tr	192.0 193.0 194.2 196.3 200.1 201.1	193.0 194.2 196.3 200.1 201.1 205.0	1.0 1.2 2.1 3.8 1.0 3.9		.001 .001 <.001 .001 .001 <.001		
								į			

NAME OF PROPERTY, Santa Maria Zeemel Lake

HOLE NO SMZ-87-6 SHEET NO. 4 of 6

FOOTAGE	್ ಬಹ್ಮಾತ್ರ ನ್ಯಾತ್ರಿ ಪ್ರವೀತ ನೀಡಿ ನಿರ್ದೇಶ ಪ್ರಕರಣ				SAMPL	E			-	ASSAYS		
FROM	0	DE SCRIPTION ·	но	SULPH IDES	FROM	FOOTAGE TO	TOTAL	;		AU	Check	
FROM	0	- 205.0 to 205.8 - light grey, as above - 207.2 to 212.7 - light grey/buff, numerous quartz stringers - 219.9 to 220.7 - white/buff, coarse grained - 221.2 to 223.4 - white/buff, coarse grained (pegmatitic), 1% pyrite - 227.7 to 230.1 - light grey, fine grained - 271.3 to 272.4 - quartz veining, trace garnet, minor green amphibole - 272.4 to 304.9 - quartz feldspar porphyry, 1-2% pyrite	19336 19331 19332 19334 19336 19336 19338 19340 19341	tr - 1-2 1-2 1-2		206.0 207.2 210.0 212.7 223.4 230.1 249.1 272.4 277.0 282.0 287.0	1.0 1.2 2.8 2.7 3.5 2.4 4.9 1.1 4.6 5.0		•	.001 <.001 <.001 <.001 <.002 .002 .002 .001 <.001 <.001		
304.9 40	00.4 <u>Mafic Me</u> i	tavolcanic - typical as above, minor fracturing at random angles to core axis, trace pyrite, 25-30% plagioclase in this interval, minor epidote/zoisite, 1-2% disseminated magnetite - 341.6 to 343.0 - chloritized shear zone, blocky core	19342 19343 19344 19345 19347 19347 19350 19351 19356 19358	1-2 1-2 1-2 tr tr tr tr tr tr tr tr tr	287.0 292.0 297.0 301.0 304.9 315.4 324.5 333.8 341.6 343.3 352.5 367.0 376.4 385.3 394.9 397.0 400.4	297.0 301.0 304.9 307.0 320.0 328.9 338.4 341.6 343.3 347.9 357.3				.001 .001 .001 .001 .001 .001 .001 .001		

Santa Maria Zeemel Lake

NAME OF PROPERTY.

SMZ-87-6

SHEET NO. 5 of 6

ASSAYS FOOTAGE DESCRIPTION FOOTAGE SULPH AU Check 140 10 FROM IDES FROM 10 TOTAL 400.4 407.4 Chlorite Biotite Schist - pelitic metasediment(?), green/brown, fine grained, foliated at 40° to the core axis Chlorite 45-50% Biotite 40-45% **Ouartz** 5-10% - 402.9 to 404.3 - granite dyke 19359 -402.9 404.3 1.4 .002 1936d -404.3 407.4 3.1 .001 Mafic to Ultramafic Metavolcanic 19361 -407.4 470.4 414.1 418.7 4.6 .002 - medium green, medium grained, massive 19362 -423.7 428.4 4.7 .004 19363 -433.6 437.d 3.4 .002 Average Modes Amphibole 60% Chlorite 20% Plagioclase 15% Talc 5% Magnetite 1-2% 19364 -- 437.2 to 437.6 - quartz vein at 15-20° to core 437.0 438.3 1.3 .002 19365 axis 443.1 448.d 4.9 <.001 19366 -455.7 460.2 4.5 .001 19367 465.1 468.4 3.3 .001 - 468.4 to 470.4 - chloritic with crenulated 19368 468.4 470.4 2.0 <.001 foliations, increasing biotite towards contact 627.0 Felsic Intrusive 19369 -470.4 474.5 470.4 <.001 4.1 1937d -- typical, light grey to white, medium to coarse 493.4 498.0 4.6 <.001 19371 grained (pegmatitic in places) 513.1 518.0 4.9 .001 19372 532.8 537.5 4.7 <.001 19373 542.2 547.0 <.001 4.8 19374 566.1 570.9 4.8 .001 119375 585.3 590.1 4.8 <.001

Loten

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO SMZ-37-6 SHEET NO. 6 of 6

100	LAGE	DESCRIPTION			SAMPL					ASSAY5	-	
FROM	10	DE SCRIP FION	NO	SULPH IDES	FROM	FOOTAGE 10	TOTAL	1	I .	AU TON	Check	
į		- 597.9 to 600.6 - 1% pyrite (+ chalcopyrite) in fractures	19376 19377 19378	1 -	597.9 600.6 605.0	600.6 605.0 609.7	4.4			<.001 <.001 <.001	į	
	627.0	END OF HOLE Casing pulled		:								
	ì											
								(XY	151) U	MA	,
ì								X 1 4	the	W.S.	1100	

NAME OF	PROPERTY	San	ta Maria	Zeemel	Lake			
HOLE NO.	SMZ-87-7		LENGTH_	346'				
LOCATION	L18+01W	11+475						
LATITUDE			DEPARTU	RE				
ELEVATION			AZIMUTH	1800		DIP	-45	
STABLED S	ept. 14, 19	987	FINICHED	Sept.	17.	1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-43 ⁰				
346	-41°				

HOLE NO. SMZ-87-7 SHEET NO. 1 of 2
REMARKS Claim #Pa 861518
Summary Log

LOGGED BY Eric Timoshenko

FOOT	AGE				SAMP	LE			,	SSA	Y 5
FROM	10	DESCRIPTION SUMMARY LOG	NO,	SULPH IDES	FROM	FOOTAGE TO	TOTAL	%	ъ	AU OZ/TON	Check oz/TON
0	49.0	Casing									
49.0	157.6	Mafic Metavolcanics - Massive, 5-7% Magnetite									
157.6	159.2	Mafic Metavolcanics - Chloritic Schist; Shear Zone									
159.2	219.0	Ultramafic Metavolcanics - Amphibolite, 1% combined pyrrhotite, pyrite, chalcopyrite									
219.0	226.5	Felsic Intrusive - trace pyrite		 		i					
226.5	263.0	Mafic Metavolcanics - Amphibolite, trace sulphide (pyrrhotite, pyrite, chalcopyrite)				ı					
263.0	264.8	Felsic Intrusive						:			
264.8	288.2	Mafic Metavolcanics - Amphibolite, 1% sulphide (pyrrhotite, pyrite, chalcopyrite) - 277.3 quartz-carbonate stringers with pyrrhotite, pyrite, chalcopyrite									
288.2	292.3	Metagreywacke									
292.3	295.0	Mafic Metavolcanics - Amphibolite, 1% sulphide (pyrrhotite, pyrite, chalcopyrite)									
295.0	305.3	Metagreywacke/Metasiltstone									
ļ										į	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-7 SHEET NO. 2 of 2

1001	AGE	DESCRIPTION			SAMPI		AND THE PERSON NAMED IN COLUMN		ASSAYS		A MAXIMUM IN
FROM	10	DESCRIPTION	110	" SUL PH IDES	FROM	FOOTAGE 10	TOTAL		Ayun	chęck.	
305.3	307.0	Mafic Metavolcanic - Amphibolite]					
307.0	309.8	Metagreywacke/Metasiltstone									
309.8	311.6	Felsic Intrusive - 1% pyrite, trace galena, molybdenite	Ì					1			
311.6	329.2	<u>Metagreywacke</u>									
329.2	331.3	Mafic Metavolcanic - Amphibolite									
331.3	346.0	Metagreywacke/Metasiltstone									
	346.0	END OF HOLE Casing pulled						t			
	l	ousing politica	1								
								f 			
					i						
	İ										
n D											
-995	Ì				1						
							,				
24											
9					i						
921							,				
			1					,			

NAME OF	FPROPERTY	Santa Maria	Zeemel La	ike		
HOLE NO	SMZ-87-7	LENG	тн 346)		
LOCATIO	и <u>L18+01W</u>	11+47\$				
LATITUD	E	DEPAR	RTURE			
ELEVATIO	он ис	AZIMU	этн <u>180⁰</u>		DIP	-45 ⁰
CTABLED	Sont 1/	1007	ura Sant	17 10g	7	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200 346	-43 ⁰ -41 ⁰				

HOLE NO. SMZ-87-7 SHEET NO. 1 of 9
REMARKS Claim #Pa 861518

LOGGED BY Eric Timoshenko

FOOTAG	DESCRIPTION			SAMP	L E			 	SSA	Y 5	
FROM TO	DESCRIPTION	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL.	2%	3%	AU OZ/TON	Check oz/TON	
0 49	.0 <u>Casing</u>										
49.0 157	Average Modes Amphibole 50-65% Plagicalase 15-20% Talc/Serpentine 1-5% Chlorite 1-5% Magnetite 5-7% - serpentine/talc may occur within (or occasionally as a halo around) chloritic fractures 49.0 to 103.0 - numerous narrow fractures, randomly oriented, most filled with chlorite (± carbonate) - 98.3 - trace galena in fracture filled with tremolite/actinolite (1" wide alteration halo) 103.0 to 157.6 - greater degrees of fracturing; fractures randomly oriented - 141.2 - pyrite occurs with carbonate as a fracture coating - 150.3 - pyrite with carbonate as fractures are more numerous and of greater width (up to 1")	19379 19380 19381 19383 19384 19385 19386	tr tr tr tr tr	53.7 71.5 90.8 97.7 105.2 124.3 141.6 144.0 149.6 154.9	129.0 142.6	5.0 4.8 1.0 4.8 4.7 1.0 3.9 2.2			.001 <.001 <.001 <.001 <.001 <.001 <.001 .001		

NAME OF PROPERTY. .

Santa Maria Zeemel Lake

HOLE NO SMZ-87-7

SHEET NO. 2 of 9

1001	AGI	DESCRIPTION			SAMPI	E		20000	SSAYS		
FROM	10	DE SCRIPTION	NO	SULPH IDES	FROM	FOOTAGE To	TOTAL	-	Au Ton	heck oz row	
157.6	159.2	Mafic Metavolcanics - medium to light grey-green, fine grained, well foliated (angle to core axis = 40-65), weakly banded	19389		157.6	159.2	1.6		<.001		
		Average Modes Chlorite 85-90% Quartz 0-5% Magnetite 2-5% - shear zone; chlorite schist - small quartz/carbonate stringers throughout zone									
		158.6 to 159.2 - contact zone contains up to 30% biotite and several quartz pods and veinlets (up to 1/2" wide)			l I						
159.2	219.0	Ultramafic Metavolcanics - medium to light green, fine to medium grained, weakly foliated (angle to core axis = 60-70°), weak to moderate banding	19390	1	159.2	162.3	3.1		<.001		
		Average Modes Amphibole 70-80% Plagioclase 10-15% Chlorite 3-5% Magnetite 0-2% Pyrite 0-1% Pyrrhotite 0-1% Chalcopyrite 0-1%									
		 amphibolite with thin (usually < 1/2" wide) chloritic bands 			:						

1.000

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-7

SHEET NO. 3 of 9

FOOTAGE		1		SAMPL	. E	u tunga Munistrang ay gasaran, n			ASSAYS		**************************************
FROM TO	DESCRIPTION	NO	SUL PH IDE S	FROM	FOOTAGE To	TOTAL			AU oz ton	Check	
219.0 226.5	- magnetite occurs in many of the chloritic bands - pyrrhotite, pyrite, and chalcopyrite (in order of abundance) occur throughout unit as disseminations or rarely as small (< 1/8") stringers; average sulphide content is about 1% - quartz and/or carbonate stringers are randomly oriented throughout the unit; minor serpentine and occasionally pyrite in some of these fracture fillings - some stringers are offset by subsequent fractures 164.6 to 166.1 - pyrite occurs as a fracture coating with carbonate (several small fractures) 185.5 - 1" wide quartz-feldspar porphyry dike, light grey, medium grained 190.7 - pyrite with carbonate as fracture coating 192.8 - pyrite with carbonate as fracture coating 198.3 - quartz stringers 1/8" wide with trace pyrite 207.0 to 211.2 - heavily fractured secture. Carbonate with trace pyrite as a fracture coating 219.0 - 1" wide section of 30% biotite at contact Felsic Intrusive - light grey to grey pink, medium to coarse grained (finer grained near contacts), massive texture (heavily sericitic sections are foliated, angle to core axis = 50-60°)	19391 19392 19393 19395 19396 19399	1 1-2 1 1 1 1	163.9	167.0 176.0 187.0 191.0 195.0 198.9 210.0 215.5	3.1 2 5 1 3 1.5			.001 <.001 <.001 <.001 .001 <.001 <.001		
				1			!	1			

FORM 2

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-7 SHEET NO. 4 of 9

FOO!	ia ia ni sele LAGI			***	SAMPI	E		 	ASSAYS		
FROM	10	DESCRIPTION	но	" SULPH LDES	FROM	FOOT AGE TO	IOTAL		oA4on	Check	
•		Average Modes Quartz 20-40% Feldspar 30-40% Sericite 10-20% Biotite 2-7% Garnet 0-1% Pyrite 0-1%									
		 felsic dike dominantly quartz-feldspathic rock with wispy bands of sericite and scattered flakes of biotite garnets are very small (< 1/16") and are scattered throughout the unit fractures are common, most at very low angles to the core axis; carbonate commonly found on fracture surfaces disseminated pyrite in some sections (<1%) 									
		221.9 - 3/4" wide section of biotite schist - intercalation or xenolith of mafic volcanic material within intrusive	19400	tr	219.0	222.4	3.4		<.001		
		222.9 - 223.4 - well fractured section with fracture coatings of black mafic material (biotite and fine grained amphibole(?)); pyrite occurs as a fracture coating	19401	1	222.4	223.4	1.0		<.001		
		223.4 - 224.0 - intercalation or xenolith of mafic volcanic material (amphibolitic) within the intrusive	19402	tr	223.4	224.4	1.0		<.001		
		 very biotitic (up to 30%) and carbonate rich angle to core axis = 35° 	19403	tr	224.4	226.5	2.1		<.001		
226.5	263.0	Mafic Metavolcanics - amphibolite; basic description as per above - total sulphide content <1% (pyrrhotite, pyrite and chalcopyrite, in order of abundance)	19404	tr	226.5	229.5	3.0		<.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-7 SHEET NO. 5 of 9

1001	AGE	DESCRIPTION	[SAMPL				 ASSAYS	Charl
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE 10	TOTAL	,	Au oz ton	OZ TON
		232.9 to 237.7 - coarse grained amphibolite	19405 19406		235.0 242.7	237.0 247.6			<.001 <.001	
		253.4 to 254.4 - four small (≤ 1/2") quartz veinlets in this interval; trace pyrite	19407 19408		253.4 261.0	254.4	1		.001	
263.0	264.8	Felsic Intrusive - felsic dike, basic description as per above - fracturing at high angles to core axis - increase in biotite content near contacts - trace pyrite	19409	tr	263.0	264.8	1.8		.001	
264.8	288.2	Mafic Metavolcanics - amphibolite, basic description as per above - fine grained, weakly foliated (angle to core axis 55-70°) - pyrite, pyrrhotite, and minor chalcopyrite content varies from trace to 1%	19410 19411		264.8 269.8	266.8 273.8			.001	
		277.3 - pyrrhotite, minor pyrite and chalcopyrite in two 3/4" x 1/4" stringers	19412		276.8				<.001	
}	ľ	287.6 - 2" wide biotite rich zone (30% biotite)	19413	tr	286.2	288.2	2	İ	.001	
288.2	292.3	Metagreywacke - light to medium grey, medium grained, well foliated (angle to core axis = 70-80°), weakly banded								
		Average Modes Framework 80% Matrix 20% Quartz 60% Biotite 30% Feldspar 40% Felsics 70%								
		- minor fracturing, some fractures with carbonate coating								

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-7 SHEET NO. 6 of 9

£001AGE	DESCRIPTION	1		SAMPL	E			ASSAYS		
FROM 10	Dr. SCRIP, HON	но	S01 PH		FOOTAGE		Ι .	OZ TON	Check	
	- very few quartz/carbonate stringers - no visible sulphides 291.1 to 291.6 - mafic metavolcanic (amphibolite) - intercalation within the sediments - up to 30% biotite, carbonate rich 292.3 - interfingering of sediments and volcanics at the contact		IDES	FROM	10	101A1				
292.3 295.0	Mafic Metavolcanics - amphibolite, basic description as per above - weakly foliated, angle to core axis = 65-80° - numerous small (most around 1/8" wide) quartz/carbonate veinlets carrying trace pyrite and minor pyrrhotite - altered sections containing coarse grained amphibole, biotite, and minor epidote/zoisite and carbonate; trace to 1% disseminated pyrite and pyrrhotite in these sections	19415	1	292.3	295.0	2.7		.001		
295.0 305.3	Metagreywacke/Metasiltstone - light grey to light grey green, well foliated (angle to core axis = 65-85°), weak to moderate banding Average Modes Framework 60-80% Matrix 20-40% Quartz 65% Biotite 30% Feldspar 35% Felsics 70% - varying degrees of framework to matrix ratio; darker bands indicate finer grained sediments									

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-7 SHEET NO. 7 of 9

FOOT	AGL.	DESCRIPTION			SAMPI.				ASSAYS		
FROM	10	DESCRIPTION	110	F SULPH IDES	FROM	FOOTAGE	TOTAL		AYUN	Check	
		 quartz/carbonate veinlets and fracture fillings common throughout unit (most < 1/8") minor pyrite with carbonate in some fractures 295.2 to 295.5 - quartz vein; milkly quartz with trace chalcopyrite; concordant 	19416 19417		245.0 297.0		1		.001		
305.3	307.0		19418 19419 19420	tr tr	299.0 299.0 303.3 305.3	302.0 305.3	1 3 2 1.7		.001 <.001 <.001 .001		
307.0	309.8	Metagreywacke/Metasiltstone - basic description as per above - well foliated, angle to core axis = 65-80°						:			
		307.4 to 307.8 - four 1/4" wide quartz veinlets; no visible sulphides	19421	tr	307.0	309.8	2.8		.001		
309.8	311.6	Felsic Intrusive - basic description as per above - well fractured; trace to 1% pyrite and trace galena and molybdenite on fracture surfaces - lineation due to alignment of biotite flakes, angle to core axis = 65-70°	19422	1	309.8	311.6	1.8		.001		
			:				į				

NAME OF PROPERTY... Santa Maria Zeemel Lake HOLE NO SMZ-87-7 SHEET NO. 8 of 9

100	LAGE	OF CONTRACT	1	rees the	SAMPI	E			ASSAYS	
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE TO	TOTAL	,	OZ TON	Check
311.6	329.2	Metagreywacke - basic description as per above - well foliated, angle to core axis varies from 50-80° - quartz carbonate stringers and fracture fillings are common, occasionally accompanied by alteration haloes. - pyrite and rarely pyrrhotite found in fractures or less commonly as disseminations in the sediments	19423 19424		311.6 318.0	313.6 319.9	2 1.9		.003	
		320.4 to 320.8 - felsic intrusive - small dike with trace disseminated pyrite	19425	1	319.9	320.9	1		.002	
		321.5 - quartz/carbonate veinlets with alteration haloes of light green mafic minerals (probably amphibole);	19426		320.9	322.9	2		.003	
		trace pyrite 325.0 to 325.8 - felsic intrusive - small dike with trace pyrite 327.2 to 327.4 - felsic intrusive, as above	19427 19428		323.9 324.9		1		.002	
		327.8 to 329.2 - biotite schist containing many very small quartz carbonate stringers - 328.5 pyrite fracture coating	19429	tr	325.9	329.2	3.3		.001	
329.2	331.3	Mafic Metavolcanic - amphibolite, as per above - fine grained, poorly foliated (angle to core axis = 65-70°) - trace pyrrhotite, pyrite	19430	tr	329.2	331.3	2.1		<.001	
50 - 600 + D 2010 - 6000 CONT.										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SM7-87-7 SHEET NO. 9 of 9

1.001	AGE	DESCRIPTION			SAMPI	£			ASSAYS		
FROM	10	DESCRIPTION	HO	SULPH IDES	FROM	FOOTAGE 10	TOTAL	,	Au oz ton	Check T	
331.3	346.0	Metagreywacke/Metasiltstone - basic description as per above - well foliated, angle to core axis = 55-65° - quartz/carbonate stringers, veinlets and fracture fillings common throughout section; minor pyrite	19431 19432		331.3 338.0	334.1 341.0			<.001 .001		
		345.2 - 1" wide discordant quartz vein, trace pyrite	19433	tr	344.8	346.0	1.2		.002		
	346.0	END OF HOLE Casing pulled									
PG . 669 D 2010 AUDOLESZA .								A M) A.A.	ms	

NAME OF	PROPERTY	Santa	Maria Zeem				
HOLE NO	SMZ-87-8		LENGTH	392 '			
LOCATION	L18+00W	8+995					
LATITUDE			DEPARTURE				
ELEVATIO	ON		_ DEPARTURE _ AZIMUTH	180 ⁰	D1P	-45 ⁰	
STARTED				Sept. 19,	1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-450				
378	-45 ⁰				
			i		

HOLE NO. SMZ-87-8 SHEET NO. 1 of 2

REMARKS Claim #861518

Summary Log

LOGGED BY Eric Timoshenko

FOOT	AGE				SAMP	LE			A	5 S A	y s	
FROM	70	DESCRIPTION SUMMARY LOG	ΝО.	SUĽPH IDES	FROM	FOOTAGE TO	TOTAL	76	7%	OZ/HON	St)98k	
0	57.5	Casing					:					
57.5	73.0	Mafic Metavolcanics]]	<u> </u>		
73.0	75.3	Ultramafic Metavolcanics										
75.3	107.9	Mafic Metavolcanics	H		,							
107.9	109.3	Mafic Tuff - 1/2" wide section of felsic ash tuff at lower contact							: 			
109.3	111.7	Ultramafic Metavolcanics	1									
111.7	171.4	Mafic Metavolcanics							ļ }	,		
171.4	177.5	Ultramafic Metavolcanics		ļ								
177.5	179.9	Mafic Tuff										
179.9	187.0	Pelitic Sediments										
187.0	197.0	Ultramafic Metavolcanics										
197.0	207.6	Mafic Metavolcanics	∦									
207.6	210.3	Ultramafic Metavolcanics	ļ		}							
	ļ		i									
						[

LOHN I

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO . SMZ-87-8 SHEET NO. 2 of 2

ſ	1001	AGI	DE SCRIPTION	20200 2000		SAMPL		TALL AND DESCRIPTION OF THE PARTY OF THE PAR			ASSAYS		
	FROM	10	SUMMARY LOG (CONT'D)	но	SOLPH LDES	FROM	FOOTAGE	TOTAL			Auton	Çḥęçĸ	
	210.3	211.3	<u>Amphibolite</u>										
	211.5	218.7	Metagreywacke - 1-2% disseminated pyrite			1							
	218.7	220.4	Pelitic Sediments							!	,		
	220.4	236.5	Ultramafic Metavolcanics										
	236.5	244.8	Pelitic Sediments			,							
	244.8	265.4	Ultramafic Metavolcanics										
	265.4	277.7	Mafic to Ultramafic Metavolcanics										
	277.7	392.0	Diabase										
		392.0	END OF HOLE Casing pulled										
	Ì	j										}	
									i]	
	ļ												i
158													
. 366-		ļ											
184 - 386 - 1000NTO - 366-198													
aC_ = 9	}								İ				
59-DGE8		ĺ											
CANG		ļ	į										
1	1	1		ŀ									

		PROPERTY				<u>ake</u>				
HOLE	ΝО,	SMZ-87-8		LENGTH _	392'					
LOCATI	ION	L18+00W	8+995						ar an an ann an an an an an an an an an an	
LATITU	DE			DEPARTUR	≀E					
								DIP	-45	
STARTE	ED _	Sept. 17,	1987	FINISHED	Sept.	19,	1987			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-45				
378	-45 ⁰				

HOLE NO. MZ-87-8 SHEET NO. 0f 11
REMARKS Claim #861518

LOGGED BY Eric Timoshenko

FOO	TAGE	DESCRIPTION			SAMP	L E			A	SSAY	/ S	
FROM	10	DESCRIPTION	NO.	SUL PH- IDES	FROM	FOOTAGE TO	TOTAL	36	76	AU OZ/TON	Check oz/TON	
0	57.5	Casing										
57.5	73.0	<pre>Mafic Metavolcanics</pre>	19495	_	57.5	60.5	3.0			.001		
		Average Modes Amphibole 50-70% Plagioclase 15-20% Talc/Serpentine 5-10% Magnetite 2-5%										
		 massive texture with mottled appearance imparted by many patches and stringers of altered rock altered areas made up of talc/serpentine and carbonate small fractures filled with talc/serpentine and/or carbonate plus minor limonite magnetite occurs as large anhedral grains 										
ස ය		 69.9 - chalcopyrite occurs in a narrow (1/8" wide) quartz-carbonate stringer and also as disseminated grains in the host rock 	19496 19497		69.4 70.4	70.4 73.0	1.0 2.6			<.001 <.001		
98: -985 - 0.20049N=,	75.3	Ultramafic Metavolcanics - light to medium green, fine grained, poorly to moderately well foliated (angle to core axis = 35-45°)										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ -87-8 SHEET NO. 2 of 11

F001	AGE	DE SCRIPTION			SAMPL			[ASSAYS	Chack	
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE TO	TOTAL		OZ TON	Check- oz tok	
		Average Modes Chlorite 35-40% Amphibole 20-25% Talc/Serpentine 15-20% Plagioclase 5-10% Magnetite 2-5% Biotite 0-1%									
		 fairly uniform texture, consisting of finely foliated chlorite, talc, and amphibole carbonatized minor fracturing and quartz-carbonate veining 74.0 - trace pyrite in quartz-carbonate veinlet, 1/8" wide 75.2 - pyrite on foliation surface; spread out over a 3/4 inch wide area 	19498	trac	e 73.0	75.3	2.3		<.001		
75.3	107.9	Mafic Metavolcanics - as per above (i.e. 57.5 to 73.0) - dark green colour - 75.3 to 77.7 - carbonatized section; slightly lighter colour - 107.0 - pyrite with carbonate as a fracture coating	19499 19500 19501 19502	-	75.3 87.0 97.0 e 104.9	90.0			<.001 <.001 <.001 <.001		
107.9	109.3	- light to medium green, medium to coarse grained, well foliated (angle to core axis = 30-35°), weakly banded Average Modes Chlorite 95-98% Magnetite 2-5%									

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLENO SMZ-87-8

SMZ-87-8 SHELT NO. 3 of 11

£001	AGE	DI SCRIPTION			SAMPL			ASSAYS	01	a water
FROM	10	77 SCHI TION	110	SULPH IDES	FROM	FOOTAGE	TOTAL	 Au oz ron	Check-T	
		 chlorite schist, weakly carbonatized 109.2 - 1/2" wide section of felsic ash-tuff at contact buff grey colour, very fine grained, massive, carbonatized 	19503	-	107.9	109.3	1.4	<.001		
109.3	111.7	Ultramafic Metavolcanic - light grey to light greenish grey, coarse grained, poorly banded, moderately well foliated (angle to core axis + 30-60°)	19504	-	109.3	111.7	2.4	<.001		
		Average Modes: Talc/Serpentine 40-50% Amphibole 20-30% Chlorite 10-15% Magnetite 2-5%								
		 thin, irregular, discontinuous chlorite-rich and serpentine/talc rich bands; non-carbonatized minor fractures filled with serpentine and carbonate 								
111.7	171.4	Mafic Metavolcanics - basic description as per above (i.e. 57.5 to 73.0) - uniform texture and colour (dark green) - not as many altered sections as above mafic unit	19505 19506 19507	-	111.7 120.3 129.0	123.3	2.0 2.0 2.5	<.001 <.001 <.001		
		137.8 to 140.3 - heavily fractured section, most fractures at a low angle to the core axis	19508 19509 19510	- 1	137.8 147.0 153.0	150.d	2.5 3.0 3.0	<.001 <.001 <.001	:	
		160.0 to 163.0 - several 1/8 to 1/4" wide quartz-carbonate veinlets	19511 19512	-	160.3 168.4	163.3 171.4	3.0 3.0	<.001 <.001		
				1		1				

8911-895 - CENCACT - SECCEDA

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-8 SHEET NO. 4 of 11

FOO F	AGE	OF CONTRACTOR		10.10. p.	SAMPL	E		 A. Marine Marine	ASSAYS	-	
FROM	10	DESCRIPTION	110	SHEPH IDES	FROM	FOOTAGE TO	TOTAL	,	AU	Check	
171.4	177.5	 light grey, coarse grained, moderately well foliated similar to ultramafic unit at 109.3 to 111.7 except there is more amphibole and less talc/serpentine 	19513		171.4		3.0		<.001		
	ļ	 177.4 - pyrite with carbonate as a fracture coating 	19514	trac	e 176.5	177.5	1.0		<.001		
177.5	179.9	Mafic Tuff - as per above (i.e. 107.9 to 109.3) except not carbonatized and without magnetite	19515		177.5	179.9	2.4		<.001		ĺ
179.9	187.0	Pelitic Sediments - dark olive-green to dark brown, fine to medium grained, moderately to well foliated (angle to core axis = 35-55°)	19516 19517		179.9 185.0				<.001 <.001		
		Average Modes Biotite 80-90% Chlorite 10-20%									
		 biotite-chlorite schist, very uniform texture no veining or fracturing present 									
187.0	197.0	Ultramafic Metavolcanics				İ					
		187.0 to 187.5 - light green, coarse grained, well foliated (angle to core axis = 25-35°)				1					
89998 - OL		Average Modes Chlorite 70-80% Talc 20-30%									
LANGSDGES - 7090NTO - 365.158							:				
LANGRID											:

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-8 SHEET NO 5 of 11

1001	AGE	DESCRIPTION			SAMPI				ASSAYS		
F FROM	10		но	SULPH IDES	FROM	FOOTAGE TO	TOTAL		Ди тон	Check	
		 chlorite-talc schist irregular contacts; interfingering of this unit with upper and lower sediments 									
		187.5 to 188.6 - intercalation of Pelitic Sediments, similar to above (i.e. 179.9 to 187.0) 188.6 to 189.6 - chlorite-talc schist, as per above (i.e. 187.0	19518	_	188.6	189.6	1.0		<.001		
		to 187.5)								Ì	
		189.6 to 191.6 - light green, coarse grained, massive Average Modes Amphibole 45-100% Chlorite 0-5% Pyrite trace - spinefex textured flow	19519	trac	e 189.6	191.6	2.0		<.001		
		- minor fractures lined with chlorite - trace disseminated pyrite 191.6 to 192.7 - chlorite-talc schist, as per above 192.7 to 197.0 - light to medium grey-green, medium grained, massive, equigranular Average Modes Amphibole 65-75%	19520	-	191.6	192.7	1.1		<.001		
		Plagioclase 10-15% Talc/Serpentine 10-15% Magnetite 2-5% - massive ultramafic flow - fine grained talc/serpentine interspersed between fine to medium grained amphibole - occasional patches and stringers of serpentine up to 1/2" wide - minor fractures and quartz-carbonate veining 196.5 - quartz-carbonate veinlet (1/4 to 1/2" wide) carrying up to 2% disseminated pyrite	19521	1-2	196.0	197.0	1.0		<.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-8 SHEET NO. 6 of 11

1001	AGI	DESCRIPTION			SAMPI		**************************************			SAYS	alaya, Marie Sarri
FROM	10	DE SCRIP HON	но	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	:	A	U Check	Ī
197.0	207.6	Mafic Metavolcanics - basic description as per above (i.e. 57.5 to 73.0) - massive mafic flow									
		199.8 to 201.5 - well fractured section; quartz carbonate veinlets (most about 1/16" wide) common, some offset by subsequent fractures - minor pyrite with serpentine and carbonate in			199.8					.001	
207.6	210.3	fractures Ultramafic Metavolcanics	19523		205.7	207.6	1.9			.001	
		207.6 to 208.9 - massive ultramafic flow, as per above (i.e. 192.7 to 197.0)	19524	-	207.6	208.9	1.3		<	.001	
		208.9 to 210.3 - light grey-green, coarse grained, poorly banded, moderately well foliated - rich in talc/serpentine (40-50%) - similar to material between 109.3 to 111.7 - carbonatized	19525	-	208.9	210.3	1.4		<	.001	
210.3	211.5	Amphibolite - dark green to brownish-black, medium grained, poorly foliated (angle to core axis = 70-80°)	19526	-	210.3	211.5	1.2		<.	.001	
		Average Modes Amphibole 85-90% Biotite 10-15%									
		 hornblende-biotite schist randomly oriented prismatic amphibole with scattered individual grains and clots of biotite no fracturing or veining present 									
	į										

NAME OF PROPERTY. Santa Maria Zeemel lake

HOLE NO SMZ-87-8 SHEET NO. 7 of 11

LOOL	AGE	(N. CODITION			SAMPI	Ē	A JEST THE STREET	· · · · · · · · · · · · · · · · · · ·	ب بصديد سنا ب	ASSAYS		**************************************
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE TO	10141			۰٬Αν	Check	
211.5	218.7	Metagreywacke - medium to dark grey, fine to medium grained, poorly foliated (angle to core axis = 55-65°)	19527 19528		211.5 215.0	215.0 218.7	3.5 3.7			<.001 <.001		İ
		Average Modes Framework 80% Matrix 20% Quartz 60% Felsics 55% Feldspar 40% Biotite 35% Pyrite 15% Pyrrhotite 5%										
		 fairly uniform, poorly foliated sediment minor fracturing; serpentine coating in many fractures total disseminated sulphide content varies from 1-2%]			
218.7	220.4	Pelitic Sediments - biotite-chlorite schist, as per above (i.e. 179.9 to 187.0) - 216.0 - fracture with serpentine and euhedral pyrite crystals 1/8" wide	19529	trac	218.7	220.4	1.7			<.001		
220.4	236.5	Ultramafic Metavolcanics									ļ	
34		220.4 to 224.3 - light green, fine to medium grained, massive Average Modes Amphibole 90-95% Talc 5-10%	19530 19531	-	220.4 222.8	221.9 224.3	1.5 1.5			<.001 <.001		:
94		 randomly oriented, equigranular, prismatic amphibole with interstitial talc/serpentine 										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87 8 SHEET NO. 8 of 11

F001	AGE	DESCRIPTION			SAMPL					ASSAYS		
FROM	10		110	1DES	FROM	FOOTAGE	10 TAL	-	,	o Ayun	Check	
		224.3 to 231.0 - light grey green, medium to coarse grained, poorly foliated (angle to core axis = 65-75°) - similar to material between 109.3 to 111.7 - large grains and masses of talc up to 1/2" wide occur in some sections - very weakly carbonatized - a few small quartz veinlets (< 1/4" wide) - trace disseminated pyrite throughout section	19532	trac	e 227.5	230.5	3.0					
		231.0 to 236.5 - massive material similar to above section (220.4 to 224.3) - thin fractures lined with chlorite common throughout this section	19533	-	233.5	236.5	3.0			<.001		
236.5	244.8	Pelitic Sediments - biotite-chlorite schist as per above (i.e. 179.9 to 187.0) - mostly medium grained, locally coarse grained	19534 19535		236.5 242.8					<.001 <.001		
244.8	265.4	Ultramafic Metavolcanics - light to medium green, fine to medium grained, massive to weakly foliated (angle to core axis = 50-60°) - similar to above material between 220.4 to 224.3	19536	-	244.8	247.0	2.2			<.001		
		247.0 to 249.3 - this section carries trace to 1% combined pyrite, pyrrhotite, and chalcopyrite (in order of abundance)	19537	trac	247.0	249.3	2.3			<.001		
		255.0 to 258.5 - several small quartz-carbonate veinlets throughout this section - 256.6 - 1% pyrite and pyrrhotite as disseminated			255.0		3.5			<.001		
		grains and in two 1/4" wide quartz-carbonate veinlets	19539		263.4	265.4	2.0			<.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87 8 SHEET NO. 9 of 11

F0017	AGE	DE SCRIPTION	ļ		SAMPL		-			ASSAYS	
ROM	10	DESCRIPTION	но	" SULPH IDES	FROM	FOOTAGE	TOTAL		:	Au oz ton	Check
265.4	277.7	Mafic to Ultramafic Metavolcanics						1			
		265.4 to 267.7 - dark grey to dark grey-green, fine to medium grained, massive to poorly foliated	19540		265.4	267.7	2.3			<.001	
		Average Modes Amphibole 70-80% Plagioclase 15-25% Magnetite 2-5% Talc/Serpentine 0-2% Biotite 1-2% Pyrite trace to 1%									
		 amphibolite; fine grained randomly oriented prismatic amphibole crystals uniform texture; no veining and only minor fracturing (fractures lined with serpentine and/or carbonate) 						-			
		267.7 to 276.1 - mafic volcanics (amphibolite, as per above) with bands and patches of poorly foliated ultramafic volcanic material - ultramafic bands are made up of mainly talc and serpentine and are carbonatized - several large fractures at a low angle to the core axis, lined with serpentine, talc and carbonate	19541	-	267.7	271.2	3.5			<.001	
		276.1 to 277.7 - light grey-green, coarse grained, moderately well foliated (angle to core axis = 55-60°)	19542	-	276.1	277.1	1.6			<.001	
		Average Modes Amphibole 70-75% Talc/Serpentine 15-25% Magnetite 5-7%									

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO . SMZ-87-8 SHEET NO. 10 of 11

100	IVO	DESCRIPTION			SAMPL	E	The same of the sa		ASSAYS		
FROM	10	DESCRIPTION	но	S SUL PAR ADE S	FROM	FOOTAGE 10	TOTAL		OZ TON	Check	
		 weakly carbonatized ultramafic volcanic some sections are very rich in serpentine (up to 60%) minor fractures and quartz-carbonate veinlets 									
277.7	392.0	Diabase - medium to dark grey, medium to coarse grained, equigranular, massive Average Modes Amphibole (after Pyroxene) 60-70% Plagioclase 25-30% Magnetite 2-5% Biotite 1-5% Pyrite, Pyrrhotite trace to 1% Chalcopyrite - fairly uniform texture and colour - fine grained at upper contact (chilled margin) - minor fractures with quartz-carbonate and/or serpentine fracture fillings - alteration haloes often present around the quartz-carbonate veinlets (carbonate, serpentine, epidote and minor quartz found in the halo)	19544 19545	trac trac	277.7 287.0 297.0 307.0	290.0 300.0	2.0 3.0 3.0 3.0		<.001 <.001 <.001 <.001		
		313.9 to 318.5 - coarse grained section; scattered large grains of plagioclase up to 1/4" wide	19547	trac	316.0	319.0	3.0		<.001		
φ Ψ		321.5 to 323.8 - heavily fractured section; several small quartz-carbonate veinlets with alteration haloes	19548	trac	321.5	323.8	2.3		<.001		
ANGP-DGES - 10PONT - 365-168		- 327.7 - quartz-carbonate veinlet with alteration halo 1/2" wide; 1% pyrite in vein and disseminated in host rock	19549	1	327.0	328.0	1.0		<.001		

NAME OF PROPERTY Santa Maria Zeemel Lake
HOLE NO SMZ-87-8 SHEET NO. 11 of 11

FOOTAG]				SAMPL	Ε.				ASSAY5	
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	10 TAL		Ī .	Au ron	Check
		331.2 - alteration halo of serpentine, carbonate and minor epidote surrounding a small (< 1/2") area of quartz enrichment (not a distinct vein); altered section is over 1" wide and contains 1-2% combined pyrite and chalcopyrite		1013	710		70741				
		332.4 to 333.1 - quartz-carbonate veinlet 1/4" wide with an alteration halo up to 1" wide	19551 19552 19553 19554 19555 19556		331.9 344.0 357.0 367.0 377.0 385.0 389.0	333.4 347.0 360.0 370.0 380.0 387.0 392.0	3.0 3.0 3.0 3.0 3.0 2.0 3.0			<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	
39	392.0 END OF HOLE Casing pulled										
								C		NO.	910

NAME OF PROPERTY	Santa Maria Zeemel Lake	
	-9 LENGTH 427.0	
	10+50\$	
LATITUDE	DEPARTURE	^
ELEVATION	AZIMUTH 1800	DIP <u>-48</u>
	17, 1987 FINISHED September	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200 427	-45 ⁰ -42 ⁰				
	-				

HOLE NO.SMZ-87-9 SHEET NO. 1 Of 1

REMARKS Claim #861520

Summary Log

LOGGED BY B. A. Huston

F	001	A G E	DESCRIPTION			SAMP					SSA		
F	ROM	то	SUMMARY LOG	ΝО.	SULPH- IDES	FROM	TO TAGE	TOTAL	ν,	ж	OZ/HON	899F&.	
	0	77.0	Casing			ì							
	77.0	90.5	Ultramafic Metavolcanic										
	90.5	101.7	Mafic Metavolcanic										
] 1	01.7	179.3	Felsic Intrusive										. 1
1	79.3	283.1	Mafic Metavolcanic										.
2	83.1	347.5	Ultramafic Metavolcanic										
3	347.5	349.6	Mafic Metavolcanic										. 1
3	349.6	368.7	felsic Intrusive										. [
3	868.7	371.2	Mafic Metavolcanic							:			
3	71.2	380.5	Ultramafic Metavolcanic							i			. [
3	80.5	396.2	Mafic Metavolcanic							;			
. S	96.2	424.6	Felsic Intrusive										
985	24.6	427.0	Mafic Metavolcanic										
0170		427.0	END OF HOLE Casing pulled	ļ						1			
LANGRIDGES - TORONTO - 366.1168			ousing particu										
GPIDGE													
Ž d													

NAME OF	PROPERTY _	Santa Maria Z	eemel Lake			
HOLE NO.	SMZ-87-9	LENGTH _	427.0			
		50\$				
LATITUDE		DEPARTUI	RE		n	
ELEVATION		DEPARTUI	180	DIP	-48	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-45 ⁰				
427	-42°				

HOLE NO. SMZ-87-9 SHEET NO. 1 Of 4

LOGGED BY B. A. Huston

FOOTAGE	DESCRIPTION			SAMP	L E			,	5 5 A	Y 5
FROM TO	DESCRIPTION	NO.	SUL PH-	FROM	TO TAGE	TOTAL	36	x	OZ/YON	89968
0 77.0	Casing									
77.0 90.5	Ultramafic Metavolcanic - grey/green, medium grained, massive Average Modes Chlorite 60-65% Talc/Serpentine 15-20% Amphibole 15% Magnetite 3-5% - very minor occurrence of asbestiform serpentine in	19434 19435 19436 19437 19438	-	77.0 80.0 83.0 86.0 88.5	80.0 83.0 86.0 88.5 90.5	3.0 3.0 2.5			.001 .002 .001 .001 <.001	
90.5 101.7	Average Modes Amphibole 50% Chlorite 35% Plagioclase 15%									
295-158	90.5 to 94.0 - typical, minor slickensides on foliation surfaces 94.0 to 94.3 - quartz vein, minor chloritic inclusions, biotite-rich contacts 94.3 to 95.5 - 1% very fine grained disseminated pyrite 95.5 to 96.1 - quartz vein, 2% pyrrhotite and 1% chalcopyrite, 50° to the core axis 96.1 to 101.7 - abundant randomly oriented quartz carbonate stringers	19439 19440 19441 19442 19443 19444	3	90.5 93.3 94.3 95.5 96.5 99.5	93.3 94.3 95.5 96.5 99.5 101.7	1.0 1.2 1.0 3.0			.001 .001 .001 <.001 <.001 .001	

NAME OF PROPERTY...
HOLE NO ...

NAME OF PROPERTY. Santa Maria Zeemel Lake

..... SHEET NO. . .

2 of 4

1001	AGE	O. CONVINCE			SAMPL	E			ASSAY5		F3*-C=
FROM	10	DESCRIPTION	110	SUL PH	FROM	FOOTAGE	TOTAL		AU	Check	
101.7	179.3	Felsic Intrusive - grey, medium grained, foliated at 45° to the core axis									
		Average Modes Quartz 50% Feldspar 35-40% Biotite 10-15%									
		 feldspar is predominantly plagioclase 101.7 to 104.8 - minor sericite 120.5 to 120.7 - quartz vein at 45° to the core axis 	19445 19446		101.7 120.0		3.9 1.0		.001 .001		
		- 126.5 to 126.8 - quartz vein at 45° to the core axis - 133.6 to 133.9 - quartz vein perpendicular to the	19447 19448		126.0 133.4	1	1.0		<.001		
		- 133.6 to 133.9 - quartz vern perpendicular to the core axis	19449 19450 19451	-	139.5 163.2 177.0	140.5 167.9	1.0 4.7 2.3		.001 .001 .001		
179.3	283.1	Mafic Metavolcanic - light green, massive	19451	-	177.0	1/3.3	2.3		•001		
		Average Modes Amphibole 65-70% Chlorite 10-15% Plagioclase 15-20%					!				
		179.3 to 180.7 - abundant quartz-carbonate veining, biotite-rich wallrock 180.7 to 184.5 - quartz feldspar porphyry dike at 40° to the	19452		179.3	180.7	1.4		.002		
		core axis 184.5 to 186.9 - abundant quartz carbonate stringers in biotite rich mafics	19453 19454		180.7 184.5	184.5 186.9	3.8 2.4		.003		
		186.9 to 202.7 - abundant quartz-carbonate stringers, 0.5% pyrrhotite	19455 19456 19457 19458	0.5	186.3 190.0 193.0 196.0	193.0	3.7 3.0 3.0 3.0		.002 .001		
		202.7 to 204.7 - quartz feldspar porphyry	19459 19460	0.5	199.0	202.7	3.7 2.0		.001 .002 .002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-9 SHEET NO. 3 of 4

1001	AGE	DESCRIPTION			SAMPL		1		 ASSAYS		
FROM	10	DESCRIPTION	110	SUL PH IBES	FROM	FOOTAGE TO	TOTAL	3	 AU TON C	heck.	
	· ·	204.7 to 210.2 - abundant quartz carbonate stringers at random angles to the core axis, 1% pyrrhotite, trace chalcopyrite	19461 19462		204.7 207.0				.001		
		210.2 to 275.6 - typical, fine to medium grained, massive - 218.2 to 218.7 - quartz vein, 2-3% pyrite, trace chalcopyrite	19463	1-2	218.0	219.0	1.0		<.001		
		- 222.1 to 224.1 - quartz vein 275.6 to 279.6 - felsic intrusive - as above, weakly porphyritic, sheared (?) 279.6 to 282.0 - sheared mafic flow 282.0 to 283.1 - typical	19464 19465 19466 19467 19468 19469	-	222.1 233.9 265.3 269.5 273.9 275.6 279.6	238.7 269.5 273.5 275.6 279.6	2.0 4.8 4.2 4.0 1.7 4.0 2.4		.002 .002 .002 .002 .001 .001		
283.1	347.5	Ultramafic Metavolcanic - typical, as above, fine grained, massive, serpentine is more prevalent than talc here but does not occur as asbestiform fibres	19470 19471 19473 19474 19475 19476 19477		279.6 282.0 283.1 293.1 302.6 316.2 325.8 335.5 345.0	283.1 287.4 297.9 307.4 321.0 330.6 340.2	1.1 3.7 4.8 4.8 4.8 4.8		.001 .003 .003 .003 .003 .003 .003 .002		
347.5	349.6	Mafic Metavolcanic - typical as above, light green, massive - 348.5 to 349.6 - hornblende - biotite schist - contact zone	19479 19480		347.5 348.5	348.5 349.6			.003		
349.6	368.7	Felsic Intrusive - typical, as above, minor sericite, trace pyrite	19481 19482		349.6 363.9		4.9 4.8		.001		
						1					

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-9 SHEET NO. 4 Of 4

1001	AGE	DESCRIPTION			SAMPL				ASSAYS		GM . AM . 4 . M
FROM	10	DESCRIPTION	110	SUL PH LDE S	FROM	FOOTAGE	TOTAL		OZ TON	Check	
368.7	371.2	Mafic Metavolcanic - typical, as above, weakly sheared 368.7 to 369.3 - contact zone, medium to coarse grained hornblende - biotite schist 369.3 to 371.2 - mafic to ultramafic metavolcanic	19483	-	368.7	371.2	2.5	:	<.001		
371.2	380.5	Ultramafic Metavolcanic - typical, as above, 5% disseminated magnetite, abundant talc	19484 19485 19486	-	371.2 373.3 377.9	373.3 377.9 380.5	2.1 4.6 2.6		.001 <.001 .001		
380.5	396.2	Mafic Metavolcanic - typical, as above, very minor biotite, minor intercalations of pelitic metasediments	19487 19488 19489 19490	-	380.5 383.1 387.9 392.7	383.1 387.9 392.7 396.2	2.6 4.8 4.8 3.5		.001 .001 .001		
396.2	424.6	- typīcal as above, very weakly porphyritic	19491 19492	-	396.2 415.6	400.0 420.0	3.8 4.4		<.001		
424.6	427.0	 typical, as above, minor small quartz veins near contact 	19493 19494		420.0 424.6	424.6 427.0			.001		
	427.0	END OF HOLE Casing pulled									
							i				
								(h)		Mill	A.
			-			·		1/1	UÜL	JJ Pries	

NAME	O F	PROPERTY _	Santa	Maria Z	eeme	el Lake	 		
		SMZ-87-10		LENGTH		107.0	 		
L OC A 1	101	L18±01W.6	+47S				 		
TITAS	UDE			DEPARTI	3 R E		 	<u>-</u> -	
ELEVA	1101			A 7 IMU 1 H	<u>.</u>	180	 DIP ,	-47	
		September 19							

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200' 407'	-47 ⁰				

HOLE NO. SMZ-87-10_{SHEET NO.} 1 of 1

REMARKS Claim #861518

Summary Log

LOGGED BY Eric Timoshenko

001	AGE				SAMP	LE			,	SSA'	r s
ROM	70	DESCRIPTION SUMMARY LOG	NO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	¥	ĸ	OSHON	899681
0	160.0	Casing	İ					1	<u>.</u>		
160.0	172.4	Mafic to Ultramafic Metavolcanics	N N	1 1	j						
172.4	174.9 179.7	Ultramafic Metavolcanics Mafic Metavolcanics	ll l								
.74.9	1/9./	174.9 to 177.9 - quartz pods or vein, trace pyrite	19725	tr	174.9	177.0	2.1			0.022	
79.7	183.7	Pelitic Metasediments	7723	.	1,4.3	1,,,,,		j		0.022	1
83.7	199.0	Ultramafic Metavolcanics	- (1					1	ļ	Į.	
99.0	200.9	Pelitic Metasediments	lj.					,			
00.9	212.1	Mafic to Ultramafic Metavolcanics	J)								
12.1	224.7	Ultramafic Metavolcanics Mafic Metavolcanics	ii ii								
28.1	229.8	Pelitic Metasediments	H					i i	}	1	
29.8	256.0	Ultramatic Metavolcanics	Į.	i i				lt .	i		
	Ì	247.0 to 250.0 - sheared, serpentinized	19746	-	247.0	250.0	3.0			0.016	
56.0	257.5	Pelitic Metasediments	l					1	j	1	
57.5	265.9	Metagreywacke	ll l			\			1	1	
65.9	280.8	Ultramafic Metavolcanics Metagreywacke	1						ļ		
82.9	285.2	Mafic to Ultramafic Metavolcanics	i]						İ	
85.2	407.0	Mafic Metavolcanics		}				1			i i
1	407.0	End of Hole	- 11	1					1	1	1
	ļ		II.	[Ĭ.	ļ	1	
			ll l					i			
			1]	}] .]
- 1	Ī		1	1				1	1	}	1
	-				l			4	1	}	
ł			ii ii			l		l	Į		
]]	1							
Ì			N N		1	1	1	1			
- }	-		N .]	1	1	1		1]
	1			i		1	[1		
								1		1	

NAME	OF	PROPERTY	Santa	Maria	Zeeme	el Lake	 		
		SMZ-87-10		LENGT	н4	107.0	 		
L OC A T	ION	L18+01W, 6	5+475				 		
LATIT	UDE	4		DEPAR	TURE	1000	 		
11 E V A	1017	4		A 7 1M 11 1		180	 DIP	-4/	
		September 19							

FOOTAGE	DIP	AZIMUTH	F00TAGE	DIP	AZIMUTH
200'	-47 ⁰				
407'	-38 ⁰				
		I			
]			

HOLE NO.SMZ-87-10 SHEET NO. 1 OF 9
REMARKS Claim #861518

LOGGED BY Eric Timoshenko

F 0 0 1	AGE	DESCRIPTION	I		5 A M P	LE			Α	SSAY	/ S	
FROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	ï	ï	OZ/YON	८५१८४	
0	160.0	Casing										1
160.0	172.4	 light to medium grey-green, medium grained, massive to very weakly foliated, weakly banded 	19721 19722 19723	tr	160.0 166.0 170.4		3.0			.001 .001 <.001		
		Average Modes Amphibole 50-60% Talc/Serpentine 20-30% Plagioclase 10-20% Magnetite 2-5% Chlorite 0-5% - general appearance is that of a massive mafic volcanic with irregular bands and patches rich in serpentine and talc - fracturing minor; quartz-carbonate veining absent; trace fine grained pyrite										
172.4	174.9	Ultramafic Metavolcanics - medium grey colour, fine grained, massive to poorly foliated (angle to core axis = 50-60°) Average Modes Talc/Serpentine 50-65% Amphibole 25-35% Plagioclase 0-5% Magnetite 2-5% Pyrite+Pyrrhotite trace to 1% - dark grey, fine grained amphibole with finely foliated talc (+ minor serpentine) - very fine grained disseminated pyrite throughout section; most sections trace to 1%, locally up to 2%	19724	tr-1	172.4	174.9	2.5			•005		

- 346.- OTNOACT - 2480.45

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-10 SHEET NO. 2 of 9

F 001	AGE				SAMPL	E			ASSAYS		ACRES TO SEC.
FROM	10	DESCRIPTION	но	SIJI PH IDES	FROM	FOOTAGE 10	TOTAL		OZ TON	Çħēçk	
174.9	179.7	Mafic Metavolcanics - medium green colour, fine grained, moderately well foliated (angle to C.A. = 50-70°), weakly banded									
		Average Modes Amphibole 60-70% Chlorite 15-20% Plagioclase 10-15% Magnetite 1-2% Pyrite trace to 1%					ı				
		 fine grained amphibole with larger flakes of chlorite along foliation planes very fine grained disseminated pyrite, trace to 1% 				į					
		175.2 to 176.7 - quartz pods and/or vein; irregular masses of smoky to milky quartz up to 1" wide with chlorite and	19725	tr	174.9	177.0	2.1		.022		
		amphibole inclusions; trace pyrite	19726	tr	177.0	179.7	2.7		.004		
179.7	183.7	Pelitic Metasediments - dark olive green to dark brown, fine to medium grained, well foliated (angle to core axis = 50-60°)									
		Average Modes Biotite 80-90% Chlorite 10-20%									
		 biotite-chlorite schist; uniform texture, fracturing and veining absent 									
		179.7 to 181.2 - transition zone between mafic volcanics and pelitic sediments; fine grained mafic volcanic material with thin biotite bands, becoming increasingly biotitic with depth	19727	-	179.7	183.7	4.0		.002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-10 SHEET NO. 3 OF 9

FOOTAGE.		DESCRIPTION			SAMPL	E		ASSAYS					
FROM	10	DESCRIPTION	110	". SUL PH IDE S	FROM	FOOTAGE TO	TOTAL	-		o Ayon	Ҫӈҽҫҝ		
183.7	199.0	Ultramafic Metavolcanics - medium grey-green, medium grained, poorly foliated (angle to core axis = 60-65°) - similar modal percentages as above material between 172.4 to 174.9 but this material shows a weak foliation and much stronger compositional banding - irregular, discontinous, streaky bands rich in talc and/or serpentine are very common throughout the unit - minor quartz-carbonate veining - very fine grained pyrite and pyrrhotite common throughout unit (trace to 1%)	19728	tr	183.7	186.7	3.0			.002			
		- 186.4 - pyrite with carbonate as a fracture coating	19729 19730		190.0 196.5					.001 .002			
199.0	200.9	Pelitic Metasediments - biotite-chlorite schist, basic description as per above - angle to core axis = 70-80° - this section appears to be slightly more rich in chlorite	19731	-	199.0	200.9	1.9			.004			
200.9	212.1	- similar to section between 160.0 to 172.4 - mostly massive mafic volcanics with minor interstitial talc and irregular, discontinuous talc and serpentine-rich bands - trace disseminated sulphide (pyrite, minor chalcopyrite)	19733 19733 19734	tr	200.9 205.0 208.5	207.0	3.0 2.0 3.6			.004 .004 .004			

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-10 SHEET NO. 4 of 9

FOOTAGE		DESCRIPTION			SAMPL	E	The star of the st	**************************************		ASSAYS	-	
FROM	10	DESCRIPTION	110	SHI PH IDES	FROM	FOOTAGE TO	TOTAL		٠,	AU	Check	
212.1	224.7	Ultramafic Metavolcanics - similar to above ultramafic unit between 183.7 to 199.0 - light grey to grey-green, medium grained, weakly foliated, moderately well banded - large grains and bands composed of serpentine and talc are common throughout the unit; very prominent near the base of the unit where the rock has a mottled, spotty appearance - zero to trace sulphides (pyrite + minor pyrrhotite)	19735 19736 19737	tr	212.1 217.5 222.2	220.0	2.5			.005 .005 .003		
224.7	228.1	Mafic Metavolcanics - light green, fine grained, poorly foliated (angle to core axis = 60-75°) Average Modes Amphibole	19738	tr	224.7	228.1	3.4			.008		
228.1	229.8	Pelitic Sediments - basic description as per above (i.e. 179.7 to 183.7) - biotite-chlorite schist; some chlorite rich bands - angle to core axis = 70-80°	19739	-	228.1	229.8	1.7			.002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-10 SHEET NO. 5 of 9

FOOTAGE		DESCRIPTION	1		SAMPL	E		ASSAYS					
FROM	10	DESCRIPTION	110	SULPH	FROM	FOOTAGE 10	TOTAL			AU DZ TON	Check		
229.8		229.8 to 236.1 - similar to above ultramafic unit between 183.7 to 199.0 - light to medium grey, medium grained, poorly foliated, moderately well banded - irregular, streaky bands composed mostly of talc and minor serpentine - minor quartz-carbonate veinlets	19740 19741	tr	229.8 233.8	233.8	4.0			.001			
		- zero to trace sulphide (pyrite) 236.1 to 256.0 - light pale green, medium to coarse grained, well foliated (angle to core axis = 40-65°), weakly banded Average Modes Serpentine 90-95% Chlorite 0-5% Magnetite 1-2% - sheared, serpentinized ultramafic volcanic - serpentine has a waxy to silky sheen; curved and slickensided foliation or shear planes prevalent throughout the unit - minor talc-rich bands and quartz-carbonate stringers											
147.00.00.00.00.00.00.00.00.00.00.00.00.00		237.8 - pyrite in a quartz-carbonate veinlet 250.0 to 256.0 - several sections of broken, blocky core in this interval	19742 19743 19744 19745 19746 19747	- - -	236.1 238.5 241.5 244.5 247.0 250.0 253.0	244.5 247.0 250.0 253.0	2.4 3.0 3.0 2.5 3.0 3.0			.004 .003 .002 .003 .016 .004			

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-87-10
SHEET NO. 6 of 9

LOOTVE				#1042-AL 414	SAMPL	0 257.5 1.5 5 260.5 3.0 263.5 3.0		 ASSAY		
FROM	10	DESCRIPTION	но	" SOLPH IDES	FROM		TOTAL	. OZ TON	Check	
256.0	257.5	Pelitic Metasediments - biotite-chlorite schist, as per above - blocky, broken core	19744	-	256.0	257.5	1.5	.003		
257.5	265.9	Metagreywacke - medium to dark grey, fine to medium grained, moderately well foliated (angle to core axis = 50-70°)	19750 19751	tr tr	257.5 260.5			.001		
		Average Modes Framework 60% Matrix 40% Quartz 80% Felsics 40% Feldspar 20% Biotite 55% Pyrite + 5-10% Pyrrhotite								
		 uniform, mostly fine grained wacke fine to medium grained disseminated pyrite and pyrrhotite, locally up to 1% minor fractures at a low angle to the core axis, lined with serpentine 								
265.9	280.8	265.7 to 265.9 - small band of pelitic metasediments at contact Ultramafic Metavolcanics	19752	tr	263.5	265.9	2.4	.002		
		265.9 to 266.5 - light green, medium grained, massive to very weakly foliated	9753	-	265.9	266.9	1.0	.002		
86887 - 0.000 - 8890887		Average Modes: Amphibole 80-90% Talc/Serpentine 10-15% Magnetite 1-2%								
924										

NAME OF PROPERTY. Santa María Zeemel Lake

HOLE NO SMZ-87-10 SHEET NO 7 of 9

1001	AGE	DE SCRIPTION			SAMPL					ASSAYS		
FROM	10	OK SCRETION	но	SULPH IDES	FROM	FOOTAGE	TOTAL			ozĀŲ,	Check,	
		 amphibolite; randomly oriented, fine grained prismatic amphibole with interstitial talc and serpentine grains 										
		266.5 to 280.1 - similar to ultramafic unit between 183.7 to 199.0 - light to medium grey, medium to coarse grained, moderately well foliated, well banded - streaky, irregular serpentine and talc-rich bands up to 1" wide - minor quartz-carbonate veinlets	19754 19755 19756	tr	268.4 272.9 276.0		2.5 1.6 2.0			.001 .002 .008		
		280.1 to 280.8 - small section of light green, well foliated, chlorite-talc schist at (sheared?) contact	19757	-	279.8	280.8	1.0			.003		
280.8	282.9	Metagreywacke - basic description as per above - trace pyrite and pyrrhotite - minor fractures lined with serpentine										
		282.7 to 282.9 - narrow unit of pelitic metasediments at contact - well foliated biotite-chlorite schist	19758	tr	280.8	282.9	2.1			.001		
282.9	285.2	Mafic to Ultramafic Metavolcanics		1			1 	1	1	l j	1	
		282.9 to 283.6 - medium to dark green, coarse grained, well foliated (angle to core axis = 60-70°) - chlorite schist	19759	-	282.9	285.2	2.3			.002		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-10 SHEET NO. 8 OF 9

FOOTAGE	DESCRIPTION			SAMPL	. E			 ASSAY5	-W-7-11	
ROM 10	DESCRIPTION	но	" SUL PH IDE 5	FROM	FOOTAGE TO	TOTAL		· AYon	Check	
	283.6 to 284.4 - light green, medium grained, randomly oriented, prismatic amphibole crystals - minor magnetite - mafic amphibolite, no talc or serpentine evident									
	284.4 to 285.2 - talc-rich ultramafic metavolcanic similar to ultramafic unit between 183.7 to 199.0 - light grey-green, medium grained, poorly foliated, well banded									
285.2 407.	Mafic Metavolcanics - dark green, fine to medium grained, massive to very weakly foliated									
	Average Modes: Amphibole 50-70% Plagioclase 10-15% Serpentine 5-10% Magnetite 2-5%						٠			
	 fairly uniform massive texture and dark green colour throughout the unit; some sections have a mottled appearance due to irregular bands and patches of serpentine thin quartz-carbonate veinlets common throughout the unit (most < 1/8" wide); a few contain pyrite and/or pyrrhotite, several contain anhedral magnetite grains 									
	286.4 to 296.5 - several 1/8 to 1/4" wide quartz-carbonate veinlets throughout this section; most carry trace pyrite	19760 19761 19762 19763	tr tr	285.2 287.0 290.0 292.0	290.0 292.0	1.8 3.0 2.0 3.0		.002 .001 .001 .002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO __SMZ-87-10 ______ SHEET NO.__ 9 Of 9

F 00	1 AGE	DESCRIPTION			SAMPL					ASSAYS		
FROM	10	DESCRIPTION	но	". SUL PH IDES	FROM	FOOTAGE 10	TOTAL			AU TON	Check	
_ 35668	407.0	379.9 to 380.9 - 1 foot long intersection of a 1/2" wide quartz-carbonate vein; trace pyrite - 391.0 - 1/8" wide quartz-carbonate veinlet, trace pyrite END OF HOLE	19764 19766 19766 19766 19766 19770 19770 19774 19776 19777	tr	295.0 302.0 310.0 319.7 330.0 340.0 357.0 367.0 376.0 390.0 397.0 404.5	297.0 304.5 312.5 322.2 332.5 342.5 350.5 359.5 378.5 381.1 392.5	2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5			.002 .002 .002 .001 .001 .004 .005 .005 .007 .006	67.154	
- 4v6a0des - 10a0v70							/	3 /	12	A (1)		

NAME OF	PROPERTY	Santa Maria	<u>Zeemel Lake</u>		
		LENGTH			
LOCATION	_1±01E13±	00\$			
LATITUDE		DEPART	URE		
ELEVATION	#	DEPART	180°	DIP .	-45°
		1987 FINISHE			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-45°				
325	-410				

HOLE NO. SMZ-87-11 SHEET NO. 1 of 1

REMARKS Claim #PA861520

Summary Log

LOGGED BY B. A. Huston

1001	AGE	DESCRIPTION	1		SAMP	l. E			A	S S A '	(5	
FROM	10	SUMMARY LOG	ΝО,	SULPH:	FROM	TO	TOTAL.	36	36	oz)Yon	899681	
0	32.1	Casing										
32.1	37.6	Mafic Metavolcanic										
37.6	65.3	Felsic Intrusive										
65.3	104.7	Ultramafic Metavolcanic										
104.7	116.4	Feldspathic Wacke										
116.4	184.5	Mafic Metavolcanic										
184.5	188.5	Felsic Intrusive										
188.5	194.5	Mafic Metavolcanic										
194.5	195.9	Felsic Intrusive										
195.9	269.0	Mafic Metavolcanic										
269.0	280.5	Felsic Intrusive										
280.5	309.1	Mafic Metavolcanic - 1% pyrite and chalcopyrite										
309.1	321.5	Felsic Intrusive										
321.5	335.0	Mafic Metavolcanic										
1 1	335.0	End of Hole							,			
												ı
												İ

NAME OF	PROPERTY	Sant	a Maria	Zeemel Lake			
	SMZ-87-11						
	1+01E						·····
LATITUDE			DEPART	URE			
ELEVATION			AZIMUTE	180 ⁰	DIP	-45 ⁰	
STARTED _	September 20	11987	FINISHE	September	21. 1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200' 325'	-45 ⁰				
325	-41				

HOLE NO. \$MZ-87-11 SHEET NO. 1 Of 4
REMARKS Claim #861520

LOGGED BY B. A. Huston

F 0 0 1	T A G E				SAMP	L E			,	SSA	
FROM	10	DESCRIPTION	NO.	SUĽPH- IDES	FROM	FOOTAGE TO	TOTAL	16	₹6	OZ/TON	Check 02/TON
0	32.1	Casing									
32.1	37.6	Mafic Metavolcanic - light to medium green, fine to medium grained, massive, possible mafic tuff Average Modes	19558 19559		32.1 35.3	35.3 37.6	3.2 2.3			<.001 .001	
		Chlorite 60-70% Amphibole 15-20% Plagioclase 15-20%									
37.6	65.3	Felsic Intrusive - white, medium to coarse grained (equigranular) massive	19560		37.6	40.4	2.8			.001	
		Average Modes Quartz 50-55% Plagioclase 30-35% Potassium Feldspar 10-15% Biotite 5-10% Garnet 1%									
		 minor sericite 45.0 to 45.6 - biotite rich zone, possible intermediate intrusive, fine grained 	19561 19562 19563 19564 19565		40.4 44.4 46.5 51.1 55.6	44.4 46.5 51.1 55.6 60.1	4.0 2.1 4.6 4.5 4.5			<.001 .001 .002 .001 .001	
		- 63.4 to 65.3 - quartz feldspar porphyry, pink, minor quartz stringers	19566 19567		60.1 63.4	63.4 65.3	3.3 1.9			<.001 .001	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. _ SMZ-87-11 ______ SHEET NO. _ 2 of 4

1001	LAGE	DESCRIPTION			SAMPL				ASSAYS		
# ROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE TO	TOTAL		¿AU	Сђеск	
65.3	104.7	Ultramafic Metavolcanic - Tight to medium green, fine grained, poorly foliated at 50° to the core axis Average Modes Chlorite 70% Talc/Serpentine 15% Amphibole 10% Magnetite 1%	19568 19569 19570 19571 19572	-	65.3 75.2 84.9 94.4 103.0	69.9 80.0 87.5 99.2 104.7	4.6 4.8 4.6 4.8 1.7		.002 .001 .002 .001 .002		
104.7	116.4	- grey/brown, weakly foliated at 80° to the core axis Average Modes Framework 50-60% Quartz 60% Lithic Fragments 30% Feldspar 10% Matrix 40-50% Quartz 60% Biotite 40% - predominant lithic fragment type appears to be	19573 19574 19575	1	104.7 108.7 112.7	108.7 112.7 116.4	4.0 4.0 3.7		.002 .001 .001		
116.4	184.5	granitic, 1% disseminate pyrite found throughout the unit Mafic Metavolcanic - typical, as above, massive, trace to 0.5% pyrrhotite, very minor fracturing - 134.2 to 135.2 - quartz filled fractures, randomly oriented, offset at intersection	19576 19577 19578 19579	0.5	116.4 132.0 134.2 135.2	121.4 134.2 135.2 138.2	5.0 2.2 1.0 3.0		.001 .002 .001 .001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-11 SHEET NO. 3 of 4

FOOTAGE	DESCRIPTION			SAMPL.				ASSAYS	<u>е</u>	
FROM 10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE 10	TOTAL	 	Au oz ton	Check	
	- 153.8 to 157.2 - abundant quartz (+ carbonate) stringers and pods, randomly oriented, 1-2% pyrrhotite, 0.5% chalcopyrite	19580 19581		153.8 157.2		3.4 2.5		<.001 <.001		
	- 159.7 to 160.5 - felsic dike, typical, pink hue, trace garnet with associated pyrrhotite - 165.9 to 176.2 - abundant randomly oriented quartz stringers	19582 19583 19584 19585 19586 19587	0.5 0.5 0.5 0.5 0.5	159.7 160.7 163.9 165.9 169.2 172.5	169.2 172.5 176.2	1.0 3.2 2.0 3.3 3.3		.001 .001 .001 <.001 .001		
	- 183.5 to 184.5 - biotite and hornblende rich contact zone	19588 19589 19590	0.5	176.2 179.8 183.5		3.6 3.7 1.0		<.001 <.001 <.001		
184.5 188.5	Felsic Intrusive - typical as above, white, medium grained, massive	19591	-	184.5	188.5	4.0		<.001		
188.5 194.5	Mafic Metavolcanic - typical as above - 192.1 to 194.5 - hornblende and biotite rich contact zone, minor quartz stringers	19592 19593		188.5 192.1	192.1 194.5			<.001 <.001		
194.5 195.9	Felsic Intrusive - typical, as above, white, medium grained, massive	19594	-	194.5	195.9	1.4		.001		
195.9 269.0	Mafic Metavolcanic - typical, as above, fine to medium grained, massive - 195.9 to 196.5 - biotite rich contact zone - 251.4 to 252.1 - felsic dike, typical as above, white, medium grained, massive - 256.3 to 257.6 - felsic dike, as above	19595 19596 19597 19598 19599 19600 19701 19702		195.9 207.0 226.1 249.0 251.2 252.2 254.0 256.3	211.7 230.6 251.2	4.7 4.5 2.2 1.0 1.8 2.3		<.001 <.001 <.001 <.001 <.001 .002 .001 <.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-11 SHEET NO. 4 of 4

1001	AGE				SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	но	SIL PH IDES	FROM	FOOTAGE TO	IATOT		•	o Ayun	Среск	
		- 257.6 to 257.8 - biotite rich contact zone, 1% pyrite	19703		257.6		1.0			<.001		
		- 267.9 to 269.0 - hornblende biotite schist, contact zone, numerous quartz stringers	19704	-	267.9	269.0	1.1			.001		
269.0	280.5	Felsic Intrusive - typical, as above, coarse grained, massive sericitized	19705 19706 19707	-	269.0 273.0 277.0		4.0 4.0 3.5			.001 <.001 .001		
280.5	309.1	Mafic Metavolcanic - typical, as above, minor quartz stringers at random angles, 1% pyrite and chalcopyrite	19708 19709 19710 19711	+ + +	280.5 285.0 290.0 295.0	285.0 290.0 295.0 300.0	4.5 5.0 5.0 5.0	i		<.001 .001 <.001 <.001		
		- 306.2 to 309.1 - biotite and hornblende rich contact zone	19712 19713 19714	1	300.0 303.0 306.2	303.0 306.2 309.1	3.0 3.2 2.9			.001 <.001 <.001		
309.1	321.5	Felsic Intrusive - typical as above, white, medium grained, minor sericite, trace disseminated pyrite	19715 19716 19717	tr	309.1 313.5 318.0		4.4 4.5 3.5			<.001 <.001 <.001		
321.5	335.0	Mafic Metavolcanic - typical, as above, fine grained, medium green, massive										
		321.5 to 322.6 - biotite rich contact zone, minor quartz stringers	19718		321.5		1.1			.001		
Ì		322.6 to 325.0 - 1% fracture filling pyrrhotite and chalcopyrite 325.0 to 335.0 - typical, as above	19719 19720		322.6	325.0 330.0	2.4 5.0			<.001		
	335.0		19/20	_	323.0	330.0	3.0			\. 001		
	333.0	END OF HOLE										
											1	(1)

NAME	OF	PROPERTY	Santa	Maria Zeen	iel Lake			
HOLE I	NO.	SMZ-87-12		LENGTH	400'			
		11+00E						
LATITU	DE			DEPARTURE	1000		- 460	
ELEVAT	ION			AZIMUTH	180°	DIP .	-45	
		Contombon 2	1 1007		Contembor 24	1007		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-45 ⁰				
200	-450				
400	-42				

HOLE NO. SMZ-87-12 SHEET NO. 1 of 2
REMARKS Claim #861520
Summary Log

LOGGED BY B. E. Elliott

0 О Т	AGE	D. C. C. D. J. D. J. J. D. M.			SAMP	L E	i	Ĭ	A	5 S A	Y S
гом	10	DESCRIPTION SUMMARY LOG	NO.	SUĽPH- IDES	FROM	FOOTAGE TO	TOTAL	76	76	AU 02/10N	Check oz/Tón
0	111.0	Casing	ı I					į			
11.0	114.3	Quartz Porphyry							ļ]	1
14.3	115.4	Mafic Volcanic	i i							ł	1 1
15.4	120.0	Feldspar Porphyry								1	1
20.0	137.6	Ultramatic to Mafic Volcanic	l l					}		1	
37.6 39.5	139.5 140.7	Mafic to Intermediate Volcanic Mafic Volcanic									
10.7	152.0	Intermediate Intrusive	II I						ŀ		
52.0	157.2	Mafic Volcanic	i i								
7.2	162.0	Feldspar Porphyry								4	[
2.0	168.4	Ultramafic to Mafic Volcanic						1			
8.4	171.0	Mafic Volcanic	ll l							ļ	1 1
1.0	183.7	Quartz Wacke									
3.7	187.5	Matic Volcanic									
37.5	189.6	Quartz Wacke									
39.6	201.5	Ultramafic to Mafic Volcanic	1								
11.5	207.9	Pelitic Metasediment Quartz Wacke	Locas		250.0	0.7					
".]	313.9	247.4 to 283.8 - few quartz veinlets and narrow	19635 19636		252.0 257.0		5.0			.011	
1]	mafic intervals	19640		274.0	262.0 278.5	5.0 4.0			.010	1 1
15.9	321.9	Chlorite/Biotite Schist	19647		318.7	321.9	3.2			.009	
21.9	331.4	Ultramafic Volcanic	9648		321.9	326.9	5.0			.012	1
1	}	Highly sheared, trace magnetite, numerous quartz			*****	52513				••••	
}	1	veinlets	N '			1		j		}	
31.4	335.9	Chlorite/Biotite Schist			f	1					
1	}		ll l		ļ				•		1
İ]				1	
- 1	ł		- 1	1		1					
			li i								
	-		IJ							1	
1	1				ĺ						
			ll l		l			į į			
ĺ									1	1	1

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-12 SHEET NO. 2 of 2

			OLE N			 	EET NO.			
FOOTAGE				SAMPL	.E			ASSAYS		
FROM 10	DESCRIPTION SHMMADY LOG	110	SUL PH		FOOTAGE	 1	I .	AYON	Check	
360.4 362.0 365.7 365.7 369.6 375.0 380.0 381.3 384.9 400.0	SUMMARY LOG Ultramafic Volcanic A typical, non foliated but massive with granular appearance; 1-2% magnetite, minor carbonate, few quartz veinlets Chlorite Schist Ultramafic Volcanic Chlorite Schist Talc/Chlorite Schist Ultramafic Volcanic Chlorite/Biotite Schist Ultramafic Volcanic Chlorite/Biotite Schist Ultramafic Volcanic Mafic Volcanic	19651 19652	IDES	335.9 340.9	70			.007 .012	Check	

NAME	OF	PROPERTY	Sant	a Maria Ze	emel Lake	 		
HOLE	NO.	_SMZ-87-1	2	LENGTH_	400'	 		
LOCATE	юн	1.1+00E	8+005			 		
LATITU	DE			DEPARTUR	IE	 		
ELEVAT	HON			AZIMUTH .	180 ⁰	 DIP _	-45.0°	
					September			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-45 ⁰				
_200	-45 ⁰				
_200 400	-42 ⁰				
			i		

HOLE NO. SMZ-87-12 SHEET NO. 1 of 14
REMARKS Claim #861520

LOGGED BY B.E. Elliott

	F 0 0 T	AGE	DESCRIPTION			SAMP	LE			A	SSA'	/ S	
	FROM	70	DESCRIPTION	NO.	SUĽPH- IDES	FROM	FOOTAGE TO	TOTAL.	70	36	OZYTON	Ҫ <u>ђ</u> ӯҁ҄Ӄ _҈ ҅	
	0	111.0	Casing										
	111.0	114.3	Quartz Porphyry - medium grey, fine grained, massive, porphyritic Texture - 15% coarse quartz grains, 1/4" or less, in fine grained ground mass of quartz, feldspar, biotite and minor sericite; few 1/4" quartz veinlets; trace disseminated pyrite;	1960		111.0	114.3	3.3			.007		
		}	113.4 to 113.8 - 1% disseminated pyrite										
	114.3	115.4	Mafic Volcanic - medium green, fine grained, massive, sheared. Texture - chloritized, dominated by chlorite with minor plagioclase.	19602		114.3	115.4	1.1			.007		
	115.4	120.0	Feldspar Porphyry - dark grey, fine grained, massive, porphyritic. Texture - 30% feldspar phenocrysts - fine grained quartz/feldspar/biotite, trace disseminated pyrite.	1960		115.4	120.0	4.6			•006		
			115.4 to 116.4 - atypical; black, schistose; dominated by fine grained biotite.										
- 36668			116.4 to 119.5 - typical, phenocrysts increase in abundance towards centre of unit.										
CENOROL			119.5 to 120.0 - atypical as per 115.4 to 116.4.							:			
ANGROGES													

NAME OF PROPERTY. Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 2 of 14

F001	AGI	DE SCRIPTION			SAMPL	E			ASSAYS		M. Market
FROM	10	OF SCREPTION	NO	SILL PH	FROM	FOOTAGE	TOTAL	-	Auton	Chęςķ.	
120.0	137.6	Ultramafic to Mafic Volcanic - light grey to green, fine grained, massive to moderately foliated, schistose. Texture - variable composition.									
		120.0 to 121.6 - chlorite schist, dominated by chlorite, trace pyrite; minor sericite.									
		121.6 to 126.9 - fine grained, light grey; talc, serpentinite with minor chlorite and 1 to 2% magnetite; several irregular quartz veinlets; 0.5%, well spaced euhedral pyrite cubes.	19604		121.6	126.6	5.0		.002		
		126.9 to 127.4 - chlorite schist as per 120.0 to 121.6	19605		126.6	130.8	4.2		.002		
		127.4 to 130.8 - as per 121.6 to 126.9; well foliated 40° to core axis; 2 to 3% carbonate.						 			
:		130.8 to 137.6 - chlorite schist; trace euhedral pyrite crystals; locally 5% phlogopite.	19606 19607		130.8 134.8	134.8 137.6			.002		
137.6	139.5	Mafic to Intermediate Volcanic - medium green-grey, fine grained, massive. Average Mode Amphibole 45-50% Chlorite 5-10% Plagioclase 20-25% Quartz 15-20% Phlogopite 1-2% Sulfide trace	19608		137.6	139.5	1.9		.002		
	ļ										

HOLE NO. SMZ-87-12 SHEET NO. 3 OF 14

F 00 1	AGE	OL LODINA IO.			SAMPL					ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH.	FROM	FOOTAGE 10	TOTAL	*	3	oz ĄŲ,	Check	
		Texture - quartz gives section mottled appearance; silicified.										
139.5	140.7	Mafic Volcanic - dark green, fine grained, massive Average Mode Amphibole) 90% Chlorite)	1960		139.5	140.	1.2			.005		
		Plagioclase 10% Pyrite trace Chalcopyrite trace			!							
		Texture - trace to 0.5% disseminated pyrite and chalcopyrite associated with irregular quartz/carbonate veinlets.										
140.7	152.0	Intermediate Intrusive? - possibly silicified mafic volcanic; medium grey to green, fine grained, locally weakly porphyritic, massive. Average Mode Amphibole) 35-90% Chlorite) Plagioclase 25-30% Quartz 25-30% Biotite 2-3% Pyrite trace	1961 1961 1961	1 1	140.7 145.7 149.7	149.	7 5.0 7 4.0 9 2.3			.003 .002 .002		

1GRIDGES - TORONTO - 366-1158

NAME OF PROPERTY... Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 4 of 14

F 00	LAGE				SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	110	· SUI PH		FOOTAGE	*	1	f	AU OZ TON	Check	i
		Texture - mottled appearance due to quartz; locally appears porphyritic but may be blotchy silification, locally potassic alteration; upper contact 50° to core axis; lower contact 40° to core axis; lower contact brecciated and poorly defined; trace		IDFS	FROM	10	TOTAL		•			
152.0	157.2	Mafic Volcanic - light green, locally grey, fine grained, massive to foliated. Texture - dominated by chlorite with minor amphibole and plagioclase; trace pyrite; foliated 30° to core axis at 153.0. 152.0 to 152.7 - typical										
		152.7 to 153.3 - talc/chlorite rich band; foliated 30° to core axis 153.3 to 157.2 - typical; dominantly massive										
157.2	162.0	Feldspar Porphyry - dark grey with pink phenocrysts, fine grained, massive, porphyritic. Texture - up to 50% medium to coarse grained feldspar phenocrysts in fine grained quartz, feldspar, biotite, sericite ground mass; porphyritic texture variable.	19613		157.0	162.0	5.0			.003		
	,											

NAME OF PROPERTY... Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 5 of 14

FOOTAGE	DESCRIPTION			SAMPL					ASSAYS	
ROM 10	DESCRIPTION	но	* SULPH		FOOTAGE		1	1	T-Au	Teheck
162.0 168.4	intervals, fine grained foliated. Average Mode Talc 60-70% Chlorite 10-20% Serpentine 5-10% Magnetite 1-2%	19614 19615	IDE S	162.0 166.0	166.0	4.0 2.4			.002 .001	62 190
	Carbonate 2-3% Pyrite 1-2% Texture - dominantly light grey talc rich bands locally with minor carbonate and 1-2% pyrite cubes throughout; few chlorite rich bands up to 0.5' wide; rare clot of actinolite with well formed euhedral crystals up to 2" long; several 1/4" or less quartz veinlets parallel to foliation, foliation 55° to core axis at 167°.									

NAME OF PROPERTY Santa Maria Zeemel

HOLE NO. _SMZ-87-12 SHEET NO. 6. of 14

F001	LAGE				SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	NO.	", SULPH IDES	FROM	FOOTAGE To	TOTAL	.7	*,	AU 02 TON	Check	
168.4	171.0	Mafic Volcanic - light to medium green, fine to medium grained, schistose. Texture - dominated by chlorite and tremolite/ actinolite with minor talc and trace pyrite; light to medium green mottled appearance; tremolite/actinolite as coarse radiating fibrous aggregates.	19616		168.4	171.0	2.6			.002		
		168.4 to 169.7 - typical	l									l
		169.7 to 170.3 - smoky quartz vein; 50° to core axis				:						
		170.3 to 171.0 - typical but with increased biotite component		İ		į						}
171.0	183.7	Quartz Wacke - medium green to brown, fine to medium grained, massive to weakly foliated. Average Mode Framework 50-60% Quartz 90% Feldspar 10% Matrix 40-50% Quartz 60% Feldspar 5% Biotite 30% Chlorite 5% Pyrite trace Pyrrhotite trace										
26												

NAME OF PROPERTY Santa Maria Zeemel
HOLE NO. SMZ-87-12 SHEET NO. 7 of 14

Texture - quartz gives rock mottled appearance; locally weakly foliated 70-80% to core axis; rare quartz veinlet; rare narrow chlorite shear; trace disseminated sulfide. 75.8 to 175.9 - quartz veinlet; 80° to core axis afic Volcanic - medium green, fine grained, massive to weakly foliated. Average Mode Amphibole) 70-80% Chlorite) Plagioclase 20-30% Quartz 2-3% Phlogopite 2-3%	19617 19618		FROM	176.0	5.0 3.8	*	**	.002	Check.
locally weakly foliated 70-80% to core axis; rare quartz veinlet; rare narrow chlorite shear; trace disseminated sulfide. 75.8 to 175.9 - quartz veinlet; 80° to core axis afic Volcanic - medium green, fine grained, massive to weakly foliated. Average Mode Amphibole) 70-80% Chlorite) Plagioclase 20-30% Quartz 2-3% Phlogopite 2-3%			171.0	176.0	5.0			.002	
afic Volcanic - medium green, fine grained, massive to weakly foliated. Average Mode Amphibole) 70-80% Chlorite) Plagioclase 20-30% Quartz 2-3% Phlogopite 2-3%									
foliated. Average Mode Amphibole) 70-80% Chlorite) Plagioclase 20-30% Quartz 2-3% Phlogopite 2-3%	19618		183.7	187.5	3.8	. 		.001	
Sulfide trace Texture - trace disseminated sulfide; locally 2-3% phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187-0.									
uartz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/chlorite component; trace sulfide.	19619		187.5	189.6	2.1			.002	
n (phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/	phlogopite; few irregular quartz veinlets; foliated 40° to core axis at 187.0. artz Wacke - typical but sheared; well foliated 30° to core axis; foliation contorted; increase in biotite/ axis; foliation contorted; increase in biotite/

396 — CINCROL - SECUREUM

NAME OF PROPERTY. Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 8 of 14

FOOT	AGI.	DESCRIPTION			SAMPL					ASSAYS	
FROM	10	DESCRIPTION	ИО	* SULPH IDES	FROM	FOOT AGE TO	TOTAL	:		O7 TON	OZ TON
189.6	201.5	Ultramafic to Mafic Volcanic - light grey, locally light green, fine grained, foliated. Texture - typical; dominated by talc, serpentine with lesser chlorite; 2-3% magnetite + magnesite; locally coarse radiating aggregates of tremolite/actinolite (possible spinifex); trace to 0.5% disseminated pyrite; numerous quartz veinlets + trace carbonate.		1005	FROM	10	TOTAL		The state of the s		
		189.6 to 190.8 - atypical; light green; dominated by chlorite and fibrous tremolite/actinolite.	19620		189.6	190.8	1.2			<.001	
		190.8 to 201.5 - typical	19621 19622 19623	1	190.8 195.8 199.8		5.0 4.0 1.7			.002 <.001 <.001	
201.5	207.9	Pelitic Metasediment - medium green to brown, fine grained, well foliated at 40° to core axis. Average Mode Quartz 50-60% Biotite 30-40% Chlorite 10-15% Sulfide trace Texture - dominantly fine grained pelitic metasediment but locally narrow bands of quartz wacke; few quartz veins + carbonate 40° to core axis; few chlorite/carbonate rich bands.	19624 19625		201.5 205.5	205.5 207.9	4.0			<.001	

NAME OF PROPERTY. Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 9 of 14

1001	AGE		\		SAMPI	E				ASSAYS	-	PC-REPROPER
FROM	10	DE SCRIPTION	110	SUL PH		FOOTAGE		1 . 1	. 1	Au	Check	
207.9		large angular sand size grains, massive to foliated. Average Mode Framework 40-45% Quartz 100% Matrix 55-65% Biotite 40% Quartz 40% Chlorite 20% Pyrite trace Iexture - dominantly as above but some interbedded, finer grained units with higher pelitic component and well foliated; i.e. a finer grained wacke; few to several quartz + carbonate veins and veinlets throughout, ranging from several inches to less than 1/4"; generally 40-50° to core axis; few, several inch wide mafic bands dominated by amphibole and chlorite. 207.9 to 221.9 - typical 208.3 to 209.8 - few quartz veinlets 213.5 to 215.1 - several quartz yeinlets; 1/4" or less	19626	IDES	207.9 213.5	209.8 215.1	1.9 1.6			.001 <.001	02 100	
		217.0 to 216.0 - few quartz veinlets; 1/2"	19628		217.0	218.0	1.0			.001		

NAME OF PROPERTY....... Santa Maria Zeemel

HOLE NO. SMZ-87-12 SHEET NO. 10 of 14

FOO	1 AGE	DESCRIPTION		inde Four general in g	SAMPL	. E				ASSAYS	***************************************	
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	7	•	ozAH,	Chec'k	
		221.9 to 224.8 - finer grained; higher pelitic component; well foliated 45° to core axis; rare quartz veins	19629		221.9	224.8	2.9			<.001		
1		224.8 to 227.1 - typical quartz wacke										
	<u> </u>	227.1 to 230.3 - few mafic interbands and quartz veinlets	19630		227.0	230.0	3.0			.003		
		230.3 to 230.6 - felsic intrusion; dominated by quartz with lesser biotite and feldspar; contacts 30° to core axis	19631		230.0	231.0	1.0			<.001		
		230.6 to 233.1 - typical quartz wacke										
		233.1 to 233.9 - mafic interband with quartz carbonate veinlet; 1.0" wide, 45° to core axis	19632		233.0	234.0	1.0			<.001		
		233.9 to 244.3 - typical quartz wacke										
		244.3 to 244.6 - quartz/feldspar porphyry; 45° to core axis			244.0	245.0	1.0			.003	į	
		244.6 to 247.4 - typical quartz wacke	1						[i I		
		247.4 to 283.8 - dominantly typical quartz wacke but frequently well foliated with higher pelitic component; few narrow mafic intervals and few quartz veinlets; foliated 40° to core axis at 158.0; as move down section unit, becoming finer grained and well foliated, becoming more pelitic in composition and texture	19634 19635 19636 19637		247.0 252.0 257.0 262.0	262.0	5.0 5.0 5.0 5.0			.004 .011 .010 .004		
LANSHIGGES - TORONTO - 365-168												

NAME OF PROPERTY Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 11 of 14

minor 19642 283.8 286.8 3.0 .004 .005 .004 .004 .004 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005 .004 .004 .005 .004 .005 .004 .004 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005 .004 .005
minor 19639 272.5 274.5 2.0 .005 .010 .004 .004
minor 278.5 280.5 2.0 .004
19642 283.8 286.8 3.0 .004
19643 286.8 290.6 4.0 .003
47.4 19644 290.6 295.6 5.0 .009
ore 19645 303.8 306.4 2.6 .005 ore d
CC

NAME OF PROPERTY. Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 12 OF 14

LOO.	1 AGE				SAMPL	E				ASSAYS		- 10 TH. 14 H
FROM	10	DESCRIPTION	но	" SUL PH IDE 5	FROM	FOOTAGE	TOTAL	:		07 TUN	07 TON	
315.7	321.9	Chlorite/Biotite Schist - dark brown to green, fine grained, well foliated at 45° to core axis at 316.0 but foliation often highly contorted and locally near parallel to core axis; 60% biotite and 40% chlorite	19646 19647		315.7 318.7	318.7 321.9				.006		
321.9	331.4	Ultramafic Volcanic - typical; light grey, fine grained, foliated; highly sheared; dominated by talc with lesser serpentine and trace magnetite; numerous quartz veinlets; foliation variable and contorted but generally 30-50° to core axis	19648 19649		321.9 326.9					.012		
331.4	335.9	Chlorite/Biotite Schist - typical as per 315.7 to 321.9, but with 70% chlorite and 30% biotite	19650		331.4	335.9	4.5		i i	.005		
335.9	360.4	Ultramafic Volcanic - atypical in that non-foliated, massive with "granular" appearance; typical talc/serpentine mineralogy with 1-2% magnetite; locally minor carbonate; few irregular quartz veinlets; locally minor chlorite	19651 19652 19653 19654 19655		335.9 340.9 345.9 350.9 355.9	345.9 350.9 355.9	5.0 5.0 5.0 5.0 4.5			.007 .012 .001 .001		
		335.9 to 359.4 - typical 359.4 to 360.4 - atypical; foliated 80° to core axis; increase in chlorite										
360.4	362.0	Chorite Schist - medium green, very fine grained, massive schistosity poorly developed; dominated by chlorite with minor biotite	19656		360.4	362.0	1.4			.002		
86 - 668 - O. 2010 - 6100 1-924-1												

NAME OF PROPERTY Santa Maria Zeemel

HOLE NO SMZ-87-12 SHEET NO. 13 OF 14

1001	AGE	DE CONDITION			SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	110	™ SULPH IDE S	FROM	FOOTAGE TO	TOTAL		AU az ton	Check	
362.0	365.7	Ultramafic Volcanic - light grey to green, fine grained, massive to poorly foliated; typical talc, serpentine, magnetite mineralogy but with 5% chlorite rich intervals	19657		362.0	365.7	3.7		.002		
365.7	369.6	Chlorite/Biotite Schist - dark brown with green laminations, fine grained, schistose, weakly foliated; dominated by biotite with green crenulated laminations of chlorite; rare bands with 15% fine quartz grains; rare quartz veinlets; trace disseminated pyrite; foliated 60° to core axis	19658		365.7	369.6	3.9		.002		
369.6	375.0	Talc/Chlorite Schist - light grey to green, fine grained, foliated 60° to core axis; bands of talc, serpentine t trace magnetite and crude bands of chlorite; very minor biotite; rarely trace disseminations pyrite; probable shear zone									
		369.6 to 373.6 - typical	19659		369.6	373.6	4.0		<.001		
		373.6 to 375.0 - atypical; dominantly chlorite	19660		373.6	375.d	1.4		<.001		
375.0	380.0	Ultramafic Volcanic - typical as per 335.9 to 360.4; 2-3% fine magnetite grains, locally quartz veinlets									
		375.0 to 379.0 - typical	19661		375.0	380.d	5.0		<.001		
		379.0 to 380.0 - foliated; highly contorted; near parallel to core axis									
						į					

NAME OF PROPERTY. Santa Maria Zeemel

HOLE NO. SMZ-87-12 SHEET NO. 14 OF 14

f 00	TAGE.	DESCRIPTION			SAMPL	.E		ASSAYS					
ROM	10		NO.	% SULPH IDES	FROM	FOOT AGE TO	TOTAL	. [٦.	OZ TON	Check		
381.3	384.9	Ultramafic Volcanic - typical; massive to weakly foliated; talc, serpentine, trace magnetite; minor chlorite	19663		381.3	384.9	3.6			.001			
384.9	400.0	Mafic Volcanic - dark green, fine grained, massive Average Mode Amphibole) 90-95% Chlorite) Plagioclase 5-10% Pyrite trace to 5% Texture - few irregular quartz/carbonate veinlets;											
		locally light green chloritized					I						
		384.9 to 386.5 - atypical; light green; chloritized 386.5 to 387.0 - talc/chlorite shear	19664		384.9	387.0	2.1			<.001			
		387.0 to 388.9 - several quartz veinlets with haloes of chlorite schist; chlorite filled fractures; no visible sulfides; veins 55° to core axis	19665	- }	387.0	388.9	1.9		,	.002			
		388.9 to 400.0 - typical	19666 19667 19668	Ì	388.9 393.9 398.9	393.9 398.9 400.0	5.0 5.0 1.1			.001 <.001 <.001			
		End of Hole											
		Casing pulled											
							3	¢,	A		1 AM	B	

NAME	OF PROPERTY	Santa Maria Ze			
HOL E	NO. SMZ-87-13	LENGTH.	325'		
	ION L32W, 8+53				
LATIT	UDE	DEPARTU	RE		
ELEVA	TION	A71MU1H	180	pip <u>.=4</u>	5
		987 FINISHED			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	-40°				
325'	-40°				
·					

HOLE NO. SMZ-87-13 SHEET NO. 1 of 1

REMARKS Claim #861517

Sunmary Log

LOGGED BY Eric Timoshenko

FOOT	A G E				5 A M P	LE		A S S A Y S				
FROM	10	DESCRIPTION SUMMARY LOG	NO.	SULPH-	FROM	TO	TOTAL	¥	ж	OF)YON	829881	
0.6	152.3	Casing										
152.3	170.4	Mafic to Ultramafic Metavolcanics										
170.4	173.4	Pelitic Metasediments							l			
173.4	186.7	Mafic to Ultramafic Metavolcanics				·						
186.7	187.8	Pelitic Metasediments with Interbedded Chert										
187.8	297.5	Metagreywacke		}								
		191.9 - 213.9 - Metagreywacke with up to 10% Quartz porphyroblasts				l						
		262.0 - 297.5 - Silicified Section - Pyrrhotite stringers - 277.0 - 290.4 Metagreywacke with up to 10% Quartz porphyroblasts										
297.5	301.0	Pelitic Metasediments with Interbedded Chert								İ		1
301.0	325.0	Mafic Metavolcanics - minor pyrrhotite stringers - trace - 1% disseminated sulphide										
	325.0	Е.О.Н.										
301.0	ļ	Casing pulled										

NAME OF	PROPE	RTY	Santa	Maria	Zeeme1	Lake			
HOLE NO,	SMZ-	87-13	1	ENGTH	325'				
OCATION									
ATITUDE									
ELEVATION				ZIMUTH	_180°		DIP	<u>-45⁰</u>	
CLARTER	Sent	22 198	7.	MICHE	Sent	. 24	1987		

FOOTAGE		 F © TAGE	DIP	AZIMUTH
200'	-40 ⁰			
325'	-40°			

HOLE NO. SMZ-87-13_{SHEET NO.} 1 of 9
REMARKS Claim #861517

LOGGED BY Eric Timoshenko

FROM TO DESCRIPTION NO. SUPPLIE ASSAYS	FOOTAGE	T		C 1 11	D	 I		SSA	
0 152.3 Casing 152.3 170.4 Mafic to Ultramafic Metavolcanics - light green to grey-green, mostly fine grained, moderately well Foliated (angle to core axis = 70 - 75°) Average Modes Amphibole - 50 - 60% Talc/Serpentine - 10 - 20% Plagioclase - 5 - 10% Magnetite - 2 - 3%			110 10.36			 	ι		
152.3 170.4 Mafic to Ultramafic Metavolcanics - light green to grey-green, mostly fine grained, moderately well Foliated (angle to core axis = 70 - 75°) Average Modes Amphibole - 50 - 60% Talc/Serpentine - 10 - 20% Plagioclase - 5 - 10% Magnetite - 2 - 3%	FROM TO		NO. ISUL	FROM		35	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OZ/TON	02/TON
- most of the unit consists of finely foliated amphibole with interstitial talc/ serpentine and minor chlorite - minor compositional variations between chlorite-rich and talc/serpentine - rich sections - very minor quartz-carbonate veining - zero to trace disseminated pyrite	0 152.3	Mafic to Ultramafic Metavolcanics - light green to grey-green, mostly fine grained, moderately well foliated (angle to core axis = 70 - 75°) Average Modes Amphibole - 50 - 60% Talc/Serpentine - 10 - 20% Plagioclase - 5 - 10% Magnetite - 2 - 3% Chlorite - 5 - 15% - most of the unit consists of finely foliated amphibole with interstitial talc/ serpentine and minor chlorite - minor compositional variations between chlorite-rich and talc/serpentine - rich sections - very minor quartz-carbonate veining	NO. SUL	FROM		ï	ï	OZ/YON	Check 62/Ton

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-13 SHEET NO. 2 0f 9

F 001 AGE	N. C. C. C. C. C. C. C. C. C. C. C. C. C.		Ph. Comp. 1982 1984	SAMPL	. E		<u> </u>		ASSAYS		
FROM 10	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	```	٦,	o Alba	Check.	
	152.3 - 160.8 - limonitic staining in fractures and in quartz-carbonate veinlets	19778 19779 19780	tr	152.3 155.0 158.0	155.0 158.0	2.7 3.0 3.0			<.001 <.001		
	163.5 - 166.0 - medium grained section with large anhedral magnetite grains; 5 - 7% magnetite	19781 19782	tr tr	161.0 163.5	163.5 166.0	2.5 2.5			<.001 <.001 <.001		
		19783 19784		166.0 168.8					<.001 <.001		
170.4 173	Pelitic Metasediments - dark brown, medium grained, well foliated (angle to core axis = 70-80°), well banded near contacts										
	Average Modes Biotite 70% Chlorite 30%	į.									
	 well foliated biotite-chlorite schist gradational contacts; light green, fine grained material (mostly chlorite and minor amphibole) interbedded with biotite-chlorite schist at upper and lower contacts 										,
	172.4 - 173.4 - broken, blocky core	19785	-	170.4	173.4	3.0			<.002		

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO. SMZ-87-13 SHEET NO. 3 of 9

F 00 1	AGE	DESCRIPTION	SAMPLE NO. 3 SULPH FOOTAGE							ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE 10	TOTAL	3	``	oAyon	Check	
173.4	186.7	Mafic to Ultramafic Metavolcanics - as per above	19786	tr	173.4	176.0	2.6			<.001		
		 angle to core axis = 60-75° 178.5 - quartz-carbonate veinlet, 1/8" wide, with trace pyrite 	19787 19788 19789	tr tr	176.0 179.0 182.0	182.0 185.0	3.0 3.0 3.0 1.7			<.001 <.001 <.001 <.001		
186.7	187.8	Pelitic Metasediments with Interbedded Chert - biotite-chlorite schist interbedded with amphibole/chlorite-rich bands and dirty chert bands up to 1" wide - upper contact gradational into above volcanics - angle to core axis = 70-80°	19790 19791		185.0 186.7	186.7 187.8				.001		
187.8	297.5	Metagreywacke - light to medium grey, medium to coarse grained, moderately well foliated (angle to core axis = 55-70°)	19792	-	187.8	189.8	2.0			.002		
		Average Modes Framework 70-80% Matrix 20-30% Quartz 65% Felsics 50% Feldspar 35% Biotite 40% Chlorite 5% Amphibole 5%										
LANGADGES - CRONTO - 356. 158												
- Savuranoses												

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-13 SHEET NO. 4 OF 9

F OOT AG	E		T		SAMPL	. E		I		ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	,	3	оДЦон	Check	
		- mostly medium grained with a uniform texture; locally has a porphyroblastic texture due to numerous quartz-eye porphyroblasts - concordant to discordant, narrow, veinlike intercalations of chlorite schist (minor amphibole); those which cross-cut the foliation often have a narrow quartz-rich border - these could be composite veins (contain minor carbonate) - fracturing is very minor - several felsic intrusive dikes intrude sediments at medium to high angles to the core axis 190.2 - quartz vein or pod, 2" wide; biotite and minor amphibole and sericite inclusions - trace to 1% disseminated pyrite 191.9 - 213.9 - silicified section, quartz-eye porphyoblasts common - glassy to milky porphyroblasts make up about 10% of the rock - 192.6 - 1" wide milky quartz vein (or chert band?); no visible sulphides	1979:		189.8					.002		
		193.5 - 193.8 - Felsic Intrusive Dike - white to light grey, medium to coarse grained, massive, porphyritic	1979	tr	191.9	194.	2.5			.002		

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO. SMZ-87-13 SHEET NO. 5 of 9

FOOTAGE	OF CONTRACTOR AND AND AND AND AND AND AND AND AND AND		SAMPLE NO. 7: SULPH FOOTAGE				<u> </u>		ASSAYS		
FROM 1	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	3	٦.	o Ayon	Check	
i	Average Modes Quartz 60% Pyrite - trace K-Feldspar 25% Plagioclase 10% Biotite 1-2% Garnet trace - large, cracked, irregular grains of K-spar in finer grained quartz and plagioclase - 195.8 - 1" wide felsic dikelet - description as per above - 197.9 - pyrite grains on a 2" long fracture surface - 205.6 - 206.3 - felsic intrusive dikelet - descripton as per above - pyrite along fracture surfaces; minor disseminated pyrite within the intrusive - 210.3 - 210.8 - felsic intrusive dikelet - description as per above - pyrite with carbonate along fracture surfaces 213.9 - 215.9 - Felsic intrusive dike - description as per above - pyrite with minor carbonate along fracture surfaces	19799 19790 19799 19799 19800	tr tr		198.7 206.4 209.2 211.3	3.0 1.0 2.8 1.0	•	•			
	and trace disseminated pyrite within the host rock	19801	-	219.3	221.8	2.5			<.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-13 SHEET NO. 6 of 9

1001	AGE	DE CODINE			SAMPI	E			ASSAYS		
FROM	10	DESCRIPTION	110	SDL PII IDES	FROM	FOOTAGE TO	TOTAL		Au oz ton	Check	
		229.6 - 230.7 - two felsic intrusive dikelets, 1-2" wide - no visible sulphides	19802	-	227.8	231.1	3.3		.001		
		234.4 - 236.0 - trace to 1% dissimenated pyrite in fine grained wacke	19803	tr	234.0	237.0	3.0		<.001		
		238.1 - 239.1 - felsic intrusive dikelet - 1' long section of a 1/2" wide dikelet cut parallel to the core axis - no visible sulphides	19804	-	238.0	239.9	1.9		<.001		
		246.2 - 247.7 - Aplite Dike; white to light grey, medium grained, massive	19805	-	246.2	247.7	1.5	1	.001		
		Average Modes Quartz 55% Plagioclase 40% Biotite 5-7% - felsics have a saccharoidal texture - very weak lineation to biotite flakes which occur in clots or as individual grains 253.4 - 253.9 - two felsic intrusive dikelets, 1-2" wide, 4" apart - trace disseminated pyrite	19806 19807		249.1 253.2	251.1 254.2			<.001 <.001		
89488 — CINCACK — 88800 48844.											

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-13 SHEET NO. 7 Of 9

F 001	I AGE	A CARLEST CO.			SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	NO	", SULPH IDES	FROM	FOOTAGE	TOTAL		٠	0.2 NUN	Check	
e congregation is the control of		256.4 - 258.8 - several 2-4" wide felsic intrusive dikelets - trace disseminated pyrite	19808		256.2					<,001		
		262.0 - 297.5 - silicified section; higher percentage of modal quartz; quartz pods and veinlets much more common - composite veins of chlorite surrounded by quartz occur frequently throughout this section	19809	tr	259.0	262.7	3.7			<.001		
		 zero to trace pyrrhotite and pyrite 265.2 - felsic intrusive dikelet, 2" wide no visible sulphides 	19810	tr	262.7	265.7	3.0			.001		
		- 266.1 - 266.7 - pyrrhotite stringers up to 1/4" wide in a heavily silicified section; minor disseminated pyrite and chalcopyrite	19811	tr	265.7	267.0	1.3			.001		
		- 267.8 - 269.0 - chlorite-amphibole intercalations with several small (less than 1/8" wide) pink garnets	19812	tr	267.0	269.0	2.0	i		.002		
		- 277.0 - 290.4 - quartz-eye porphyroblasts comprise up to 10% of the rock in this section; veining not as prominent	19813 19814		272.4 277.0	276.0 278.5				.001 <.001		
		promrnent	19815 19816 19817 19818	-	281.0 283.5 291.4 295.5	286.0 292.9				.002 <.001 .002 .002		
									ı İ			
									-			
1												

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-13 SHEET NO. 8 of 9

FOOL	AGE	DESCRIPTION	1		SAMPL	E]		ASSAYS	
ROM	70	DESCRIPTION	HO.	SULPH IDES	FROM	FOOTAGE TO	TOTAL	3	3	AU	Check.
297.5	301.0	Pelitic Metasediments with Interbedded Chert - chlorite-biotite schist with narrow chert bands (< 1/2" wide) - well foliated, angle to core axis = 60-75° - well banded - trace pyrite and pyrrhotite	19819	tr	297.5	301.0	3.5			.001	
301.0	325.0	Mafic Metavolcanics - medium to dark green, fine grained, weakly foliated (angle to core axis = 70-80°) Average Modes Amphibole 75-80% Plagioclase 15-20% Chlorite 0-5%									
		 mostly fine grained amphibole and plagioclase, fairly uniform texture abundant quartz-carbonate veinlets, most ≤ 1/8" wide some veinlets are offset by subsequent fracturing pyrrhotite, chalcopyrite and pyrite (in order of abundance) are found disseminated throughout the unit and also as narrow stringers in some sections. Sulphides are common in quartz-carbonate veinlets 	19820 19821 19822 19823 19824	tr tr tr	301.0 304.0 307.0 310.0 311.0	304.0 307.0 310.0 311.0 313.5	3.0 3.0 3.0 1.0 2.5			.001 <.001 .004 <.001 <.001	

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-13 SHEET NO. 9 of 9

F 00	LAGE	DE CONTROL			SAMPL					ASSAYS		
FROM	10	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	7.	3	οzĄψ"	Check	
		314.5 - small stringers of pyrrhotite and minor chalcopyrite, less than 1/8" wide 321.9 - sulphide stringers similar to above	19826 19827	tr 1-2% tr	315.0 318.0	318.0 321.4 322.4 324.0	3.4 1.0 1.6			.001 <.001 <.001 <.001 <.001 <.001		
	325.0	E.O.H.										
		Casing pulled					•					
			}		<u> </u> 							
ı			İ									
}	}						}					
							<u> </u> 					
			ļ									
			1		1		i I					
ĺ			ł				<u> </u>] ,	
j	I	1	ſ	1	1	İ	I	ı		1/1	da	MI
										WA	CALLE	, ,,-
								(

NAME OF	PROPERTY Santa Maria Zeemel Lake	
HOLE NO.	SMZ-87-14 LENGTH 397.0	
LOCATION	44+00W 11+12S	
LATITUDE	DEPARTURE	
ELEVATION		-45.5
	Sent. 24, 1987 Engage Sent. 26, 1987	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-44.5				
397	-44.0				

HOLE NO. MZ-87-14 SHEET NO. 1 of 1
REMARKS Claim #861517
Summary Log

LOGGED BY Eric Timoshenko

FOOTAGE		D. C. C. D. J. D. Y. J. O. W.		SAMPLE					ASSAYS				
FROM	10	DESCRIPTION SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	36	46	OZ/TON	Check oz/Ton		
0	81.4	Casing											
81.4	120.9	Metagreywacke - locally silicified; quartz porphyroblasts			i	ı							
120.9	160.2	Mafic Metavolcanics - trace to 1% pyrrhotite, pyrite, chalcopyrite			:								
160.2	179.9	Metagreywacke											
179.9	181.5	Pelitic Metasediments							l				
181.5	263.8	Ultramafic Metavolcanics - 181.5 - 188.4 - sheared section											
263.8	327.9	Mafic to Ultramafic Metavolcanics - 245.4 - 298.1 - sheared section with fluorite in a quartz-carbonate veinlet				 - -							
327.9	330.4	Metagreywacke	1										
330.4	331.6	Mafic Metavolcanics				i							
331.6	373.3	Felsic Intrusive - granite			:								
373.3	381.5	Mafic Metavolcanics			i								
381.5	397.0	Metagreywacke - 394.6 - 397.0 - silicified section - quartz porphyroblasts			i	:							
	397.0	E.O.II.											
}		Casing Pulled	1										

NAME	OF	PROPERTY	Santa	Maria Ze	emel Lake				
HOLE	NO.	SMZ-87-14 44+00W	111120	LENGTH .	397.0				
LOCATI	ОИ	44'00W	11'123						
UTITAL	() E			DEPARTU	RE 0				
ELEVAT	101			AZIMUTH	180		DIP	-45.5	
STARTE	a a	Sept. 24,	1987	FINISHED	Sept. 2	6, 1987			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-44.5				
397	-44.0				

HOLE NGMZ-87-14 SHEET NO.1 0f 7
REMARKS Claim #861517

oggen by Eric Timoshenko

FOOTAGE	DESCRIPTION		SAMPLE					ASSAYS				
FROM 10	DESCRIPTION	NO.	SUĽPH- IDES	FROM	FOOTAGE TO	TOTAL	30	યુ	AU OZ/TON	Check oz/ton		
0 81.4	Casing											
81.4 120.9	Metagreywacke - light to medium grey, fine to medium grained, moderately well foliated (angle to core axis = 55-60°) Average Modes Framework 75% Matrix 25% Quartz 70% Felsics 50% Feldspar 30% Biotite 50% - mostly medium grained wacke with a uniform texture - locally silicified with up to 10% quartz porphyroblasts - fracturing and quartz-carbonate veining generally minor - zero to trace disseminated pyrite 86.9 - 87.5 - 1/4" wide quartz-carbonate vein carrying 1-2% pyrite 99.2 - 2" wide brecciated section; quartz-carbonate matrix, limonite staining, no visible sulphides 102.5 - 107.0 - blocky, broken core; rounded granitic and volcanic fragments; core recovery 1.3' over 4.5' 108.0 - 120.5 - several sections of blocky, broken core; recovery about 56%	19831 19832 19833 19834 19836 19837 19838	1-2% tr - -	90.0 96.0 99.5	87.8 92.1 98.0 100.5	2.0 1.0 2.1 2.0 1.0			.001 .001 .001 .002 .003 .002			

.

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-14 SHEET NO. 2 OF 7

+ 001 A G	GE	DESCRIPTION	1		SAMP	E	100000		ASSAYS		-
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	TOTAL		AU TON	Çħēçk	
	160.2	Mafic Metavolcanics - medium to dark green, fine grained, weakly foliated (angle to core axis = 65-75°) Average Modes Amphibole 75-80% Plagioclase 15-20% Chlorite 0-5% Pyrite and Pyrrhotite - trace to 1% - mostly fine grained amphibole and plagioclase, uniform texture; locally amphibolitic - quartz-carbonate veining common; most veinlets 1/8" wide, some up to 3/4" wide - trace to 1% pyrrhotite, pyrite and chalcopyrite (in order of abundance); a few very small stringers also occur; sulphides are common in the quartz-carbonate veinlets 121.1 - 4" wide granitic dike, pink colour, medium grained, equigranular Average Modes Quartz 50-55% Plagioclase 40-45% Biotite 3-5% - amphibole inclusions, no visible sulphides 122.3 - 2" wide granitic dike, as per above 124.5 - 126.6 - several narrow (1-2") biotite rich sections	19839 19840 19841 19842 19843 19844 19845 19848 19849	trr trr trr trr trr trr trr	129.9 122.5 124.5 126.6 129.0 131.2 132.7 134.2 137.0 139.5 142.0	122.5 124.5 126.6 129.0 131.2 132.7 134.2 137.0 139.5 142.0	1.6 2.0 2.1 2.4 2.2 1.5 1.5 2.8 2.5 2.0 1.0		.002 .001 .002 .001 .002 .002 .002 .003		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-14 SHEET NO. 3 Of 7

FOOTAGE	DE SCRIPTION			SAMPL				ASSAYS		
FROM 10	DESCRIPTION	110	SUL PII IDE S	FROM	FOOTAGE TO	TOTAL	·	07 AU	Check	
160.2 179 179.9 181	- basic description as per above - locally silicified with up to 10% quartz-eye porphyroblasts Pelitic Metasediments - dark brown to dark green, medium grained, very well foliated (angle to core axis = 65-70°) Average Modes Biotite 60% Chlorite 40%	19850 19851 19852 19853 19854 19856 19857	tr tr tr 1% tr	143.0 145.0 148.0 149.8 152.8 156.0 158.2 160.2 169.0 177.0	148.0 149.8 152.8 156.0 158.2 160.2 163.2 172.0	3.0 3.0 1.8 2.0 3.2 2.2 2.0 3.0 3.0 2.9		.002 .001 .003 .003 .003 .004 .003 .001		
181.5 263.	Pyrite trace - biotite-chlorite schist - minor euhedral pyrite crystals 179.9 - 181.3 - 4" wide quartz-carbonate vein with trace disseminated pyrite Ultramafic Metavolcanics 181.5 - 188.4 - light green, medium grained, well foliated (angle to core axis = 65-70°) Average Modes Talc/Serpentine 80-85% Chlorite 15-20% Pyrite trace - 1%	19860 19861 19862 19863	tr tr	179.9 181.5 183.5 186.0		2.0 2.5 2.4		.002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-14 SHEET NO. 4 OF 7

FOOTAG	GE	TO LEADURE AND A DESCRIPTION OF THE SECOND STREET, AND A SECOND STREET,			SAMPI	E			**************************************	ASSAYS		
FROM	10	DESCRIPTION	110	" SULPH IDES	FROM	FOOTAGE	TOTAL	:	7.	AU TON	Check T	
		 finely foliated talc-chlorite schist shear zone several narrow sections (1-3" wide) of very incompetent schist (loosely foliated and clayey) 188.4 - 263.8 - light green to grey-green, medium grained, 										
		massive to weakly foliated Average Modes Amphibole 50-60% Plagioclase 5-10% Talc/Serpentine 20-25% Chlorite 10-15% Magnetite 2-5%										
		 weakly foliated assemblage of dark grey amphibole and chlorite with interstitial talc and serpentine grains fracturing and quartz-carbonate veining is very minor minor talc-rich bands up to 3/4" across 	19864		188.4	190.4	2.0			.003		
		192.8 - 193.3 - biotite schist - gradational into metavolcanics at both contacts	19865	-	192.6	196.1	3.5			.002		
		198.2 - 2" wide granitic dikelet, description as per above - 6" wide section of biotite-chlorite schist on either side of dike	19866	-	197.6	199.1	1.5			.002		
_ANGRIGGES = TOPONTO = 386.1.68		256.0 - two 1/4" wide quartz-carbonate veinlets with trace pyrite	19867 19868 19889 19890 19869 19870 19871 19872	-	207.0 217.0 222.0 230.0 238.0 245.0 251.0 256.0	220.0 224.0 233.0 341.0 248.5 253.0 257.0	3.0 3.0 2.0 3.0 2.5 2.0 1.0			.002 .002 .003 .003 .002 .002 .004 .002		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-14 SHEET NO. 5 OF 7

100	IAGI	CONTROL OF COLUMN CONTROL OF COME AND ADDRESS OF THE COLUMN COLUM			SAMPL	E		 ASSA	Y S	
FROM	10	DE SCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	TOTAL		"Chęck"	
263.8	327.9	Mafic to Ultramafic Metavolcanics - medium grey to pale grey-green, fine to medium grained, massive	19874 19875		263.8 273.5	267.0 275.5		.00	4	
		Average Modes Amphibole 50-65% Plagioclase 15-20% Serpentine 5-15% Talc 1-15% Magnetite 2-5% Chlorite 0-5%								
		 general appearance is that of a dark grey green, massive mafic volcanic; talc occurs mostly as fine interstitial grains and occasionally as bands and stringers of almost pure talc quartz-carbonate veining very common; most veinlets are less than 1/8" wide sulphides are rare, both in the host rock and the veinlets 								
		297.7 - 280.4 - granitic dike, description as per above - 1" wide section of biotite-chlorite schist at both contacts	19876	-	279.6	281.1	1.5	.00	3	
		285.5 - two 1/2" wide quartz-carbonate veinlets - no visible sulphides	19877	-	284.5	286.0	1.5	.00	3	
-CPC-C - 366-156		295.4 - 298.1 - schistose assemblage of chlorite and amphibole, possibly a shear zone - entire section is weakly carbonatized - 295.7 - dull purple mineral, likely fluorite, and trace pyrite in a quartz-carbonate veinlet - flakes of a copper-red micaceous mineral occur near upper contact (altered mica?)	19878	tr	295.4	298.1	2.7	.00	3	
), - vangeroges - vangeroges			19879	-	302.6	306.5	3.9	.00		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-14 SHEET NO. 6 of 7

F001	AGE	DE SCRIPTION			SAMPL			1	ASSAYS		
FROM	10	W. SCRIPTION	110	501 PH 1DE S	FROM	FOOTAGE	TOTAL	I I	AU TON	Check	
		315.6 - stringers of magnetite 1/8" wide in a talc-rich section - trace disseminated chalcopyrite found adjacent to stringers	19881) tr	315.0	316.0	1.0 3.5		.003		
	! 	326.9 - 327.9 - well foliated section of chlorite + biotite + talc schist at contact - angle to core axis = 50-60°	19882	-	326.9	327.9	1.0	1	.003		
327.9	330.4	Metagreywacke - basic description as above 329.6 - fracture coating of carbonate with minor pyrite	19883	tr	327.9	330.4	2.5		.005		
330.4	331.6	Mafic Metavolcanics - chlorite (+ amphibole) schist, well foliated - biotite and quartz-carbonate veinlets common	19884	-	330.4	331.6	1.2		•004		
331.6	373.3	Felsic Intrusive (Granite) - granitic material similar to that found in the dikes above; pink colour; medium grained; equigranular; massive	19885	tr	331.6	334.6	3.0		.003		
		Average Modes Quartz 40-50% Plagioclase 25-35% K-Feldspar 5-10% Biotite 5-10% Sericite 2-5%									
		- fairly uniform granite, finer grained near contacts - a few very thin quartz-carbonate veinlets; fractures are common and are often lined with amphibole and trace pyrite									

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-14 SHEET NO. 7 OF 7

FOOTAGE	DESCRIPTION			SAMPL	E		}		ASSAYS	
FROM TO	OCSCRIPTION	110	501 PH	FROM	FOOTAGE	TOTAL		[·	AU OZ TON	Check 1
	339.5 - 340.3 - intercalation or xenolith of biotite-chlorite schist - carbonatized; trace pyrite	19886	tr	339.5	340.5	1.0			.003	
	334.3 - 3" wide quartz vein or pod; no visible sulphides	19887	-	343.8	344.8	1.0			.002	
		19888 19891 19892 19883	1%	347.0 356.3 362.0 369.8	357.3 364.5	3.5 1.0 2.5 3.5			.003 .001 .002 .002	
373.3 381.5	Mafic Metavolcanics - very similar to mafic volcanics found between 120.9 and 160.2 - dark green, fine grained, weakly foliated (angle to core axis = 65-70°) - fine grained amphibole and plagioclase with minor chlorite - trace disseminated pyrrhotite and pyrite									
	373.3 - 376.7 - section below granite contact rich in biotite (up to 30%)	19894 19895 19896	tr	373.3 377.0 379.1	379.1	3.7 2.1 2.4			.002 .001 .002	
381.5 397.0	Metagreywacke - basic description as per above - light grey, medium grained, well foliated (angle to core axis = 70-80°) - fracturing and quartz-carbonate veining minor	19897	•	381.5	384.8	3.3			.002	
	384.8 - 385.7 - granitic dike similar to above - trace disseminated pyrite	19898	tr	384.8	385.8	1.0			.002	
	394.6 - 397.0 - silicified section with up to 10% quartz porphyroblasts (most less than or equal to 1/4")	19899	-	392.5	395.5	3.0			.001	
397.0	E.O.H. Casing Pulled					į	: .			
			İ	j						

NAME OF PROPERTY <u>Santa Mar</u> NOLE NO. <u>SMZ-87-15</u> LENG		FOOTAGE	DIP	AZIMUTH	FOOTAGE	
	TH					Ì
OCATION 32+00W 6+04S						ĺ
ATITUDE DEPA						ľ
LEVATION AZIMI				1		ĺ

HOLE NO. SMZ-87-15 SHEET NO. 1 of 1

REMARKS Claim #861517

Summary Log

LOGGED BY B.A. Huston

DIP AZIMUTH

001	AGE				SAMP				A	SSA		
ROM	10	DESCRIPTION SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	36	%	OZ/TON	Check oz/10N	
0	111.8	Casing										
11.8	116.4	Pelitic Metasediment										
16.4	119.2	Quartz Feldspar Porphyry									:	
19.2	131.7	Pelitic Metasediment				·						
	131.7	END OF HOLE										
		Hole lost Casing pulled										
									i. Il:			
									t:			

F DRM 1

NAME C) F	PROPERTY	Santa	Maria	Zeen	el Lake			
HOLE N	٥.	SMZ-87-19	<u> </u>				 		
LOCATIO	ЭН	32+00W	6+045				 		
LATITUE									
ELEVAT	ю			AZIMUT	н	180°	 DIP	45°	
STADTE		Sept. 24,							

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HOLE NO. SMZ-87-15 SHEET NO. 1 Of 2
REMARKS Claim #861517

B.A. Huston

FOOT	TAGE	DESCRIPTION			SAMP	LE			A	S S A		
FROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL.	76	¥	AU OZ/TON	Check oz/Ton	
0	111.8	Casing										
111.8	116.4	Pelitic Metasediment - light to medium green, foliated at 50° to the core axis										
		Average Modes: Quartz 50% Chlorite 70% Biotite 15% Amphibole 5% - unit includes trace disseminated pyrrhotite - grades towards a quartz wacke in some places										
116.4	119.2	Quartz Feldspar Porphyry - medium to dark grey, 1/16" phenocrysts, in a very fine grained ground-mass, very weak foliation at 50° to the core axis Average Modes: Phenocrysts 20-25% Quartz 60% Feldspar 40%	19901	tr	116.4	119.2	2.8			.001		
20 - 30 - 10 - 10 - 10 - 10 - 10 - 10 - 1		Groundmass 75-80% - very fine grained, siliceous, trace pyrite										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-15 SHEET NO. 2 OF 2

1001	AGE	DESCRIPTION]		SAMPL					ASSAYS		
FROM	10	DESCRIPTION	NO.	5 SULPH IDES	FROM	FOOTAGE TO	TOTAL	,	*.	AU D7 TON	Check 10N	
119.2	131.7	Pelitic Metasediment - typical, as above - moderately foliated at 50° to the core axis - 123.5 - 1/2 inch quartz vein at 50° to the core axis, trace pyrite along the contact - 125.7 to 125.9 - quartz vein (possibly a pod) - 127.5 to 127.7 - quartz vein at 55° to the core axis - 129.0 to 129.2 - quartz vein at 60° to the core axis	19902 19903 19904 19905 19906 19907	tr tr tr tr	119.2 123.0 124.0 125.2 126.2 127.3 129.3	124.0 125.2 126.2 127.3 129.3	1.0 1.2 1.0 1.1			.001 .001 .001 .002 .001 .001		
	131.7	END OF HOLE Hole lost when overburden encountered again at 131.7 feet. Hole lost due to caving. Began Hole SMZ-87-15B from same location.										

NAME OF	PROPERTY	Santa	Maria Zee	mel Lake			
HOLE NO.	SMZ-87-15B	1	ENGTH	162.0	-		
LOCATION	32±00W	6±045					
LATITUDE			DEPARTUR	E		_ 	
ELEVATIO	N Sept. 26,		ZIMUTH	180°	DIP	-45°	_
CTABTED	Sept. 26,	1937		Sept. 28.	1987		

FOOTAGE	DIP	AZIMUTH	F00TAGE	DIP	AZIMUTH

HOLE NO. MZ-87-15B SHEET NO. 1 of 1

REMARKS Claim #861517

Summary Log

LOGGED BY B.A. Huston

FOOT	AGE	DESCRIPTION			SAMP	L E			A	S S A '		
FROM	10	SUMMARY LOG	NO.	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	¥	%	AU OZ/TON	Check oz/TON	
0	113.6	Casing										
113.6	116.3	Quartz Feldspar Porphyry	1			:						
116.3	130.9	Pelitic Metasediment				i		 				
130.9	142.0	Overburden										
142.0	162.0	Mafic Metavolcanic										
	162.0	END OF HOLE	- -									
		Casing pulled Hole lost										
ĺ	ļ		<u> </u>									
	}											

FORM I

NAME	OF	PROPERTY	Santa	Maria Zeeme	el Lake	9			
HOL E	NO.	SMZ-87-15B 32+00W	F. N. 1.	LENGTH	162.0				
LOCAT	ION	32+00W	6+045						
LATITU) D E			DEPARTURE	1000-			- AEO	
ELEVA				AZIMUTH	180		DIP .	-45	
START	EΟ	Sept. 26, 1	987	FINISHED	Sept.	28, 19	987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HOLE NO: SMZ-87-15B SHEET NO. 1 of 2

REMARKS Claim #861517

B.A. Huston

FOOT	IAGE	DESCRIPTION			SAMP	LE		ASSAYS				
FROM	0.1	D 2 3 C X 1 7 1 7 3 X	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	ૠ	36	AU OZ/TON	Check oz/TON	
0	113.6	Casing				, i						
113.6	116.3	Quartz Feldspar Porphyry - medium to dark grey; 1/16" phenocrysts in a very fine grained groundmass, massive	19909	-	113.6	116.3	2.7			.001		
		Average Modes: Phenocrysts 20-25% Quartz 60% Feldspar 40% Groundmass 75-80% - very fine grained, siliceous										
116.3	130.9	Pelitic Metasediment - light to medium green, foliated at 50° to the core axis	19910 19911	-	116.3 121.3	121.3 126.3	5.0 5.0			.001 .002		
000		Average Modes: Quartz 50% Chlorite 30% Biotite 15% Amphibole 5% - minor blue quartz eyes, grades towards a wacke in										
56		some places - 126.8 to 127.0 - quartz vein at 70° to the core axis	19912 19913		126.3 127.3	127.3 130.9	1.0 3.6			.001 .002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-158 SHEET NO. 2 of 2

1001	GL.	DESCRIPTION			SAMPL	E		ASSAYS			
ROM	10	DESCRIPTION	110	5ULPH		FOOTAGE				Au oz ton	Check
130.9	142.0	Overburden - minor recovery includes fragments of intermediate intrusive and jasper boulders		IDE S	FROM	10	101AL				
142.0	162.0	Mafic Metavolcanic - medium to dark green, coarse grained, massive Average Modes Amphibole 80% Plagioclase 15% Quartz 5% - trace disseminated pyrite (+ chalcopyrite ?) appears throughout the unit - minor quartz stringers	19914 19915 19916 19917	tr tr	142.0 147.0 152.0 157.0	157.0	5.0 5.0 5.0 5.0			.001 .001 .001	
	162.0	END OF HOLE Hole abandoned at 162.0' when overburden encountered. Overburden continues to 184 feet.									
							ĺ		900	9.1	

NAME OF	PROPERTY _	Santa	Maria Ze	<u>emel Lake</u>			
HOLF NO.	SMZ-87-16		LENGTH	497.0			
LOCATION	44+01W 8	8+305					
LATITUDE			DEPARTUR	E			
ELEVATION			AZIMUTH _	180	DIP	-46.0	
CTARTER	Sept. 26.	1987	FINICHED	Sept. 28.	1987		

FOOTAGE		AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-43 ⁰				
497	-42 ⁰				
		i		L	

SMZ-87-16 SHEET NO. 1 of 1
Claim #861517

Summary Log

LOGGED BY Eric Timoshenko

F 0 0	TAGE	DESCRIPTION			SAMP				Α	SSA		
FROM	10	SUMMARY LOG	ΝΟ,	SULPH- IDES	FROM	TO TAGE	TOTAL	2%	36	AU OZ/TON	OZ/TON	
0	90.3	Casing										
90.	3 155.0	Ultramafic Metavolcanics										
155.	0 228.6	Quartz Wacke					i					
228.	6 274.3	Ultramafic Metavolcanics										
274.	3 282.2	Mafic Metavolcanics										
282.	289.6	Metagreywacke										
289.	6 294.8	Felsic Intrusive - Granitic Dike							:			
294.	8 295.7	Metagreywacke										
295.	7 452.0	Mafic to Ultramafic Metavolcanics										
452.	0 458.6	Metagreywacke										
458.	6 462.3	Pelitic Metasediments										1
462.	3 468.6	Ultramafic Metavolcanics										
468.	6 479.5	Pelitic Metasediments										
479.	5 491.9	Mafic Metavolcanics										
491.	9 497.0	Ultramafic Metavolcanics										ļ
479.	497.0	END OF HOLE										
N4 ,												
-							İ					

NAME OF	PROPERTY	San	ta Maria	Zeemel	Lake	 		
HOLF NO	SMZ-87-16		LENGTH	497.0				
LOCATION		8+305						
			DEPARTU	RF A				
ELEVATION	1		AZIMUTH	130		DIP	-46.0	
	Sept. 26					-,,		

FOOTAGE		1 I	F00TAGE	DIP	AZIMUTH
200	-43 ⁰				
497	-42 ⁰				

HOLE NO. SMZ-87-16 SHEET NO.1 of 10
REMARKS Claim #861517

Eric Timoshenko

001	A G E	DESCRIPTION			SAMP	LE				. 5 S A '	
ROM	10	DESCRIPTION	NO.	SULPH IDES	FROM	FOOTAGE	TOTAL	26	¥	OZ/TON	Check oz/TON
0	90.3	Casing									
90.3	155.0	Ultramafic Metavolcanics - light grey green to grey, medium grained, massive to very weakly foliated Average Modes Amphibole 60-70% Serpentine/Talc 10-20% Plagioclase 5-10% Magnetite 2-5% - dark grey amphibole with interstitial talc and serpentine									
		 quartz-carbonate veining very minor 90.3 to 107.0 - fracture fillings and veinlets filled with talc and minor carbonate 	19677 19678 19679 19680 19681 19682	- - - -	91.0 97.0 100.0 103.0 112.0 121.5 130.0	100.0 103.0 106.0 115.0 124.5	3.0 3.0 3.0 3.0 3.0			.001 <.001 <.001 .001 .001 .001	
		130.6 to 131.5 - chlorite-talc schist - dark green, coarse grained, very well foliated Average Modes Chlorite 80% Talc 20% - possible shear zone; no visible sulphides	19684 19685 19686	_	138.0 146.0 152.0	141.0 149.0	3.0 3.0			.001 .002 .001	

NAME OF PROPERTY. Santa Maria Zeemel Lake

NOLE NO. SMZ-87-16

2 of 10

FOOTAGE				SAMPI	. E	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		ASSAYS		A Mininger
FROM 10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	TOTAL	1:	AU 07 TON	Check	
	153.1 to 155.0 - chlorite talc schist - as per above but not as coarse grained - 154.8 to 155.0 - narrow section of biotite-chlorite schist at contact									
155.0 228.0	Quartz Wacke - light to medium grey, fine to medium grained, moderately well foliated (angle to core axis = 55-70°) Average Modes Framework Quartz 80% Feldspar 20% Matrix 40% Felsics 50% Biotite 50%									
	- mainly fine to medium grained quartz with biotite along foliation planes - quartz-eye porphyroblasts common; average size ranges from 1/8 to 1/4" in diameter; locally up to 10% porphyroblasts - generally trace sulphide; very fine sulphide (pyrite) occurs inside or adjacent to some of the quartz porphyroblasts - irregular quartz-carbonate veinlets with diffuse contacts and a central core of chlorite (composite veins?); also see regular quartz-carbonate veinlets, most very narrow - fractures commonly lined with serpentine and minor carbonate, + pyrite	9688		155.0 160.7	158.5 163.2	3.5 2.5		.002		

FOOTAGE	OUTCOND TOO			SAMPI				ASSAYS	01	
FROM		110	" SULPH IDES	FROM	FOOTAGE TO	TOTAL		AU TON	Check	
	Average Modes Quartz 80% Plagioclase 10-15% Garnet 1-4% Biotite 0-1% - quartz has a saccharoidal texture - possibly an Aplite dike - tiny garnets scattered throughout unit and also in irregular bands 183.2 to 184.0 - Felsic Intrusive Dike - white to light grey, medium to coarse grained, massive	19689 19690 19691	trac	L	164.2	2.8 3.0	,	Au	Check oz ron	
_ANGPOGESCPONTO _ 366-1166	Average Modes Quartz 50-60% Plagioclase 20-25% K-Feldspar 5-10% Biotite 2-3% Garnet 1-2% Sericite 1-2% - mostly coarse grained quartz with large plagioclase and K-spar crystals - trace pyrite and chalcopyrite									

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-16 SHEET NO. 4 OF 10

1001	AGE	DESCRIPTION			SAMPL	.E	The second		ASSAYS		**************************************
FROM	10	DE SCHIP HON	110	SULPH IDES	FROM	FOOTAGE	TOTAL	·	AU OZ TON	Check 62 TON	
		185.7 to 186.1 - Felsic Intrusive Dike - coarse grained granitic dike, as per above	19693 19694		183.0 188.9	186.5 192.3			.001 .001		
		192.5 to 195.0 - Felsic Intrusive Dike - coarse grained granitic dike, as per above	19696	-	192.3 197.8 207.0	195.3 201.3 210.5	3.0 2.5 3.5		.001 .001 <.001		
		217.0 to 222.0 - several fractures lined with small pyrite crystals; serpentine and carbonate also present	19698 19699	trace trace	217.0 220.0 223.1	220.0 223.1			<.001 <.001 <.001		
		223.4 to 224.1 - Felsic Intrusive Dike - coarse grained granitic dike, as per above - pyrite common along fractures									
			19918	-	225.6	228.6	3.0	1	.001		
28.6	274.3	Ultramafic Metavolcanics		1				1			
		228.6 to 237.2 - light green, medium grained, well foliated (angle to core axis = 55-65°)	19919	-	228.6	237.2	8.6		<.001		
		Average Modes: Talc 80-85% Chlorite 15-20%							1		
		 sheared ultramafic volcanic finely foliated talc-chlorite schist poor core recovery (about 40%) 228.6 - 3" wide section of up to 20% biotite at upper contact 									
		237.2 to 274.3 - grey green to medium grey colour, medium grained, massive to very weakly foliated, minor banding	19920 19921 19922 19923 19924	-	237.2 247.0 251.5 258.6 263.2	240.0 250.0 253.0 261.6 266.7	3.0 1.5 3.0 3.5		.001 .001 .001 .001 <.001		
			19925	•	271.3	274.3	3.0		<.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-16 SHEET NO. 5 of 10

FOOTAGE.		1		SAMPL	E			ASSAYS		
ROM 10	DESCRIPTION	но	SUL PH IDES	FROM	FOOTAGE TO	TOTAL	l .	07 104	Check	
274.3 282.2 <u>M</u> a	Average Modes: Amphibole 50-60% Talc/Serpentine 20-25% Plagioclase 5-10% Chlorite 5-10% Magnetite 2-5% - weakly foliated assemblage of dark grey amphibole and chlorite with interstitial talc and serpentine grains - fracturing and quartz-carbonate veining very minor - irregular, talc-rich bands very common throughout section; some bands are composed of almost pure talc afic Metavolcanics - dark green, fine grained, moderately well foliated (angle to core axis = 60-70°) Average Modes: Amphibole 70-80% Chlorite 10-15% Plagioclase 5-10% Pyrite trace - finely foliated amphibole-chlorite schist - quartz-carbonate veining common; most veinlets are very narrow - narrow (1/8 to 1/4") cherty bands near lower contact	19927	trace trace	e 274.3 e 277.0 e 280.0	277.0 280.0	2.7 3.0 2.2		.001		

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO SMZ-87-16 SHEET NO. 6 of 10

percusarion of the co]				rates professor as
F001	AGE	DESCRIPTION		,	SAMPL]		ASSAYS	ehock-	
FROM	10		но	SULPH IDES	FROM	FOOTAGE 10	TOTAL		,	07 10N	Check 1	
282.2	289.6	Metagreywacke - medium grey colour, fine to medium grained, moderately well foliated (angle to core axis = 60-70°) Average Modes Framework 30% Quartz 60% Feldspar 40% Matrix 70% Felsics 60% Biotite 30% Chlorite 10% - mostly fine grained, uniform texture		IDES	FROM	10	10/AL					
		 quartz-carbonate veining minor quartz porphyroblasts also minor; locally they make up to 5% of the rock 282.7 to 283.1 - Felsic Intrusive Dike coarse grained granitic dike, as per above sericite up to 5%, no visible sulphides 	19929 19930 19931	l -	282.2 283.2 286.2	283.2 286.2 289.6	1.0 3.0 3.4			.001 .001 .001		
289.6	294.8	Felsic Intrusive - large, medium to coarse grained granitic dike, as per above - minor sericite	19932 19933		289.6 292.6	292.6 294.8				.001 .001		
							í					

NAME OF PROPERTY. Santa Maria Zeemel Lake.

F 00	TAGE	DESCRIPTION	1		SAMPL	E		 	ASSAYS		
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	TOTAL	 	Auton	Çheç,k	
294.8	295.7	Mctagreywacke - basic description as per above - no quartz porphyroblasts - intruded by two 3/4" wide granitic dikelets near lower contact	19934	-	294.8	295.8	1.0		.001		
295.7	452.0	Mafic to Ultramafic Metavolcanics 295.7 to 302.2 - light green, fine grained, very well foliated (angle to core axis = 50-60°) Average Modes Chlorite 70% Talc 30% - chlorite-talc schist, possibly a sheared contact - 295.7 to 297.5 - biotite rich bands, locally up to 30% biotite	19935 19936 19937	-	295.8 297.5 300.5	297.5 300.5 302.1	1.7 3.0 1.6		.001 .001 .001		
- ANGROGÉS - TORNONTO - 365. • 68		302.2 to 452.0 - mostly typical, massive, mafic volcanics - talc content varies widely; gradational variations between mafic and ultramafic metavolcanics throughout the unit - several narrow bands composed of almost pure talc - quartz-carbonate veinlets common, most less than 1/8" wide - sulphide (pyrite and minor chalcopyrite) occurs only in weakly silicified sections in trace amounts - magnetite occurs as large anhedral grains in several sections, giving the rock a mottled, spotty texture	19941 19942 19943 19944 19945 19946 19947	trace	331.0 339.1 347.0 354.5 366.0 376.0 382.7 389.8	305.0 312.5 326.0 334.5 342.6 350.5 358.0 370.0 386.7 393.8 407.1 421.2	2.9 3.0 3.5 3.5 3.5 4.0 4.0 4.0 4.0		.001 .001 .001 .001 .001 .001 .001 .001		

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-87-16 SHEET NO. 8 Of 10

1001	AGI				SAMPI	E			ASSAYS		Congress of
FROM	10	DE SCRIPTION	110	'S SUL PH IDES	FROM	FOOTAGE	TOTAL	.	AU oz ton	Check	
452.0	458.6	Matagrayyacka	19951 19952 19953 19954	-	426.0 437.0 443.5 448.5	441.0	4.0 2.5		.001 <.001 .001		-
452.0	450.0	- Similar to above wackes except for a much higher biotite content in the matrix (total biotite content around 20-25%) - moderately well foliated (angle to core axis = 50-60°) - gradational into lower pelitic sediments - trace pyrite, mostly along foliation planes	19955 19956	traci traci	452.0 456.0	456.0 450.6	4.0 2.6		.001		
458.6	462.3	- brownish-black colour, fine grained, well foliated (angle to core axis = 50-60°) Average Modes Biotite 90-95%	19957	-	458.6	462.3	3.7		<.001		
		Chlorite 5-10% - biotite + chlorite schist - very small quartz-carbonate veinlets - entire unit is weakly carbonatized									
71111											

85 - 10BCV10 - 366-1168

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO SMZ-87-16 SHEET NO. 9 of 10

FOO!	AGE	DE CEDIO.			SAMPL	. E			ASSAYS		
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE	TOTAL	,	OZ TON	Check oz ton	
462.3	468.6	Ultramafic Metavolcanics - light to medium green, medium to fine grained, well foliated (angle to core axis = 75-80°)	19958 19959		462.3 465.3	465.3 467.4	3.0 2.1		<.001 .001		
		Average Modes: Chlorite 55-65% Amphibole 20-30% lalc/Serpentine 10-15%									
		 mildly sheared ultramafic volcanic slickensided, serpentine rich shear planes common quartz-carbonate veining very minor 					:				
	1	467.4 to 468.0 - Felsic intrusive dike - coarse granitic dike similar to above; frequent biotite rich bands	19960	-	467.4	468.6	1.2	!	.001		
468.6	479.5	Pelitic Metasediments									
		468.6 to 471.0 - typical biotite + chlorite schist - well foliated angle to core axis = 55-65°	19961	-	468.6	471.0	2.4		<.001		
		471.0 to 479.5 - chlorite + biotite schist - carbonitized; thin veinlets and small grains of carbonate throughout section - trace pyrite - becoming increasingly biotite-rich near lower contact	19963	trac	471.0 474.0 477.0	474.0 477.0 479.5	3.0 3.0 2.5		.001 .001 .002		
					:						

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-87-16 SHEET NO. 10 of 10

F 001	AGE			***************************************	SAMPL	. E				ASSAYS	
FROM	10	DESCRIPTION	110	* 501 PH		FOOTAGE		1	T	AU TON	Check
479.5		Mafic Metavolcanics - finely foliated amphibole-chlorite schist, similar to material between 274.3 to 282.2 - angle to core axis = 60-65° - some sections are particularly chloritic (zones of weak shearing?) - practically zero quartz-carbonate veining	19965 19966	IDES	479.5 488.9	483.5 491.9	4.0	•		<.001	
491.9	497.0	Ultramafic Metavolcanics - typical grey-green, medium grained, massive, talc-rich ultramafic, similar to material found between 90.3 to 155.0 - quartz-carbonate veining very minor	19967	-	491.9	495.9	4.0			.001	
	497.0	END OF HOLE Casing pulled									
									 	7	

NAME OF	PROPERTY Sant	a Maria Zeemel Lake			
HOLE NO.	SMZ-87-17	LENGTH 807.0			
LOCATION					
LATITUDE		DEPARTURE			
ELEVATION	N	DEPARTURE	_ DIP	-55	
STARTED.	Sept. 28, 1987	FINISHED <u>Oct. 3, 1987</u>			

	,	,	, ,		
FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-480				
400	-45 ⁰				
600	-44 ⁰				
807	-44 ⁰				

HOLE NO. MZ-87-17 SHEET NO. 1 of 1
REMARKS Claim #861517
Summary Log

LOGGED BY B.A. Huston

0 82.4	82.4	DESCRIPTION SUMMARY LOG			SAMPLE			ASSAYS				
Í	82.4		NO,	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	3.0	36	OZ/10N	Check oz/TON	
82.4	, , , , , , , , , , , , , , , , , , ,	Casing				,						
1	88.7	Mafic Metavolcanic										ļ
88.7	92.3	Quartz Wacke								<u> </u> 		í
92.3	103.2	Mafic Metavolcanic										
103.2	104.3	Quartz Wacke										
104.3	141.3	Mafic Metavolcanic										
141.3	150.6	Quartz Feldspar Porphyry										
150.6	191.7	Mafic Metavolcanic										
191.7	355.7	Quartz Wacke										
355.7	726.5	Ultramafic Metavolcanic										
726.5	755.7	Quartz Feldspar Porphyry										
755.7	769.9	Pelitic Metasediment										
69.9	807.0	Ultramafic Metavolcanic					1					
1	807.0	END OF HOLE									i	
		Casing pulled							:			
									į			

		<u>a Maria Zeemel Lake</u>	
HOLE N	o. SMZ-87-17	LENGTH 807.0	
LOCATIO	ON 32+00W 5+01S	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
LATITUD) E	DEPARTURE	
ELEVATI	ION	AZIMUTH <u>180⁰</u>	DIP55 ⁰
C**D***	Sept. 28, 1987	cureus Oct. 3,	1987

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-48°			***************************************	
400	-45 ⁰				
600	-440				
807	-44 ⁰				

HOLE NO. SMZ-87-17 SHEET NO. 1 OF 7
REMARKS Claim #861517

B.A. Huston

FOOT	A G E	DESCRIPTION		S A M P L E				ASSAYS				
FROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOT AGE TO	TOTAL	26	36	OZ/TON	Check oz/TON	
0	82.4	Casing										
82.4	88.7	Mafic Metavolcanic - coarse grained, medium to dark green, massive to weakly foliated at 65° to the core axis Average Modes Amphibole 60-65%										
		Plagioclase 20-25% Chlorite 5% Quartz 10% Pyrite trace										
		 trace pyrite is disseminated throughout the unit 86.7 to 88.7 - well foliated at 65° to the core axis, probable shear zone, heavily silicified 	19969	trace	86.7	88.7	2.0			<.001		
88.7	92.3	Quartz Wacke - light grey/green, poorly foliated at 50° to the core axis	19970	tr	88.7	92.3	3.6			.002		
		Average Modes: Framework 55-65% Quartz 95% Feldspar 5% Matrix 35-45% Quartz 75% Biotite 25% Pyrite trace										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-17 SHEET NO. 2 OF 7

100	LAGE.	DESCRIPTION			SAMPL	. E		ASSAYS		
FROM	10	DE SCRIP (10N	110	SUL PH IDES	FROM	FOOTAGE 10	. 107AL	 AU OZ YUN	Check	
92.3	103.2	Mafic Metavolcanic - typical, coarse grained, medium to dark green, moderately foliated at 50° to the core axis	19971	 	92.3			.002		
		 94.4 to 96.0 - abundant quartz stringers and fractures, 3-4% pyrrhotite and 1% chalcopyrite 100.0 to 103.2 - silicified, 1-2% disseminated pyrrhotite 	19972 19973 19974	-	94.4 96.0 100.0	96.0 100.0 103.2	1.6 4.0 103.2	.001 <.001 .001		
103.2	104.3	Quartz Wacke - typical, as above, trace pyrite	19975	trac	e 103.2	104.3	1.1	.001		
104.3	141.1	Mafic Metavolcanic - typical, as above, medium to dark green, fine to medium grained, massive to poorly foliated at 60° to the core axis	19977 19978		109.1 110.4		1.3 2.4	.001 <.001		
		- 109.1 to 110.4 - numerous fractures at low angles to the core axis with minor coatings of pyrite - 112.8 to 114.4 - fractures at low angles to the core axis and parallel to foliation, 1% pyrrhotite in massive blebs	19979	1	112.8	114.4	1.6	.001		
		- 117.5 to 117.6 - quartz stringers at 50° to the core axis	19980	-	117.0	118.0	1.0	.002		
		- 122.2 to 122.6 - quartz veinlets at 50° to the core axis	19981	-	121.9		1.0	<.001		
		- 131.5 - quartz veinlet at 35° to the core axis, minor epidote	19982 19983		131.1 137.0	132.1 141.1	1.0 4.1	.001		
9999. –										
0 / 000 - 1 / 000 00 - 1 / 000 00 - 1 / 000 00 - 1 / 000 00 - 1 / 000 00 00 00 00 00 00 00 00 00 00 00										
1	ļ				1					

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-87-17 SHEET NO. 3 of 7

100	1 ΛGE	DESCRIPTION	1		SAMPL				 ASSAY5	71	
FROM	10	DESCRIPTION	140	" SUL PH IDES	FROM	FOOTAGE TO	TOTAL	,	Au oz ton	Check	
141.1	150.6	Quartz Feldspar Porphyry - grey, 1/16" phenocrysts in a very fine grained groundmass, massive to weakly foliated at 50° to the core axis	19984 19985		141.1 146.0	146.0 150.6	4.9 4.6		.002 .002		
		Average Modes: Phenocrysts 30-40% Quartz 50% Feldspar 50% Groundmass 60-70% Quartz 90% Biotite 10% - trace pyrite appears on fracture surfaces									į
150.6	191.7	- typical, as above, medium to dark green, fine to medium grained - 150.6 to 152.1 - biotite-rich contact zone, abundant quartz stringers - 152.1 to 153.1 - quartz (+ carbonate) vein, trace pyrite - 153.7 to 154.1 - felsic dikelet, fine grained, equigranular, contacts at 50° to the core axis - 154.1 to 156.8 - minor brecciation and quartz stringers - 161.4 to 16 - quartz vein at 40° to the core axis - 172.2 to 172.4 - quartz vein at 45° to the core axis - 173.6 to 173.9 - felsic dikelet at 40° to the core axis	19986 17892 17893 17895 19987 19988 19989 19990	traci	150.6 152.1 153.1 154.1 156.8 160.9 167.0 171.4 172.4 173.4	153.1 154.1 156.8 160.9 161.9	1.5 1.0 1.0 2.7 4.1 1.0 4.4 1.0 1.0		.001 .001 .001 <.001 <.001 .001 <.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-17 SHEET NO. 4 of 7

1	f oo t	AGE	NOT COLORS TO THE PARTY OF THE			SAMPL	. E			ASSAYS		
FRC	эм]	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	TOTAL		o.AYon	Check	
			- 178.5 - trace disseminate pyrite and pyrrhotite - 186.1 to 191.7 - shear zone, numerous quartz stringers and veins	19992 19993 19994 19995 19996	- -	177.5 179.5 183.1 186.1 189.0	183.1 186.1 189.0	2.0 3.6 3.0 2.9 2.7		<.001 .001 <.001 <.001 <.001		
19	91.7	355.7	Quartz Wacke - light grey/green, coarse grained, massive Average Modes: Framework 60-70% Quartz 60-65% Feldspar 35-40% Matrix 30-40% Chlorite 90% Biotite 10% - trace disseminated pyrite									
. 4NG#DGES = "040N°C = 36668			191.7 to 196.5 - typical 196.5 to 207.5 - minor quartz stringers at random angles to the core axis - 202.8 to 204.7 - massive, very fine grained, 1% pyrrhotite 207.5 to 208.5 - heavily sheared, probably an ultramafic metavolcanic 211.5 to 212.3 - granitic dike, rich in potassium feldspar 212.3 to 288.2 - typical	19997 19998 19999 20000 17801 17896 17803 17804 17805 17808 17809 17810 17811 17812	tr tr 1 tr tr tr tr tr tr tr	191.7 196.5 199.3 202.8 204.7 207.5 208.5 211.4 212.4 213.7 223.2 232.5 247.0 255.9 265.4 274.7 284.3	199.3 202.8 204.7 207.5 208.5 211.4 212.4 213.7 217.9 227.9 237.2 251.7	4.8 2.8 3.5 1.9 2.8 1.0 2.9 1.0 4.7 4.7 4.7 4.6 4.6 4.6		<.001 .002 .002 .001 .001 .001 .002 .002		

NAME OF PROPERTY Santa Maria Zeemel Lake
HOLE NO. SMZ-87-17
SHEET NO. 5 of 7

SAMPLE ASSAYS
110 SULPH FOOTAGE . AU CHECK
e in 17813 0.5 288.3 291.5 3.2 001 001 17814 0.5 291.5 293.7 2.2 001 17815 0.5 293.7 298.5 4.8 001 17816 0.5 298.5 303.2 4.7 0001
te 17817 0.5 303.2 305.5 2.3 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
ted at
17824 - 359.0 360.8 1.8 .001 17825 - 366.2 370.6 4.4 .001 17826 - 376.0 380.6 4.6 .001 17827 - 385.6 390.3 4.7 <
17828 - 394.8 399.6 4.8

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-17 SHEET NO 6 OF 7

F001	AGE.	DESCRIPTION			SAMP1.		i			ASSAYS		
FROM .	70	OCSCRIP FION	ИО	SUL PH IDE 5	FROM	FOOTAGE TO	FO TAL			oz A ĮĄ,	Çheç,k	
			17835	13	437.0	442.0	5.0			.002	'	
	·		17836		442.0		4.3	1	ļ	<.001	1	
	.		17837		446.3	448.5	2.2		1	.001	' j	
1	'		17838		452.8		4.6		ļ	<.001		
1	•		17839	(- (466.2	470.9	4.7	1	Į.	.003	·	
ļ			17840		475.9		4.8	1	ļ	<.001	1	
	i i		17841		487.0		3.6	1		<.001	' }	
	·	- 490.6 to 506.0 - talc-poor section, minor biotite	17842		490.6	493.3	2.7	1	1	<.001	' <u>]</u>	
	1		17843		493.3	497.0	3.7	1		.001	· [
	1		17844		502.0		4.0	1	ļ	<.001		
		- 506.0 to 530.0 - very high talc content, up to 35%	17845		506.0		2.8	1	Į.	.001	1	
-			17846		512.7		4.6	1	l	<.001	']	
		520 0 Ac 540 0 1 1	17847		526.8		3.2	1	l	.001	·	
	į	- 530.0 to 549.8 - low talk content, rock is	17848		530.0		1.5	1	l	.002	1	
- 1	İ	predominantly chlorite and actinolite/tremolite here,	17849		536.2	541.0	4.8	()	Į ,	<.001		
	ļ	trace pyrrhotite	17850 17851		546.1		3.7 2.1	1	l .	.003	1	
1	-	- 549.8 to 568.4 - very high talc content	17851		549.8	551.9 560.4	4.7	1	Į.	<.001		
			17854		565.2	568.4	3.2	1	! ,	.001		
		- 568.4 to 569.4 - chlorite-tremolite-biotite schist, probable shear zone, minor talc	17854		568.4	569.4	1.0		!	.001		
		- 569.4 to 571.8 - typical ultramafic flow	17855	1 _ 1	569.4	571.8	2.4	1		.002	1	
	Ì	- 571.8 to 641.2 - unit appears to have a lower talc	17856		571.8	574.7	2.9	1	!	<.001	' l	
	1	content and a higher massive serpentine content.	17857		574.7	579.5	4.8	1	I ,	<.001	1	
		Unit grades towards a mafic metavolcanic with up to	17858		584.4	589.0	4.6	1	Į,	<.001	1	
		20% plagioclase locally	17859	-	593.6	598.3	4.7	1	!	<.001		
		• •	17860	-	602.9	607.7	4.8	1		<.001	- 1	
			17861		612.5		4.5	1	l ,	<.001		
1			17862				4.7	₹ 1	Į.	.001	1	
			17863		636.5		4.7	1	•	.001	1	
1		- 641.2 to 648.1 - contains large clots of massive	17864		641.2	645.9	4.7	1	Ι,	<.001	1	
		serpentine, possible subvolcanic or intrusive phase	17865	' - i	645.9	648.1	2.2	1	1	.003		
			1 1	1	1	'	1	1	1		1	
			1 1	1	t [1	i	1	١ ,			
			1 1	' 1	€ [1	i	1 1	١,			
				' 1	t I	1	1	1	₹		- 1	
				' }	t	` 	1	1	ŧ,			
			1 1	' i	!]	·	1	1	¶ i	1		
			1 1	' 1	1	·	į.	1	¶	1		
			1 1	1	t j	·	1	! }	t	ļ ļ	J	
ı	- 1		1 1	' ì	١ [•)	١.,	ıl		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-17 SHEET NO. 7 of 7

FOOTAGE	DICONOCIO	SAMPLE					ASSAYS			
FROM TO	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE	TOTAL			AU oz ton	Check
	- 648.1 to 726.5 - typical ultramafic metavolcanic, 2-3% disseminated euhedral magnetite. Moderately abundant quartz stringer, some with associate massive and asbestiform serpentine	17866 17867 17868 17869 17870 17871 17872		648.1 655.0 664.7 673.9 683.7 693.0 702.3	650.5 659.6 669.4 678.5 688.3 697.6	2.4 4.6 4.7 4.6 4.6 4.6 4.7			.001 <.001 <.001 <.001 .002 .001	
	- 726.1 to 726.5 - sheared contact	17873 17874 17875	-	716.4 720.9 725.5		4.5 4.6 1.0			.001 .003 .002	
726.5 755.	- typical, as above, massive, phenocrysts make up 20%	17876	-	726.5	730.2	3.7			<.001	
	of the unit - 730.2 to 731.5 - shear zone, ground core, potassium feldspar present	17877 17878 17879 17880 17881 17882		730.2 731.5 733.8 737.0 742.0 747.0	733.8 737.0 742.0 747.0 752.0	1.3 2.3 3.2 5.0 5.0			.001 .001 .001 .003 .002 <.001	
755.7 769.	Pelitic Metasediment - typical, as above, foliated at 40° to core axis, 1-2% pyrrhotite stringers	17883 17884 17885 17886 17887	1-2 1-2 1-2	752.0 755.7 757.0 762.0 767.0	755.7 757.0 762.0 767.0 769.9	3.7 1.3 5.0 5.0 2.9			.001 .001 .001 <.001 <.001	
769.9 807.	Ultramafic Metavolcanic - typical, as above, light grey/green, fine grained, massive	17888 17889 17890 17891	-	769.9 775.9 784.5 793.7	771.1 780.3 789.3 798.4	1.2 4.4 4.8 4.7			.002 .002 .002 .001	
807.	END OF HOLE Casing pulled									
								0./	201	

NAME OF	PROPERTY <u>Santa</u>	Maria Zeemel Lake		
HOLF NO.	SMZ-87-18	LENGTH 485.0		
LOCATION				
LATITUDE		DEPARTURE		
EL EVATIO	N	AZIMUTH 1800	DIP	<u>-45.5°</u>
STARTED	Sept. 28, 1987	FINISHED Sept. 30, 1987	,	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-46 ⁰				
485	-43 ⁰				
			1		ļ

HOLE NO. SMZ-87-18 SHEET NO. 1 of 1

REMARKS Claim #861517

Summary Log

LOGGED BY B.A. Huston

FOOT	AGE	D.C.C.D.L.D.Y.L.D.W.	SAMPLE							ASSAYS					
FROM	10	DESCRIPTION SUMMARY LOG	ΝО.	SUČPH IDES	FROM	FOOTAGE TO	TOTAL.	2%	જ	AU 02/10N	Check oz/TON				
0	116.8	Casing													
116.8	230.2	Ultramafic Metavolcanic													
230.2	285.9	Mafic to Ultramafic Metavolcanic													
285.9	301.4	Ultramafic Metavolcanic													
301.4	328.5	Pelitic Metasediment													
328.5	415.4	Ultramafic Metavolcanic													
415.4	420.1	Pelitic Metasediment													
420.1	485.0	Ultramafic Metavolcanic													
	485.0	END OF HOLE													
		Casing pulled							!						
	l														
						:									
	İ														
	Ì														

LONG

NAME OF	PROPERTY	_Santa	<u>Maria Zee</u>	<u>emel Lake</u>			
HOLE NO.	SMZ-87-1	.8	LENGTH_	485.0			
OCATION	44+00W	5+50\$					
LATITUDE			DEPARTIE	? E			
ELEVATION				180°		-45.5 ⁰	
	Sept. 28,	1987	FINISHED	Sept. 30,	1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-46				
485	-43 ⁰				

HOLE NO.SMZ-87-18 SHEET NO. 1 of 3
REMARKS Claim #861517

LOGGED BY B.A. Huston

FOOT	A G E	DESCRIPTION			5 A M P	L. E			Α	SSAY	/ S	
FROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	3,	8	oz/Yon	CIPECK	
0	116.8	Casing										
116.8	230.2	Ultramafic to Mafic Metavolcanic - grey/green, fine grained, poorly foliated at 60° to the core axis Average Modes: Chlorite 25-30% Amphibole 50-60% Plagioclase 10-15% Talc/Serpentine 5-10% Magnetite 1-2% - serpentine is predominantly massive, however much of it is asbestiform, occurring in small fractures, minor quartz stringers occur at random angles to the core axis	17897 17898 17899 17900 17901 17902 17903 17904 17905		116.4 125.7 135.4 144.7 153.7 163.4 172.6 186.8 196.3 201.1	130.6 139.9 149.3 158.6 168.1 177.4 191.6 201.1 204.5	4.5 4.6 4.9 4.7 4.8 4.8 4.8			.004 .003 .002 .002 .003 .003 .002 .002		
Ų.		 204.5 to 206.0 - increased quartz stringers containing euhedral magnetite crystals 208.4 to 210.3 - increased quartz stringers and serpentine-filled fractures with euhedral magnetite crystals 217.6 to 219.4 - randomly oriented serpentine and 	17907 17908 17909 17910	-	204.5 206.0 208.4	206.0 208.4 210.3	1.5 2.4 1.9			.001 <.001 .002		
20		quartz-filled fractures - 226.2 to 230.2 - quarz veinlets at very low angles to the core axis.	7911		226.2		4.0			.002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-18 SHELT NO 2 of 3

1001	AGE	DESCRIPTION			SAMPL					ASSAY5	X (1
FROM	10	OLSCRIPTION	110	SULPH IDES	FROM	FOOTAGE 10	TOTAL			ozAH,	Ç իգς,k
230.2	285.9		1	1							
	1	- green, fine grained, massive	17912 17913	-	230.2	238.9	4.1 4.6	1	1	.001	
1	}	Average Modes:	17914	-	238.9	243.7	4.8	1	1	.003	
		Amphibole 50-60% Chlorite 20-25%	17915 17916		243.7 248.6	248.6 253.4	4.9 4.8	1	Ţ	.002	
1		Plagioclase 15-20%	17917	-	253.4	258.1	4.7	1	Į.	.001	
		Serpentine 5% Magnetite 1%	17918 17919		258.1 262.9	262.9 267.8	4.8 4.9	f	Į.	<.001 .001	
		v	17919		267.8			1	1	.002	
		 unit contains numerous randomly oriented quartz stringers with offsets at intersections 	1 1	')	1	1		1			
	Ì	- 269.8 to 285.9 - amygdaloidal flow with minor	17921		269.4	272.9	3.5	1	Ţ	<.001	
1 1		quartz/serpentine stringers with trace pyrrhotite	17922	tr	272.9	277.8	4.9	1	1	.001	
			17923 17924		277.8 282.8	282.8 285.9	5.0 3.1	1	1	.002	
285.9	301.4	Ultramafic Metavolcanic	1 1	1	i i	1	1	1	1	1 1	
		 typical as above, high talc content, weakly brecciated, minor quartz (+ carbonate) stringers 	17925 17926		285.9	287.7	1.8 4.9	1	1	.002	
	ŀ	The second of th	17927	-	292.6	296.4	3.8	1	ļ	.003	
301.4	328.5	Pelitic Metasediment	17928	-	296.4	301.4	5.0	1	ŧ ,	.002	
		- green/brown, well foliated at 65° to the core axis	17929		301.4	305.9	4.5	1	!	.002	
		Average Modes:	17930 17931		315.6 324.9	320.3 328.5	4.7 3.6	1)	1	.001	
1 1		Chlorite 35-45%	11/931	-	324.9	J20.5	3.0	1	1	.003	
]]	}	Biotite 30-40%]]	'	'	` <u> </u>		1)	١ ,		
		Quartz 20-30% Talc 2-3%]	`	' 			1	1		
§			1 1	·			1	1)	١ .		
		- unit grades towards a wacke in some places		1	1	·		1	١ ,		
	-		1			'	1	1	!		
				1		' i	1	!	1		
<u> </u>			}	•				1	!	(
					Ì		}	1	\	1	
	ļ						1	1	1		
				·		ľ		1	!		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-87-18 SHEET NO. 3 of 3

F001	AGE	The Company of the Co			SAMPL			*	ASSAYS		
FROM	10	DE SCRIPTION	110	SHI PH IDES	FROM	FOOTAGE 10	TOTAL		o Aun	Check	
328.5	415.4	Ultramafic Metavolcanic - typical as above, grey, fine grained, talcose, foliated at 55° to the core axis, 0.5-1% pyrrhotite on foliation surfaces - 328.5 to 339.1 - shear zone, highly contorted foliations	17933 17934	0.5- 0.5- 0.5-	328.5 332.0 337.0 344.7	332.0 337.0 339.1 349.2	3.5 5.0 2.1 4.5		.001 .001 .001		
		- 366.1 to 368.1 - heavily sheared, minor biotite	7936 17937 17938 17939 17940 17941 17942	0.5-1 0.5-1 0.5-1 0.5-1 0.5-1	354.1 362.9 366.1 368.8 372.7 386.8 396.0	358.7 366.1 368.8 372.7 377.4 391.5 400.6	4.6 3.2 2.7 3.9 4.7 4.7		.002 <.001 .001 .002 .002 .002		
415.4	420.1	Pelitic Metasediments - chlorite - biotite schist, minor talc, trace pyrite, foliated at 65° to the core axis	7943 7944 7945		413.0 415.4 418.2	415.4 418.2 420.1	2.4 2.8 1.9		<.001 .001 .001		
420.1	485.0	Ultramafic Metavolcanic - typical, talcose, massive, fine grained, trace pyrrhotite	7946 7947 7948 7949 7950 7951	tr tr tr tr	420.1 432.5 442.1 456.6 465.8 475.2	422.8 437.4 447.0 461.1 470.4 480.0	2.7 4.9 4.9 4.5 4.6 4.8		<.001 .001 .001 .001 .001 <.001		
j	485.0	END OF HOLE									
- ANGES - 7000047 - 1356. 158		Casing pulled									

NAME C	DE PROPI	RTY	Santa Maria Z	<u>'eemel Lak</u>	<u>e </u>	
HOLE N	o, SMZ-	87- 1 9	LENGTH	353		
LOCATIO	N LAZW	4+97N		**		
LATITUE) E		DEPARTU	JRE		
ELEVAT	ION		AZIMUTH	180°	ĐIP	-45.5
STABTE	n Sept	. 30, 198	37	oct. 1.	1987	

FOOTAGE	DIP	AZIMUTH	F00TAGE	DIP	AZIMUTH
200 340	-39 ⁰ -38 ⁰				

HOLE NO. SMZ-87-19 SHEET NO. 1 of 1

REMARKS Claim #861514

Summary Log

LOGGED BY Eric Timoshenko

FOOTAGE	DESCRIPTION			SAMP	LE			A	5 5 A	Y 5	
FROM 10	SUMMARY LOG	NO.	SUĽPH- IDES	FROM	FOOTAGE TO	TOTAL	36	36	AU, OZ/TON	Check oz/Ton	
0 51.6 128.8 128.8 145.1 157.8 167.8 167.8 184.9 203.2 209.1 217.9 227.0 243.1 247.6 249.5 252.6	Pelitic Metasediments with Interbedded Chert Mafic Metavolcanics Felsic Metatuff Mafic Metavolcanics Ultramafic Metavolcanics Mafic Metavolcanics Ultramafic Metavolcanics Pelitic Metasediments Mafic to Intermediate Metavolcanics Mafic to Ultramafic Metavolcanics Pelitic Metasediments Ultramafic Metavolcanics Pelitic Metasediments Ultramafic Metavolcanics Pelitic Metasediments Ultramafic Metavolcanics Pelitic Metasediments Ultramafic Metavolcanics Pelitic Metasediments Ultramafic Metavolcanics Silicified Mafic Metavolcanics Silicified Mafic Metavolcanics Metagreywacke Metagreywacke Metagreywacke										

NAME OF	PROPERTYSanta	a Maria Ze	emel Lake	9		
HOLE NO.	SMZ-87-19	LENGTH	353			
LOCATION	L42W 4+97H					
LATITUDE		DEPARTUR	E			
ELEVATION		AZIMUTH_	180	'DIP	-45.5	
	Sept. 30, 1987					

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200 340	-39° -38°				

HOLE NO. _____ SHEET NO. _____ 1 of 12

REMARKS _____ Claim #861514

ogged by _____

F 0 0 1	AGE				SAMP	L E			A	SSA	Y 5	
FROM	10	DESCRIPTION	NO,	SUĽPH- IDES	FROM	FOOTAGE TO	TOTAL.	%	36	OZ/TON	Check oz/TON	
0	51.6	Casing										
51.6	128.8	Pelitic Metasediments with Interbedded Chert										
		51.6 - 74.2 - light green to grey green, fine grained, well foliated (angle to core axis = 50-55°), minor fine banding	12261 12262 12263	tr	52.0 56.5 66.0	60.9	3.0 4.0 4.0			.002 .001 .001		
		Average Modes: Chlorite 80-85% Sericite 5-10% Felsics 5-10% Pyrite trace										
		- chlorite + sericite schist - chert bands up to 1/4" wide compose 5-10% of the rock - entire section is weakly carbonatized; quartz-carbonate stringers common, most less than 1/8" wide - trace pyrite occurs in several sections - gradational into lower chlorite-biotite schist - most likely a sediment but this unit might possibly be interpreted as a mafic ash tuff - 71.0 - 74.2 - blocky, broken core	12264	•	71.2	74.2	3.0			<.001		

Santa Maria Zeemel Lake

NAME OF PROPERTY.

HOLE NO. SMZ-87-19

SHEET NO. 2 of 12

001	1 AGE				SAMPL	E	ر به صداری است الحریف			ASSAYS		$\overline{}$
FROM	10	DESCRIPTION	NO.	* SULPH IDES	FROM	FOOTAGE TO	TOTAL	`	,	AU OZ TON	Check	
		74.2 - 105.8 - chlorite-biotite schist with interbedded chert - light green to greenish-brown colour, medium grained, well foliated (angle to core axis = 50-55°), locally well banded	: :									
		Average Modes Chlorite 60-80% Biotite 20-40% Pyrite trace-1%										
		- chert bands comprise 10-15% of the rock; bands vary in width, most around 1/8" wide, some up to 1/2" wide - most chert bands are fairly dirty, with chloritic inclusions - pyrite occurs throughout the unit, in the chert bands especially										
		- 74.2 - 82.0 - blocky broken core	12265 12266 12267 12268 12269	tr tr tr	74.2 82.0 86.0 94.0 101.8	89.5 98.0	3.8 4.0 3.5 4.0 4.0			.001 .002 .002 .002		
		105.8 - 127.1 - chlorite-sericite schist, as per 51.6 - 74.2 - 116.5 - 2" wide quartz vein or pod, no visible sulphides	12270 12271 12272	tr	105.8 109.0 116.5	113.0	3.2 4.0 4.0			.001 .001 .002		
86 665 1 O NOTO: 1 CREATER TO TO TO TO TO TO TO TO TO TO TO TO TO												

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO _ \$MZ-87-19 _____ SHEET NO _ 3 of 12

1001	AGE	DESCRIPTION			SAMPL					ASSAYS		# Imput # 140 m
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE TO	TOTAL	<u>:</u>		o AYON	Сђеск	
		124.1 - 128.8 - folded section of chlorite-biotite schist with numerous narrow bands of interbedded chert (20-30% total chert) - well banded, most bands less than 1/8" wide - bands are generally irregular and discontinuous - shear fractures and minor S-folds	12273 12274		124.1 126.5					.001 .002		
128.8	145.1	Mafic Metavolcanics						ļ				
		- medium to dark green, fine to medium grained, well foliated (angle to core axis = 60-65°) moderately well banded - silicified chlorite schist - concordant quartz-carbonate stringers and lens shaped pods compose 10-20% of the total rock - trace to 1% disseminated pyrite and pyrrhotite; minor euhedral pyrite	12275 12276 12277 12278 12279	1% 1% tr	128.8 131.8 135.0 138.0 141.9	135.0 138.0 141.9	3.0 3.2 3.0 3.9 3.2			.002 .002 .002 .002 .003		
145.1	157.8	Felsic Metatuff							 			
		<pre>- light grey to grey-green, fine grained, moderately well foliated (angle to core axis = 50-70°)</pre>	12280 12281		145.1 149.0	149.0 152.2	3.9 3.2			.003		
		Average Modes Chlorite 50-60% Quartz 35-45% Sericite 2-5%										
		 composed of irregular, discontinuous, streaky bands of quartz, chlorite, and minor sericite in a finely brecciated quartz-rich matrix (these could possibly be lithic fragments) 										

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-87-19 SHEET NO. 4 of 12

FOOTAGE	DECODERION		***************************************	SAMPL	. E				ASSAYS		
FROM 10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	7	``	o zAjý _m	Çheç,k	
	152.5 - 153.1 - quartz-carbonate vein; chlorite and sericite inclusions, no visible sulphides	12282	-	152.2	153.2	1.0			.002		
	153.1 - 157.8 - felsic tuff here has a more uniform texture, not as much streaky banding - finely foliated	12283 12284		153.2 155.7	155.7 157.8	2.5 2.1			.001 .002		j
157.8 167.8	Mafic Metavolcanics										
	157.8 - 162.2 - silicified chlorite schist, similar to above - well foliated, angle to core axis = 60-70° - quartz-carbonate stringers and pods make up 10-15% of the total rock - trace pyrite	12285	tr	157.8	162.2	4.4			.002		
	162.2 - 167.8 - chlorite-amphibole schist (chlorite 80%, amphibole 20%) - weakly foliated - quartz-carbonate veining not as frequent - 166.5 - 167.3 - biotite bands; up to 30% biotite in some sections - trace pyrite	12286 12287		162.2 164.8					.002 .002		
167.8 184.9	Ultramafic Metavolcanics										
	 light to medium grey, medium to coarse grained, weakly foliated (angle to core axis = 60-70°) Average Modes Talc/Serpentine 75-85% Chlorite 5-15% Magnetite 2-5% Pyrite trace 	12288 12289 12290 12291	tr tr	167.8 171.3 175.9 180.9	175.9	3.5 4.5 5.0 4.0			.002 .001 .002 .002		

NAME OF PROPERTY... Santa Maria Zeemel Lake
HOLE NO. SMZ-87-19 SHEET NO. 5 of 12

FOOT	I AGE		-		SAMPL	E				ASSAY5		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	``	*	. Ayon	Ҫӈ҃ҽ҇ҁҝ	
		 brecciated metavolcanics; irregular clots and distended, fragmented bands of mainly talc in a serpentine-rich matrix trace disseminated pyrite; quartz-carbonate veining absent becomes finer grained and less brecciated closer to lower contact 										
184.9	203.2	Mafic Metavolcanics		ļ				:				
		 medium to dark green, medium grained, well foliated (angle to core axis = 50-60°) 	12292 12293	-	184.9 191.0					.002 .001		
		Average Modes Chlorite 70-80% Amphibole 5-10% Biotite 5-10%	12294	tr	199.2	203.2	4.0			.001		
		 chlorite + amphibole + schist well foliated chlorite with scattered medium to coarse grained amphibole and biotite-rich bands quartz-carbonate veinlets common; some sections are weakly carbonitized 							:			
203.2	209.1	Ultramafic Metavolcanics	1									
		 dark grey, medium grained, weakly foliated (angle to core axis = 50-60°) essentially the same mineralogy as the ultramafic unit between 167.8 - 184.9, except for a greater amount of disseminated pyrite (1-2%) mostly fine grey talc with minor serpentine and flakes of chlorite along foliation surfaces 		1-2% 1-2%		206.2 209.1	3.0 2.9			.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-19 SHEET NO. 6 of 12

DETCRIBATION			SAMPL	.E				ASSAYS	
DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	7.	•	OZ TON	Check
- basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than									
 trace to 1% pyrite most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 	12207		200.1	212 1	2.0			001	
magnetite crystals			215.0	217.9	2.9			.001	
Mafic to Intermediate Metavolcanics									
- dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains of quartz and plagioclase(?)			217.9	222.4	4.5 4.6			.002	
	- basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals 12298 affic to Intermediate Metavolcanics - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals 12297 tr 209.1 magnetite crystals affic to Intermediate Metavolcanics - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals 12298 tr 209.1 212.1 217.9 215.0 217.9 216 to Intermediate Metavolcanics - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals 210.2 - 2" wide section with small euhedral magnetite crystals 210.2 - 2" wide section with small euhedral magnetite crystals 2298 tr 215.0 217.9 2.9 215.0 217.9 2.9 216.0 1014 2299 tr 217.9 222.4 4.5 221.0 222.4 227.0 4.6 222.4 227.0 4.6	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral 12297 tr 209.1 212.1 3.0 magnetite crystals 12298 tr 215.0 217.9 2.9 Ific to Intermediate Metavolcanics - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains	elitic Metasediments - basic description as per above (i.e. 51.6 - 128.8) - light green, fine grained, well foliated (angle to core axis = 50-55°) - chert bands minor - quartz-carbonate veinlets common, most less than 1/8" wide - trace to 1% pyrite - most likely a sediment, but this unit could possibly be interpreted as a mafic to intermediate ash tuff 210.2 - 2" wide section with small euhedral magnetite crystals - dark green, medium grained, moderately well foliated (angle to core axis = 50-55°), some sections are finely banded Average Modes Amphibole 60-70% Chlorite 15-20% Quartz 3-5% Plagioclase 3-5% Magnetite 2-5% Pyrite trace-1% - amphibole and chlorite with interstitial grains

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-87-19 SHEET NO. 7 of 12

FOOTAGE	DECEMBRION			SAMPL	.E				ASSAYS		
ROM 10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	7.	3	· AU	Check	
227.0 243.1	Mafic to Ultramafic Metavolcanics - gradational variations throughout unit between amphibole-chlorite rich mafic volcanics and talc-serpentine rich ultramafic volcanics - weakly foliated, angle to core axis = 50-60° - mafic sections often contain thin bands of biotite - trace disseminated pyrite throughout unit	12301 12302 12303 12304	tr tr	227.0 232.2 235.2 239.2	235.2 239.2	3.0			.002 .002 .002 .002		
247.6	Pelitic Metasediments - chlorite-biotite schist - moderately well banded; minor cherty bands - minor folding; some S-folds - trace pyrite and pyrrhotite	12305	tr	243.1	247.6	4.5			.001		
47.6 249.5	Ultramafic Metavolcanics - typical light to medium grey, talc-rich ultramafic similar to that found between 203.2 - 209.1 - trace disseminated pyrite; quartz-carbonate veining very minor	2306	tr	247.6	249.5	1.9			.001		
49.5 252.6	Pelitic Metasediments - chlorite-biotite schist, as per above - minor small folds, trace pyrrhotite and pyrite	2307	tr	249.5	252.6	3.1			.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-19 SHEET NO. 8 of 12

1001	I AGE.	DECONOLIGI			SAMPL	. E				ASSAYS	<u> </u>	
FROM	10	DESCRIPTION	NO.	∿ SULPH IDES	FROM	FOOTAGE TO	TOTAL	73	٠.	OZ TON	Check oz ton	
252.6	264.3	Ultramafic Metavolcanics										
		 typical light to medium grey, talc-rich ultramafic, similar to that found between 203.2 - 209.1 										
		254.1 - 259.8 - sheared section; several 1-3" wide sections of very incompetent, loosely foliated, clayey material	12308 12309 12310	tr	254.0 257.0 262.0	260.q	3.0 3.0 2.3			.001 .001 <.001		
264.3	270.3	Pelitic Metasediments								[
		 chlorite-sericite schist, grading into chlorite-biotite schist near lower contact minor cherty, argillaceous sections (medium grey colour, very fine grained, massive) trace pyrite and pyrrhotite minor folding, a few S-folds 	12311 12312		264.3 267.3		3.0 3.0			.001 <.001		:
270.3	276.9	Ultramafic Metavolcanics				!						İ
		 typical, light to medium grey, talc-rich ultramafic, similar to that found between 203.2 - 209.1 minor pelitic units, 1-2" wide; biotite-schist minor folding 	12313 12314		270.3 273.3		3.0 3.3			.001 .002		i
276.9	279.3	Pelitic Metasediments									. Î	
		 mostly chlorite schist, minor biotite well foliated, angle to core axis = 60-65° 	12315	tr	276.9	279.3	2.4			.002		:
		278.1 - 278.5 - large (up to 1/2" wide) euhedral pyrite crystals										
						ļ						İ

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-19 SHEET NO. 9 of 12

F 00	1 AGE	DESCRIPTION			SAMPL	E				ASSAYS	
FROM	10	UC.SUMP HUN	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	~,	*,	Auron	Check.
279.3	301.0	Metagreywacke									
		 light to medium grey to grey-green, fine to medium grained, moderately well foliated (angle to core axis = 60-65°), minor fine banding 									
		Average Modes Framework 60% Matrix 40% Quartz 60% Felsics 40% Feldspar 40% Biotite 40% Chlorite 20% Pyrite trace	12316 12317 12318	tr	279.3 283.7 292.5	282.3 286.7 296.5	3.0 3.0 4.0			.002 .002 .001	
		 mostly fine grained wacke; narrow sections of very fine grained, cherty sediments trace disseminated pyrite quartz-carbonate veinlets with alteration haloes common throughout unit; hematite is usually present in the veins and haloes, as well as minor epidote; rare rhodochrosite occurs in some of the wider veins; trace pyrite 									
		298.2 - 299.3 - 1/2 to 1" wide quartz-carbonate vein and alteration halo; trace pyrite 300.4 - 301.0 - biotite-rich section at lower contact; up to 30% biotite	12319	tr	298.0	301.0	3.0			.001	
, ANGRIDGES - TORONTO - 366-1168											

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-19 SHEET NO. 10 of 12

F 00	TAGE	DESCRIPTION			SAMPL	. E	<u> </u>			ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	3,	٠,	AU OZ TON	Check	
301.0	313.9	Mafic Metavolcanics 301.0 - 303.2 - chlorite schist, dark green, minor biotite bands - well foliated, angle to core axis = 60-70° - small quartz-carbonate veinlets common; entire section is weakly carbonatized - 301.6 - 302.0 - 1/4" wide quartz-carbonate	12320	tr	301.0	303.2	2.2			.001		
		veinlet with alteration halo; vein and halo contain hematite and minor epidote and rhodochrosite; trace pyrite 303.2 - 313.9 - moderately well foliated amphibole-chlorite + biotite schist Average Modes Amphibole 60-70% Chlorite 20-30% Biotite 2-5% Pyrite trace - biotite occurs as thin strands along foliation planes - section is weakly carbonatized; small quartz-carbonate veinlets common	12320		301.0	303.2				.001		
ANGPIGGES - TORONTO - 365.168		303.6 - 304.2 - 1/2" wide quartz-carbonate vein with alteration halo; vein contains hematite and minor epidote and rhodochorsite, trace pyrite; vein offset slightly by later fractures	12321		303.2	307.2	4.0			.001		
LANGPIDGE												

10011 2

NAME OF PROPERTY_Santa Maria Zeemel Lake

HOLE NO. _ SMZ-87-19 _____ SHEET NO. 11 of 12 _____

FOOT	AGE				SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE 10	TOTAL	7,	3	.AH.	Çþeç _i k	
313.9	325.9	Ultramafic Metavolcanics										
		 typical, light to medium grey, talc-rich ultramafic, similar to that found between 203.2 - 209.1 quartz-carbonate veining and fracturing generally minor 	12323	tr	313.9	317.0	3.1			.002		
		- trace disseminated pyrite 317.5 - large, euhedral pyrite crystals up to 1/2" wide	12324 12325		317.0 319.5					<.001 .001		
		324.0 - 324.8 - highly silicified section; numerous quartz veins, some with minor hematite and rhodochrosite; up to 1% pyrite	12326	1%	323.4	325.9	2.5			.002		
325.9	332.9	Silicified Mafic Metavolcanics	-									
		 this unit could possibly be interpreted as a felsic tuff or as impure chemical metasediments medium grey-green colour, very fine grained, weakly foliated dominantly grey-green chert with thin strands of chlorite along foliation planes entire section contains thin quartz-carbonate veinlets with narrow alteration haloes; hematite common in veinlets trace disseminated pyrite 	12327 12328		325.9 329.0					.001		
		331.3 - 332.9 - 7" wide brecciated quartz-carbonate vein and alteration halo, very coarse grained and vuggy	12329	1%	331.3	332.9	1.6			.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-19 SHEET NO. 12 OF 12

FOOTAGE				SAMPL	£				ASSAYS		
FROM TO	DESCRIPTION	NO.	% SUL PH	FROM	FOOTAGE	TOTAL	,	٦	AUTON	Check	
	 vugs filled with euhedral crystals of dark grey to almost black quartz up to 3/4" wide and pale yellow euhedral calcite crystals buff coloured breccia fragments, most <1/4" wide minor fine grained euhedral pyrite occurs as a drusy coating in vugs and along fractures 9" wide alteration halo (above vein only); white to buff colour, incompetent, crumbles easily, noticeably low specific gravity; possibly argillic alteration to clay minerals; also see small, irregular felsic fragments (possibly brecciated); carbonate in fractures only 				•						
332.9 353	<pre>Metagreywacke - basic description as per above (i.e. 279.3 -</pre>	12330 12331 12332 12333	-	332.9 338.5 344.0 350.0	337.0 341.5 348.0 353.0	4.1 3.0 4.0 3.0			.001 .002 .002 .002		
353	O <u>End of Hole</u> Casing pulled										
). <i>[</i>			

3 0 HM 1

NAME OF	PROPERTY	Santa Maria Zee	emel Lake		
HOLE NO.	SMZ-87-20	LENGTH	375.0		
OCATION	42+00W, 7+3	4N			
ATITUDE	Special Commission of the Comm	DEPARTURE			
LEVATION		DEPARTURE	180 ⁰	_ DIP _	-48.0°
				~~~	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
2001	-40°				
375'	-31°				
	,				

HOLE NO. SMZ-87-20 SHEET NO. 1 of 1
REMARKS Claim #861514
SUMMARY LOG

LOGGED BY B. A. Huston

F 0 0 1	AGE	DESCRIPTION	<u> </u>		SAMP				٨	SSA		
FROM	10	SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	36	ж	OZYTON	Check oz/Ton	
0	12.4	Casing										
12.4	31.4	Banded Iron Formation - 5-10% Gunerite, 1-2% pyrrhotite, trace garnet										}
31.4	39.7	Pelitic Metasediment				<u> </u>						
39.7	52.2	Mafic Metavolcanic									`	
52.2	53.1	Chert							!			ĺ
53.1	150.8	Pelitic Metasediment							<u> </u>			İ
150.8	158.4	Chert										
158.4	166.8	Pelitic Metasediment										l
166.8	176.6	Chert										
176.6	184.4	Pelitic Metasediment										ĺ
184.4	186.6	Chert										İ
186.6	313.9	Pelitic Metasediment					İ					
313.9	350.2	Mafic Metavolcanic			,							1
350.2	375.0	Pelitic Metasediment					,					
	375.0	End of Hole										1
		Casing pulled										

NAME	OF	PROPERTY	S	anta Maria	Zeemel Lake			
HOLE	NO.	SMZ-87-2	20	LENGTH	375.01			
		42+00W						
L A 1   1	UDE			DEPARTURE				
ELEVA	1100		and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra	AZIMUTH	180 ⁰	DIP	-48.0°	
	1	October 2	1007	******	October 3	1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200' 375'	-40° -31°				

HOLE NO. SMZ-87-20 SHEET NO. 1 of 5

REMARKS Claim #861514

LOGGED BY B. A. Huston

100	I A G E	DESCRIPTION	1	- 3	SAMP	L E		ľ	Α	SSA	/ S	
FROM	10	DESCRIPTION	NO,	SULPH- IDES	FROM	FOOTAGE TO	TOTAL.	36	36	oz/Yon	Shesk	
0	12.4 31.4											
		grunerite iron formation, banded at 50° to the core axis										
		Average Modes Bands Chert 40-50% Magnetite 30%	i				ļ					
		Magnetite 30% Chlorite 20-30% Accessories Grunerite 5-10%										
		Pyrrhotite 1-2% Pyrite trace Garnet trace Calcite trace					ļ					
		12.4 - 17.0 - typical, chert bands are heavily brecciated; 1-2% pyrrhotite occurs in magnetite bands, in lenses parallel to subparallel to bands and, in chlorite	12424	1-2%	12.4	14.2	1.8			.002		
7050470 <u>- 365. 1768</u>		bands, in randomly oriented stringers; grunerite occurs in minor amounts - 14.7 - grunerite band with chert fragment inclusion - pyrrhotite occurs in the strain shadow of the fragment	12425 12426		14.2 15.2	15.2 17.0	1.0			.001 .001		
ANGPOGES - TOPONTO		17.0 - 22.4 - grunerite makes up 10% of the unit, generally occuring as bands along the edges of larger chert bands - chlorite bands are very minor here	2427	1-2%	17.0	21.0	4.0			.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-20 SHEET NO. 2 of 5

F00	TAGE	DESCRIPTION			SAMPI.	E				ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE 10	TOTAL	`	•	AU 02 TON	Check	
		<ul> <li>most pyrrhotite occurs in bands parallel to other bands, however, minor amounts occur in cross-cutting fractures in the chert</li> <li>many of the chert bands appear to be boudinaged</li> <li>21.0 - 22.4 - heavily brecciated, vuggy section with 10% fracture filling pyrrhotite</li> </ul>	12428	10%	21.0	22.4	1.4			.004		
		22.4 - 25.4 - typical, with 5-10% grunerite, mainly on contacts between chert and magnetite bands - 3-5% pyrrhotite occurs both as bands (more commonly) and as cross-cutting stringers - 24.0 - vuggy section with euhedral blades of grunerite growing into the cavity, 1% calcite	12429 12430 12431	3-5%	23.4	23.4 24.4 25.4	1.0 1.0 1.0			.001 .001		
		25.4 - 31.4 - magnetite bands almost totally disappear, making up only 2-3% of all bands - bands of grunerite (more abundant here) probably represent a total replacement of magnetite, 2-3% pyrrhotite occurs both in bands and in cross-cutting stringers (approximately 30° to the banding)	12432	2-3%	25.4	28.3	2.9			.001		
		- 28.9 - vug with blades of grunerite growing into it, 1% calcite - 29.7 - 29.9 - 2-3% garnets occurring in chlorite schist bands as 1/32" grains; 2-3% associated pyrrhotite is disseminated within chlorite bands	12433 12434 12435	2-3%	29.3	29.3 30.3 31.4	1.0 1.0 1.1			.001 .001 .002		
31.4	39.7	Pelitic Metasediment - light green, well foliated at 45° to the core axis										
		Average Modes Chlorite 60-65% Quartz 15-20% Sericite 10-15% Biotite 5-10% Garnets 1%										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-20 SHEET NO. 3 of 5

FOOI	AGE				SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	٠,٢	7,	AU DZ TON	Check	
39.7	52.2	- minor chert fragments and bands occur parallel to the foliation - 32.8 - 33.3 - vuggy section with 20% infilling pyrrhotite  Mafic Metavolcanic - medium green, fine grained, moderately foliated at 50° to the core axis  Average Modes Chlorite 60-65% Amphibole 20% Plagioclase 15-20%	12436 12437 12438 12439 12440 12441	1 1 1	31.4 33.4 36.4 39.7 44.7 49.7	33.4 36.4 39.7 44.7 49.7 52.2	3.0 3.3 5.0 5.0			.002 .001 .002 .001 .001		
52.2	53.1	sericite and up to 25% biotite; silicified and	12442 12443 12444	tr tr	52.2 53.2 57.0 64.3	53.2 57.0 59.3 69.1	3.8 2.3			.001 .001 <.001 <.001		
		carbonatized by numerous randomly oriented stringers, trace sulphide, very minor chert bands (magnetite-rich) - 121.6 - 122.1 - quartz vein, brecciated, trace calcite	12445 12446 12448 12448 12449 12451 12452 12453	tr tr tr tr tr tr	73.9 83.2 92.4 106.7 116.3 121.0 125.4 134.8 144.2 149.0	78.5 87.9 97.0 111.5 121.0	4.6 4.7 4.6 4.8 4.7 1.1 4.6 4.6			<.001 <.001 .001 .002 .001 <.001 <.001 .001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-20 SHEET NO. 4 of 5

100	IAGE	DESCRIPTION			SAMPL	E		*****		ASSAYS	· · · · · · · · · · · · · · · · · · ·	
FROM	10	DESCRIPTION	NO.	5 SULPH IDES	FROM	FOOT AGE	TOTAL	•	1-4	AU oz Ton	Check	
150.8	158.4	Chert - light grey, minor recrystallization, minor sericite filled fractures, banded at 45° to the core axis - 150.8 - 151.2 - quartz vein	1249( 12456	i -	150.8 151.8	155.0	1.0			.001		
158.4	166.8	Pelitic Metasediment - typical, as above, green/brown, numerous randomly oriented quartz carbonate stringers	12457 12458 12459	∄ -	155.0 158.4 162.6	162.6	3.4 4.2 4.2			.001 .002 .001		
166.8	176.6	Chert - typical, as above, minor chlorite stringers, banded at 60° to the core axis	12460 12461		166.8 171.7		4.9 4.9			.001 .001		
176.6	184.4	Pelitic Metasediment - typical, as above, green/brown, numerous randomly oriented quartz carbonate stringers	12462 12463		176.6 180.0		3.4 4.4			.002 .002		
184.4	186.6	Chert - typical, as above, minor quartz stringers, banded at 50° to the core axis	12464	-	184.4	186.6	2.2			.002		
186.6	313.9	Pelitic Metasediment - typical, as above, foliated at 60° to the core axis, numerous randomly oriented quartz (± carbonate) veinlets - 197.0 - 207.0 - 75% core recovery  - 255.1 - 255.8 - biotite rich zone, 2% euhedral pyrite - 265.8 - 299.8 - more cherty, sericite	12466 12467 12468 12469 12471 12472 12474 12476 12478	- - - 2% - -	197.0 203.4 212.9 222.6 232.7 242.3 255.1 256.4 265.8 275.4 285.4 294.9 304.0	203.4 207.0 217.8 227.5 237.5 247.0 256.4 261.1 270.7 280.1 290.2 299.6 305.5	6.4 3.6 4.9 4.9 4.7 1.3 4.7 4.9 4.7 1.5			<.001 <.001 .001 .001 .001 .001 .003 <.001 .001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-20 SHEET NO. 5 of 5

F 00	TAGE	DESCRIPTION			SAMPI	E				ASSAYS		
FROM	10	DESCRIPTION	NO.	7 SULPH IDES	FROM	FOOTAGE	TOTAL	1 ,	٦.	AU 07 TON	Check	
		- 305.5 - 307.0 - shear zone, minor quartz veining	12479 12480	-	305.5 307.0	311.0	4.0			.002		
313.9	350.2	Mafic Metavolcanic - typical, as above, medium green, fine grained, massive, weakly silicified and carbonatized	12481 12482 12483 12484 12485	-	311.0 313.9 323.3 333.1 343.1	313.9 318.6 328.2 338.0 347.9				.002 .002 .002 .002		
350.2	375.0	Pelitic Metasediment - typical, as above, green/brown, foliated at 75° to the core axis, 1% pyrite, usually associated with quartz eyes or stringers, weakly silicified, possible intercalated mafic tuffs	12486 12487 12488 12489	-   1%   1%	347.9 350.2 352.9 366.7	350.2 352.9 357.3 371.2	2.3 2.7			.002 k.001 .001 k.001 .001		
	375.0	End of Hole						ĺ			:	
		Casing pulled	}					}				
ļ					i I			,				
ĺ												
							!					
	i										ļ	
				,								
									1/	Sal.	1	
ļ									111	1/1/1		0

NAME OF	PROPERTY	Santa Maria	Zeemel Lake	9	
	SMZ-87-21				
	42100W, 915		* 10.000 7 1 0		
LATITUDE		DEPARTO	IRE		<del></del>
ELEVATION		AZIMUTH	180	91P	-45
	October 3, 198				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-33 ⁰				
337	-27 ⁰				
					,

HOLE NO. SMZ-87-21 SHEET NO. 1 of 1
REMARKS Claim #861514
Summary Log

B. A. Huston

F 0 0 1	A G E				SAMP	LE				SSA	Y 5	
FROM	0 0	DESCRIPTION SUMMARY LOG	ΝО.	SÚĽPH- IDES	FROM	FOOTAGE TO	TOTAL	36	₹6	OZYTON	829881	
0	3.9	Casing										
3.9	38.1	Pelitic Metasediments										
38.1	109.0	Mafic Metavolcanic										
109.0	130.2	Pelitic Metasediment 109.0 to 116.1 - 5% pyrrhotite, 1% chalcopyrite, silicified, 2-3% garnets										
130.2	154.3	Mafic Metavolcanic										
154.3	160.0	Pelitic Metasediments	i			;						
160.0	269.9	Mafic Metavolcanic										
269.9	291.4	Banded Iron Formation										
291.4	306.3	Mafic Metavolcanic								ļ		
306.3	307.5	Chert										
307.5	322.7	Pelitic Metasediment										
322.7	328.3	Mafic Metavolcanic										
328.3	337.0	Pelitic Metasediment								E : :		
	337.0	END OF HOLE Casing pulled										
									}			

NAME OF	PROPERTY _	Santa	Maria Zee	mel Lake			
HOLE NO.	SMZ-87-21		LENGTH	337.0			
LOCATION	42+00W 9+	51N	the secondary of parts of the last secondary of parts.		-		
LATITUDE			DEPARTURE				
ELEVATION			AZIMUTH	180	DIP	-45	
STARTED.	October 3, 1	987	FINISHED	October	4, 1987		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200' 337'	-33 ⁰ -27 ⁰				

HOLE NO. SMZ-87-21 SHEET NO. 1 Of 4
REMARKS Claim #861514

LOGGED BY B. A. Huston

F 0 0 1	IAGE				SAMP	L E			,	SSA	Y 5
FROM	10	DESCRIPTION	ΝО.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	26	46	NOTAZO	82968.1
0	3.9	Casing									
3.9	38.1	Pelitic Metasediments - green/brown Average Modes	17952 17953 17954 17955	- - -	3.9 8.7 13.7 18.7	8.7 13.7 18.7 23.7	4.8 5.0 5.0 5.0	į		<.001 <.001 <.001 <.001	
		Quartz       35-40%         Chlorite       35-40%         Biotite       20-25%	17956 17957 17958	_	23.7 28.4 33.1	28.4 33.1 38.1	4.7 4.7 5.0			<.001 <.001 <.001	
		<ul> <li>heavily brecciated and chloritized along fractures, abundant randomly oriented quartz stringers with numerous offsets at intersections</li> </ul>									
38.1	109.0	- medium green, fine to medium grained, massive									
		Average Modes Amphibole 50-60% Chlorite 20-25% Plagioclase 20-25% Biotite 2-3%									
		38.1 to 50.0 - minor quartz stringers with associated biotite 50.0 to 54.3 - heavy quartz veining with 5-10% associated biotite	17959 17960 17961	-	38.1 47.2 50.0	42.5 50.0 54.3	4.4 2.8 4.3			<.001 .001 <.001	
										:	

NAME OF PROPERTY Santa Maria Zeemel Lake HOLE NO. SMZ-87-21 SHEET NO. 2 of 4

1001	AGE	Dritonia			SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	NO:	SULPH IDES	FROM	FOOTAGE	TOTAL	3.	•	OZ TON	Check	_
109.0	130.2	54.3 to 109.0 - minor randomly oriented quartz stringers with offset intersections - 70.5 to 75.9 - plag-phyric flow, coarser grained, possible subvolcanic  Pelitic Metasediment - typical, as above, well foliated at 55° to the core axis  109.0 to 116.1 - 5% massive stringer pyrrhotite with 1%	17962 17963 17964 17965 17966 17967 17968		54.3 66.8 70.5 73.1 75.9 85.8 95.7 105.2	57.0 70.5 73.1 75.9 79.0 90.6 100.5 109.0	2.7 3.7 2.6 2.8 3.1 4.8 4.8			.001 <.001 <.001 .001 <.001 .001 <.001		
130.2	154.3	associated chalcopyrite in a well foliated silicified section with 2-3% garnets - 111.0 to 111.1 - massive pyrite filled cavity  116.1 to 130.2 - typical, minor quartz (+ carbonate) stringers	17970 17971 17972 17973 17974 17975 17976 17977 17978 17979	15 6	110.6	111.6 116.1	4.5 4.5 3.5 4.9 1.2 3.6 4.7 4.5 4.7			<.001 .001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001		
154.3	160.0	Pelitic Metasediment  - typical as above, minor quartz (+ carbonate) stringers, 1-2% pyrrhotite and trace chalcopyrite, foliated at 50° to the core axis - 159.1 to 159.2 - pyrite and pyrrhotite filled cavity	17981 17982 17983 17984 17985	1-2 1-2	147.7 152.7 154.3 157.0 159.0	152.7 154.3 157.0 159.0 160.0	5.0 1.6 2.7 2.0 1.0			<.001 <.001 <.001 <.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-21 SHEET NO. 3 of 4

F 00	1 AGE	DESCRIPTION		***************************************	SAMPL	. E			<del></del>	ASSAYS		
FROM	10	OESCHIP HUN	NO.	% SULPH	FROM	FOOTAGE	TOTAL		•	AU oz ton	check	
160.0	269.9	Mafic Metavolcanic  - typical, as above, light to medium green, fine to medium grained, massive to poorly foliated at 55° to the core axis, trace pyrrhotite, trace chalcopyrite - 160.0 to 162.0 - quartz veins at random angles to the core axis - 167.7 to 168.3 - quartz (+ carbonate) veining at random angles to the core axis	17986 17987 17988 17989 17990 17991 17992 17993	tr tr tr tr tr tr	160.0 162.0 167.0 172.4 187.0 196.4 206.2 215.8 225.3 235.0	162.0 167.0 168.5 177.3 191.8 201.2 211.0	2.0 5.0 1.5 4.9 4.8 4.8 4.7 4.8			<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001		
		- 247.0 to 257.0 - broken up and fractured core, abundant quartz carbonate stringers, 2 to 3% fracture filling pyrrhotite, 65% core recovery - 257.0 to 269.9 - 2 to 3% fracture filling pyrrhotite, foliated at 60° to the core axis	17996 17997 17998 17999 12590	tr 2-3 2-3 2-3 2-3	244.4 247.0 252.0 257.0 261.7 266.7	247.0 252.0 257.0	2.6 5.0 5.0 4.7 5.0 3.2			<.001 <.001 <.001 <.001 <.001 <.001		
269.9	291.4	Banded Iron Formation  - banded chert, magnetite and chlorite schist, banded at 60° to the core axis  Average Modes Bands Accessories Magnetite 40-50% Chert 30-40% Chlorite 20% Pyrrhotite 2-3% Pyrite trace										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. __ SMZ-87-21 ______ SHEET NO. 4 of 4

F001	I AGE	DETCOLON	1		SAMPL	. E		<u> </u>		ASSAYS		
FROM	10	DESCRIPTION	NO.	'S SUL PH IDE'S	FROM	FOOTAGE	TOTAL	3	٠,	AU DZ TON	Check	
		269.9 to 275.1 - typical, pyrrhotite occurs in stratiform lenses and stringers		2-3 2-03	269.9 272.9		3.0 2.2			<.001 <.001		
		275.1 to 276.2 - ground core, probable fault or shear zone	12003	2-3	275.1	276.2	1.1			<.001		
		276.2 to 288.7 - typical, pyrrhotite occurs in lenses and stringers at random orientations	12009	2-3 2-3 2-3	276.2 280.0	284.0	3.8 4.0			<.001 <.001		
		288.7 to 291.4 - cherty section, 10-15% grunerite		2-3	284.0 288.7	288.7 291.4	4.7 2.7			<.001 <.001		
291.4	306.3	Mafic Metavolcanic - typical, as above, well foliated at 70° to the core axis, silicified and carbonatized by numerous randomly oriented stringers	12008 12009 12010 12011	tr tr	291.4 294.8 299.7 304.5	294.8 299.7 304.5 306.3	3.4 4.9 4.8 1.8			<.001 <.001 <.001 <.001	· [	
306.3	307.5	Chert - banded at 60° to the core axis, minor recrystallization, minor jointing perpendicular to the banding	12012		306.3	307.5	1.2			<.001		
307.5	322.7	Pelitic Metasediment - typical, as above, silicified and weakly carbonatized, minor thin bands of iron formation	12013 12014 12015 12016	- -	307.5 311.0 314.0 318.7	314.0 318.7	3.5 3.0 4.7 4.7			<.001 .002 <.001 .001		
322.7	328.3	Mafic Metavolcanic - typical, medium grained, massive, trace pyrite	12017 12018		322.7 325.5	325.5 328.3	2.8 2.8			<.001 .001		
328.3	337.0	Pelitic Metasediment - typical, as above, foliated at 65° to the core axis, minor quartz stringers	12019	-	328.3	333.0	4.7			<.001		
	337.0	END OF HOLE Casing pulled							i : :			
	3								\{\}\!	K	MAX	10

NAME OF	PROPERTY	inta Maria Zeemel Lake	
HOLE NO	SMZ-87-22	LENGTH 357.0	
LOCATION	18+03W 6+01I	<u> </u>	
1. A 1 1 1 1 1 1 1		DEPARTURE	
ELEVATIO	N	AZIMUTH 1800	DIP45
	Oct // 1987	concord Oct 7.	1987

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-410				
357	-38 ⁰				
		[			

HOLE NO. SMZ-87-22_{SHEET NO.} 1 of 1

REMARKS Claim #861513

Summary Log

LOGGED BY B.A. Huston

O O 1 A G E	0.5.6.5.0.1.0.1.0.11	}	SAMI	LE	ĺ		A	5 S A	Y 5
ом 10	DESCRIPTION SUMMARY LOG	NO. รูบู้ใ	PH FROM	FOOTAGE 10	TOTAL	ч,	16	OZYLON	8996
0 125.2 25.2 139.4 39.4 156.2 172.4 206.4 206.4 231.1	Pelitic Metasediment Ultramafic Metavolcanic Pelitic Metasediment Ultramafic Metavolcanic - disseminated pyrite and magnetite	12500 tr	182.7	187.4	4.7			0.070	
11.1 298.4 18.4 299.7 19.7 304.7 14.7 309.0 19.0 314.2 4.2 317.0	Pelitic Metasediment Ultramafic Metavolcanic Quartz Wacke - trace pyrite Ultramafic Metavolcanic Quartz Wacke Pelitic Metasediment	12523 tr	299.7	304.7	5.0			0.017	
7.0 334.6 4.6 339.1 9.1 343.7 3.7 354.3 4.3 357.0 357.0	Pelitic Metasediment Quartz Wacke Ultramafic Metavolcanic Quartz Wacke								

				<u>ta Maria</u>					
HOLE	NO.	SMZ-87-22	)	LENGTH .	357.	0			
LOCAT		18+03W							
FLEVA	пон			A 7 IM U T H	180°		DIP	45 ⁰	
START	LED _	Oct. 4, 1	987	FINISHED	Oct. 7	, 1987			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-410				
357	-38°				

HOLE NO. SMZ-87-22 SHEET NO. 1 OF 4
REMARKS Claim #861513

LOGGED BY B.A. Huston

F 0 0 1	AGE	DESCRIPTION			SAMP	LE			A	SSAY	· 5	
FROM	10		NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL.	ж	ж	OZHON	Sheek	
125.2	125.2 139.4	Casing  Pelitic Metasediment - green/brown, poorly foliated at 35° to the core axis	12491 12492	-	125.2 137.0	129.2 139.4	4.0 2.4			.002 .002		
		Average Modes Chlorite 30-40% Quartz 25-30% Biotite 20-30% Amphibole 10-15%  - very minor quartz stringers occur at random angles to the core axis										
139.4	156.2	Ultramafic Metavolcanic - grey/green, fine grained, foliated at 55° to the core axis	12493 12494	tr tr	139.4 152.8	143.4 156.2	4.0 3.4			.001 .001		
- 355: - 168		Average Modes Chlorite 75-80% Talc 10-15% Amphibole 5-10% Magnetite 1-2% - magnetite is disseminated throughout the unit, trace pyrite appears on foliation surfaces										
_AAGR_DGES — OPBONTO — 366.1.68												

NAME OF PROPERTY Santa Maria Zeemel Lake
HOLE NO. SMZ-87-22 SHEET NO. 2 of 4

FOOTAGE SAMPLE ASSAYS DESCRIPTION Check 7 SULPH -Au -FOOTAGE FROM 10 OZ TON IDE 5 FROM TOTAL 172.4 Pelitic Metasediment 156.2 - chlorite-biotite+amphibole schist, light green/brown, well foliated at 40° to the core axis - 157.0 to 159.0 - loss of core - 159.0 to 160.0 - fractured and broken core 12495 -156.2 160.0 3.8 .002 12496 -160.0 163.4 3.4 .001 12497 -163.4 167.4 4.0 .001 172.4 206.4 Ultramafic Metavolcanic 12498 -167.4 172.4 5.0 .001 - typical, as above, foliations are slightly 12499 tr 172.4 177.0 4.6 <.001 12500ltr contorted, trace disseminated pyrite 182.7 187.4 4.7 .070 12501 tr 192.3 197.0 4.7 .006 12502 tr 206.4 | 231.1 Quartz Wacke 201.5 206.4 4.9 .003 - grey/green, well foliated at 30° to the core axis h2503l -206.4 210.8 4.4 .003 12504 -214.9 219.5 4.6 .003 Average Modes 2505 -225.1 229.7 4.6 .003 12506 -229.7 231.1 Framework 30% 1.4 .003 95% Quartz Feldspar 5% Matrix 70% 85-90% **Ouartz** Chlorite 10-15% Sericite 1-2% 231.1 298.4 Pelitic Metasediment 12507 tr 231.1 234.7 3.6 .003 - typical, as above, green/brown, foliations highly 12508 tr 234.7 239.5 4.8 .003 contorted, ranging from parallel to perpendicular to 12509| tr 239.5 244.0 4.5 .003 the core axis, trace disseminated pyrite 12510 tr 248.7 244.0 4.7 .003 12511 tr 248.7 253.3 4.6 .004 12512| tr 253.3 258.0 4.7 .003 12513| tr 258.0 262.9 4.9 .003 12514 tr 262.9 267.5 4.6 .003 12515 tr 267.5 272.5 5.0 .003 112516 tr 272.5 277.4 4.9 .003

ANGRIDGES - TOBONTO - 366.1

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-87-22 SHEET NO. 3 of 4

F 001	LAGE	DESCRIPTION			SAMPL	. E	•			ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE 10	TOTAL	١	7,	OZ TON	Check	
			2517 2518 2519 2520 2521	tr tr tr	277.4 281.8 286.8 291.7 296.6	281.8 286.8 291.7 296.6 298.4	5.0 4.9			.008 .003 .006 .005 <.001		
298.4	299.7	Ultramafic Metavolcanic - chlorite tremolite schist, light green, fine grained, massive	2522		298.4	299.7				.007		
299.7	304.7	Quartz Wacke - typical, as above, some framework grains are somewhat coarser, trace pyrite, foliated at 60° to the core axis	12523	tr	299.7	304.7	5.0			.017		
304.7	309.0	Ultramafic Metavolcanic - typical, as above, high talc content, massive, trace pyrite	2524	tr	304.7	309.0	4.3			.002		
309.0	314.2	Quartz Wacke - typical, as above, 1% coarse euhedral pyrite cubes	2525 12526		309.0 311.2	311.2 314.2				.001 <.001		
314.2	317.0	Pelitic Metasediment - typical, as above, 2% disseminated pyrite, foliated at 30° to the core axis	2527	2	314.2	317.0	2.8			.001		
317.0	334.6	Quartz Wacke - typical, as above, foliated at 40° to the core axis, 1-2% pyrite usually in large cubes	12529 12530	1-2 1-2 1-2 1-2	317.0 320.2 325.0 329.6	325.0 329.6	4.8 4.6			.002 <.001 .001		
334.6	339.1	Pelitic Metasediments - typical, as above, foliated at 20° to the core axis, 1-2% pyrite	12532	1-2	334.6	339.1	4.5			.001		
			}									
	i											
1	ļ					1			ļ		1 1	

NAME OF PROPERTY.... Santa Maria Zeemel Lake

HOLE NO. SMZ-87-22 SHEET NO. 4 of 4

F 001	1 AGE	DETCRIPTION			SAMPL			ĺ		ASSAYS		
FROM	10	DESCRIPTION	NO.	% SUL₽H IDES	FROM	FOOTAGE TO	TOTAL	7,	*3	oAyon	Check	
339.1	343.7	Quartz Wacke - typical, as above, foliated at 40° to the core axis, 1-2% disseminated pyrite	12533	1-2	339.1	343.7	3.4			.001		
343.7	354.3	Ultramafic Metavolcanic - typical, as above, foliated at 50° to the core axis, 1% disseminated pyrite	12534 12535 12536	1 :	343.7 347.0 350.8	350.8	3.3 3.8 3.5			.002 .002 .003		
354.3	357.0	Quartz Wacke - typical, as above, foliated at 50° to the core axis								!		
	357.0	END OF HOLE Casing pulled										
00												:
2)							:					
200 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 -												
2									1	Me	M	7

NAME OF	PROPER	TY	Santa	Maria Z	eemel Lake	!		
HOLE NO.	SMZ-	<u>87-2</u>	3	LENGTH	477.0			
LOCATION	4+01	W	8+00N					
ATITUDE	•			DEPARTI	JRE			
LEVATION				AZIMUTE	1800	DIP	-45 ⁰	
					Oct. 9.			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-40°				
477	-26 ⁰				

HOLE NO.SMZ-87-23 SHEET NO.1 OF 1
REMARKS Claim #861512
Summary Log

LOGGED BY B.A. Huston

FOOT	I A G E	DESCRIPTION		· · · · · · · · · · · · · · · · · · ·	SAMP				۸	SSA		
FROM	10	SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE 10	TOTAL	¥	ж	OZ/TON	Check oz/TON	
0	102.4	Casing										
102.4	233.0	Wacke										
233.0	242.3	Mafic Metavolcanic			}							
242.3	277.0	Pelitic Metasediment										
277.0	343.4	Mafic Metavolcanic										
343.3	358.7	Pelitic Metasediment - 2 to 3% pyrrhotite, 1% pyrite										
358.7	391.9	Banded Iron Formation - 1 to 2% pyrrhotite, 5 to 10% grunerite	\							İ		
391.9	400.0	Mafic Metavolcanic										
400.0	462.2	Pelitic Metasediment										
462.2	469.2	Ultramafic Metavolcanic										
469.2	477.0	Pelitic Metasediment										
469.2	477.0	END OF HOLE Casing pulled									ĺ	
	Ì											

NAME OF	PROPERTY _	Santa Maria Z	Zeemel Lake		
HOLE NO.	SMZ-87-23	LENGTH	477.0		
LOCATION	4+01W 8	+00N	the annual manage production where the same of the		
LATITUDE		DEPARTU	RE		-:-0
ELEVATION	·	DEPARTU AZIMUTH	180	DIP	-45
	Oct 7 1	007	0.0 0 10	07	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	-40 ⁰				
477	-26 ⁰				
į	ļ	1 8	1		

HOLE NO. SMZ-87-23SHEET NO. 1 Of 4
REMARKS Claim #861512

LOGGED BY B.A. Huston

	AGE	DESCRIPTION			SAMP	L. E	i	ll .	,	S 5 A	
FROM	10		NO. S	UL PHI	FROM	FOOTAGE TO	TOTAL	r,	36	OZ/TON	Check oz/TON
0	102.4	Casing									
102.4	233.0	- light grey/green, very well banded at 45° to the core axis  Average Modes Framework Quartz Feldspar Feldspar Ouartz Ouartz S0% Matrix Quartz S0% Biotite 25% Chlorite 25%	12537 12538 12539 12540 12541 12542	tr tr tr tr	102.4 126.0 145.1 164.3 182.9 192.8	107.0 130.9 149.9 169.1 187.7 194.3	4.6 4.9 4.8 4.8 1.5			.001 .001 .001 .001 .002	
		- trace pyrite appears on minor fracture surfaces - 194.3 to 205.8 - larger quartz framework grains make up 10-25% of the rock	12543 12544 12545 12546 12547 12548 12549	tr tr tr tr tr	194.3 197.7 202.5 205.8 207.4 212.3 226.8	197.7 202.5 205.8 207.4 212.3 217.0 231.5	3.4 4.8 3.3 1.6 4.9 4.7			.001 <.001 <.001 <.001 .001 <.001	
233.0	242.3	Mafic Metavolcanic - grey/green, fine to medium grained, well foliated at 45° to the core axis Average Modes Amphibole 20-25% Chlorite 40-50% Plagioclase 25-30% Sericite 5%	12559 12551 12551 12552 12553	tr tr tr	231.5 233.0 235.4 240.1	233.0 235.4 240.1 242.3	1.5 2.4 4.7 2.2			.001 <.001 <.001 .002	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. - SMZ-87-23

SHEET NO 2 OT 4

EOO	LAGE	DE SCRIPTION		الروسية كالثالاة	SAMPL	.E	4 T T T T T T T T T T T T T T T T T T T			ASSAYS	<del></del>	
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	``	3	o AHL	Çheçk	
242.3	277.0	- some of the foliations have minor slickensides, these have trace associated pyrrhotite smears. Trace pyrrhotite also appears in minor crosscutting stringers  Pelitic Metasediment - green/brown, well foliated at 45° to the core axis  Average Modes Quartz 60% Biotite 20% Chlorite 15% Sericite 5%	12554 12555 12556 12557	-	242.3 245.0 263.1 272.9		1.7 5.0 4.6 4.1			<.001 <.001 <.001 <.001		
277.0	343.4	- predominantly mud and siltsized particles. Minor intercalations of wackes.  Mafic Metavolcanic - typical, as above, grey/green, fine grained, well foliated at 50° to the core axis	12558 12559 12560 12561 12562 12563	-	277.0 296.7 316.2 318.9 320.0 339.1	282.0 301.5 318.9 320.0 324.7 343.4	5.0 4.8 2.7 1.1 4.7 4.3			<.001 <.001 <.001 <.001 <.001		
343.4	358.7	Pelitic Metasediment - typical, as above, predominantly siltstone with lesser amounts of argillaceous layers. 2-3% pyrrhotite and 1% pyrite both in fracture fillings and coatings, trace garnets	12564 12565 12566 12567	3-4 3-4	343.4 347.0 349.2 353.8	347.0 349.2 353.8 358.7	3.6 2.2 4.6 4.9			.001 .002 <.001 .002		
358.7	391.9	Banded Iron Formation - banded chert, magnetite, chlorite schist, banded at 55° to the core axis	12568 12569 12570 12571	1-2 1-2	358.7 362.0 367.0 377.0	362.0 367.0 377.0 382.0	3.3 5.0 5.0 5.0			.002 .001 .002 .002		

1986 - OTOBOT - 386-1

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-23 SHEET NO. 3 Of 4

FOOTAGE	OF CONDIANA			SAMPL	. E		ASSAYS				
FROM 10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	``	۳,	o AU	Check	
	Average Modes Bands Chert 50-60% Magnetite 20-25% Chlorite 20-25% Accessories Disseminated Magnetite 10% Grunerite 5-10% Pyrrhotite 1-2% Calcite trace	12572 12573 12574	1-2 1-2	377.0 382.0 387.0	382.0 387.0 391.9	5.0 5.0 4.9			.002 .001 .002		
	<ul> <li>pyrrhotite occurs mainly as lenses and stringers parallel to the banding with minor crosscutting stringers. Minor crosscutting quartz (+ carbonate) stringers. Disseminated magnetite occurs in chlorite horizons and in gruneritic sections</li> </ul>										
391.9 400	<ul> <li>typical, as above, light to medium green, fine to medium grained, foliated at 50° to the core axis</li> <li>392.3 - massive pyrite stringers parallel to the foliation</li> <li>394.8 to 395.3 - quartz vein oriented at 40° to the</li> </ul>	12575 12576 12577	tr	391.9 392.9 394.5	394.5	1.0 2.0 1.1			.001 .001 <.001		
	core axis - 395.3 to 396.5 - quartz vein, perpendicular to the core axis - 397.1 to 397.4 - quartz vein - 398.4 to 398.9 - quartz vein, irregular boundaries	12578 12579 12580	_	395.6 396.6 397.6	397.6	1.0 1.0 2.4			.001 .001		
400.0 462		12581 12582 12583 12584 12585	- -	400.0 416.8 436.1 455.1 459.8	421.6 440.9 459.8	1.9 4.8 4.8 4.7 2.4			.001 .001 <.001 <.001 <.001		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-23 SHEET NO. 4 OF 4

100	LAGE	PARTICIPATION OF COLUMN ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCIATION ASSOCI			SAMPL	E		ASSAYS					
	1	DESCRIPTION		7, 5ULP		FOOTAGE		ļ,					
FROM	10		NO.	IDES	FROM	TO	TOTAL	3	•76	AU OZ TON	Check		
462.2	469.2	Ultramafic Metavolcanic - grey/green, fine grained, foliated at 70° to the core axis	2586 12587	-	462.2 464.5	464.5 469.2	2.3 4.7			<.001 <.001			
		Average Modes Chlorite 55% Amphibole 20% Talc/Serpentine 15% Plagioclase 10% Magnetite 1%											
469.2	477.0	- typical, as above, green/brown, foliated at 70° to the core axis	12588		469.2		!			<.009			
		- 473.9 to 474.3 - quartz vein	12589	-	473.6	474.6	1.0			<.001		l	
	477.0	END OF HOLE Casing pulled											
			}	]									
							İ					[	
l						ļ		$-\gamma \sqrt{2}$		1			

Maamo

NAME OF	PROPERTY Sa	nta Maria	Zeemel L	ake			
HOLE NO.	SMZ-87-24	LENGTH	297.0				
	28±00E, 20±30S						
ATITUDE	·	DEPARTUR	Ε			<u></u>	
LEVATION		AZIMUTH _	180 ⁰		910	-45 ⁰	
	October 10, 1987						

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-45 ⁰				
297	-44.5°				

HOLE NO. SMZ-87-24SHEET NO. 1 Of 1
REMARKS Claim #861426
Summary Log

LOGGED BY B. A. Huston

F 0 0 1	TAGE	DESCRIPTION			SAMP	L. E		ASSAYS				
FROM	10	SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	36	¥	AU OZ/10N	Check oz/TON	
0	57.2	Casing										
57.2	163.4	Ultramafic to Mafic Metavolcanic										
163.4	188.7	Ultramafic Metavolcanic										
188.7	191.0	Felsic Intrusive										
191.0	245.1	Ultramafic Metavolcanic										
245.1	257.0	Felsic Intrusive										
257.0	263.2	Ultramafic Metavolcanic	•									
263.2	273.2	Felsic Intrusive										
273.2	278.7	Chlorite Hornblende Schist										
278.7	297.0	Felsic Intrusive				i						
	297.0	END OF HOLE Casing left in hole										
										ĺ		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-24 LENGTH 297.0

LOCATION 28100E 20130S

LATITUDE DEPARTURE

ELEVATION AZIMUTH 180 DIP -450

STARTED OCTOBER 10, 1987 FINISHED OCTOBER 11, 1987

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-45 ⁰				
297	-44.5				

SMZ-87-24 SHEET NO. 1 of 4

REMARKS Claim #861426

B. A. Huston

FOOTAGE	DESCRIPTION	l l		ASSAYS						
ROM TO	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	36	36	OZ/YON	heck oz/Ton
0 57.2	Casing					•				
57.2 163.4	Ultramafic to Mafic Metavolcanic - light grey/green, fine grained, massive	12020 12021 12022	-	57.2 62.1 66.7	62.1 66.7 67.9	4.9 4.6 1.3			.007 .006 .004	
	Average Modes Chlorite 30-40% Amphibole 30-40% Plagioclase 15-20% Serpentine 10-15% Magnetite 1-2%									
	- minor serpentine filled fractures at random angles to the core axis. Minor quartz stringers at random angles to the core axis - 68.1 to 68.8 - chlorite-tremolite schist, probable shear zone	12023 12024 12025 12026 12027 12028 12030 12031 12032 12089 12033 12090 12034		67.9 68.9 71.3 75.7 80.4 90.4 95.4 100.2 105.2 109.8 114.3 119.1		2.4 4.4 4.7 5.0 5.0 4.8 5.0 4.6 4.5 4.8			.004 .007 .006 .006 .005 .006 .005 .005 .006 .001 .006	

NAME OF PROPERTY___Santa Maria Zeemel Lake
HOLE NO. ___SMZ-87-24 _____SHEET NO. __2 of 4

F001	AGE	DESCRIPTION			SAMPL	. E	<del></del>	ASSAYS				
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	3	3	L	Check,	
163.4	188.7	- 127.0 to 128.2 - heavily ground core, probable shear zone  Ultramafic Metavolcanic  - light grey, fine grained, massive to very poorly foliated at 55° to the core axis  Average Modes Chlorite 30-40% Amphibole 30-40% Talc/Serpentine 20-30% Magnetite 3-5%	12035 12036 12037 12038 12039 12040 12041 12045 12046 12047 12048 12049		127.0 128.2 131.0 133.9 138.7 143.4 148.2 153.2 158.0 161.1 163.4 167.4 172.3 177.0 181.8 186.5		1.2 2.8 2.9 4.8 4.7 4.8 5.0 4.9 4.7 4.8 4.7			.004 .005 .004 .007 .004 .007 .005 .003 .003 .003 .004 .008		
188.7	191.0	<ul> <li>very minor occurrences of serpentine filled fractures</li> <li>187.5 to 188.7 - occurrence of biotite, increasing to 60% at contact</li> </ul>	12051		187.5					.002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-24 SHEET NO. 3 of 4

F 00 1	AGE	DESCRIPTION	SAMPLE					ASSAYS				
FROM	10	DESCRIPTION	NO.	7. SULPH	FROM	FOOTAGE	TOTAL	3	٦,	O.Z.AU.	Check	
191.0	245.1	Ultramafic Metavolcanic - typical, as above, light grey, massive		1015	FROM	10	TOTAL					
		191.0 to 205.8 - typical, talcose ultramafic volcanic, very minor serpentine filled fractures  205.8 to 219.6 - serpentine rich mafic to ultramafic, as above, fracture filling serpentine is more abundant here.	12053 12054 12055 12056 12057	- - -	191.0 195.8 200.7 203.5 205.8	200.7 203.5 205.8	4.8 4.9 2.8 2.3 1.7			.002 .002 .002 .003 .003		
		- 207.5 to 209.2 - abundant serpentine filled fractures, trace pyrrhotite - 212.0 to 212.2 - quartz veining, subnormal to the core axis, 10% chalcopyrite, 10% pyrrhotite, trace calcite	12058 12059 12060 12061	- -	207.5 209.2 211.4 212.5	211.4 212.5	1.7 2.2 1.1 1.2			.003 .005 .002 .001		
		- 213.7 to 215.0 - serpentine filled fractures at random angles to the core axis	12062 12063 12064 12065 12066 12067		213.7 215.0 219.6 224.5 229.5 233.9	215.0 219.6 224.5 229.5 233.9 236.7	1.3 4.6 4.9 5.0 4.4 2.8			.004 .001 <.001 <.001 <.001 <.001		
		<ul> <li>237.0 to 237.6 - biotite-chlorite schist, probable shear zone foliated at 60° to the core axis</li> <li>243.6 to 244.3 - biotite rich zone</li> </ul>	12068 12069 12070 12071	1 1	236.7 237.9 241.0 243.6	237.9 241.0	1.2 3.1 2.6 1.5			.001 .004 .002		
245.1	257.0	Felsic Intrusive - white/beige, medium grained, massive, weakly porphyritic in places	12072 12073 12074	-	245.1 248.0 252.8	248.0 252.8 257.0	2.9 4.8 4.2			<.001 <.001 .001		
		Average Modes Quartz 50% Feldspar 35-40% Sericite 5-10% Chlorite 5%										

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-24 SHEET NO. 4 of 4

F001	AGE.	(DECORD 710)			SAMPL	. E		ASSAYS			
FROM	10	DESCRIPTION	NO.	% SUL PH	FROM	FOOTAGE	TOTAL	,	٠,	AUTON	Chęck
257.0	263.2	Ultramafic Metavolcanic - typical, as above, light grey/green, fine grained									
		257.0 to 259.1 - biotite rich contact zone, foliated at 75° to the core axis	2075		257.0		2.1			.001	
		259.1 to 263.2 - typical, talcose	2076	-	259.1	263.2	4.2			.002	
263.2	273.2	Felsic Intrusive - typical, as above, finer grained, trace disseminated pyrite	2077 2078 2079	tr	263.2 267.5 270.0		4.3 2.5 3.2			.001 .002 .001	
273.2	278.7	Chlorite Hornblende Schist - green/brown, foliated at 50° to the core axis, very minor quartz stringers, minor tremolite, serpentine and talc	2080 2081	_	273.2 275.4	275.4	2.2 3.3			<.001 .001	
278.7	297.0	- typical, as above, white, fine to medium grained,	12082	tr	278.7	280.0	1.3			.001	
		massive, trace disseminated pyrite - 280.3 to 280.5 - chlorite-hornblende schist, typical, as above	12083 12084 12085 12086 12087	tr tr	280.0 281.0 282.5 286.4 291.3 296.0	286.4 291.3 296.0	1.0 1.5 3.9 4.9 4.7			.002 .001 .001 <.001 <.001 <.001	
	297.0	END OF HOLE Casing left in hole	12080		290.0	237.0	1.0				
									ı		
									1/	2/1	
								1	KIH	MA	11/1/

NAME OF	PROPERTY Sa	nta Maria Zee	mel Lake		
HOLE NO	SMZ-87-25	LENGTH	397.0		
LOCATIO	27+49E, 20+7	9\$		<del></del>	<del></del>
LATITUDI		DEPARTUR	Ε		
ELEVATIO	DN	AZIMUTH _	180	_ DIP4	5
	October 12 10				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-440				
397	-40				

HOLE NO.SMZ-87-25 SHEET NO. 1 of 1
REMARKS Claim #861426
Summary Log

LOGGED BY B. A. Huston

FOOT	I A G E	DESCRIPTION			SAMP	L E		ASSAYS				
FROM	то	SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	*	x	OZ/TON	Check oz/TON	
o	72.1	Casing										
72.1	134.7	Ultramafic to Mafic Metavolcanic										
134.7	143.4	Ultramafic Metavolcanic										
143.3	154.9	Felsic Intrusive										
154.9	157.7	Ultramafic Metavolcanic							i			
157.7	217.4	Mafic to Ultramafic Metavolcanic							-			
217.4	225.3	Ultramafic Metavolcanic										
225.3	240.2	Chlorite Biotite Schist										
240.2	397.0	Felsic Intrusive										
	397.0	END OF HOLE Casing left in hole					!			]		
]		daying here in nove										

NAME OF	PROPERTY	Santa Mari	a Zeemel Lake			
		LENGT	н 397.0			
	27+49E					
3 du fita J		DEPAR	TURE		—— <u>—</u>	
ELEVATIO	N	DEPAR	1800	DIP	-45	
		1007				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-44 ⁰				
397	-40 ⁰				

HOLE NO. SMZ-87-25 SHEET NO. 1 Of 4
REMARKS Claim #861426

LOGGED BY B. A. Huston

roo	TAGE		SAMPLE					A S S A Y S				
ROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	TO TO	TOTAL	36	*	AU OZ/TON	Check oz/TON	
0	72.1	Casing										
72.1	134.7	Ultramafic to Mafic Metavolcanic  - medium green, medium grained, massive  Average Modes Chlorite 40-45% Amphibole 30-35% Plagioclase 10-15% Serpentine 5-10% Magnetite 1-2%  - serpentine is predominantly massive with minor asbestiform fracture fillings, magnetite is	12091 12092 12093 12094 12095 12096 12097 12100 12101 12102 12103		72.1 76.7 81.3 86.1 90.9 95.7 100.6 105.4 115.3 115.3 120.3 125.3	129.9	4.6 4.8 4.8 4.9 4.9 5.0 5.0 5.0 4.8			.005 .003 .002 .002 .002 .002 .002 .002 .002		
34.7	143.4	disseminated throughout the unit, very minor quartz stringers occur randomly  Ultramafic Metavolcanic - grey/green, fine to medium grained, foliated at 55° to the core axis  Average Modes Chlorite 45-50% Amphibole 25-30% Talc 10-15% Magnetite 3-5%	12104	-		139.0				.002		
		Serpentine 5%  - moderately carbonatized										

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-25 SHEET NO. 2 of 4

1001	I AGE	OF FORDING			SAMPL	. E		ASSAYS				
FROM	10	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE TO	TOTAL	7.	٦.	AU	Check	
143.4	154.9	Felsic Intrusive - light grey to pink, fine to medium grained, massive										
		Average Modes Quartz 50% Plagioclase 25-30% Potassium Feldspar 10-20% Biotite 5-10% Sericite 2-3%										
		143.4 to 146.1 - pink, coarser grained, weakly porphyritic - 143.4 - slip surface on contact, trace pyrite	12106	tr	143.4	146.1	2.7			.001		
		146.1 to 149.2 - grey, finer grained, more sericitic here	12107	-	146.1	149.2	3.1			.002		
		149.2 to 154.9 - typical	12108 12109		149.2 152.5		3.3 2.4			.001 .003		
154.9	157.7	Ultramafic Metavolcanic - typical, as above, grey, fine grained, massive	12110	-	154.9	157.7	2.8			.002		
157.7	217.4	Mafic to Ultramafic Metavolcanic  - typical, as above, medium green, medium grained, massive, minor quartz carbonate stringers  - 170.4 to 170.5 - massive pyrrhotite bleb with associated quartz stringers	12111 12112 12113 12114 12115 12116 12118 12119 12120 12121	- 10 - - - - -	157.7 162.7 167.5 169.9 170.9 177.4 177.0 181.9 186.4 191.1 195.7 200.4	167.5 169.9 170.9 172.4 177.0 181.9	5.0 4.8 2.4 1.0 1.5 4.9 5.5 4.7 4.6 4.7 2.8			.002 .003 .003 .003 .003 .002 .001 .003 .003 .003		

Santa Maria Joenel Lake NAME OF PROPERTY

**《李·李·李·李·李·李·李·李·李** 

						9	114	43 ¹⁴						
ABBAYB	m's	8888	388		.00	.003	200.	8888	<u> </u>	98	35	<u> </u>		
	-						_		-					
	-													_
	lotat	0.80	- e.e.		1.7	5.0	3.2	60 e 0	8.0	. 8	. 0	2 2 4 2 0 4		
	100 10 10101	204.2 207.0 212.0	225.3		227.0	232.0	237.0	243.8 248.7 253.2	267.9	277.4	286.9	296.6		_
DAMPL B	* NO.4	<del></del>			225.3	227.0	232.0			272.6		291.6		
	He Joy													_
	1	2123 6 2124 - 2125 -	2128		2130 tr	2131 tr	12132 tr	12134 tr 12135 tr 12136 tr	338	12141 tr	12143 tr	12145 tr		
										<del></del>			·	_
	MINI - MANAGEMENT AND AND AND AND AND AND AND AND AND AND	- 203.6 to 203.8 - quartz-chlorito-pyrrhotite filled fractures at 30° to the core axis - 212.9 to 213.0 - pyrrhotite smear on fracture surface	Ultramatic Metavolcanic Lypton, gray/green, fine grained, Eppital, as above, gray/green, fine grained, massive, slightly more chloritic, minor quartz stringers	Chlorite Blottte Schist - green/brown, fine grained, highly contorted foliations, trace chalcopyrite, minor talc	225.3 to 227.0 - very blotite rich, minor talc and chlorite	227.0 to 232.0 - minor biotite, more chloritic, and talcose	232.0 to 240.2 - typical, chlorite-biotite scist	Felsic Intrusive - Eppical, as above, light grey to pink, medium grained, equigranular, trace fine grained disseminated pyrite, minor sericitization						
tonian.	2		226.3	240.2			-	397.0						_
1001	11011		217.4	225.3				240.2						_

والمنطورة المنطورة

A CONTRACTOR

FROM 10  DESCRIPTION  NO 5-SULPH FOOTAGE 1005 FROM TO TOTAL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Au Check
	1 02 10%   02 10%
12148 tr   305.9   310.5   4.6   12149 tr   310.5   310.5   5.0   12150 tr   310.5   310.5   5.0   12151 tr   320.5   320.5   5.0   12151 tr   320.5   320.5   5.0   12152 tr   320.5   320.5   5.0   12152 tr   320.5   320.5   5.0   12152 tr   320.5   320.5   320.5   5.0   12152 tr   330.6   335.1   337.0   1.9   12153 tr   337.0   340.5   3.5   137.0   1.9   12156 tr   337.0   340.5   3.5   330.8   35.8   5.0   12158 tr   350.8   355.8   5.0   12158 tr   350.8   355.8   5.0   12158 tr   350.8   355.8   5.0   12158 tr   370.7   375.7   370.7   4.9   12160 tr   370.7   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   370.0   375.7   375.7   370.0   375.7   375.7   370.0   375.7   375.7   370.0   375.7   375.7   370.0   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7   375.7	<.001 .001 .001 .001 .004 .002 .002 .002 .003 .003 .003 .003 .003

# URM

Maam

NAME OF	PROPERT	Y	Santa	Maria Z	eemel Lake			
				LENGTH	397.0			
LOCATION						 		
				DEPART	URE	 	<del></del>	
ELEVATION				AZIMUTI	180°	 DIP	-45 ⁰	
					。 October			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-44 ⁰				
397	-42 ⁰				

HOLE NO. SMZ-87-26 SHEET NO. 1 of 1
REMARKS Claim #861426
Summary Log

LOGGED BY B. A. Huston

FOOTAGE	DESCRIPTION	SAMPLE					ASSAYS				
FROM TO	SUMMARY LOG	NO.	SULPH- IDES	FROM	TO TO	TOTAL	36	ж	AU OZ/TON	oz/TON	
0 65.5 95.2 95.2 117.4 135.1 137.1 142.3 149.9 167.0 168.7 227.9 243.3 251.1 260.7 262.6 341.8 343.0 347.0 347.0 353.3 396.0 397.0	Mafic to Ultramafic Metavolcanic Ultramafic Metavolcanic Felsic Intrusive Ultramafic Metavolcanic Felsic Intrusive Ultramafic Metavolcanic Mafic to Ultramafic Metavolcanic Ultramafic Metavolcanic Felsic Intrusive Ultramafic Metavolcanic Felsic Intrusive Mail Metavolcanic Ultramafic Metavolcanic Felsic Intrusive Quartz Chlorite Biotite Schist Felsic Intrusive Ultramafic Metavolcanic Felsic Intrusive Ultramafic Metavolcanic Felsic Intrusive Ultramafic Metavolcanic Felsic Intrusive Ultramafic Metavolcanic Felsic Intrusive Ultramafic Metavolcanic										

NAME OF	PROPERTY	Santa	Maria Z	eemei La	ке			
HOLE NO.	SMZ-87-26		LENGTH .	397.0				
LOCATION	_28+50E,_20	<del>1</del> 815						
LATITUDE		-	DEPARTU	RE				
ELEVATION			AZIMUTH	1800		DIP	-45	
	October 13.							

FOOTAGE	DIP	AZIMUTH	FOOTAGE	рIР	AZIMUTH
200	-44 ⁰				
397	-42 ⁰				
		<b> </b>	<b></b>	ļ	

HOLE NO. SMZ-87-26 SHEET NO. 1 OF 6
REMARKS Claim #861426

LOGGED BY B. A. Huston

	JULI 134 1301 FINISHED VYYYYYY									
OOTAG	DESCRIPTION			SAMP	LE			,	SSA	Y S
ROM TO	DESCRIPTION	NO.	SULPH IDES	FROM	TO TAGE	TOTAL	36	*	OZ/TON	Check Oz/TON
0 65	5 <u>Casing</u>									
65.5 95	Average Modes Chlorite 40-50% Amphibole 30-35% Plagioclase 10-15% Serpentine 10% Magnetite 2-3%  - serpentine is predominantly massive with very minor asbestiform sections, magnetite is disseminated throughout the unit, minor fractures filled with massive serpentine at random angles to the core axis	12170 12171 12172 12173	- -	65.5 70.4 75.0 79.7	70.4 75.0 79.7 81.0	4.7			.003 .002 .002 .003	
	- 81.0 to 84.2 - quartz-serpentine filled fractures at random angles to the core axis, 1% pyrite associated with quartz - 87.5 - massive blebs of chalcopyrite - 88.8 to 89.3 - quartz veining at 30° and 90° to the core axis, trace pyrite	12174 12175 12260 12176 12177 12178	tr tr	81.0 84.2 87.0 88.0 89.3 92.3	84.2 87.0 88.0 89.3 92.3 95.2	3.2 2.8 1.0 1.3 3.0 2.9			.003 .002 <.001 .001 .002 .001	

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-87-26 SHEET NO. 2.0f 6

tr tr tr tr tr	95.2 98.0 103.0 107.7	98.0 103.0 107.7 111.1	2.8 5.0 4.7 3.4	3	٨	.002 .002 .002 .002	HECK 07 TON	
tr tr	98.0 103.0	103.0 107.7	5.0 4.7			.002		
		.						
tr tr tr	111.1 112.1 116.4	112.1 116.4 117.4	1.0 4.3 1.0			.003 .002 .001		
tr tr tr tr tr	117.4 120.0 122.5 127.4 132.0	120.0 122.5 127.4 132.0 135.1	2.6 2.5 4.9 4.6 3.1			.001 <.001 .001 <.001 <.001		
	135.1	137.1	2.0			.001		
tttt	r r r	r 120.0 r 122.5 r 127.4 r 132.0	r   120.0   122.5 r   122.5   127.4 r   127.4   132.0 r   132.0   135.1	r   120.0   122.5   2.5   127.4   4.9   127.4   132.0   4.6   132.0   135.1   3.1	r   120.0   122.5   2.5   127.4   4.9   127.4   132.0   4.6   132.0   135.1   3.1	r   120.0   122.5   2.5	120.0   122.5   2.5	120.0   122.5   2.5

NAME OF PROPERTY_____Santa Maria Zeemel Lake

HOLE NO. SMZ-87-26 SHEET NO. 3 of 6

FOOT	A GE		SAMPLE DESCRIPTION		T		ASSAYS					
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL		*	AU oz ton	Check	
137.1	142.3	Felsic Intrusive - typical, as above, higher potassium feldspar content, trace pyrite	12192 12193		137.1 139.9	139.9 142.3	2.8 2.4			.001 .001		
142.3	149.9	Ultramafic Metavolcanic - typical, as above, grey/green, fine grained, massive	12194 12195		142.3 146.4	146.4 149.9	4.1 3.5			.001		
149.9	167.0	Mafic to Ultramafic Metavolcanic  - typical, as above, medium green, fine grained, massive, minor quartz carbonate stringers occur at random angles to the core axis, stringers range in size from 1/14" to 1/16" and range in orientation from subparallel to subnormal to the core axis. Very few intersections between the stringers occur; however, where they do, both the subparallel and sub-normal stringers appear to be offset up to 1/2", stringers contain minor amounts of associated massive pyrrhotite. Also, very minor amounts of euhedral pyrite occur.	12196 12197 12198 12199 12200	tr tr tr	149.9 151.3 155.3 159.8 164.8	155.3 159.8 164.8	1.4 4.0 4.5 5.0 2.2			.003 .002 .002 .001		
167.0	188.7	Ultramafic Metavolcanic  - typical, as above, grey/green, fine grained, massive to poorly foliated at 40° to the core axis, trace disseminated pyrrhotite  - 181.8 to 185.4 - shear zone, 70% core recovery - 185.4 to 188.7 - biotite-rich contact zone	12201 12202 12203 12204 12205	tr tr	167.0 172.0 177.0 181.8 185.4	ł	5.0 5.0 4.8 3.6 2.7			.003 .002 .002 .002		

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO. SMZ-87-26 SHEET NO. 4 of 6

F 00 1	AGE.	DESCRIPTION	SAMPLE					ASSAYS					
FROM	10	DESCRIPTION	NO.	% SULPH IDE 5	FROM	FOOTAGE TO	TOTAL	3	,	OZ TON	Chęck		
188.7	227.9	Felsic Intrusive - typical, as above, light grey to pink, medium grained, trace fine grained disseminated pyrite	12200 12200 12200 12200 12210	tr tr tr	188.7 190.4 195.4 200.1 205.0	195.4 200.1 205.0	1.7 5.0 4.7 4.9 4.8			<.001 .001 .002 .002 .002			
227.9	243.4	Ultramafic Metavolcanic	1221 1221 1221 1221	tr tr tr	209.8 214.8 219.5 224.3	214.8 219.5 224.3	5.0 4.7 4.8 3.6			<.001 .002 .002 .001			
		<ul> <li>typical, as above, grey/green, medium grained, massive, rich in talc and asbestiform serpentine, trace sulphide</li> <li>227.9 to 228.1 - biotite-rich contact zone</li> </ul>	12219 1221		227.9 229.0		1.1 3.1			.002			
		- 235.2 to 235.7 - quartz vein, trace magnetite on contact - 242.3 to 243.2 - biotite-rich contact zone	12213 12218 12219 12220	tr tr tr	232.1 235.0 236.0 238.8	235.0 236.0 238.8	2.9 1.0 2.8 4.6			.002 .001 .001			
243.4	251.1	Felsic Intrusive - typical, as above, light grey-pink, fine to medium grained, massive, trace disseminated pyrite, minor sericitization	12221 12222		243.4 247.0		3.6 4.1			.002 .002			
251.1	260.7	Mafic Metavolcanic - medium green, medium grained, massive											
		Average Modes Amphibole 50% Plagioclase 20-25% Chlorite 25-30%											

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO. SMZ-87-26 SHEET NO. 5 of 6

FOOT AGE		DESCRIPTION	SAMPLE			ASSAYS						
FROM 1	10	DESCRIPTION	NO.	". SULPH IDES	FROM	FOOTAGE	TOTAL	7.	*.	AU OZ TON	Check	
		- 251.1 to 253.5 - minor quartz stringers with trace massive chalcopyrite, minor biotite - 260.1 to 260.7 - biotite-rich contact zone minor quartz stringers	12223 12224 12225 12226	tr tr tr	251.1 253.5 258.2 259.7	259.7 260.7	2.4 4.7 1.5 1.0			.003 .003 <.001 .001		
260.7 26	62.6	Ultramafic Metavolcanic - typical, as above, grey/green, fine grained, foliated at 55° to the core axis, trace sulphide	12227	tr	260.7	262.6	1.9			.001		
262.6 34	41.8	- typical, as above, light grey, fine to medium grained, massive, minor quartz veining	12228 12229 12230 12231 12232 12233 12234 12236 12237 12238 12240 12241 12242 12243		262.6 264.1 267.8 272.5 277.4 282.3 287.2 292.2 296.5 301.4 311.3 316.2 320.9 325.4 330.0 334.2	267.8 272.5 277.4 282.3 287.2 292.2 296.5 301.4 316.2 320.9 325.4 330.0 334.2 338.8	1.5 3.7 4.9 4.9 5.0 4.9 5.0 4.9 4.7 4.6 4.6			.001 .001 .001 .001 .001 .002 .001 .001		
341.8 34	43.0	Quartz Chlorite Biotite Schist - silicified possible wacke, brown/green, fine grained	12246		338.8 341.8	j	3.0 1.2			<.001 <.001	l	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-87-26 SHEET NO. 6 of 6

FOO	EAGE				SAMP	ASSAYS					
FROM	10	DESCRIPTION	110	" Stil Pi		FOOTAGE				AU	Check
343.0	347.0	Felsic Intrusive - typical, as above, light grey to pink, fine grained, massive, trace pyrite	2247	tr	343.0	347.0	4.0			<.001	
347.0	353.3	Ultramafic Metavolcanic - typical, as above, green/grey, fine grained, weak contorted foliations, minor biotite near upper and lower contacts	2248 2249		347.0 350.0	350.0 353.3	3.0 3.3			<.001 <.001	
353.3	396.0	Felsic Intrusive - typical, as above, light grey (slight pink hue), medium grained, massive, trace pyrite	2250 2251 2252 2253 2254 2255 2256 2257	tr tr tr tr tr tr	353.3 358.0 363.0 368.0 372.9 377.7 382.6 387.4	358.0 363.0 368.0 372.9 377.7 382.6 387.4 392.4	4.7 5.0 5.0 4.9 4.8 4.9			<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	
96.0	397.0	Chlorite Biotite Schist - minor talc, green/brown, fine grained	2258 2259		392.4 396.0	396.0 397.0	3.6 1.0			<.001 <.001	
	397.0	END OF HOLE Casing left in hole									
									1,	h) .	

NAME OF	PROPERTY _	Santa	Maria Ze	emel Lake		
HOLE NO.	SMZ-88-1		LENGTH_	407'		
LOCATION	36+01E, 1	+60S				
LATITUDE			DEPARTUR	t E		
THEVATION			AZIMUTH.	180 ⁰	DIP	-45 ⁰

DIP	AZIMUTH	F00TAGE	DIP	AZIMUTH
-45 ⁰				
-38 ⁰				
	-45 ⁰ -38 ⁰		1111	DIF AZIMBIN TOOTAGE DI

HOLE NO. SMZ-88-1 SHEET NO. 1 of 1

REMARKS Claim # PA 861419

Sunmary Log

LOGGED BY Eric Timoshenko

0 0 1	AGE				SAMP	L E	į	ll	,	S S A '	Y S	
гом	10	DESCRIPTION SUMMARY LOG	но.	SULP IDES	FROM	FOOTAGE TO	TOTAL	%	¥	OZ/YON	899681	
0	18.3	Casing			ŀ							
18.3	121.1	Ultramafic to Mafic Metavolcanics	#						l	•		
21.1	157.2	Clastic Metasediments - mostly wacke, minor argillite	Ì						•	l		
57.2 67.6	167.6 168.9	Mafic Metavolcanics - silicified chlorite schist Clastic Metasediments - wacke with minor chert	ŀ		i							
68.9	170.1	Chert - 1% disseminated pyrite	ì	ľ	İ			1	Ì	}	1 1	
70.1	242.0	Interbedded Mafic Volcanics and Clastic Metasediments	ll l	1					l			
42.0	245.8	Ultramafic Metavolcanics	#	1		İ		ļ.		1		
45.8	247.9	Mafic Metavolcanics	<u> </u>	1					i			
47.9	256.8	Ultramafic Metavolcanics - trace disseminated pyrite	3038	tr	251.8	256.8	5.0	[	Į	.009		
56.8	282.5	Garnetiferous Mafic Metavolcanics	ľ					1		ļ		
		- up to 10% garnet locally, trace pyrite,	1	1				l		1		
1	1	chalcopyrite - 280.5 to 281.1 - 2 to 3% pyrite, trace	3045	2-3	280.5	281.5	1.0	1		.010	1 1	
1	1	chalcopyrite	3043	12-3	200.5	201.3	1.0			1.010		
82.5	337.6	Siliceous Argillite or Siltstone	Ŋ.		1			f	<b> </b>	1	\	
37.6	343.4	Metagreywacke	ļ									
43.3	407.0	Siliceous Argillite or Siltstone		1	Į.			l		ļ	ļ ļ	
			il			}		1		1		
	407.0	END OF HOLE	ļ									
1	1		l	1	1			1	1	]	1 1	
			i	1				1	İ		1 1	
- {	}		1	1				1	İ	ł	1 1	
-						Ì		l				
ļ	ļ		1			ļ .		ll .		ļ	1 1	
										İ		
- 1			ľ	1	1							
]	]				1					1	]	
Ì			l	1								
1	1		ľ	1	ſ	1		1			1	
									1			
Į			II.		Į.	Į.		1	1			

NAME OF PROPERTY Santa	Maria Ze	emel Lake		
HOLE NO. SMZ-88-1				
LOCATION 36+01E, 1+60\$				
LATITUDE	DEPARTURI	r ,		
ELEVATION	AZIMUTH	180°	D F P	-45 ⁰
January 29, 1988				

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200' 407'	-45 ⁰				

HOLE NO. SMZ-88-1 SHEET NO. 1 of 12
REMARKS Claim #Pa 861419

LOGGED BY Eric Timoshenko

FOOTAGE		T I		SAMP	L E		Ī	Λ	S S A \	y S	
FROM 10	DESCRIPTION	но,	SULPH IDES	FROM	FOOTAGE	TOTAL	36	¥	OZYTON	89968	
0 18.3	Casing										
18.3 121.1	Ultramafic to Mafic Metavolcanics										
	18.3 to 20.1 - dark green, medium grained, weakly foliated at 30° to the core axis										
	Average Modes  Amphibole 60-70%  Serpentine/Talc 10-15%  Plagioclase 10-15%  Magnetite 3-5%  Chlorite 5-7%  Sulphide 0 to trace  - euhedral magnetite porphyroblasts occur throughout the section (octahedral, up to 1/8" wide)  - irregular quartz-carbonate veinlets occur throughout the unit; several contain magnetite grains; trace disseminated pyrite  - probably a mafic volcanic										
86366 <b>-</b> O 2050 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 - 5 550 C 2070 -	20.1 to 29.6 - medium grey-green colour, fine grained, well foliated at 40° to the core axis  Average Modes Serpentine/Talc 80-90% Amphibole 10-20% Magnetite trace to 2% Carbonate trace Sulphides trace	3001	tr	18.3	21.3	3.0			.004		

F001	AGE	UE SCRIPTION	1		SAMPL	. E		ASSAY5	
ROM	10	or some non	110	SULPH IDES	FROM	FOOTAGE	TOTAL	 , AU	Check
		<ul> <li>sheared, serpentinized ultramafics; slickensided foliation planes and fracture surfaces</li> <li>quartz-carbonate veining absent</li> <li>very fine, flaky pyrite grains occur along foliation planes</li> </ul>		1013	1102		IUIAI		
		29.6 to 35.1 - medium grained, poorly foliated material with magnetite porphyroblasts, similar to 18.3 to 20.1 - quartz-carbonate veinlets rare; trace disseminated pyrite  35.1 to 39.1 - sheared, serpentinized, talc-rich material similar to 20.1 to 29.6 (ultramafic) - quartz-carbonate veining absent; no visible sulphides	3002	tr	29.6	34.6	5.0	.001	
		- foliated at 55-60° to the core axis  39.1 to 45.0 - medium grained, massive to weakly foliated mafic (?) volcanics, as per 18.3 to 20.1 (amphibole- plagioclase-chlorite-serpentine assemblage); 5-7% magnetite in very small anhedral to euhedral grains - 39.4 to 42.1 - highly fractured section with abundant quartz-carbonate veinlets (randomly oriented, up to 1/4" wide); locally up to 5% biotite in matrix and along fractures; trace pyrite	3003	tr	39.1	43.1	4.0	.006	
		45.0 to 52.7 - sheared, serpentinized, talc-rich material similar to 20.1 to 29.6; weakly pronounced, fine compositional banding - minor carbonate in matrix; quartz-carbonate veining absent - trace disseminated pyrite, very fine grained - foliated at 42° to the core axis	3004	tr	47.7	52.7	5.0	.002	

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-1 SHEET NO. 3 of 12

FOO	LVOF	DESCRIPTION		# 40 Min and 19 Min	SAMP	ı E			A S	SSAYS	, X	10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th 10 Th
FROM	10	DESCRIPTION	110	SUL PH	FROM	FOOTAGE	TOTAL	-	. 0	AU	Check	
		52.7 to 57.2 - medium grained, massive to weakly foliated material (grading towards a mafic volcanic) similar to 18.3 to 20.1) - frequent randomly oriented, discontinuous quartz-carbonate stringers; some of the larger veinlets contain small fragments of brecciated wallrock - trace pyrite	3005		52.7	57.2	4.5		٠٠	001		
		57.2 to 59.0 - sheared, serpentinized ultramafics; as per 20.1 to 29.6 - no visible sulphides or quartz-carbonate veins - foliated at 32° to the core axis										
		59.0 to 60.1 - silicified volcanics; fine grained carbonate in matrix and numerous small, randomly oriented quartz-carbonate veinlets throughout unit - trace disseminated pyrite and chalcopyrite	3006	tr	59.0	60.1	1.1		.1	004		
		60.1 to 69.2 - sheared, serpentinized, ultramafics, as per 20.1 to 29.6 - 60.1 to 64.8 - several quartz-carbonate blebs and veinlets, randomly oriented, discontinuous; no visible sulphides, 1/8 to 1/2" wide - 66.2 to 67.0 - finely banded section displaying	3008	tr	64.8	69.2	4.4		.0	002		
		highly contorted folds and two small fold closures  69.2 to 76.8 - medium grained, massive mafic volcanics, similar to 18.3 to 20.1 - numerous, randomly oriented fractures, many filled with quartz-carbonate, others are lined with serpentine and/or biotite - euhedral magnetite is disseminated throughout unit - up to 10% biotite near lower contact - trace pyrite	3009 3010		69.2 72.0	72.0 76.8	2.8 4.8			004 002		
	'											

HOLE NO SMZ-88-1 SHEET NO. 4 of 12

FOOTAGE	DE SCRIPTION			SAMPL				ASSAYS		
FROM TO		110	SUL PH IDES	FROM	FOOTAGE 10	TOTAL		AUTON	Check.	
	76.8 to 90.9 - sheared, serpentinized ultramafic - several sections with fine compositional banding display highly contorted folding and crenulations - several euhedral pyrite crystals and small stringers occur in some sections - 78.0 to 82.7 - light to medium grey, fine to medium grained, talc-rich volcanics; small clots and bands of talc, minor euhedral pyrite	3011 3012		81.0 86.0				<.001 <.001		
	90.9 to 92.7 - silicified mafic volcanics, quartz-carbonate stockwork with veinlets up to 1/2" wide; no visible sulphides in veinlets, trace to 1% pyrite in matrix (small cubes and blebs)	3013	tr	90.9	92.7	1.8		.002		
	92.7 to 104.9 - light to medium green ultramafic volcanics (mostly serpentine with lesser amphibole, talc, chlorite and magnetite); highly convoluted and crenulated folding throughout section (folded axes are randomly oriented); mslal clots of chlorite and talc) - 101.1 to 102.4 - biotite content up to 20% - 103.6 to 104.0 - quartz-carbonate vein, discordant; coarse grained calcite; chlorite and biotite inclusions), no visible sulphides; abundant biotite in matrix above vein	3014		97.1 101.1				.004		
	104.9 to 108.0 - light to medium grey, medium grained, talc-rich ultramafics; frequent clots and discontinuous bands of talc - trace euhedral pyrite - foliated at 57° to the core axis									

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-1

SHEET NO. 5 OF 12

₹ OOT AGE	DESCRIPTION			SAMP	_		<u> </u>		ASSAYS		
FROM 10	Di SCINI HON	но	SULPH IDES	FROM	FOOTAGE	TOTAL	-	Ī .	AU oz ton	Check	
	108.0 to 121.1 - medium grained, moderately silicified mafic volcanics with narrow, fine grained ultramafic intercalations (6" to 8" wide) - frequent concordant to subconcordant quartz-carbonate veinlets, 1/8" to 1/2" wide; veinlets are discontinuous, some are brecciated - biotite content increases in more highly silicified areas, locally up to 5% - 109.7 to 110.3 - highly sheared, incompetent ultramafic material; clayey, schistose texture - 118.0 - foliated at 40° to the core axis	3016	tr	108.0	113.0	5.0			.001		The second second
121.1 157.2	Clastic Metasediments  - grey-green to greenish-brown, fine grained, well foliated, weak banding throughout unit  - sediments are dominantly quartz-feldspar wackes containing very narrow dark grey bands of argillaceous material (approx. 5%); narrow bands of green, fine grained, mafic material (mostly actinolite and chlorite) could be tuffaceous beds  - concordant, discontinuous quartz-carbonate veinlets occur throughout the unit, many are boudinaged; some of the siliceous bands may be recrystallized chert  - wackes locally contain medium grained biotite in the matrix (up to 20%)  - trace disseminated pyrite  - 127.0 - foliation and banding at 55-60° to the core axis  - 147.1 to 152.5 - medium grained wacke with up to 20% biotite in matrix, rock has a greenish-black colour with a mottled texture; several 1/2 to 3/4" crosscutting quartz-carbonate veinlets; most at high angles to the core axis (70-80°); foliation is at 60° to the core axis; trace disseminated pyrite	3018 3019 3020 3021	tr tr	122.5 132.0 142.0 147.0	127.0 137.0 147.0 152.0	4.5 5.0 5.0			.003 .002 <.001 .004		

NAME OF PROPERTY. Santa Maria Zeemel Lake

FOOTAG		IN CONTROL			SAMPL	E			ASSAYS	
FROM	10	DESCRIPTION	110	" SUL PH		FOOTAGE	70711	1 :	AU TON	Check
157.2 16	57.6	Mafic Metavolcanics - dark green, medium grained, well foliated at 50-55° to the core axis, silicified	3022 3023		157.2 162.2	162.2 167.2	5.0 5.0		.002	
		Average Modes Chlorite 70-85% Quartz+Carbonate 10-20% Amphibole 2-5% Sulphide trace								
		<ul> <li>silicified chlorite schist, possibly sheared</li> <li>pervasive silicification throughout the unit;</li> <li>distinct quartz-carbonate veinlets are rare (mostly concordant, poorly developed, chlorite-rich quartz-carbonate bands)</li> <li>trace disseminated pyrite</li> </ul>					1			
167.6	58.9	Clastic Metasediments - basic description as per above (i.e. 121.1 to 157.2) - mostly medium grained quartz-feldspar wacke with minor chert bands, biotite up to 3%	3024	tr	167.2	168.9	1.7		.003	
168.9 170	70.1	Chert  - pale yellow-green colour, fine grained, weakly banded at 50° to the core axis - blebs and subconcordant stringers of quartz-carbonate; minor wisps of chlorite - fine grained pyrite is disseminated throughout the unit; a few small stringers also occur	3025	1	168.9	170.1	1.2		.002	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-88-1 SHEET NO. 7 of 12

1001	AGE	ALC: The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	1		SAMPL				ASSAYS		
FROM	10	DESCRIPTION	110	" SUL PH	FROM	FOOTAGE TO	TOTAL		AU TON	i nęck	
170.1	242.0	Interbedded Mafic Volcanics and Clastic Metasediments  - interbedded mafic volcanics, possibly tuffs, and clastic sediments, mostly wackes with lesser argillite  - both units are moderately silicified; quartz-carbonated veinlets are mostly concordant and discontinuous, trace disseminated pyrite									. –
		170.1 to 176.8 - wacke; green to greenish brown colour, fine grained, well foliated and banded at 55° to the core axis; several lens shaped and boudinaged quartz- carbonate veinlets, biotite-rich bands	3026	tr	170.1	175.1	5.0		.004		
		176.8 to 193.0 - mafic volcanics; chlorite-quartz schist, minor amphibole (<5%) and trace pyrite and chalcopyrite; possibly volcaniclastic	3027 3028			185.0 193.0	5.0 4.0		.003		
		193.0 to 195.8 - metasediments - 193.0 to 194.9 - wacke, as per above - 194.9 to 195.4 - pale yellow-green chert, as per above (i.e. 168.9 to 170.1); trace disseminated pyrite - 195.4 to 195.8 - wacke, as per above - foliated at 55° to the core axis	3029	tr	193.0	195.8	28		.001		
		195.8 to 203.1 - mafic volcanics; chlorite-quartz schist, as per above - 196.5 to 196.8 - medium grained quartz-carbonate vein, subconfordant; smoky quartz, no visible sulphides	3030	tr	195.8	200.8	5.0		.002		
		203.1 to 205.3 - wacke; finely laminated felsic and biotite- chlorite rich bands - banding and foliation oriented at 53° to the core axis									

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-88-1 SHEET NO. 8 of 12

F001#	\GE	DESCRIPTION			SAMPL				ASSAYS	
FROM	10	DESCRIPTION	NO.	% SULPH IDE5	FROM	FOOTAGE TO	TOTAL	3	3 SUTON	Check"
		205.3 to 222.8 - mostly mafic volcanics (chlorite schist) with frequent narrow interbeds of finely banded wacke; gradational contacts	3031	tr	206.0	211.0	5.0		<.001	
		- interbedded volcaniclastic and turbiditic material (?) - quartz-carbonate veining very common throughout the unit; mostly small, concordant discontinuous veinlets; many of the larger veinlets are boudinaged	3032	tr	217.8	222.8	5.0		<.001	
		222.8 to 224.8 - sheared chlorite-talc schist, possible ultramafic intercalation - porphyroblasts of white plagioclase, most about 1/8" wide, occur near lower contact - rare, concordant quartz-carbonate veinlets up to 1/4" wide	3033	tr	222.8	224.8	2.0		.004	
		224.8 to 242.0 - interbedded mafic to ultramafic volcanics and wacke, similar to 205.3 to 222.8 - volcanics become more prevalent near bottom of section; trace disseminated pyrite - 228.0 - foliated at 57° to the core axis - 239.7 to 240.0 - subconcordant quartz-carbonate vein containing yellow-white plagioclase and chloritic inclusions; no visible sulphides	3034 3035		228.0 239.0		5.0 3.0		.005	
242.0	245.8	Ultramafic Metavolcanics - medium to dark green, fine grained, moderately well foliated at 35-40° to the core axis	3036	tr	242.0	245.8	3.8		.003	

NAME OF PROPERTY. Santa Maria Zeemel Lake.

HOLE NO. SMZ-88-1 SHEET NO. 9 of 12

F OO 1	AGE	THE CONTRACT CONTRACT OF A SECOND ASSESSMENT OF THE CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTRACT CONTR			SAMPL	E				ASSAYS		
FHOM	10	DESCRIPTION	NO.	7. SULPH	FROM	FOOT AGE	TOTAL	3	٦.	AU oz ton	Check	
		Average Modes: Amphibole 35-45% Serpentine/Talc 30-40% Plagioclase 2-5% Chlorite 15-20% Carbonate 1-2% Sulphide trace										
		<ul> <li>amphibole-serpentine-chlorite schist; weakly sheared ultramafic volcanic</li> <li>rare quartz-carbonate veinlets</li> <li>trace pyrite and chalcopyrite</li> </ul>	ļ									
245.8	247.9	Mafic Metavolcanics  - chloritic schist similar to 176.8 to 193.0  - possibly mafic tuff  - abundant small grains of quartz-carbonate (approx. 15%), minor plagioclase porphyroblasts (≤ 1/8" wide)	303	tr	245.8	247.9	2,1			.006		
247.9	256.8	Ultramafic Metavolcanics  - light green to grey, talc-rich ultramafics similar to 104.9 to 108.0  - frequent lens shaped clots of talc, abundant chlorite  - trace disseminated pyrite	3038	tr	251.8	256.8	5.0			.009		
256.8	282.5	Garnetiferous Mafic Metavolcanics - volcanics (amphibole - chlorite + plagioclase + serpentine) with several garnetiferous intervals								:		
		256.8 to 260.7 - fine grained mafic volcanics, highly chloritic - quartz-carbonate veining rare										

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. __ SMZ=88=1 _____ SHEET NO. _ 10 of 12

FOO	TAGE				SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	7,	``	OZ TON	Check	
		260.7 to 261.2 - garnetiferous section; garnets 1/8 to 1/4" wide occur randomly throughout the unit; matrix is dominantly amphibole and minor chlorite - several small pyrite and chalcopyrite blebs - small, concordant, slightly boudinaged quartz- carbonate veinlets	3039	tr	256.8	261.8	5.0			.004		
		261.2 to 264.3 - fine grained, chloritic mafic volcanics, as per 256.8 to 260.7										
		264.3 to 267.3 - fine grained, likely volcaniclastic material containing flattened, lens shaped pods of argillaceous sediment; mm size garnets occur scattered throughout the unit; small plagioclase porphyroblasts occur within chloritic bands; trace pyrite	3040	tr	264.3	267.3	3.0			.005		
		267.3 to 270.1 - garnetiferous chlorite schist (mafic volcanic): 5-10% garnet, porphyroblasts are 1/8 to 1/4" in diameter and are often surrounded by quartz pressure shadows - magnetite porphyroblasts also occur throughout the section (approx. 5%, most 1/8" in diameter) - minor concordant quartz-carbonate veinlets - trace disseminated pyrite and chalcopyrite	3041	tr	267.3	270.1	2.8			.004		
66 - 360 - O. AO-FO: - C350		270.1 to 282.5 - fine grained mafic volcanics, similar to 256.8 to 260.7 - 1-2% garnet and magnetite porphyroblasts locally; trace disseminated chalcopyrite and pyrite - foliated at 35-40° to the core axis, weak compositional banding	3042 3043 3044	tr	273.1	273.1 277.0 280.5	3.0 3.9 3.5			.003 .006 .005		
מאסק												

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-88-1 SHEET NO. 11 of 12

FOOTAGE.				SAMPI	. E				ASSAYS		
FROM TO	DESCRIPTION	NO.	'S SUL PH	FROM	FOOTAGE	TOTAL	"	7	AUTON	Check	
	- 280.5 to 281.1 - 2 to 3% disseminated pyrite and chalcopyrite; grains are elongated and aligned at an 80° angle to the core axis (dominant foliation is at 35° to the core axis); possible shear-related mineralization	3045	·	280.5	281.5	1.0			.010		
282.5 337.6	Siliceous Argillite or Siltstone  - light greyish-green, fine grained, cherty argillite or very fine grained siltstone - weakly banded at 55° to the core axis - frequent chloritic bands, possibly tuffaceous volcanics - quartz-carbonate veining common; most veinlets are concordant and between 1/8 to 1/4" wide (some up to 2" wide); irregular, crosscutting veinlets also occur; some veinlets are boudinaged - trace disseminated pyrite - 325.3 to 328.4 - fine biotite flakes occur scattered throughout the argillite (1-2% biotite)	3046 3047 3048 3049 3050 3051 3051	tr tr tr tr	282.5 293.0 300.8 313.0 321.1 325.3 332.6	298.0 305.8 318.0 325.3	5.0 5.0 5.0 5.0 4.2			.003 .005 .004 .005 .003		
337.6 343.4	Metagreywacke  - greyish-brown, fine grained, well foliated at 60° to the core axis  - fine grained, even textured quartz-feldspar wacke; about 10% biotite in matrix  - quartz-carbonate veinlets ranging from 1/8 to 1/2" wide occur throughout the section, most are concordant, several are highly contorted and boudinaged, no visible sulphides in the veinlets, trace pyrite occurs in the wacke	3053	tr	338.6	343.4	4.8			.003		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SM7-88-1 SHEET NO. 12 of 12

F 001	AGE.			-	SAMPL	. E	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<del></del>	ASSAYS	<del></del>
FROM	10	DESCRIPTION	NO.	2 SUL PH		FOOTAGE			٦.	AUTON	Check
343.4	407.0	Siliceous Argillite or Siltstone  - basic description as per above (282.5 to 337.6)  - pyrite fracture fillings common  - shear fractures with associated drag folds occur locally; several shear fractures are infilled with quartz-carbonate		IDES	FROM	10	TOTAL		,		
		343.4 to 357.5 - typical, well banded - 350.4 to 354.7 - shear fractures and quartz- carbonate veinlets are common throughout this interval; a well developed drag fold occurs at 354.6	3054	tr	350.1	355.1	5.0			.003	
		357.5 to 407.0 - as per above, except for 1-2% biotite which occurs as small scattered flakes or loose bands - 360.5 to 361.6 - three 1-2" wide quartz-carbonate veinlets in this interval (concordant); chloritic inclusions, no visible sulphides - 386.3 to 390.2 - frequent crosscutting quartz-carbonate veinlets and thin fractures; fractures often have a narrow dark grey alteration halo	3055 3056 3057 3058	tr tr tr	359.0 370.0 379.5 386.0	375.0 384.5 391.0	5.0 5.0 5.0 5.0			.004 .004 .003 .004	
-	407.0	END OF HOLE	3059 3060		394.0 402.0	407.0	5.0			.003	
								4	).	Bala	MO

NAME	OF	PROPERTY	Sant	a Maria A	eeme I I	Lake			
HOLE	NO.	SMZ-88-2		LENGTH.	370	6.0'			
		56+00E,							
LATIT	UDE			DEPARTU	RE				
ELEVA	TION			AZIMUTH	180°	)	DIP	<u>-45⁰</u>	
CTADT	ED (	January 30	. 1988	EINICHEO	Janua	arv 31.	1988		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200 376	-45 ⁰ -38 ⁰				

HOLE NO. SMZ-88-2 SHEET NO. 1 of 1

REMARKS Claim #861420

Summary Log

LOGGED BY B. A. Huston

001	AGE	DESCRIPTION	<u> </u>		SAMP	L. E			A	SSA	/ S	
юм	то	SUMMARY LOG	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	26	36	OZ/TON	Check oz/iesk	
0	22.7	Casing										
2.7	61.8	Mafic Metavolcanic		l	1 1							1
1.8	95.2	Ultramatic Metavolcanic - sheared										1
5.2	96.3	Argillite										1
6.3	100.0	Ultramafic Metavolcanic		)	•							1
0.0	102.4	Argillite										
	125.7	Ultramafic Metavolcanic										
	138.8	Mafic Metavolcanic	Ī									ĺ
	140.0	Ultramafic Metavolcanic										
	153.4 168.6	Mafic Metavolcanic Ultramafic Metavolcanic										
	171.7	Chert- 5% disseminated pyrite										
	212.2	Wacke	]									1
	254.2	Mafic Metavolcanic										
4.2	268.5	Wacke			i '				,			
		Mafic Metavolcanic										1
9.9	282.8	Wacke	į		[				:			1
2.8	302.9	Mafic Metavolcanic						i i				
2.9	305.2	Siltstone										1
5.2	322.2	Interbedded Mafic Tuff and Siltstone										Ì
2.2	376.0	Siltstone			!							
i	376.0	END OF TIOLE	<u> </u>		i '							1
	i							!				
- 1	<b>,</b>				<u> </u>			1				
	1											İ
- 1												1
ĺ	. [											
	- 1								į			
]	Ì								'			
- 1	l											1
ı	j											1
- 1	ļ	i										
ı	Į.		Į l	l	(							1

NAME OF	PROPERTY	Santa Maria	Zeeme1	Lake	
HOLE NO.	SMZ-88-2	LENGTH	376		
LOCATION	56+00E 4+4				
LATITUDE	Brazilia	DEPARTU	REn-		
HOLLAVILLE		AZIMUTH	180	DIP	-45
STARTED	January 30, 19	188 FINISHED	<u>Janu</u>	ary 31, 1988	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-45°				
376	-38°				
			1		
		1	1		

HOLE NO. SMZ-88-2 SHEET NO. 1 of 6
REMARKS Claim #861420

LOGGED BY B. A. Huston

001	A G E	DESCRIPTION	li -		SAMP	LE			,	SSA	1 5
ROM	10	DESCRIPTION	но,	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	36	¥	02/4 ON	829F&n
0	22.7	Casing									
22.7	61.8	- medium to dark green, fine to medium grained, massive to poorly foliated at 45° to the core axis  Average Modes Chlorite 35-40% Amphibole 30-35%									
		Plagioclase 30-35%  22.7 to 24.7 - typical  24.7 to 33.0 - contains 5% magnetite, occurring as large	3501	-	22.7	24.7	2.0			.003	
		euhedral grains, occasional large grains of plagioclase, 1% pyrite - 24.7 to 26.0 - weakly silicified with minor biotite - 28.3 to 29.1 - shear zone, appears to be concordant	3502 3503		24.7 29.1	29.1	4.4 3.9			.004	
		33.0 to 46.5 - typical  46.5 to 52.6 - minor quartz stringers and veins at random angles to the core axis, minor magnetite  52.6 to 60.9 - typical	3504 3505 3506 3507	-	33.0 41.5 46.5 49.6	36.1 46.5 49.6 52.6	3.1 5.0 3.1 3.0			.001 .002 .003 .002	
		octo so sois expressi									

3.1.985 - OTVOROT - 8980/8

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-88-2 SHEET NO. 2 of 6

F 001 A	AGE	DESCRIPTION		SAMPL	. E	***************************************		ASSAYS		
FROM	10	DESCRIPTION	NO. % SULP	FROM	FOOTAGE TO	TOTAL	٦.	.AH.	Ҫӯҿҫҝ	
		60.9 to 61.2 - heavily silicified/possible chert horizon, 5% disseminated magnetite	3508 -	60.3	61.8	1.5		.002		
61.8	95.2	Ultramafic Metavolcanic - pale green, fine grained, well foliated at 55° to the core axis  Average Modes Chlorite 50-55% Amphibole 35-40%	3509 1-2 3510 1-2 3511 1-2 3512 1-2 3513 1-2 3514 1-2 3515 1-2	61.8 64.7 69.5 74.1 78.7 83.0 87.7	64.7 69.5 74.1 78.7 83.0 87.7	2.7 4.8 4.6 4.6 4.3 4.7		.003 .003 .003 .004 .003 .002		
		Plagioclase 5% Biotite 5% Pyrite 1-2% Magnetite 1-2% - unit is moderately sheared throughout the entire interval	3516 1-2	92.5	95.2	2.7		.003		
95.2	96.3	Argillite - brown, fine grained, poorly foliated at 45-50° to the core axis	3517 tr	95.2	96.3	1.1		.004		
		Average Modes Quartz 45-50% Biotite 40-50% Chlorite 5-10%								
96.3	100.0	Ultramafic Metavolcanic  - typical, as above, pale green, fine grained, strong foliation is somewhat crenulated and contorted, 1-2% pyrite blebs occur between separated foliation surfaces	3518 1-2	96.3	100.0	3.7		.003		

NAME OF PROPERTY_____Santa Maria Zeemel Lake

HOLE NO. SMZ-88-2 SHEET NO. 3 of 6

FOOT	AGE	DESCRIPTION	T		SAMPL	E			<del></del>	ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH	FROM	TO	TOTAL	3	3	o AM.	Çþeçk	
100.0	102.4	Argillite - typical, as above, brown, fine grained, massive, 1-2% pyrite - 101.2 to 101.5 - ultramafic metavolcanic horizon	3519	1-2	100.0	102.4	2.4			.002		
102.4	125.7	Ultramafic Metavolcanic - typical, as above, pale green, fine grained, foliated at 40° to the core axis, foliation surfaces are weakly crenulated in some areas	3521	tr-1 tr-1	116.0	106.0 120.5	3.6 4.5			.003		
		<ul> <li>120.5 to 124.0 - quartz vein with minor inclusions of host volcanic</li> </ul>	3522 3523	- tr-1		124.0 125.7	3.5 1.7			.001 .001		
125.7	138.8	Mafic Metavolcanic  - typical, as above, medium green, fine to medium grained, foliated at 50° to the core axis, unit contains 3-5% disseminated magnetite in grains ranging from 1/32 to 1/8 inch, grains are euhedral, trace pyrite	3524		125.7		4.8			.002		
		- 136.3 to 138.8 - weakly to moderately silicified with minor biotite, weakly carbonatized	3525	-	136.3	138.8	2.5			.003		
138.8	140.0	Ultramafic Metavolcanic - typical, as above, light green, fine grained, well foliated (sheared) at 55° to the core	3526	tr-1	138.8	140.0	1.2			.003		
140.0	153.4	Mafic Metavolcanic  - typical, as above, weakly to moderately silicified with 5-10% biotite, foliations are slightly crenulated and are oriented at 50° to the core axis, trace pyrite	3527 3528 3529	tr	140.0 145.0 149.6	149.6	5.0 4.6 3.8			.004 .004 .007		

NAME OF PROPERTY_____Santa Maria Zeemel Lake

HOLE NO. SMZ-88-2

HEET NO. 4 OT

F 001	r AGE	DETERMINA	1		SAMPL	. E			·	ASSAYS	<del></del>
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	1	*	o Albu	Çþeçk
153.4	168.6	<ul> <li>typical, as above, pale green, fine to medium grained, foliations are heavily contorted in this interval, trace pyrite</li> </ul>		tr-1		157.8				.005	
		- 167.9 to 168.6 - shear zone, 1-2% pyrite	3531	1	166.0	168.6	2.6			.003	
168.6	171.7	<ul> <li>Chert         <ul> <li>blue/grey, very weakly banded at 50° to the core axis, 5% fine grained disseminated pyrite occurs as euhedral cubes in bands</li> </ul> </li> </ul>	3532	5	168.6	171.7	3.1			.007	
171.7	212.2	- grey/brown, fine to medium grained, well foliated at 45° to the core axis  Average Modes Quartz 55-60% Feldspar 15-20% Sericite 15-20% Pyrite 3% Chlorite 2-3% Biotite 2-3%	3533 3534 3535 3536 3537 3538	3 3 3	171.7 182.8 192.6 201.9 206.5 209.4	187.6 197.3 206.5 209.4				.004 .002 .003 .001 .003	
212.2	254.2	Mafic Metavolcanic - typical, as above, medium to dark green, fine to medium grained, foliated at 55° to the core axis									
		212.2 to 215.6 - weakly to moderately silicified with 15-20% biotite	3539	tr	212.2	215.6	3.4			.003	
		215.6 to 219.0 - typical	3540	tr	215.6	219.0	3.4			.002	

NAME OF PROPERTY_____Santa Maria Zeemel Lake

HOLE NO. SMZ-88-2

HEET NO. 5 OF 6

FOOT	AGE	DECOMPANY.			SAMP	E		1	ASSAYS		······································	
FROM	10	DESCRIPTION	NO.	3 SULPH	FROM	FOOTAGE	TOTAL	,	,	o Alba	Çbeç _i k	
		219.0 to 221.3 - moderately silicified, 15-20% biotite  221.3 to 254.2 - typical - 234.4 to 234.7 - quartz vein, irregular contacts	3541 3542 3543	tr tr	219.0 221.3 234.3	221.3	2.3 4.7 1.0			.003		
254.2	268.5		3544 3545 3546 3547	tr tr tr	245.0 249.6 254.2 264.0	249.6 254.2 259.0	4.6 4.6 4.8			.005 .002 .002 .004		
268.5	279.9	Mafic Metavolcanic - typical, as above, medium grained, foliated at 50° to the core axis, trace pyrite	3548	tr	276.0	279.9	3.9			.003		
279.9	282.8	Wacke - typical, as above, grey/green, medium grained, foliated at 55° to the core axis, trace pyrite	3549	tr	279.9	282.8	2.9			.003		
282.8	302.9	Mafic Metavolcanic  - typical, as above, medium to dark green, medium grained, massive to poorly foliated at 50° to the core axis, trace pyrite	3550	tr	282.8	284.8	2.0			.001		
302.9	305.2	- 284.8 to 285.1 - moderately silicified with 15-20% biotite	3551 3552 3553 3554	tr tr	284.8 286.1 298.0 302.9	291.1	1.3 5.0 4.9 2.3			<.001 .003 .003 .002		

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-2

SHEET NO. 6 of 6

F001	AGE		1	····	SAMPL	. E		ASSAYS				
FROM	10	DESCRIPTION	ND.	% SULPH	FROM	FOOTAGE	TOTAL	`	3	.Au.	Çbeç.k	
305.2	322.2	Interbedded Mafic Tuff and Siltstone - tuffaceous horizons contain 1-2% pink garnets, trace calcite, trace fine grained pyrite										
		305.2 to 307.5 - moderately to heavily silicified with 10-15% biotite  307.5 to 310.8 - sheared at 70° to the core axis	3555 3556 3557	tr	305.2 307.5 310.8	307.5 310.8 315.4	2.3 3.3 4.6			<.001 .004 <.001		
322.2	376.0		3558 3559 3560 3561 3562 3563 3564	tr tr tr tr tr	315.4 320.1 322.2 324.6 334.2 344.2 354.0	320.1 322.2 324.6 329.6 339.2 349.0 358.6	4.7 2.1 2.4 5.0 5.0 4.8 4.6			.002 <.001 .001 .001 .002 .001		
	376.0	END OF HOLE	3565	tr	363.5	368.1	4.6			.002		
										) };		
		·								MA	ms	

FORM

NAME OF	PROPERTY	Santa	<u>Maria Zeer</u>	nel Lake			
HOLE NO.	SMZ-88-3		LENGTH_	274 feet			
LOCATION	36+00E,	2+75N					
LATITUDE			DEPARTU	RE		<del></del>	
ELEVATION			AZIMUTH	180 ⁰	DIP	-45 ⁰	
STARTED	January 30,	1988	FINISHED	February 3	, 1988		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH

HOLE NO. SMZ-88-3 SHEET NO. 1 of 1

LOGGED BY B. A. Huston

FOO	1 A G E	DESCRIPTION	Ī		SAMP			ASSAYS				
FROM	70	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	%	ж	OZ/TON	Check oz/ToN	
0	274.0	Casing				,						
	274.0	END OF HOLE										
				,								
1												
			į									
1												
Ì				! !	i							
88												
. 326												
o e						İ						
LANGRUGGES - "OPONTO - 365." '58												
S S S S S S S S S S S S S S S S S S S										<u> </u>		
A A A									$\bigcirc$		1	
			Ì	1				1	<i>}}</i> }		(J) / [X]	

NAME OF	PROPERTY			Zeemel Lake		
HOLE NO.	SMZ-88-4		LENGTH	506'		
LOCATION	12+00E, 22	<u> 1355</u>				
LATITUDE			DEPARTU	JRE		
ELEVATION			AZIMUTH		DIP	-45 ⁰
F** D** F D .	lanuary 31 1	arr		. February 3	1 988	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200'	-43 ⁰				
200' 506'	-38.5				

HOLE NO. SMZ-88-4 SHEET NO. 1 of 1
REMARKS Claim #Pa 861432
Summary Log

LOGGED BY Eric Timoshenko

FOOT	AGE	DESCRIPTION			SAMP	L. E			Α	S S A	y s	
FROM	10	SUMMARY LOG	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	76	· V	OZ/TON	Check oz/TON	
0	20.7	Casing		IDES	FROM	10	TOTAL					
20.7	31.1	Granitic Intrusive		]					1			
31.1	34.1	Mafic Metavolcanics - 20-30% biotite	II .								1	
34.1	36.6	Granitic Intrusive	1								1	
36.6	56.8	Mafic Metavolcanics	II.						1			
56.8	57.9	Granitic Intrusive	ll l						Į.		1	
57.9	59.3	Mafic Metavolcanics	-								1	
59.3	68.2	Granitic Intrusive						ĺ			1	
68.2	71.8 74.6	Mafic Metavolcanics - weakly silicified Granitic Intrusive	1									
74.6	109.2	Mafic Metavolcanics - weakly silicified sections		1							1	
109.2	111.9	Granitic Intrusive			,							
111.9	122.1	Mafic Metavolcanics	j									
122.1	125.5	Intermediate Intrusive	1	1			l				1	
125.5	126.4	Mafic Metavolcanics	1									
126.4	130.0	Intermediate Intrusive	l									
130.0 132.0	132.0 150.1	Mafic Metavolcanics - 20-30% biotite Intermediate Intrusive	II.									
150.1	153.6	Mafic Metavolcanics - highly biotitic, weakly silicified	-									
153.6	166.0	Intermediate Intrusive	1	ļ							1	
166.0	183.8	Ultramafic Metavolcanics	ll								l	
183.8	196.0	Granitic Intrusive	li .					1				ĺ
196.0	198.4	Ultramafic Metavolcanics	ľ									
198.4	236.3	Intermediate Intrusive	11								ŀ	
236.3	330.7	Ultramafic Metavolcanics	1	]		1		1			1	
330.7 346.2	346.2 506.0	Intermediate Intrusive Granitic Intrusive										ĺ
340.2	506.0	END OF HOLE	ll .						i			
1	300.0	LID OF HOLL	\\	1	'			1			1	ľ
			1									
,	1		1									
	ļ		<b>\$</b>	1							<b> </b>	
,			}		]		-					
	İ				[							

					emel Lake		
HOLE	NO.	SMZ-88-4		LENGTH	506'		
		12+00E,					
					E		
ELEVA	HOIT			. AZIMUTH _	180°	DIP	<u>-45⁰</u>
CTART	F D	January 3	1, 1988	FINISHED	February	3, 1988	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200'	-43 ⁰				
506'	-38.5	)			

HOLE NO. SMZ-88-4 SHEET NO. 1 0f 12
REMARKS Claim #861432

LOGGED BY Eric Timoshenko

OOTAGE				SAMP	t. E		1		SSA		
ROM TO	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL.	26	*	OZ/TON	Check oz/TON	ppbAi
0 20.7	7 <u>Casing</u>										
20.7 31.1	Granitic Intrusive  - white to light pink, medium to coarse grained, massive to weakly foliated, locally pegmatitic  Average Modes  Quartz 60-80% Feldspar 15-25% Biotite 2-3% Sericite 5-10% Garnet trace to 3% Sulphide trace  20.7 to 23.5 - coarse grained to pegmatitic granite; mostly clear to white quartz and creamy white to pink angular grains of plagioclase (and possibly K-feldspar): small flakes and masses of biotite; small garnets occur scattered throughout the section and also form loose bands; sericite-lined fractures common, rare pyrite										

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-88-4 SHEET NO. 2

F 00 1	AGE				SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	NO.	% SUL PH	FROM	FOOTAGE	TOTAL	``	, ·	AUTON	Check h	ррЬА
		23.5 to 31.1 - weakly foliated, possibly sheared, medium grained, sericitic granite; sericite forms thin anastomosing bands foliated at 25° to the core axis; frequent biotite bands, scattered garnet	3061	tr	22.5	27.5	5.0			<.001	(	<5
31.1	34.1	Mafic Metavolcanics - brownish black, fine to medium grained, well foliated, schistose, highly biotitic mafic volcanic (shearing with associated potassic alteration)	3062	tr	31.1	34.1	3.0			.001	2	21
		Average Modes Biotite 70-80% Chlorite 10-15% Amphibole 5-10% Quartz-Carbonate 2-3%					į					
		<ul> <li>most of the unit is foliated at 30° to the core axis; near granitic intrusive contacts, the foliation is at very low angles to the core axis (0-15°)</li> <li>unit is weakly silicified; concordant stringers and small blebs of quartz-carbonate</li> </ul>										
34.1	36.6	Granitic Intrusive - white, medium to coarse grained, sericitic granite similar to 20.7 to 31.1						İ				
36.6	56.8	Mafic Metavolcanics - dark green, fine grained, massive to very weakly foliated (35-40° to the core axis)										

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-88-4 SHEET NO. 3 of 12

F001	AGE.				SAMPL	E				ASSAYS	
FROM	10	DESCRIPTION	ND.	% SULPH IDES	FROM	FOOTAGE	TOTAL	3	٠	Auton	Check opbAu
		Average Modes Amphibole 70-80% Plagioclase 15-20% Chlorite 2-5% Quartz 1-2% Carbonate 1-2% Sulphide trace to 1%									
		<ul> <li>fine grained, even textured mafic volcanic, highly biotitic near intrusive contacts (up to 30% biotite)</li> <li>quartz-carbonate veining common; majority are thin (1/8 to 1/4" wide), crosscutting veinlets, oriented at low angles to the core axis (5-20°)</li> <li>trace disseminated pyrite and chalcopyrite</li> </ul>	3063 3064 3065 3120	tr	36.6 41.6 49.4 54.4	41.6 46.0 54.4 56.8	5.0 4.4 5.0 2.4			.001 .001 .001 .008	37 35 31 261
56.8	57.9	Granitic Intrusive  - white to grey, coarse grained intrusive similar to 20.7 to 31.1  - 5-10% biotite, occurring in thin bands and along fracture surfaces									
57.9	59.3	Mafic Metavolcanics - well foliated, schistose, highly biotitic volcanics, similar to 31.1 to 34.1 - weakly silicified; several crosscutting quartz-carbonate stringers - foliated at 45° to the core axis	3121	tr	56.8	59.3	2.5			.005	179
59.3	68.2	Granitic Intrusive  - mostly white to light pink, coarse grained granite similar to 20.7 to 31.1; several medium grained, weakly foliated, sericitic sections - locally up to 10% biotite; 1-2% garnet	3066	-	59.3	64.3	5.0			.002	79

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-88-4 SHEET NO. 4 OF 12

1001	I AGE	Det on the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the con	T		SAMPL	. E				ASSAY5		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	`,	٦.	AUTON	Check	ppbAu
68.2	71.8	Mafic Metavolcanics  - well foliated, highly biotitic volcanics similar to 31.1 to 34.1; trace disseminated pyrite  - slight increase in degree of silicification  - foliation is at 50° to the core axis, contorted near intrusive contacts	3067	tr	68.2	71.8	3.6			.002		70
71.8	74.6	Granitic Intrusive  - white to grey, mostly medium grained intrusive similar to 20.7 to 31.1  - local concentrations of fine grained sericite; biotite occurs mostly along fractures near the lower contact										
74.6	109.2	Mafic Metavolcanics	į							1		
		74.6 to 79.4 - weakly silicified, biotite-rich volcanics similar to 31.1 to 34.1; foliation is locally contorted (some tight fold closures occur) but generally runs at 40-45° to the core axis - distinct quartz-carbonate veinlets are uncommon (mostly fine grains and discontinuous stringers) - rare pyrite	3068	tr	74.6	79.4	4.8			.002		59
		79.4 to 98.3 - dark green, relatively unaltered volcanics similar to 36.6 to 56.8 - fine grained; massive to weakly foliated at 55° to the core axis	3069	tr	82.0	86.0	4.0			.001		21
		- several 1/2 to 1" wide granitic dikelets - trace disseminated pyrite and chalcopyrite - quartz-carbonate veinlets are very narrow (<1/8") and of minor occurrence; weakly silicified zones with fine, randomly oriented stringers occur in some sections - biotite content increases in silicified areas to about 5%	3070	tr	88.5	93.5	5.0			<.001		11

NAME OF PROPERTY Santa Maria Zeemel Lake

SMZ-88-4

SHEET NO. 5 of 12

FOO	I AGE				SAMPL	.Ε				ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	3,	*	Auron	Check.	pbAu
		98.3 to 109.2 - medium to coarse grained, massive to very poorly foliated mafic volcanics	3071	tr	98.3	103.3	5.0			<.001	1	15
		<ul> <li>similar mineralogy to other mafic volcanic units; prismatic amphibole (actinolite), chlorite and biotite with lesser plagioclase and quartz in a loosely foliated assemblage;</li> <li>biotite often forms loose, irregular bands of coarse flakes</li> <li>moderately silicified; 3-5% quartz-carbonate throughout unit, usually as small interstitial grains (veinlets uncommon)</li> <li>disseminated pyrite and chalcopyrite</li> <li>possibly a coarse grained flow center</li> </ul>	3072	tr	103.3	108.3	5.0			.001	3	31
109.2	111.9	Granitic Intrusive  - predominantly white, fine to medium grained intrusive similar to 20.7 to 31.1  - coarse grained pink feldspar occurs near upper contact (grains up to 1" wide)  - several sericitic and garnetiferous bands  - abundant biotite near lower contact  - 111.6 - small prismatic tourmaline crystals in a yellow-green epidote matrix	3073	tr	109.3	111.9	2.6			.001	2	25
111.9	122.1	Mafic Metavolcanics  111.9 to 120.2 - fine grained, weakly foliated volcanics similar to 36.6 to 56.8 - frequent, thin (< 1/8"), crosscutting to subconcordant quartz-carbonate stringers	3074	tr	111.9	116.9	5.0			.001	2	21
		- a few granitic dikelets, less than 1" wide - trace disseminated pyrite and chalcopyrite - minor biotite - foliated at 40-45° to the core axis										

PIDGES - TORONTO - 366-116

NAME OF PROPERTY Santa Maria Zeemel Lake

SMZ-88-4

HEET NO 6 of 12

Foo	TAGE				SAMPL	E				ASSAYS		
FROM	то	DESCRIPTION	NO.	% SULPH IDES	FROM	FOOTAGE	TOTAL	``	3	AUTON	Check	ppbAu
		120.2 to 122.1 - medium to coarse grained, poorly foliated volcanics similar to 98.3 to 109.2 - silicified; several irregular quartz-carbonate pods up to 1/2" wide, interstitial grains of quartz- carbonate also occur - foliated at 25-30° to the core axis	3075	tr	120.2	122.1	1.9			<.001		9
122.1	125.5	- light to medium grey, medium grained, massive to weakly foliated  Average Modes Quartz 40-50% Plagioclase 30-40% Biotite 15-20% K-Feldspar 3-5% Chlorite 0-2% - tonalite; contains several 1-2" quartz pods and	3076		122.1	125.5	3.4			.001		35
125.5	126.4	occasional thin chloritic bands - weak foliation at 40° to the core axis										
126.4	130.0	Intermediate Intrusive  - medium grained, light to medium grey tonalite as per 122.1 to 125.5  - 129.4 to 130.0 - quartz pod or vein; likely a quartz-rich segregation from the intrusive body; fine biotite flakes throughout the quartz, which is white and medium grained	3077		126.5	130.0	3.5			.002		57

100

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-88-4

SHEET NO. 7 of 12

100	1 AGE		T		SAMPI	F		<u> </u>		ASSAYS	<del></del>
	T	DESCRIPTION	NO.	% SULPH		FOOTAGE		ļ			
FROM	10		NO.	IDES	FROM	70	TOTAL	`	*	AUTON	Check ppbAu
130.0	132.0	Mafic Metavolcanics  - highly biotitic, silicified volcanics similar to 31.1 to 34.1  - 20-30% biotite; abundant concordant quartz-carbonate veinlets; trace chalcopyrite occurs in several veinlets  - well foliated at 50° to the core axis	3078	tr	130.0	132.0	2.0			.001	41
132.0	150.1	Intermediate Intrusive - predominantly light to medium grey, medium grained tonalite with several granodioritic phases  132.0 to 134.6 - tonalite, slightly darker grey colour									
		134.6 to 138.4 - white, medium to coarse grained, massive granodiorite; 10-15% K-feldspar - very fine grained pyrite occurs in some fractures	3079	tr ,	133.4	138.4	5.0			.001	33
		138.4 to 150.1 - tonalite, typical - weakly foliated at 40° to the core axis	3080	tr	145.1	150.1	5.0			.001	19
150.1	153.6	Mafic Metavolcanics  - highly biotitic and silicified volcanics similar to 31.1 to 34.1  - highly contorted bands of biotite, chlorite and quartz-carbonate occur at intrusive contacts; most sections foliated at 45-50° to the core axis  - pink garnet occurs in trace amounts near the larger quartz pods  - silicified zones are mostly concordant; several 1/2 to 1" pods and crosscutting veinlets also occur  - trace chalcopyrite	3081	tr	150.1	153.6	3.5			<.001	.5

****** - OTMOROT - SECTO

NAME OF PROPERTY Santa Maria Zeemel Lake HOLE NO. SMZ-88-4 SHEET NO. 8 OF 12

FOOTAGE	E.	ACCORDINATION .			SAMPL	. E				ASSAYS		
FROM 1	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	<b> </b>	`	AUTON	check.	ppbAu
153.6	66.0	Intermediate Intrusive  - light to medium grey, mostly medium grained (locally coarse) tonalite; foliated at 48° to the core axis - several wide fractures (1/4 to 1/2") infilled with biotite - 159.8 to 162.2 - abundant sericite along fractures and foliation planes	3082		158.0	163.0				.001		49
166.0 18	83.8	Ultramafic Metavolcanics										
		Average Modes Amphibole 70-85% Talc/Serpentine 2-5% Chlorite 5-15% Plagioclase 5-10% Sulphide trace Carbonate trace  - predominantly medium grained, randomly oriented prismatic amphibole (actinolite); thin chloritic bands and interstitial serpentine also occur - disseminated pyrite and chalcopyrite -quartz-carbonate veining absent  169.7 to 183.8 - light to medium grey to grey-green, fine grained, weakly foliated	3083	tr	166.0	169.7	3.7			.002		52

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-88-4

SHEET NO 9 of 12

F001	LAGE				\$AMPL	_ Ε			-	ASSAYS	· · · · · · · · · · · · · · · · · · ·	
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	,	3	AUTON	Check.	pbAu
		Average Modes Talc/Serpentine 75-85% Amphibole 5-10% Plagioclase 2-5% Magnetite 2-5% Carbonate 2-3%			7.70	10	10721		**************************************			
		- talc-rich, even textured, ultramafic volcanic; occasional clots and lens shaped bands of talc - quartz-carbonate veining rare; a few crosscutting veinlets - trace pyrite - 182.4 to 183.8 - increasing biotite content toward	3084 3085		174.8 178.8		4.0 5.0			.003		95 191
183.8	196.0	intrusive contact; rocks turn into a biotite schist between 183.3 to 183.8  Granitic Intrusive - grey to brick red, medium grained, massive granite - minor coarse grained sections	3086	_	191.0	196.0	5.0			.003		98
196.0	198.4	-	3087	-	196.0	198.4	2.4			.004		123
198.4	236.3	Intermediate Intrusives  - predominantly light grey, medium grained granodiorite; massive to very weakly foliated - minor sericitic sections; irregular biotite bands up to 1/4" wide occur in some sections	3088 3089 3090 3091	- -	198.4 209.0 221.0 231.0	214.0 226.0	5.0 5.0 5.0 5.0			.004 .003 .004 .002		131 105 121 75

CINCACT SECREDIAN

NAME OF PROPERTY Santa Maria Zeemel Lake
HOLE NO. SMZ-88-4 SHEET NO. 10 of 12

F 001	AGE	WELCONDAION.			SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	3	1	AUTON	Check.	ppbAu
236.3	330.7	Ultramafic Metavolcanics										
		236.3 to 260.9 - light to medium grey to grey-green, fine grained talc-rich ultramafics, similar to 169.7 to 183.8 - 2-3% magnetite, trace pyrite - quartz-carbonate veining very minor - 236.3 to 237.9 - biotite-rich section below intrusive contact - 247.5 - foliation is at 70° to the core axis	3092		236.3	241.3 251.4	5.0 5.0			.003		91 183
		<ul> <li>257.9 to 259.8 - narrow, poorly foliated, medium to coarse grained section</li> <li>260.6 to 261.6 - intercalation of highly biotitic mafic volcanics, similar to 31.1 to 34.1</li> </ul>	3094	tr	257.9	262.9	5.0			.003		87
		Average Modes Amphibole 70-80% Serpentine 10-15% Talc 5-10% Magnetite 2-3% Plagioclase 3-5% Carbonate trace to 1%	3095 3096		267.0 276.0	272.0 280.0	5.0 4.0			.003		95 99
		<ul> <li>massive ultramafic volcanics with abundant, randomly oriented bands of nearly pure talc (1/8" to 3/4" wide); thin discontinuous stringers of talc and possibly magnesite also occur</li> <li>quartz-carbonate veinlets are rare; no visible sulphides</li> <li>280.2 to 282.4 - three 1/2" wide quartz-albite-carbonate veins occur in this interval; no visible sulphides; veins are oriented at 20-30° to the core axis</li> </ul>	3097 3098		280.0 289.5	282.5 294.5	2.5 5.0			.002		75 63

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-4

 $_{\mathsf{HEET}}$  NO 11 of 12

F 001	AGE	OF FORDY ON	1		SAMPL	E				ASSAYS	<del></del>	
FROM	10	DESCRIPTION	но.	3 SULPH IDES	FROM	FOOTAGE	TOTAL	``	*	AUTON	Check'	ppbAu
		299.4 to 330.7 - predominantly light grey, fine grained talc- rich ultramafics, as per 236.3 to 260.9 - intercalations of mafic volcanics and felsic	3099	tr	299.4	304.4	5.0			.001		55
		<pre>intrusives - 306.9 to 308.2 - granitic intrusive dike, predominantly quartz; abundant biotite in volcanics at either contact</pre>	3100	-	306.5	309.1	2.6			.003		97
		<ul> <li>- 311.6 to 313.0 - blocky core; much of the core has been ground up into clay; abundant biotite at bottom of section</li> </ul>	3101	-	311.0	313.0	2.0			.002		83
		- 319.9 to 320.8 - biotite schist, possibly a highly altered intercalation of mafic volcanics	3102 3103		319.0 326.7	324.0 330.7	5.0 4.0			.002		73 207
330.7	346.2	Intermediate Intrusive  - white to light grey tonalite, as per 132.0 to 150.1  - thin bands of sericite are common throughout the unit  - gradational change into a felsic (granitic) intrusive	3104 3105		330.7 341.2	335.7 346.2	5.0 5.0			.003		87 95
346.2	506.0	Granitic Intrusive  - mostly grey to light pink, medium grained massive, granite, as per 183.8 to 196.0  - local tonalitic and granodicritic phases  - several weakly sericitic sections display a weak foliation  - minor quartz veins up to 1/2" wide  - 400.0 - sericitic section foliated at 70° to the core axis	3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116	-	352.0 364.0 376.0 387.0 399.8 412.0 423.0 435.0 447.0 460.0 470.0	369.0 380.4 392.0 404.8 417.0 428.0 440.0	5.0 5.0 4.4 5.0 5.0 5.0 5.0 5.0 5.0			.003 .002 .005 .003 .002 .002 .002 .002 .003		87 59 161 89 113 53 61 73 83 97 85

NAME OF PROPERTY______ Santa Maria Zeemel Lake

HOLE NO. SMZ-88-4 SHEET NO. 12 of 12

					0						
	1 AGE	DESCRIPTION	<b></b>	Ta desirate	SAMPL				·	ASSAYS	
FROM	10		NO.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	٠,	Auton	Check ppbAu
		- 478.3 to 480.6 - narrow section of pink granite containing 2-5% epidote (small anhedral grains)	3117 3118 3119	1	477.5 489.0 501.0	481.5 494.0	4.0 5.0			.002 .003 .002	71 87 51
	506.0	END OF HOLE									
:							•				
								G	M	W	(3/M)

NAME OF	PROPERTY	Santa Maria	Zeemel	Lake		F00
HOLE NO.	SMZ-88-5	LENGTH	997'			200
	36+00E, 6+00N					400
LATITUDE		DEPARTUR	F			
NOITAVALI	No. 3	AZIMUTH	180°	DIP	45 ⁰	- 600 800
	February 3, 198	88	Februar	rv 6. 1988		[80

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-43°		997'	-320	
400	-40°				
6 <u>00</u> 800	-38° -36°				

HOLE NO. SMZ-88-5 SHEET NO. 1 of 4

REMARKS Claim #861418

Summary Log

LOGGED BY Eric Timoshenko

F 0 0 1	AG L	DESCRIPTION			5 A M P	L E			A	5 5 A '	' S	
FROM	10	SUMMARY LOG	но,	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	%	x	AU OZ/TON	Check Sz/fon	
0	31.3	Casing										
31.3	111.4	Mafic Metavolcanics										
111.4	113.0	Chert										
113.0	116.7	Mafic Metavolcanics			:							
116.7	186.4	Interbedded Mafic Tuff and Metasiltstone										
186.4	199.2	Feldspathic Mafic										
199.2	221.4	Mafic Metavolcanics										
221.4	225.1	Metagreywacke										
225.1	227.9	Metasiltstone										
227.9	230.4	Metagreywacke										
230.4	234.3	Interbedded Siltstone and Argillite										
234.3	236.7	Metagreywacke										
236.7	238.1	Interbedded Siltstone and Argillite			I							
238.1	243.9	Chert - 2-3% pyrrhotite										
243.9	263.8	Mafic Metavolcanics										
234.3 236.7 238.1 243.9												

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 2 Of 4

F 001	AGE		T		SAMPI	. <b>E</b>		1	<del></del>	ASSAYS		
FROM	10	DESCRIPTION SUMMARY LOG (Continued)	110	5 SUL PH 100 S	FROM	FOOTAGE 10	TOTAL	1 .	<u> </u>	Ay TON	Check	
263.8	265.9											
265.9	268.7	<u>Metasiltstone</u>	1									
268.7	274.7	Argillite - 5-15% pyrrhotite, trace pyrite										
274.7	287.7	Metagreywacke With Interbedded Chert										
287.7	295.6	Lean Banded Iron Formation										
295.6	393.3	Mafic to Intermediate Metavolcanics										
393.3	418.9	Highly Sheared Clastic Metasediments - possible fault gouge; clay alteration										
418.9	533.5	Interbedded Metasiltstone and Metagreywacke										
533.5	535.1	Mafic Metavolcanics										
535.1	537.3	<u>Metasiltstone</u>				<u>.</u>						
537.3	543.8	Metagreywacke	Ì									
543.8	564.3	Mafic Metavolcanics										
564.3	566.3	Metagreywacke	i									
566.3	575.9	Mafic Metavolcanics	1				1					
										į		
					[	}						
			İ									
			ł		į	<b> </b> 	!					

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 3 OF 4

100	AGE				SAMP1.	.E			455 <b>A</b> Y5		
FROM	10	DESCRIPTION SUMMARY LOG (Continued)	40	SULPH (OF 5	FRUM	FOOTAGE	TOTAL	1,	ğu tun	Check	
575.9	582.7	<u>Chert</u> - 1-2% pyrite									
582.7	586.8	Loss of Core									
586.8	671.8	Metasiltstone									
671.8	687.6	Metagreywacke									
687.6	695.5	Interbedded Metasiltstone and Argillite									
695.5	705.5	Interbedded Metasiltstone and Mafic Tuff									
705.5	754.4	Mafic Metavolcanics - 705.5 - 707.2 - heavily silcified, weakly brecciated interval; abundant quartz-carbonate and epidote, trace-1% disseminated pyrrhotite	3232	tr	705.5	707.5	2.0		.017		
754.4	758.4	Ultramafic Metavolcanics	i								
758.4	809.6	Mafic Metavolcanics									
809.6	839.2	Ultramafic Metavolcanics									[
839.2	841.5	Mafic Dike									
841.5	870.0	Ultramafic Metavolcanics									Ì
	Ì							į			
							į				
1			l						•	1 1	Ì

Santa Maria Zeemel Lake

HOLE NO SMZ-88-5 SHEET NO. 4 of 4

1001	AGE	DESCRIPTION.			SAMPL					ASSAY5	
ном	10	OESCRIPTION SUMMARY LOG (Continued)	но	SHEPH IDES	FROM	FOOTAGE	TOTAL			Ay 10N	Check
370.0	997.0	Ultramafic to Mafic Metavolcanics - 872.9 - 877.2 - talc-rich section with abundant magnetite, several concordant quartz-carbonate stringers containing trace pyrite	3253 3254	tr tr	872.9 881.0	877.0 886.0	4.1 5.0			.009	
,	997.0	End of Hole									
						·					
							ļ				
	ļ								l		
į											
								:			
					: 						
Ì								ļ			

NAME OF	PROPERTY	Santa Maria	Zeemel Lake			
	_SMZ-88-5		997'			
LOCATION	36+00E, 6+00	N				
LATITUDE		DEPARTU	RE			
ELEVATION		AZIMUTH	180	DIP	<u>-45°</u>	
	February 3, 19					

FOOTAGE	ı	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200'	-43°		997'	-32 ⁰	
400	-40°				
600'	-38 ⁰				
800'	-36 ⁰				

HOLE NO. SMZ-88-5 SHEET NO. 1 of 27 REMARKS Claim #Pa 861418

LOGGED BY Eric Timoshenko

001	AGE		li		SAMP	LE			,	SSA	
ROM	10	DESCRIPTION	NO.	SUĽPH- IDES	FROM	FOOTAGE TO	TOTAL	"	²6	OZ/TON	Check oz/Ton
0	31.3	Casing									
31.3	111.4	Mafic Metavolcanics									
		31.3 - 40.3 - mostly medium grained flows which locally grade into coarse grained, plagioclase-rich gabbroic rocks, possibly flow centers or small sills - medium to dark green or grey-green, fine to medium grained, massive to weakly foliated			:						
		Average Modes Amphibole 60-80% Plagioclase 15-30% Chlorite 0-2% Quartz 2-5% Sulphide trace									
		<ul> <li>fine to medium grained flow, weakly foliated 50° to the core axis</li> <li>scattered porphyroblasts of dark green amphibole (probably hornblende) up to 1/4" wide</li> <li>quartz (+ carbonate) veinlets are common; most are crosscutting, randomly oriented, discontinuous veinlets or lens shaped pods</li> <li>several small coarse grained segregations of amphibole and plagioclase + quartz (possible gabbro sills)</li> </ul>									

200 CT-4000T 3000400144

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 2 of 27

FOOTAGE	N. C. Dilly I.			SAMPL	E		 ASSAYS	,
FROM TO	DE SCRIPTION	1 110	SULPH IDES	FROM	FOOTAGE	TOTAL	 Ay ton	Check
	- trace disseminated pyrrhotite and chalcopyrite - 36.6 - 36.9 - brecciated section; small fragments (≤1/2") in a matrix of quartz and fine grained amphibole - 38.5 - concordant stringer of pyrrhotite, 1/4" wide	3122 t	r	35.3	40.3	5.0	.002	
	40.3 - 42.7 - porphyritic section of greenish-grey mafic volcanics; poorly formed plagioclase phenocrysts up to 1/4" wide in a fine grained groundmass of amphibole and plagioclase (10% phenocrysts) - very weak foliation at 55° to the core axis - trace disseminated pyrite	3123 t	r	40.3	42.7	2.4	.001	
	42.7 - 44.2 - light greyish green, medium equigranular, gabbroic flow center or sill  Average Modes Plagioclase 60-70% Amphibole 15-25% Quartz 2-5%' Chlorite 2-5% Sulphide trace - gradational upper contact, sharp lower contact - trace disseminated pyrite  44.2 - 63.5 - predominantly medium grained flows with narrow, coarser grained sections of gabbroic material; trace	3124 t	r	42.7	44.2	1.5	.005	
	disseminated pyrite							

NAME OF PROPERTY. Santa Maria Zeemel Lake
HOLE NO. SMZ-88-5 SHEET NO. 3 of 2

1001	TAGE		1		SAMPL	. E			AYS	<del></del>
FROM	10	DESCRIPTION	NO.	3, SULPH IDES	FROM	FOOTAGE 10	TOTAL	~. oz	u Check	
		- 51.6 - 54.0 - abundant chlorite in matrix (approx. 15%); weakly foliated at 55-60° to the core axis	3125	tr	51.0	55.0	4.0	.0	02	
		63.5 - 89.1 - predominantly medium to coarse grained flows, several sectons grading into gabbro - gabbroic sections contain 40-60% white plagioclase, clear to milky blue quartz (approx. 5%) and dark green amphibole; trace pyrite - several silicified sections containing quartz (+ carbonate) pods and crosscutting stringers - texture is mostly massive; some sections display a weak foliation between 40-50° to the core axis	3126	tr	63.5	68.0	4.5	.0	03	
		- 68.5 - 68.8 - blocky, broken core; fragments of a quartz-carbonate vein containing large blebs (up to 1/2") of massive chalcopyrite	3127	tr	68.0	69.0	1.0	.01	04	
			3128 3129 3130	tr	71.0 80.0 84.1	76.0 84.1 89.1	5.0 4.1 5.0	.00	02	
		89.1 - 111.4 - fine grained, well foliated, weakly banded volcanics; biotite is common throughout this unit in thin discontinuos bands (2-10%) - disseminated pyrrhotite and pyrite (trace to 1%) - several small (3-8") gabbro or diorite sills - quartz-carbonate veining very minor								
		- 94.8 - 96.1 - biotitic section containing 1-2% disseminated pyrrhotite; foliated at 50° to the core axis	3131	tr-1	93.0	97.0	4.0	.00	02	
		- 98.8 - 100.2 - narrow silicified section; several 1/4-1/2", slightly boudinaged, concordant quartz veins; trace disseminated pyrrhotite	3132	tr	98.0	101.0	3.0	.00	03	

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 4 OF 27

FOOTAGE	1				SAMPL	. E	I	ASSAYS	
гром 1	10	DESCRIPTION	110	50LPH 10f5	FROM	FOOTAGE TO	TOTAL	 Au TON	Clieck
		- 106.9 - 111.4 - medium to coarse grained, massive to weakly foliated gabbroic sill; abundant biotite in matrix; sill is cut by several small quartz-chlorite veinlets; trace to 1% disseminated pyrrhotite; foliated at 50° to the core axis	3133	tr-13	106.9	111.4	4.5	.002	
111.4 11	3.0 Chert								
		<ul> <li>light green chert, weakly banded at 45° to the core axis</li> <li>carbonatized; trace disseminated pyrite</li> </ul>	3134	tr	111.4	113.0	1.6	.003	
113.0 11	16.7 Mafic N	Metavolcanics							
		- silcified volcanics; quartz-carbonate occurs mostly as concordant stringers and pods or as small interstitial grains; 1-3% pyrrhotite and trace pyrite in small concordant stringers and blebs - fine grained biotite occurs throughout the unit; small milky-blue quartz porphyroblasts occur in some sections - foliation is at 40-45° to the core axis	3135	tr	113.0	116.7	3.7	.002	
116.7 18	36.4 <u>Interca</u>	- finely intercalated, chlorite-rich tuffaceous volcanics and finely banded, cherty metasiltstone - siltstone usually contains thin bands of biotite (2-5%) - gabbroic sills (1-4" wide) are common, biotite content increases in surrounding rocks							

Santa Maria Zeemel Lake

NAME OF PROPERTY.___ HOLE NO. SMZ-88-5 SHEET NO. 5 OF 27

F 001 AGI	ı .	DE CONTROL			SAMPL	. <b>C</b>		J	ASSAYS	
FROM 1	10	DESCRIPTION	110	SULPH IDES	FRUM	FOOTAGE 10	101A1		Ay 104	Check
		<ul> <li>trace - 1% disseminated pyrite and pyrrhotite and rare chalcopyrite</li> <li>quartz-carbonate veining minor except for silcified sections; most veinlets are concordant and &lt;1/4" wide</li> </ul>								
		116.7 - 119.9 - tuffaceous bands with interbedded white to light green chert; 1% disseminated pyrite, trace arsenopyrite; a loose band of arsenopyrite with associated reddish-brown hematite occurs at 117.8 in a 3" wide chert band	3136	1%	116.7	119.9	3.2		.006	
		119.9 - 122.9 - typical, interbedded tuff and siltstone - foliation and banding is at 50° to the core axis								
		122.9 - 125.6 - silicified section; numerous concordant stringers and small interstitial grains of quartz-carbonate in a matrix if highly biotitic tuffs and siltstones - minor pyrrhotite stringers and blebs (tr-1%)	3137	tr-19	122.9	126.0	3.1		.004	
		125.6 - 167.5 - typical, interbedded tuff and siltstone - gabbroic sills are particularly abundant in this interval	3138	tr	132.0	137.0	5.0		.002	
		- 139.5 - 140.9 - several concordant pyrrhotite stringers within a weakly silicified zone; abundant biotite	3139	1%	139.0	141.0	2.0		.001	
			3140 3141		147.5 156.8	152.5 161.8			.001	

HOLE NO. SMZ-88-5 SHEET NO. 6 OF 27

FOOTAGE	W. C. DICTION	1		SAMPI	E		ASSAYS	,
FROM 10	DESCRIPTION	110	511LPH 101 S	FRUM	FOOTAGE	10141	 AV ton	Check
	- 167.8 - 172.5 - quartz-carbonate veinlets and gabbroic sections are vuggy and weathered (feldspars and carbonate have been weathered out); this section is foliated at 50° to the core axis - 173.0 - 173.9 - quartz-carbonate veinlets (1/8" wide) crosscutting the foliation at a 10-30° angle to the core axis; no visible sulphides in veinlets - 175.9 - 177.0 - subconcordant veinlets consisting of quartz, minor carbonate and fine grained epidote or feldspar; pyrite occurs disseminated and as very small stringers infilling fractures in the veins	3142		167.5 172.5		5.0 4.5	.001	
	177.8 - 186.4 - interbedded feldspathic wacke and siltstone; gradational into lower wacke unit - locally up to 1% disseminated pyrite	3144	tr-19	181.4	186.4	5.0	.002	
186.4 199.2	Feldspathic Wacke  - light to medium grey, medium grained, poorly foliated  Average Modes Framework 60% Feldspar 80% Quartz 20% Matrix 40% Felsics 30% Biotite 70% Pyrite trace							

NAME OF PROPERTY____ Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 7 of 27

F00°	1 AGE	NETCONO.		·	SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	NO.	3 SULPH IDES	FROM	FOOTAGE TO	TOTAL	٠,	٦.	oz Ay,	Cիęç <u>k</u>	
		<ul> <li>fairly even textured wacke consisting mostly of plagioclase and quartz grains with minor pink and yellow k-feldspar; biotite rich matrix</li> <li>most sections are weakly foliated at 50-55° to the core axis</li> <li>188.0 - 188.6 - 1" wide quartz vein oriented at 20° to the core axis; trace disseminated pyrite, minor carbonate</li> <li>192.7 - 193.0 - concordant quartz-carbonate vein; chloritic inclusions, no visible sulphides</li> </ul>	3145 3146		188.0 194.2	193.0 199.2				.002		
199.2	221.4	Mafic Metavolcanics  199.2 - 206.4 - sheared, silicified, well mineralized section - fine grained volcanics, brecciated into coarse fragments; matrix of mainly quartz-carbonate, although several veinlets also contain fine yellow feldspar grains; some sections display pervasive silicification, consisting of 5-10% quartz-carbonate grains and fine stringers in the matrix - mineralization consists mainly of pyrrhotite	3147	5-10	199.2	204.2	5.0			.003		
		(5-15%) and minor chalcopyrite and pyrite (both trace - 1%); blebs and stringers of massive pyrrhotite up to 1/2" wide occur near the bottom of the interval; usual mode of mineralization is fine grained disseminated sulphide within silicified zones and small blebs along the edges of quartz veins - 3-10% biotite occurs throughout the section - 205.1 - 205.3 - massive pyrrhotite stringers	3148	5-109	204.2	206.4	2.2			.004	·	

NAME OF PROPERTY. Santa María Zeemel Lake

HOLE NO SMZ-88-5 SHEET NO. 8 of 27

FOOTAGE	DECONOTION			SAMPL				 ASSAYS	
FROM 10	DESCRIPTION	110	SULPH	FROM	FOOTAGE TO	TOTAL	:	AU TON	theck.
	206.4 - 210.0 - fine grained, weakly silicified volcanics; weak banding and abundant concordant quartz-carbonate stringers and small pods; 1% biotite - moderately well foliated at 50° to the core axis - trace disseminated pyrrhotite	3149		205.4	210.0			.002	
	210.0 - 214.0 - medium grained, massive to poorly foliated mafic flow  Average Modes  Amphibole 70-80% Chlorite 5-10% Plagioclase 15-20% Quartz 1-2%  - quartz-carbonate veining generally minor; a few small (1/4-1/2"), discontinuous veinlets made up of brick-red feldspar and minor quartz could be very small intrusive dikelets - no visible sulphides	3150	-	210.0	214.0	4.0	į	.002	
	214.0 - 221.4 - fine grained, silcified volcanics, as per 206.4 - 210.0 - banding is more prominent throughout this section, consisting of interbanded concordant quartz-carbonate veinlets, biotite rich bands, and wider sections of unaltered volcanics - several of the concordant quartz-carbonate veinlets are boudinaged; minor, very thin crosscutting veinlets at low angles to the core axis	3151 3152		214.0 218.0		4.0		.002	

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 9 OF 27

1001	LAGE	DESCRIPTION			SAMP				 ASSAYS		
CROM	3 ( )	DE 2CHILLION	110	SIL PH	FROM	FOOTAGE	TOTAL	<b>!</b>	Was AN	Check	
221.4	225.1	- several quartz porphyroblasts (<1/4") occur in the section - trace disseminated pyrrhotite - banding and foliation are at 52° to the core axis  Metagreywacke  - dark grey, medium grained, quartz-feldspar wacke (roughly 30:70 framework to matrix ratio) - abundant biotite in the matrix - weakly foliated at 50° to the core axis - no visible sulphides									
225.1	227.9	·									
227.9	230.4	Metagreywacke  - similar to above unit between 221.4 - 225.1 except that this unit is much finer grained - abundant thin sericite bands, trace disseminated pyrrhotite	3153	tr	225.4	230.4	5.0		.002		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 10 of 27

F 00 T	LAGE	APPROACH CO.			SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	40	· SULPH IDES	FROM	FOOTAGE TO	101AL	,	Ąū _{ton}	check	
230.4	234.3	Interbedded Siltstone and Argillite									
		<ul> <li>light grey to greenish-grey siltstone interbedded with thin bands (1/8-3/4") of dark grey argillite</li> <li>siltstone is fairly cherty and contains thin sericite bands</li> <li>argillite bands contain thin stringers and blebs of pyrrhotite and lesser pyrite; total sulphide content for the unit is between 2-4%</li> <li>concordant quartz-carbonate veinlets are common, occuring mostly in the argillaceous bands; several veinlets are finely brecciated</li> <li>banding is at 52° to the core axis</li> </ul>	3154	2-5%	230.4	234.3	3.9		.003		
234.3	236.7	Metagreywacke									Ì
		<ul> <li>brownish-grey, medium grained, weakly foliated wacke similar to 221.4 - 225.1</li> <li>framework to matrix ratio is about 40:60</li> <li>frequent quartz porphyroblasts (approx. 1/4" wide)</li> <li>no visible sulphides</li> </ul>									
236.7	238.1	Interbedded Siltstone and Argillite									
		<ul> <li>basic description as per 230.4 - 234.3</li> <li>237.5 - 238.1 - abundant biotite bands in the siltstone, boudinaged quartz-carbonate veinlets; fine grained pyrrhotite and possible galena</li> </ul>	3155	2-4%	236.7	238.1	1.4		.004		

HOLE NO. SMZ-88-5 SHEET NO. 11 of 27

F 00	TAGE	DE SCRIPTION			SAMPL				ASSAYS	····	
FROM	10	DI SCRIP ITON	110	SULPH IDES	FROM	FOOTAGE 10	TOTAL		Ay TON	Check	
238.1	243.9	Chert									
243.9	263.8	<ul> <li>brownish-grey to light grey chert, massive to very weakly banded</li> <li>grades downward from a brownish "dirty" chert (inclusions of biotite?) to a light grey chert containing small clots of biotite and sulphide</li> <li>numerous thin, crosscutting quartz-carbonate stringers at very low angles to the core axis</li> <li>2-3% pyrrhotite; small blebs and stringers</li> </ul> Mafic Metavolcanics	3156	2-3%	238.1	243.1	5.0		.004		
		- predominantly fine grained flows, as per 206.4 -	3157	tr	243.1	247.6	4.5		.003		
		210.0, weakly foliated at 50° to the core axis - quartz-carbonate veining generally minor; majority of the veinlets crosscut the foliation at low to medium angles to the core axis and are less than 1/4" wide; several of the veinlets contain pink feldspar - trace disseminated pyrite, minor pyrrhotite stringers - 258.1 - 262.8 - weakly silicified zone; discontinuous concordant stringers and pods of quartz-carbonate; some sections are weakly biotitic; frequent pyrrhotite blebs up to 1/4" wide	3158	tr	249.9	254.9	5.0		•004		
263.8	265.9	Britaniferangugungu						,			
95 0.500 0.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500 5.500.		<ul> <li>dark grey to black graphitic argillite; much of the unit is finely brecciated and locally displays highly contorted bedding</li> <li>quartz-carbonate pods and stringers are common throughout the unit and are usually brecciated</li> </ul>			·						

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SM2-88-5 SHEET NO. 12 OF 27

FDA	Dr. (CDIDZIO)			SAMPL	. E			·	ASSAYS		
10	DESCRIPTION	110	" SUL PH IDES	FROM	FOOTAGE TO	TOTAL		1	AU 02 TON	Check	
	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6	3160	5%	263,8	265.9	2.1			.003		
268.7	Metasiltstone - light greyish-green, finely banded siltstone, as	3161	tr-1	% 265 <b>.</b> 9	268.7	2.8			.002		
	per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite					l					
274.7	Argillite					!					
	<ul> <li>black graphitic argillite, as per 263.8 - 265.9</li> <li>sulphides are dominantly pyrrhotite; trace pyrite;</li> <li>5-15% total sulphide</li> </ul>					3.0 3.0			.003		
287.7	Metagreywacke with Interbedded Chert										
	<ul> <li>light brown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3</li> <li>236.7, interbedded with white, recrystallized chert</li> </ul>	3165	3-5%	279.0	283.0	4.3 4.0 4.7			.002 .002 .002		
	<ul> <li>highly biotitic wacke matrix; total biotite content is 20-30%</li> </ul>										
				l							
	268.7 274.7	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6  Metasiltstone  - light greyish-green, finely banded siltstone, as per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  Argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  287.7 Metagreywacke with Interbedded Chert - light brown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded with white, recrystallized chert - highly biotitic wacke matrix; total biotite content	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6  268.7 Metasiltstone  - light greyish-green, finely banded siltstone, as per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  274.7 Argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  287.7 Metagreywacke with Interbedded Chert - light brown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded with white, recrystallized chert - highly biotitic wacke matrix; total biotite content	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6  268.7 Metasiltstone  - light greyish-green, finely banded siltstone, as per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  274.7 Argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  287.7 Metagreywacke with Interbedded Chert - light brown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded with white, recrystallized chert - highly biotitic wacke matrix; total biotite content	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6  268.7 Metasiltstone  - light greyish-green, finely banded siltstone, as per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  274.7 Argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  287.7 Metagreywacke with Interbedded Chert - light brown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded with white, recrystallized chert - highly biotitic wacke matrix; total biotite content	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6  268.7 Metasiltstone  - light greyish-green, finely banded siltstone, as per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  274.7 Argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  287.7 Metagreywacke with Interbedded Chert - light brown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded with white, recrystallized chert - highly biotitic wacke matrix; total biotite content	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 2	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly breccided section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6  268.7 Metasiltstone  - light greyish-green, finely banded siltstone, as per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  - light brown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded With white, recrystallized chert - highly biotitic wacke matrix; total biotite content	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide quartz-carbonate vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occurs at 264.6 and 2" wide vein occur	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecciated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.6  268.7 Metasiltstone  - light greyish-green, finely banded siltstone, as per 225.1 - 227.9 - several bands of recrystallized chert containing disseminated pyrrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  - light prown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded with white, recrystallized chert - highly biotitic wacke matrix; total biotite content	- pyrrhotite and minor pyrite occur throughout the unit, mostly as concordant, discontinuous stringers and small blebs; total sulphide varies between 5-15% - 263.8 - 265.0 - highly brecriated section containing numerous carbonate + quartz veinlets; a 1/2" wide vein of rhodochrosite occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.3 and a 2" wide quartz-carbonate vein occurs at 264.6 and a 2" wide quartz-carbonate vein occurs at 264.6 and a 2" wide quartz-carbonate vein occurs at 264.6 and a 2" wide quartz-carbonate vein occurs at 264.6 and a 2" wide pyrhotite - banded at 65° to the core axis - 267.4 - 1" wide band of graphitic argillite  - black graphitic argillite, as per 263.8 - 265.9 - sulphides are dominantly pyrrhotite; trace pyrite; 5-15% total sulphide  - light prown to brownish-grey, medium grained quartz-feldspar wacke, similar in character to 234.3 - 236.7, interbedded with white, recrystallized chert - highly biotitic wacke matrix; total biotite content

NAME OF PROPERTY. Santa Maria Zeemel Lake

NOLE NO. SMZ-88-5 SHEET NO. 13 of 27

FOOTAGE		1		SAMPL	. <b>E</b>				ASSAYS		
	DESCRIPTION	110	". SUL PH		FOOTAGE		1	T	AU	Check	1
ROM TO			IDE S	FROM	to	TOTAL	<b>{</b>		UZ 10N	DZ TON	
	<ul> <li>sections of chert 4-8" wide contain thin sericite and chlorite bands</li> <li>pyrrhotite (and minor pyrite) stringers and blebs occur in both wacke and chert units; total sulphide content ranges from 3-5% (locally up to 15%); larger blebs and stringers contain many fine vugs</li> <li>banding and foliation oriented at 50-55° to the core axis</li> </ul>										
287.7 295.6	Lean Banded Iron Formation										
	- predominantly white chert and fine grained chloritic siltstones and tuffs which locally grade into narrow sections (up to 1" wide) of oxide facies iron formation - iron formation units consist mainly of chert (60%), highly chloritic pelitic or tuffaceous bands (30%), and magnetite (10%); rare grunerite bands also occur - magnetite bands are usually 1/8 - 1/4" wide; chert and chlorite bands are much wider, up to several inches; bands are oriented at 55° to the core axis - concordant pyrrhotite and pyrite stringers up to 1/4" wide occur throughout the unit; sulphide content ranges from 2-5% - carbonate is generally rare; a few narrow crosscutting stringers occur - 290.5 - 3/4" wide quartz vein containing euhedral quartz crystals' minor carbonate, trace pyrrhotite	3167 3168	2-5% 2-5%	287.7 291.7	291.7 295.0	<b>4.</b> 0 <b>3.</b> 9			.004		

HOLE NO. SMZ-88-5 SHEET NO. 14 of 27

f 00°	IAGE	DESCRIPTION	1		SAMPL	E.		1	 ASSAYS		
FROM	70	DESCRIPTION	110	SHEPH IDES	FROM	FOOTAGE TO	TOTAL		Ay ton	Check	
295.6	393.3	<ul> <li>Mafic to Intermediate Metavolcanics</li> <li>- dark green to grey, massive to weakly foliated, fine to medium grained</li> </ul>									
		Average Modes  Amphibole 55-75%  Plagioclase 20-40%  Chlorite 2-5%  Quartz 1-3%  Sulphides trace									
		- fairly even textured flows with gradational variations in plagioclase content and grain size - quartz-carbonate veining is very minor; veinlets are mostly small (1/8-1/4") and concordant - several highly fractured, blocky sections, limonite coating on most fracture surfaces - trace disseminated pyrite; minor crosscutting stringers - 300.0 - 305.0 - broken, blocky core; recovery about 40%, section is foliated at 55° to the core axis - 208.6 - 308.9 - 1/8" wide, crosscutting quartz-carbonate stringer containing pyrite blebs	3169	tr	295.6	300.5	5.0		.002		
		- 309.0 - 1/2" wide concordant quartz vein carrying trace pyrite; a small vug contains small crystals and reniform masses of specular hematite (?) - 314.5 - pyrrhotite bleb (1/8" wide) in a small	3170 3171		306.0 310.0	310.0	4.0 5.0		.003		
ANGROGES - 108040 - 366.168		silicified zone  - 333.0 - 336.0 blocky, broken core	3172 3173	tr	320.0 332.0	325.0 337.0	5.0 5.0		.001		
ANGPOGES -											

NAME OF PROPERTY..... Sallta Mar'ld Zeemei Lake

HOLE NO. SMZ-88-5 SHEET NO. 15 of 27

FOOT AGE	DETODIONAL			SAMPI	E		ASSAYS					
FROM TO	DESCRIPTION	110	SULPH	FROM	FOOTAGE	TOTAL		,	AU TON	Check	ppbAu	
	- 339.5 - 343.5 - several crosscutting quartz- carbonate-pyrrhotite stringers in this interval; most are oriented at 10-20° to the core axis; foliation (very weak) is at 60° to the core axis - 357.8 - 395.4 - fine to medium grained flows	3174		339.0 349.0					.002			
	(possibly with small sections of gabbroic intrusives); several sections of blocky, broken core; most sections are weakly foliated at 50-55° to the core axis	3176 3177	tr	357.8 362.8	362.8	5.0			.001		73	
	<ul> <li>quartz veinlets are common throughout this section; all of the carbonate has been dissolved out, creating numerous small vugs</li> <li>fracture surfaces and many vugs are coated with limonite</li> <li>highly oxidized pyrite stringers occur frequently throughout the section; most are &lt; 1/8" wide</li> <li>shearing and silcification become gradually more intensive downhole towards the fault zone</li> </ul>	3178 3179 3180 3181 3182	tr tr tr	367.8 372.8 377.8 382.8 387.8	377.8 382.8 387.8	5.0					113 115 93 85 81	
393.3 418	Highly Sheared Clastic Metasediments  - highly sheared, altered siltstones and wackes; this section could possibly be fault gouge, altered by connate and possible hydrothermal solutions - core is fairly incompetent, most of the rock is blocky and broken; soft, clay altered seams occur frequently and most of the core has a heavy limonite + manganese stain; no visible sulphides or carbonate - well foliated at 55-60° to the core axis											

NAME OF PROPERTY...... Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 16 of 27

FOOTAGE	DESCRIPTION			SAMPL			ASSAYS						
FROM TO	OT SCRIPTION .	110	SUL PH IDES	FROM	FOOTAGE 10	TOTAL			o AVon	Среск			
	393.3 - 397.0 - intensely altered material; core is very soft and crumbly (clay alteration), recovery is about 50%; a 3" wide section of highly siliceous sediments, looking similar to a finely banded, limonite stained chert, could possibly be a mylonite	3183	-	392.8	397.0	4.2					195		
	397.0 - 400.4 - light green, weakly altered material with a light limonitic stain; a highly fractured 8" wide interval (fragments < 1" wide) occurs within this section; appears to De a fine grained sediment but it could also be a highly sheared volcanic	3184	-	397.0	400.4	3.4					81		
	400.4 - 406.5 - highly altered section; crumbly, highly limonitic material; several small (1-2") clay seams; strongly foliated at 60° to the core axis; core recovery about 80%	3185	-	400.4	406.5	6.1		:			97		
	406.5 - 418.9 - weakly altered material with a light limonite stain, similar to above; light green fuchsite occurs as small flakes interspersed throughout the sediments (2-3%); core recovery is about 90% - 414.0 - 418.9 - small, vuggy quartz veinlets occur locally, most are concordant and < 1/8" wide	3186 3187 3188	_	406.5 411.5 415.5	415.5	4.0					6: 4: 5:		
418.9 533.	- sericitic siltstones interbedded with fine grained quartz-feldspar wackes - the degree of shearing and alteration in the sediments decreases steadily downhole - many small vugs occur throughout the section (carbonate veins have been dissolved out) - minor garnet occurs in some sections												

HOLE NO. SMZ-88-5 SHEET NO. 17 of 27

LOOTAGE		T		SAMPL	. Ε			ASSAYS		
FROM 10	DESCRIPTION	110	10f 5	FRUM	TOOTAGE	IATAI		AU TON	Chet'k	ppbAu
	418.9 - 427.0 - light greyish-green, sheared wackes; the sediments appear to have been bleached - minor quartz-carbonate veining (concordant) - small, highly fractured and distended grains of a black mineral, possibly tourmaline - no visible sulphides; trace to 2% biotite, trace to 1% fuchsite	3189 3190	•	418.9 423.4	423.4 427.0					67 57
	427.0 - 447.6 - mostly light to medium grey, fine grained metagreywacke, highly sheared and with a light limonite stain - foliated at 65° to the core axis - biotite occurs in small isolated flakes (1-2%) - 427.0 - 437.0 - core recovery is about 20% - 437.0 - 447.6 - core recovery is about 60% - 442.1 - 442.9 - about 5% pink garnet; porphyroblasts are highly fractured and smeared out along the foliation	3191 3192		427.0 439.0						73 80
	447.6 - 491.6 - typical interbedded wacke and siltstone with several narrow interbeds (2-6") of highly garnetiferous pelitic sediments - wackes tend to be coarse grained (not as highly sheared); larger quartz grains and garnet porphyroblasts are shattered and smeared out along the foliation (possible cataclastic deformation away from the main ductile shear zone) - wackes and siltstones contain very narrow, highly irregular, chloritic veinlets surrounded by bleached alteration haloes; frequent concordant quartz veins with numerous small vugs also occur	3193 3194 3195 3196	-	447.6 452.6 457.6 462.6	457.6			.002 .003 .003 .002		

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 18 of 27

F OOT AGE	DE SCRIPTION			SAMPI	ı. E		ASSAYS					
FROM 30	DESCRIPTION	110	". SUL PH	FROM	FOOTAGE 10	TOTAL		Ay 10N	Check	ppbAu		
	<ul> <li>pelitic bands are composed of chlorite with minor biotite and about 5-10% garnet; well developed quartz pressure shadows often occur adjacent to garnet porphyroblasts</li> <li>469.4 - 473.5 - heavy limonitic staining throughout this interval; narrow sections (1-3") of incompetent rock</li> <li>478.0 - foliated at 63° to the core axis</li> <li>486.8 - 491.6 - heavy limonite staining throughout this interval; 6" wide pelitic band contains numerous</li> </ul>	3197 3198 3199 3200 3201	-	467.8 472.8 477.8 482.8 486.5	477.8 482.8 486.5	5.0 5.0 3.7		.004 .002 .003 .003				
500 5 505	vugs; very minor core loss from a narrow, blocky interval (recovery 95%)  491.6 - 533.5 - predominantly siltstone with minor wacke interbeds; finely banded and foliated at 60° to the core axis; garnet porphyroblasts and quartz grains are highly shattered and smeared out along the foliation; minor quartz veining (mostly concordant veins with numerous small vugs)	3202 3203 3204 3205 3206	-	497.0 507.0 518.4 523.4 528.4	512.0 523.4 528.4	5.0 5.0 5.0		.003 .002 .001 .001				
533.5	- dark green, finely grained, well foliated volcanics consisting mainly of chlorite (60%), amphibole (approx. 15%) and plagioclase (approx. 25%); possible tuff - trace disseminated pyrite - two 1/2" wide, concordant quartz-carbonate veins occur near the bottom of the unit	3207	•	533.5	535.1	1.6		.002				

Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 19 of 27

FOOT	AGI.				SAMPI	E			 ASSAYS		
ном	10	DE SCRIPTION	110	SHEPH IDES	FROM	FOOTAGE TO	TOTAL		Ay TON	Check	
535.1	537.3	Metasiltstone									
		<ul> <li>greyish-green, highly siliceous (cherty) siltstone</li> <li>weakly banded and foliated at 60° to the core axis</li> <li>subparallel fractures with bleached alteration</li> <li>haloes occur near the bottom of the interval;</li> <li>fractures are oriented at 30° to the core axis</li> </ul>						·			
37.3	543.8	Metagreywacke									
		<ul> <li>fine to medium grained, weakly sheared quartz-felspar wacke; light limonite stain throughout the unit; minor biotite in matrix</li> <li>several concordant to subconcordant quartz veins up to 3/4" wide</li> </ul>	3208	-	535.1	540.1	5.0		.002		
		- 541.9 - 543.0 - highly altered zone below a 2" wide quartz vein; very limonitic and vuggy	3209	-	540.1	543.8	3.7		.002		
43.8	564.3	Mafic Metavolcanics - fine grained, possibly tuffaceous volcanics with									
		narrow interbeds of cherty siltstone and wacke - mostly amphibole (approx. 60%) and chlorite (20%) with lesser plagioclase (15%) and biotite (5%) - weakly carbonatized, trace pyrite - quartz + carbonate veins are common; many of the veinlets contain small vugs	2210	<b>*</b> n	642 O	EAO O	E 0		002		
		- 543.8 - 557.0 - blocky core; recovery about 85% - 557.0 - 564.3 - recovery about 65%	3210 3211 3212	tr	543.8 548.8 556.0	548.8 556.0 562.8	5.0 7.2 6.3		.002 .002 .003		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-88-5 SHEET NO. 20 of 27

1001	AGE				SAMPL				 ASSAYS	01 - 1	
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	TOTAL	:	AU OZ TON	Check-	
564.3	566.3	Metagreywacke									
		<ul> <li>greyish-brown, fine grained quartz-feldspar wacke with an abundance of biotite in the matrix</li> <li>small concordant quartz-carbonate veinlets are common, with frequent small vugs; a few very narrow, chlorite-rich veinlets also occur</li> </ul>									
566.3	575.9	Mafic Metavolcanics	1 '								
		<ul> <li>basic description as per 543.8 - 564.3</li> <li>greyish-green, fine grained volcanics; possibly tuffs</li> <li>large vugs up to 1/4" wide and 1" long are very common in this unit (carbonate dissolved out of veinlets)</li> <li>trace pyrite</li> </ul>	3213 3214		566.3 571.3		5.0 4.6		.003		
575.9	582.7	Chert  - light to medium grey impure chert - fine grained sericite forms thin wispy bands; foliated at 65° to the core axis - 1-2% disseminated pyrite; very thin, discontinuous stringers also occur	3215	1-2	575.9	578.9	3.0		.004		
		<ul> <li>rare crosscutting quartz-carbonate stringers</li> <li>580.1 to 580.8 - intercalation of highly biotitic</li> <li>metagreywacke</li> </ul>	3216	1-2	578.9	582.7	3.8	<u>}</u>	.003		ı
582.7	586.8	Loss of Core									

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-5 SHEET NO. 21 of 27

1001	AGE	DE CONTROLLO.			SAMPL	_E	Control Section Section 171	ASSAYS			A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR	
FROM	10	DE SCRIPTION	ИО	" SUL PH IDES	FROM	FOOTAGE	TOTAL			AU 07 TON	Check	
586.8	671.8	Metasiltstone  - greyish-green, cherty siltstone, similar to above - finely banded; thin, wispy biotite and sericite bands mainly; chlorite bands (tuffaceous layers) also occur - quartz-carbonate veining is common, majority of the veinlets are concordant and between 1/8" to 1/4" wide; rare crosscutting veinlets also occur; many veinlets are boudinaged - rare disseminated pyrite occurs in the siltstone;	3217	tr	586.8	591.8	5.0			.001		
		some veinlets contain trace pyrite - 600.0 - foliated at 60° to the core axis - 609.1 - 2" wide concordant quartz vein containing trace to 1% disseminated pyrite	3218			601.8	5.0			.003		
		<ul> <li>613.0 to 613.4 - subconcordant quartz-carbonate vein; inclusions of biotite and chlorite, trace</li> </ul>	3219	tr	608.5	613.5	5.0			.001		
		pyrite	3220 3221		617.0 627.0	622.0 632.0	5.0 5.0			.002 .002		ĺ
		<ul> <li>635.1 to 1/2" wide, finely brecciated chert band</li> <li>636.2 to 636.3 - brecciated section, infilled with quartz-carbonate, no visible sulphides</li> <li>665.0 - fine banding at 60° to the core axis</li> </ul>	3222 3223 3224 3225	tr tr	634.0 640.9 653.5 666.8	645.9	5.0 5.0 5.0 5.0			.003 .003 .003 .006		i
671.8	687.6	Metagreywacke  - typical greyish-brown, quartz-feldspar, wacke, as per above, weak to moderate silicification  - silicified sections contain numerous concordant to subconcordant quartz-carbonate veinlets; most veinlets are discontinuous and several are brecciated	3226 3227		671.8 676.8		5.0 5.0			.003		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-5

SHEET NO. 22 of 27

FOOT AGE	DETCHIOTION	- {		SAMPL	. <b>E</b>		ASSAYS				
ROM TO	DESCRIPTION	110	* 501 PH	FROM	FOOTAGE TO	TOTAL			AU oz Yon	Check	
	- silicified sections are poorly banded and contain many chloritized and biotite-rich sections - no visible sulphides - small interbeds of siltstone become more common towards bottom of unit (gradational lower contact)		int 5	FROM	10	TOTAL					
87.6 695.5	<ul> <li>light greyish green siltstone (80%) interbedded with dark grey to black graphitic argillite (20%)</li> <li>argillite bands range in size from 1/2" to 6" wide; most of these bands contain 1-5% pyrrhotite, mostly disseminated but also the small concordant stringers;</li> </ul>	3228	1-3	686.8	691.8	5.0			.004		
	minor pyrrhotite occurs in siltstone bands - 693.5 to 694.6 - silicified section; concordant, discontinuous stringers and small brecciated grains of quartz carbonate; a 1/4" wide, concordant pyrite stringer occurs near the bottom of the section	3229	1-3	691.8	695.5	3.7			.001		
95.5 705.5	Interbedded Metasiltstone and Mafic Tuff  - heavily silicified and carbonatized cherty siltstone, interbedded with layers of chlorite schist (1" to 6" wide)  - silicified areas locally contain 3-5% biotite  - shear fractures oriented at 30-35° to the core axis occur near the top of the section  - finely banded at 60-65° to the core axis  - 696.4 - 1 1/2" wide finely brecciated section infilled with pyrrhotite and minor pyrite; many small vugs										
	- 696.6 to 697.0 - fuchsite occurs in thin concordant bands - 705.1 to 705.5 - chert band; greenish grey chert containing thin pyrrhotite stringers, minor chalcopyrite, and possible arsenopyrite	3230 3231	tr-1 tr	695.5 700.5	700.5 705.5	5.0			.001		
										1	

HOLE NO. SMZ-88-5 SHEET NO. 23 of 27

1001	AGI	THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O			SAMPL	E	T	ASSAYS	
FROM	10	DE SCRIPTION	110	SUL PE	FROM	FOOTAGE	TOTAL	 AU 10N	Check
705.5	754.4	Mafic Metavolcanics - dark green, fine grained, moderately well foliated mafic flows - typical amphibole - chlorite - plagioclase assemblage; much of the unit has been silicified and carbonatized; biotite content increases in heavily silicified areas							
		705.5 to 707.2 - heavily silicified, weakly brecciated section; large brecciated grains of epidote (zoisite ?) occur throughout the section, usually within quartz-carbonate veinlets; trace to 1% disseminated pyrrhotite	3232	tr	705.5	707.5	2.0	.017	
		707.2 to 737.9 - typical fine grained volcanics, foliated at 60-65° to the core axis - 714.1 to 715.3 - heavily biotitic section containing several small garnets, trace to 1% disseminated pyrrhotite	3233 3234 3235	tr	713.6 722.0 732.9		4.9 5.0 5.0	.004 .004 .002	
		737.9 to 742.1 - lost core (broken core box)  742.1 to 754.4 - typical fine grained volcanic flows - large crosscutting quartz-carbonate stringers occur frequently in this section (1-3" wide); brecciated wallrock fragments are common in the veinlets	3236 3237		742.1 747.0		4.9 5.0	<.001 .002	
754.4	758.4	Ultramafic Metavolcanics  754.4 to 756.1 - mostly dark green, fine grained, weakly foliated flows	3238	tr	754.4	758.4	4.0	.003	

HOLE NO. SMZ-88-5 SHEET NO. 24 of 27

O1 ACE	(t		SAMPL	. E			ASSAYS	<del></del>	]
DESCRIPTION 10	10	SULPH FDES	FROM	FOOTAGE	TOTAL		AV TON	Check	
Average Modes Amphibole 60-75% Chlorite 20-30% Plagioclase 5-10% Sulphides trace  - quartz-carbonate veining absent, trace disseminated pyrite  756.1 to 757.6 - light to medium grey, fine grained, weakly foliated, talc-rich volcanics  Average Modes Amphibole 40-60% Talc/Serpentine 30-40% Chlorite 10-15% Magnetite 2-3% Carbonate 1-2%  - minor carbonate and talc veinlets  757.6 to 758.4 - dark green, fine grained flows, as per 754.4 to 756.1 - foliated at 70° to the core axis  4 809.6  Mafic Metavolcanics  - basic description as per above (i.e. 705.5 to 754.4); massive to weakly foliated flows - 777.1 to 775.2 - several 1/8" to 1/4" wide	239 240 241	tr	758.4 771.0 782.0		5.0 5.0		.003		

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-5 SHEET NO. 25 of 27

1.00	LAGE	DESCRIPTION	SAMPLE SULPH FOOTAGE					<del></del>	ASSAYS	<b>N</b> 4	
FROM	10	DA SCAIF TION	140	SULPH LOES	FROM	FOOTAGE	TOTAL	,	AU oz ton	Check- oz ton	
		- 787.1 to 792.2 - several veinlets 1/4" to 1/2" wide, composed of quartz, pink feldspar + carbonate; veins are randomly oriented in predominantly massive mafic volcanics; trace to 1% disseminated chalcopyrite - 801.2 to 809.6 - several concordant quartz + carbonate + pink feldspar veins between 1/2 to 2" wide occur in this interval; biotite content approaches 15% in some sections; trace disseminated	3242 3243 3244	tr	787.0 801.2 806.2	792.0 806.2 809.6	5.0 5.0 3.4		.003		
		chalcopyrite and pyrrhotite; small garnets occur scattered throughout the more heavily silicified and biotite-rich zones; section is foliated at 75-80° to the core axis		!							1
809.6	839.2	Ultramafic Metavolcanics - dark green, medium grained, massive flows	3245	tr	809.6	814.0	4.4		.002		
30, 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500 - 500		Average Modes:  Amphibole 80-90% Plagioclase 5-10% Chlorite 2-5% Biotite 0-2% Carbonate 1-2% Serpentine 1-2% Sulphides trace  - massive ultramafic flows composed almost entirely of medium grained, prismatic amphibole crystals (actinolite) - chlorite and serpentine occur along fracture planes, minor slickensides - entire unit is weakly carbonatized; randomly oriented stringers and veinlets up to 1" wide composed of quartz + carbonate + pink feldspar are common throughout the unit									

Santa Maria Zeemel Lake

HOLE NO SMZ-88-5 SHEET NO. 26 of 27

100	I AGE	AN LONDY ION	Ī		SAMPL	£		SSAYS	
FROM	16	(H. SCRIPTION	110	501 Par 101 S	FROM	FOOTAGE To	TOTAL	 AU TON	Check
		<ul> <li>trace disseminated chalcopyrite</li> <li>818.6 to 819.5 - quartz-carbonate-feldspar vein,</li> <li>1/2" to 1" wide; smaller veinlets branch off from the principal vein; trace chalcopyrite</li> </ul>	3246	tr	818.6	823.6	5.0	.001	
		- 830.2 to 831.0 - two 1" wide quartz-feldspar porphyry dikes occur at either end of this interval; well formed plagioclase phenocrysts and anhedral quartz grains in a greyish-green, fine grained	3247	tr	829.8	831.3	1.5	<.001	
		groundmass	3248	tr	835.0	839.2	4.2	.002	
839.2	841.5	Mafic Dike  - dark brown, porphyritic dike; well formed plagioclase phenocrysts (10-15%) lie in a fine grained matrix of mainly biotite with lesser felsic minerals and minor chlorite  - phenocrysts range in size from 1/8 to 1/4"  - groundmass is weakly foliated at 70-80° to the core axis  - trace pyrite  - sharp contacts	3249	tr	839.2	841.5	2.3	.003	
841.5	870.0	Ultramafic Metavolcanics - basic description as per above (i.e. 809.6 to 841.5)	3250	tr	841.5	846.5	5.0	.001	
		- massive, medium grained flows - 856.1 to 858.7 - quartz-carbonate vein; mostly milky quartz with minor carbonate; inclusions of chloritic and amphibole; trace chalcopyrite	3251 3252		855.5 860.0	860.0 865.0	4.5 5.0	.002 .004	
66									
, Holle		•							

Santa Maria Zeemel Lake

Santa Maria Zee

HOLE NO. SMZ-88-5 SHEET NO. 27 of 27

FOOTAGE				SAMPL					SSAYS		
FROM 10	DESCRIPTION	110	* 51H PH 10f S	FROM	FOOTAGE	IO TA1	·		AU TON	Cheff	
870.0 997	- mostly medium grained, massive ultramafic flows, as per 809.6 to 841.5; plagioclase content locally increases to over 15% (gradational change to mafic volcanics); mafic intervals are visually less than 3										
	feet in length - 872.9 to 877.2 - medium grey, talc-rich ultramafic volcanics similar to 756.1 to 757.6; several	3253	tr	872.9	877.0	4.1			.009		
	concordant quartz-carbonate veinlets with trace pyrite; abundant magnetite	3254 3265		881.0 894.5					.009		
	- 908.2 to 913.1 - several quartz-carbonate stringers (1/8 to 1/4"), randomly oriented; trace chalcopyrite	3255 3256		908.1 919.0	913.1 924.0	5.0 5.0			.002		
	- 930.0 - weakly foliated at 75-80° to the core axis - 936.5 to 945.0 - numerous randomly oriented, discontinous quartz-carbonate stringers; zone appears	3257 3258 3259	tr	928.8 936.5 941.5	941.5	5.0 5.0 4.0			.003 .001 .001		
	to be weakly brecciated - 950.1 to 952.5 - coarse grained mafic volcanics; amphibole crystals up to 1/2" long, randomly oriented; possible flow center; trace chalcopyrite	3260		950.0					.002		
	- 960.2 to 969.8 - medium grey, talc rich ultramafics similar to 756.1 to 757.6; abundant anhedral magnetite; talc-rich bands are common	3261	tr	960.2	965.2	5.0			.003		
	- 970.6 to 971.9 - sheared mafic (?) volcanics; biotite-chlorite schist; foliated at 60° to the core axis	3262	tr	970.6	973.6	3.0			.007		
	- 975.4 to 977.0 - sheared mafic volcanics, biotite-chlorite schist, as per above; trace euhedral pyrite	3263	Ì	975.4	978.4	3.0			.004		
	- 990.6 to 993.8 - chlorite schist, possible mafic tuff; well foliated at 65° to the core axis	3264	tr	990.6	995.0	4.4			.004		
997	END OF HOLE										
							1	A	Ma	0016	

NAME OF	PROPERTY Santa	<u>Maria Zeeme</u>	el Lake		
HOLE NO.	SMZ-88-6	LENGTH	346'		
LOCATION	40+00E, 26+50S				
LATITUDE		DEPARTURE			
ELEVATION		AZIMUTH _18	30 ⁰	DIP	<u>-45⁰</u>
	Fohruary 3 1000		Fohruary 5	1 <b>Q</b> QQ	

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZIMUTH
200	-42°	1			
346	-390				

HOLE NO. SMZ-88-6 SHEET NO. 1 Of 1
REMARKS Claim #861430
Summary Log

LOGGED BY B. A. Huston

F 0 0 1	AGE	DESCRIPTION	1		SAMP	l. E			A	5 5 A Y		
FROM	10	SUMMARY LOG	NO.	SUĽPH IDES	FROM	FOOTAGE TO	TOTAL.	76	ž,	OZ/TON	Check oz/TON	
0	48.8	Casing										
48.8	153.3	Granodiorite										
153.3	346.0	Granite  286.0 to 286.8 - minor fractures and quartz stringers containing, 1% pyrite, 1% chalcopyrite, 2% molybdenite and 1% galena	F .		i							
	346.0	End_of_Hole Casing pulled			,							
							,					
.58			1			1						
. 998 - 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.												
ANGRIDGES - 10FON												
A A G B												

NAME OF	PROPERTY	<u>Santa</u>	Maria Ze	emel Lake				
HOLE NO.	SMZ-88-6		LENGTH	346'				
LOCATION	40+00E,	26+50\$						
LATITUDE			DEPARTU	RE			····	
ELEVATIO	N		AZIMUTH	_180°		pre	-45 ⁰	
STARTED	February 3.	1988	CHUSHIN	February	5.	1988		

FOOTAGE		HTUMISA	FOOTAGE	DIP	AZIMUTH
200	420	1			
346	-39 ⁰				

HOLE NOSMZ-88-6 SHEET NO. 1 OF 3
REMARKS Claim #861430

LOGGED BY B. A. Huston

OTAGE	DESCRIPTION		·	SAMP					5 5 A	
от мо		NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	ж	ж	OZ/TON	Sheck.
48.8	Casing									
3.8 153.3	<ul> <li>light grey, fine to medium grained, massive</li> <li>Average Modes</li> </ul>	3566 3567 3568	tr	53.6 63.4 73.3	58.4 68.1 78.2	4.8 4.7 4.9			.001 .002 .001	
	Quartz 40-45% Plagioclase 20-25% Potassium Feldspar 10-15% Biotite 20-25% Pyrite trace									
	- 84.2 to 86.3 - quartz-muscovite-pyrite filled fractures at low angles to the core axis	3569	1-2	84.2	86.3	2.1			.002	
	- 94.6 to 95.4 - ground core representing a possible shear, 1-2% muscovite - 99.9 to 100.5 - quartz vein with 5-10% pyrite along	3570 3571 3572	tr	94.0 96.0 99.6	96.0 99.6 100.6	2.0 3.6 1.0			.001 <.001 <.001	
	the contacts - 101.9 to 103.4 - heavily fractured at low angles to the core axis - 107.6 to 109.4 - fractured at low angles to the core axis, minor muscovite coating	3573 3574 3575 3576 3577	tr tr tr tr	100.6 103.5 106.7 111.4 126.0	103.5 106.7 109.4 116.3 130.8	2.9 3.2 2.7 4.9			.001 .001 .002 <.001	
	<ul> <li>142.3 to 145.4 - heavily sericitized and weakly sheared, 1% pyrite</li> <li>143.1 to 144.6 - quartz vein with irregular contacts</li> </ul>	3578 3579 3580	1	135.7 142.3 145.4		4.9 3.1 4.5			.001 <.001 .002	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-88-6 SHEET NO. 2 of 3

FOOTAGE	DESCRIPTION			SAMPL	. E		ASSAYS				
FROM TO	DESCRIPTION	NO.	% SULPH	FROM	FOOTAGE	TOTAL	,	``	AU	Check	
153.3 34	- pink/grey, medium to coarse grained, massive  Average Modes Quartz 40-50% Plagioclase 15-20% Potassium Feldspar 15-20% Biotite 15-20%	3581 3582 3583	tr tr	153.3 164.2 173.7	158.3 169.0	5.0 4.8 4.9			.001 <.001 .003		
	Pyrite trace Garnet trace  Unit is made up of interfingered pink, slightly more potassic, and pinkish grey granite; hematite staining is evident in the pink granite  - 187.2 - 1/32" pyrite stringer - 195.8 to 196.0 - chlorite-quartz schist; probable shear zone  - 249.1 to 267.3 - several zones of broken-up granular rock with minor sand seams indicating probable shearing, minor core loss.	3584 3585 3586 3588 3588 3589 3590 3591 3592 3593 3594	tr tr tr tr tr tr tr tr	183.5 193.0 201.7 211.3 225.7 235.0 244.5 249.1 254.9 259.6 264.5 273.6 283.0	197.5 206.4 216.0 230.3 239.6 249.1 254.9 259.6 264.4 267.3 278.3 285.9	4.7 4.5 4.7 4.6 4.6 5.8 4.7 4.8 4.7 2.9			.001 .002 .003 .002 .002 .001 .001 .001 .002 .001 <.001		
	- 286.0 to 286.8 - minor fractures and quartz stringers containing 1% pyrite, 1% chalcopyrite, 2% molybdenite and 1% galena	3597 3598 3599 3600 3601 3602 3603	5 tr tr tr tr	285.9 286.9 293.4 302.7 312.2 321.9 331.5	286.9 291.0 298.2 307.5 317.0 326.9	1.0 2.1 4.8 4.8 4.8 5.0 4.8			<.001 .001 <.001 .001 .001 .001 <.001		

Santa Maria Zeemel Lake

HOLE NO SMZ-88-6 SHEET NO. 3 Of 3

FOOTAGE	DECEMBATION			SAMPL			ASSAYS					
ROM TO	DESCRIPTION	40	': SUL PH IDE 5	FRUM	FOOTAGE	TOTAL			Au TON	Check		
	- 336.3 to 346.0 - minor quartz veining with trace to 1% pyrite and chalcopyrite	3604 3605	tr-1 tr-1	336.3	341.3	5.0			<.001 <.001			
346.0	END OF HOLE Casing pulled											

NAME	OF	PROPERTY	Santa	<u>Maria</u>	Zeeme l	Lal	(e			
HOL E	NO.	SMZ-88-7		LENGTH	4061				·	
L OC AT		36+00W			· · · · · · · · · · · · · · · · · · ·					
LATIT	UDE			DEPARTU	JRE					
I L E V A	TION			AZIMUTH	180°			DIP	-50°	
		Feb. 5, 198								

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	HTUMISA
200 406	-51 ⁰				

HOLE NO.SMZ-88-7 SHEET NO. 1 Of 1
REMARKS Claim # Pa 861514
Summary Log

LOGGED BY B.A. Huston

FOOT	AGE	DESCRIPTION			SAMP	I. E				SSA	Y S	
FROM	10	SUMMARY LOG	но.	SUL PH IDES	FROM	FOOTAGE	TOTAL	ж	ж	AU OZ/TON	Check oz/Ton	
0	121.6	Casing										
121.6	124.7	Siltstone										
124.7	137.0	Mafic Metavolcanics - trace to 1% po, cpy										
137.0	160.2	Siltstone										
160.2	171.4	Mafic Metavolcanics										
171.4	183.0	Siltstone										
183.0	406.0	Mafic Metavolcanics - 203.3 to 222.9 - 3 to 5% po, 1% cpy										
	406.0				[ 							
										İ		
									l			
					:							
			a l						 			
]	]				Ì						l	
Ì												
	ŀ											
						į		l	1			
					1		,			ľ		

NAME OF	PROPERTY Santa	Maria Zeer	nel Lake		
HOLE NO.	SMZ=88=7	LENGTH	406'		· · · · · · · · · · · · · · · · · · ·
LOCATION	_36+00W14+00N				
LATITUDE		DEPARTURE	n		
EL EVATION		AZIMUTH	180	DIP	-50
STARTED_	Feb. 5, 1988	FINISHED	Feb. 7, 1988		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200	-51 ⁰				
406	-48 ⁰				

HOLE NO. SMZ-88-7 SHEET NO. 1 of 3

LOGGED BY ____ B. A. Huston

FOO	TAGE	DESCRIPTION			SAMP		i	ASSAYS				
FROM	то	DESCRIPTION	NO.	9/ SULPH- IDES	FROM	FOOTAGE TO	TOTAL	76	£,	oz/TON	heck oz/Ton	
0	121.6	Casing										
121.6	124.7	Siltstone - light grey/green, fine grained, foliated at 50° to the core axis	3606	tr	121.6	124.7	3.1			.001		
		Average Modes Quartz 80-85% Biotite 5-10% Chlorite 5-10% Pyrite trace										
124.7	137.0	Mafic Metavolcanic - medium to dark green, fine grained, foliated at 45° to the core axis	3607 3608 3609	1	124.7 128.7 131.9	128.7 131.9 135.0	4.0 3.2 3.1			.001 .001 <.001		
<b>5.</b>		Average Modes Chlorite 45-55% Amphibole 25-30% Plagioclase 20-25% Pyrrhotite trace to 1% Chalcopyrite trace to 1% Garnet trace										
- 1080N10 - 366.		- 135.0 to 137.0 - brecciated and infilled with quartz and minor carbonate	3610		135.0	137.0	2.0			.002		
ANGPIDGES -								-				

NAME OF PROPERTY. Santa Maria Zeemel Lake

SHEET NO. 2 Of 3

FOO	TAGE				SAMPL	. E		ASSAYS					
FROM	10	DESCRIPTION	ΝО.	% SULPH IDES	FROM	FOOTAGE TO	TOTAL	3	3	oAH.	Ç þeç k		
137.0	160.2	Siltstone - typical, as above, grey, fine to medium grained, grades towards a wacke in places, massive, slightly increased biotite content, minor quartz (+ carbonate) veins, trace to 1% pyrrhotite and chalcopyrite											
		<ul> <li>137.0 to 138.2 - minor shearing 65° to the core axis, 5-10% fuchsite</li> <li>153.3 to 154.3 - sheared at 65° to the core axis, 5-10% fuchsite</li> </ul>	3612 3613 3614	tr-1 tr-1 tr-1 tr-1	149.7	138.2 140.1 153.3 154.3 157.0	1.2 4.9 3.6 1.0 2.7			.001 .002 .003 ,001			
160.2	171.4	Mafic Metavolcanic - typical, as above, medium green, fine grained, massive		tr-1 1 1		160.2 163.7 167.1 171.4	3.2 3.5 3.4 4.3			.006 .002 .003			
171.4	183.0	Siltstone - typical, as above, grey/brown, massive, minor randomly oriented quartz stringers	3620 3621 3622	tr tr	171.4 176.0 179.4	176.0 179.4 183.0	4.6 3.4 3.6			.001 .006 .001		! '   	
183.0	406.0	Mafic Metavolcanic - typical, as above, medium to dark green, fine to medium grained, massive											
		183.0 to 203.3 - weakly to moderately silicified with minor small quartz (+ carbonate) stringers at random angles to the core axīs, trace to 1% pyrrhotite and chalcopyrite											
366-1168		- 194.4 to 196.4 - quartz veining with abundant mafic volcanic inclusions	3627	tr-1 tr-1 tr-1	196.4	196.4 200.0 203.3	2.0 3.6 3.3			001 001 001			
1 ORNONTO												:	
LANGRIDGES -													
ই	<u> </u>												

ORM :

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-7 SHEET NO. 3 Of 3

FOOTAG	, f	DE CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA CONTOUR DE LA		SAMPLE					ASSAYS ASSAYS			
FROM	10	DE SCRIPTION	но	SULPH IDES	FROM	FOOTAGE 10	TOTAL	;		AU	Check	
		203.3 to 222.9 - massive, 3-5% pyrrhotite and 1% chalcopyrite infilling randomly oriented fractures	3629 3630 3631 3632 3633	5 5 5	203.3 208.3 213.3 217.0 221.0	208.3 213.3 217.0 221.0 225.1	5.0 5.0 3.7 4.0 4.1			.001 .001 .001 .001		
		222.9 to 292.1 - typical, minor quartz (+ carbonate) stringers	3634 3635 3656 3636	tr tr tr	225.1 228.9 232.4 235.5	228.9 232.4 235.5 240.1	3.8 3.5 3.1 4.6			.001 .002 .003		
		- 257.4 to 260.9 - heavily silicified with randomly oriented quartz ( $\pm$ calcite) veins	3637 3638 3639 3640 3641	tr tr tr	244.7 257.4 263.3 273.0 282.8	277.7	4.6 3.5 4.7 4.7			.001 .004 .004		
		292.1 to 406.0 - typical, weakly silicified, minor biotite, minor cross-cutting quartz stringers	3642 3643 3644 3645	tr tr tr	292.1 305.7 315.2 319.9	287.4 296.5 310.3 319.9 323.9	4.6 4.6 4.7 4.0			.002 .002 .004 .001		
į		- 323.9 to 325.1 - quartz vein and associated smaller stringers	3646 3647 3648 3649 3650	tr tr tr tr tr	323.9 325.1 333.7 343.5 353.0	325.1 329.2 338.4 348.0 357.7	1.2 4.1 4.7 4.5 4.7			.002 .003 .003 .003		
			3651 3652 3653 3654 3655	tr tr tr	362.8 372.5 382.3 391.7 401.1	367.5 377.2 386.9 396.4 406.0	4.7 4.6 4.7 4.9	,		.003 .002 .001 .003		
								,				
							,	TYV	W)	,		

NAME	OF	PROPERTY	<u>Santa</u>	<u>Maria</u>	Zeeme l	Lake			
HOLE	NO.	SMZ-88-	-8	LENGTE	347				
LOCAT	ION	4+00W,	3+25N						
LATITE	DE			DEPART	URE			<del></del>	
ELEVA		*********************	· · · · · · · · · · · · · · · · · · ·	AZIMUT	H _ 180	) 	DIP	-48 ⁰	
		February	6. 1988		Febr	ruary 7.	1988		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
200'	-45 ⁰				
3471	-40				

HOLE NO. SMZ-88-8 SHEET NO. 1 of 1
REMARKS Claim #Pa 861512
Sunmary Log

LOGGED BY Eric Timoshenko

100	AGE	DESCRIPTION	<u>ll</u>		5 A M P	L E			A	SSA'	Y 5	
гом	10	SUMMARY LOG	NO.	SUCPH- IDES	FROM	FOOTAGE TO	TOTAL	2%	ъ	AU OZ/TON	Check 82/10%	
0	71.0	Casing										
71.0	120.9	Mafic Metavolcanics	Ĭ		}							
20.9	124.7	Metasiltstone	ĺ				ŀ					1
24.7	126.4	Ultramafic Metavolcanics Metasiltstone	N N	]								1
14.9	147.9	Mafic Metavolcanics - 5% magnetite porphyroblasts	1				li					
47.9	163.7	Ultramatic Metavolcanics - 1-2% magnetite										1
63.7	168.5	Metagreywacke - 2-3% magnetite, 1% pyrite	1									[
		Metasiltstone - 1-2% magnetite	II .	İ								l
70.9	176.1	Metagreywacke	¥									
76.1	183.9	Matic Metavolcanics - sheared, silicified Ultramafic Metavolcanics	l									
10.0	231.9	Metasiltstone	Y								1	
31.9	243.2	Metagreywacke	Į.									
43.2	287.6	Mafic Metavolcanics - 5% magnetite porphyroblasts	i		:							
87.6	312.1	Ultramafic Metavolcanics	\\					}				•
12.1 16.8	316.8 323.4	Mafic Metavolcanics Metasiltstone	ı									
23.4	347.0	Metagreywacke	1									
	347.0	End of Hole	N.	į l		-						
	j	Benganders and extra distribution and after										
1	1		1									
	1											
- 1	1		1					•		'		
- [	[							l				
- 1	1		1									
-			II.					1				1
	Ì											
1	}		}	1				ì				
1	Ì		1	]	l		1	l	1	]	1	1

....

NAME	OF	PROPERTY	Santa	Maria	Zeeme t	Lake			
HOLE #	١٥,	SMZ-88-8		LENGTI	1	347	1		
LOCATI	ОИ	4+00W, 3	+25N		····	····			
LATITU	ĐE	-		DEPART	TURE				
ELEVAT	LON			AZ IMU3	1	80 ⁰	DIP	-48 ⁰	
		February 6.	1988		Febr	uary 7,	1988		

FOOTAGE		AZIMUTH	FOOTAGE	DIP	AZIMUTH
200'	-45°				
347'	-40°				

HOLE NO. SMZ-88-8 SHEET NO. 1 of 10

REMARKS Claim #Pa 861512

ecce ex Eric Timoshenko

001	AGE		ļļ.		5 A M P	LΕ		<b>[</b> ]	,	SSAI	<b>y</b>
ROM	10	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	¥	x	AU OZ/TON	Check
0	71.0	Casing									
71.0	120.9	Mafic Metavolcanics - dark green, fine to medium grained, moderate to strong foliation				:					
		Average Modes Amphibole 50-65% Chlorite 20-25% Plagioclase 15-20% Biotite 0-10% Quartz + Carbonate 1-5% Sulphides trace to 1%									
		<pre>- predominantly an amphibole - chlorite - plagioclase assemblage; most of the unit is weakly silicified and carbonatized - several heavily silicified, carbonatized, biotite- rich sections which may be narrow shear zones - quartz-carbonate veining consists mainly of small (&lt; 1/4"), concordant, discontinuous veinlets; minor crosscutting veinlets also occur, visually oriented between 40-60% to the core axis</pre>									
		<ul> <li>trace to 1% disseminated chalcopyrite, rare pyrite and pyrrhotite</li> <li>75.0 - foliated at 55° to the core axis</li> <li>86.4 to 88.4 - silicified zone; abundant chlorite and biotite; trace chalcopyrite</li> </ul>	3266 3267		75.0 85.8	80.0 90.4				.003	

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-8 SHEET NO 2 of 10

1001	LAGE	DESCRIPTION			SAMPL			<del>* - * * * * * * * * * * * * * * * * * *</del>	ASSAY5		
FROM	10	DESCRIPTION	ИО	SUL PH IDES	FROM	FOOTAGE 10	TOTAL	- '1	ozAH,	chęck,	
		- 91.0 to 95.5 - weakly silicified section with several very narrow (1/8"), contorted, crosscutting quartz-carbonate veinlets - 101.8 to 103.1 - highly silicified zone, abundant chlorite and biotite - 103.2 to 104.1 - small lens shaped pods and narrow	3268 3269		90.4	95.4 106.0	5.0 5.0		.001		
		crosscutting stringers of quartz-carbonate containing small grains of pink feldspar - 109.0 - foliated at 50° to the core axis - 115.5 to 119.2 - silicified zone containing small	3270 3271	tr	108.3		5.0		.002		
		euhedral crystals of pyrite, foliated at 45° to the core axis									
120.9	124.7	Metasiltstone  - light grey-green, well banded cherty siltstone - narrow bands (1/8 to 1/4") of chert, chlorite and sericite occur throughout the unit; banding is at 40° to the core axis, blocky core - 123.9 to 124.6 - quartz + carbonate vein; milky quartz vein with minor incTusions of chlorite; no visible sulphides	3272	tr	120.9	124.7	3.8		.002		
124.7	126.4	Ultramafic Metavolcanics - light to medium grey, fine grained, weakly foliated  Average Modes Amphibole 45-65% Talc/Serpentine 30-40% Plagioclase 5-10% Chlorite 2-5%									
		Carbonate 1-2% - narrow unit of talc-rich ultramafic flow; several small bands of nearly pure talc	3273	-	124.7	126.4	1.7		.004		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-8 SHEET NO. 3 of 10

LOOTAGE	AFTO DO TONO	1		SAMPL	E			ASSAYS		
FROM 10	DESCRIPTION	но	" SIIL PH IDES	FROM	FOOTAGE TO	TOTAL		AU oz ton	heck	
	<ul> <li>entire section is weakly carbonatized; several small concordant veinlets occur</li> <li>no visible sulphides; limonitic stain in some veinlts</li> <li>foliated at 55° to the core axis</li> </ul>									
126.4 144.9	- grey-green to greyish brown cherty siltstone similar to 120.9 to 124.7; minor dark grey argillite bands; fine banding at 55° to the core axis - frequent cross-fractures at high angles to the core axis (60-80°); some infilled with quartz-carbonate; small offsets in bands and veinlets are common - quartz-carbonate veining is generally minor; most veinlets are concordant and less than 1/4" wide; several are boudinaged - no visible sulphides - 127.1 to 128.1 - garnet porphyroblasts occur	3274	-	126.4	131.4	5.0		.003		
	throughout this section (about 10% garnet); possible interbedded pelitic sediments - 128.1 to 129.3 - blocky, broken core	3275	-	139.9	144.9	5.0		.001		
144.9 147.9 1	- weakly silicified mafic flows similar to 71.0 to 120.9  - this unit contains well formed octahedral porphyroblasts of magnetite up to 1/4" wide (about 5% total magnetite content); the crystals decrease in abundance toward the lower contact  - trace disseminated chalcopyrite	3276	tr	144.9	147.9	3.0		.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-88-8 SHEET NO. 4 Of 10

FOOT	ΛGE				SAMPL	E	A THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN		ASSAYS		
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE 10	TOTAL		AU oz Ton	Check	
147.9	163.7	Ultramafic Metavolcanics  - light to medium grey, talc-rich ultramafic flows similar to 124.7 to 126.4  - small clots and discontinuous bands of talc and small anhedral magnetite grains (1-2%) occur throughout the unit; serpentine occurs along fracture surfaces and foliation planes  - small, euhedral pyrite cubes (most between 1/8 to 1/4" wide) occur scattered throughout the unit  - 151.6 to 153.4 - several quartz-carbonate veins up	3277		140.7	154.7			001		
		to 3/4" wide occur in this section, most are subconcordant; no visible sulphides - 155.9 to 157.1 - intercalation of highly biotitic, carbonatized, mafic volcanics; trace pyrite; foliated at 60° to the core axis	3278		149.7 154.7	154.7 158.7	4.0		.001		
		<ul> <li>162.0 - foliated at 50° to the core axis</li> <li>163.4 to 163.7 - narrow unit of chlorite schist,</li> <li>possibly mafic tuff</li> </ul>	3279	tr	158.7	163.7	5.0		.002		
163.7	168.5	Metagreywacke  — light grey, medium grained quartz-feldspar wacke; framework to matrix ratio is about 50:50  — matrix composed of fine grained felsic material, biotite (5%) and chlorite (5-10%)  — small porphyroblasts of magnetite (≤ 1/8") occur scattered throughout the unit (2-3%)  — l% disseminated pyrite; several cubes up to 1/2" wide also occur  — quartz-carbonate veining very minor  — foliated at 55° to the core axis	3280	1	163.7	168.5	4.8		<,001		

FORM.

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-8 SHEET NO 5 of 10

FOOT	AOI	DESCRIPTION			SAMPI			······································	ASSAYS		
FROM	10	DESCRIPTION	но	" SIN PH IDE 5	FROM	FOOTAGE	TOTAL		Au ion	Chęck,	
168.5	170.9	Metasiltstone  - light grey-green, well banded cherty siltstone, similar to 120.9 to 124.7  - numerous magnetite porphyroblasts, many up to 1/4" wide  - narrow chlorite bands (possible tuffs) are very common									
170.9	176.1	Metagreywacke - basic description as per 163.7 to 168.5 - large magnetite porphyroblasts occur near the lower contact	3281	1	171.1	176.1	5.0		.002		
176.1	183.9	Mafic Metavolcanics - sheared, silicified mafic volcanics - pervasive silicification; fine grained, intergranular quartz-carbonate as well as minor veining; total quartz-carbonate content is about 15% - 10-15% biotite occurs in thin anastomosing bands - trace to 1% disseminated pyrite; several small cubes also occur - foliated at 50° to the core axis		tr-1 tr-1			4.0 3.8		.003		
183.9	210.0	Ultramafic Metavolcanics  - predominantly light to medium grey, talc rich ultramafic flows, as per 147.9 to 163.7  - frequent lens shaped clots of talc; serpentine occurs along fracture planes (slickensided surfaces common)  - poorly foliated at 55° to the core axis  - locally up to 1% disseminated pyrite; euhedral to subhedral crystals up to 1/4" wide are also common									

NAME OF PROPERTY... Santa Maria Zeemel Lake

HOLE NO SMZ-88-8 SHEET NO. 6 OF 10

FOO	namen manura I AGI	CONTROL OF COMMENTAL COMMENTAL COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF COMMENTS AND ADMINISTRATION OF			SAMP1.	E			ASSAYS		
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE TO	TOTAL	,	oz ASK	ζήεςμ	
		183.9 to 188.8 - typical, light grey, talc-rich ultramafic flows	3284	1	183.9	188.8	4.9		.004		
		188.8 to 190.6 - intercalation of mafic volcanics, including a 3" wide band of chlorite schists (tuff) at the top of the interval, followed by a fine grained flow; heavily biotitic lower contact; trace disseminated pyrite	3285	tr	188.8	190.8	2.0		.003		
		190.6 to 200.4 - typical light-grey, talc-rich ultramafic flows - 196.3 to 196.9 - brecciated interval; fragments up to 3/4" wide, highly serpentinized, minor quartz-carbonate veining	3286	tr	195.4	200.4	5.0		.003		
		200.4 to 202.7 - dark green ultramafic material composed essentially of amphibole and minor chlorite; the section is weakly carbonatized and contains 5-10% biotite, trace pyrite	3287	tr	200.4	202.7	2.4		.003		:
		202.7 to 203.5 - typical, light grey, talc-rich ultramafic flows									
		203.5 to 210.0 - ultramafic flows composed mostly of amphibole and chlorite, with minor talc-rich intervals; foliated at 50° to the core axis	3288	tr	206.0	210.0	4.0		.002		
210.0	231.9	Metasiltstone - light grey to greyish-green cherty siltstone, as per 120.9 to 124.7 - well banded; thin chlorite bands occur frequently; boudinaged chert bands and quartz-carbonate veins also occur	3289 3290			215.0 228.0			.003		
ANGR'DGES - 70RONTO - 346: 188											

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-8

SHEET NO. 7 of 10

1001	AGE	DESCRIPTION			SAMPL					ASSAYS		
FROM	10	DESCRIPTION	но	SUI PH IDES	FROM	FOOTAGE	TOTAL			AU OZ TON	Check	
		<ul> <li>rare disseminated pyrite; minor pyrite (+ quartz-carbonate) fracture coatings</li> <li>occasional quartz pods between 1/2 to 1" wide</li> <li>banding is at 50° to the core axis</li> </ul>										
231.9	243.2	Metagreywacke		1					1	1	'	
		231.9 to 236.6 - medium grained quartz-feldspar wacke, very similar in texture and composition to 163.7 to 168.5, however no magnetite porphyroblasts occur in this unit; locally coarse enough to be a matrix supported conglomerate - trace disseminated pyrite	3291	tr	231.9	236.6	4.7			<.001		
		236.6 to 237.6 - intercalation of fine grained, silicified mafic volcanics; a 3" wide quartz-carbonate vein occurs in the middle of the unit (no visible sulphides); abundant biotite in the matrix	3292	tr	236.6	237.6	1.0			.002		
		237.6 to 243.2 - fine grained, even textured, wacke; foliated at 60° to the core axis - 241.3 to 243.2 - several narrow crosscutting quartz carbonate veinlets at low angle (5-15°) to the core axis	3293	tr	239.2	243.2	4.0			.004		
243.2	287.6	Mafic Metavolcanics		1		1		1		1	۱	
		243.2 to 265.4 - medium grained, weakly silicified and carbonatized flows similar to 71.0 to 120.9 - amphibole - chlorite - plagioclase assemblage containing small grains and stringers at quartz-carbonate; biotite content increases (up to 10%) in highly silicified sections	3295 3296	tr-1 tr-1 tr-2 tr-1	253.0	253.0 258.0	4.8 5.0			<.001 <.001 <.001 .001		į

1000

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-8 SHEET NO. 8 of 10

FOOTAG	5E	DECONOMIC DESCRIPTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P			SAMPL	. E			ASSAYS	
FROM	10	DESCRIPTION	но	" SUL PH IDE 5	FROM	FOOTAGE TO	TOTAL	:	AU OZ TUN	Check
		<ul> <li>euhedral magnetite porphyroblasts are common throughout the unit (approx. 5%)</li> <li>trace to 2% disseminated chalcopyrite and pyrite</li> <li>massive to weakly foliated at 60° to the core axis</li> </ul>	3297	tr-1	258.0	263.0	5.0		.001	
		265.4 to 287.6 - coarse grained, massive flow; mafic minerals are almost entirely amphibole, which form in short, randomly oriented prismatic crystals; about 15% interstitial plagioclase and minor chlorite (1-2%) - biotite content increases near the lower contact (1-3%); trace disseminated chalcoplyrite - randomly oriented, discontinuous quartz-carbonate veinlets occur throughout the unit; several are up to 1/2" wide and some contain trace chalcopyrite - possibly a sill - 281.8 - irregular quartz-carbonate veinlet or pod	3298 3299 3300	tr	266.0 276.5	271.0 281.5	5.0 5.0		.001	
287.6 3	12.1	containing several small blebs and stringers of chalcopyrite up to 1/4" wide  Ultramafic Metavolcanic								
		287.6 to 295.4 - light grey, weakly foliated, talc-rich ultramafic flows similar to 147.9 to 163.7 - frequent clots and small discontinuous bands of talc; serpentine occur along slickensided fracture planes - euhedral to subhedral pyrite crystals up to 1/4" wide occurs scattered throughout the unit - poorly foliated at 55° to 60° to the core axis	3301	tr	288.5	293.5	5.0		.002	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-8 SHEET NO. 9 OF 10

FOO	LAGE	DESCRIPTION	1		SAMPL	. <b>E</b>		i	ASSAYS	
FROM	10	DESCRIP HON	но	SULPH IDE 5	FROM	FOOTAGE	TOTAL		 o Ayun	check
		295.4 to 312.1 - medium grained, weakly foliated ultramafic flows composed mostly of dark green to black amphibole, with fine interstitial grains of serpentine + talc - 1% pyrite, as fine disseminated grains and small euhedral cubes - quartz-carbonate veining very minor - foliated at 55-65° to the core axis								
312.1	316.8	- weakly sheared and silicified flows - thin, anastomosing bands of biotite form in fractures; discontinuous, fractured quartz-carbonate veinlets occur randomly oriented throughout the unit; brecciated wallrock occurs in several veinlets - trace disseminated pyrite - well foliated at 60° to the core axis	3304	tr	312.1	316.8	4.7		.001	
316.8	323.4	Metasiltstone  - light grey to grey-green, well banded, cherty siltstone, as per 120.9 to 124.7  - minor crosscutting veinlets (≤ 1/8") oriented at 20° to the core axis  - banding is at 60° to the core axis	3305	tr	316.8	321.8	5.0		.002	
323.4	347.0	Metagreywacke  - light grey to greyish-brown, medium grained quartz feldspar wacke similar to 231.9 to 236.6  - fractures and crosscutting quartz-carbonate veinlets oriented at 30-40° to the core axis; many fractures are coated with flaky pyrite  - most sections are foliated at 60° to the core axis  - concordant, boudinaged quartz-carbonate veinlets are common  - trace disseminated pyrite	3306	tr	323.5	327.5	4.0		.004	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-8 SHEET NO. 10 of 10

FOOT	I AGE	SUBSTRUCT OF THE TREE SERVICE CONTRACTOR OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SERVICE OF THE SER			SAMPL	E		 	ASSAYS		elle une dec
ROM	10	DESCRIPTION	но	· SUI PH		FOOTAGE		 T	oz Au	Сђеск	
		<ul> <li>327.5 to 328.4 - quartz-carbonate vein; mostly clean, inclusion-free milky quartz with minor carbonate; no visible sulphides; oriented at 28° to the core axis</li> </ul>	3307	1DE 5	327.5	328.5	1.0		.002	02 100	
		- 335.0 to 335.4 - thin intercalation of fine grained mafic volcanics - 338.8 to 339.3 - several 1/4 to 1/2" concordant bands of biotite schist; two small quartz pods also occur in this section	3308 3309		330.8 338.5				<.001 .005		
	347.0	END OF HOLE									

NAME OF	PROPERTY	Santa	a_Maria_Z	eeme <u>l Lake</u>			
HOLE NO.	SMZ-88-9	)	LENGTH _	396'			
LOCATION	<u>36+00W</u> ,	18+005					
ELEVATION	l		AZIMUTH,		DIP	45 ⁰	
CTABTED	Fobruary 7	1000	FINICHES	February	8. 1988		

FOOTAGE	DIP	АΖІМИТН	FOOTAGE	DIP	AZIMUTH
200'	-44 ⁰				
396'	-40.5				
			ł		

HOLE NO. SM7-88-9 SHEET NO. 1 Of 1
REMARKS Claim #Pa 861524
Summary Log

LOGGED BY Eric Timoshenko

FOOT	AGE				SAMP	LE			A	SSA	y 5	
FROM	10	DESCRIPTION	но.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	26	%	o27 TON	Che/G kn	
0	26.3	Casing										
26.3	110.8	Mafic Metavolcanics										
110.8	126.5	Arenite - 1-2% pyrite										
126.5	159.9	Metagreywacke - intruded by several narrow granitic dikes		İ								
159.9	174.4	Mafic Metavolcanics - sheared; trace pyrite, rare molybdenite										
174.4	192.6	Metagreywacke										
192.6	195.2	Loss of Core										
195.2	396.0	Granitic Intrusive										
	396.0	End of Hole										
ĺ												
			il I									
Ì												
								-				

FORM

NAME	OF	PROPERTY	Santa	Maria A	eeme i	Lake			
HOLE	NO.	SMZ-88-10		LENGTH	3	961			
OCAT	ION	36+00W, 18	3+005						
TITA.	UDE			DEPART	URE -	<b></b>		<u></u>	
LEVA	TION			AZIMUT	180		DIP	-45°	
START	ED_	February 7,	1988	FINISHE	ъ Fe	ebruary	8, 1988		

FOOTAGE		FOOTAGE	DIP	AZIMUTH
200'	-440			
200' 396'	-40.5			

HOLE NO. SMZ-88-9 SHEET NO. 1 Of 6
REMARKS Claim #Pa 861524

LOGGED BY Eric Timoshenko

F00	IAGE	DESCRIPTION			SAMP	LΕ			Α	SSA'	/ S	
FROM	то	DESCRIPTION	NO.	SULPH-	FROM	FOOTAGE TO	TOTAL	¥	*	02/101	829684	
0	26.3	Casing										
26.3		Mafic Metavolcanics  - dark green, fine grained, massive to weakly foliated flows  Average Modes  Amphibole 70-80% Plagioclase 15-20% Chlorite 1-5% Quartz 1-3% Biotite 0-2% Carbonate 1-2% Sulphide trace  - predominantly fine grained amphibole and plagioclase with minor quartz; chlorite forms along fracture surfaces and in quartz carbonate veins;										
		biotite occurs locally, usually adjacent to granitic dikes - quartz-carbonate veinlets are fairly common throughout the unit; roughly equal proportions of concordant and crosscutting veinlets - zero to trace disseminated pyrite and chalcopyrite; trace sulphide occurs in some quartz-carbonate veinlets - 29.0 - foliation is at 70° to the core axis - 33.1 to 33.9 - narrow intercalation of light grey, fine grained metagreywacke; framework composed mostly of quartz with lesser feldspar, matrix contains abundant biotite	3310	tr	28.1	33.1	5.0			.001		

NAME OF PROPERTY...... Santa Maria Zeemel Lake

HOLE NO SMZ-88-9 SHEET NO. 2 of 6

100	I AGL				SAMPI				ASSAYS		
FROM	10	DESCRIPTION	ИО	" SUI PH IDES	FROM	FOOTAGE 10	TOTAL		AU 07 TON	Check	
		- 49.1 to 51.1 - medium grained granitic dike; mostly quartz with minor orthoclase and biotite; limonite stain on fracture surfaces; mafics above the dike are highly biotitic	3311 3312		38.0 48.3	43.0 53.3	5.0 5.0		.001 .001		
		- 59.9 to 60.4 - granitic dike, as per above  - 76.0 - very weak foliation at 80° to the core axis  - 83.2 to 84.0 - granitic dike, similar to above	3313 3314 3315 3316	tr	59.0 69.0 77.5 82.5	64.0 74.0 82.5 84.7	5.0 5.0 5.0 2.2		.001 .003 .003		
		<ul> <li>(higher percentage of orthoclase); 1% disseminated</li> <li>pyrite</li> <li>91.7 to 93.7 - several subconcordant quartz-carbonate veins carrying trace pyrite occur in this</li> </ul>		tr-1	91.5	96.0	4.5		.006		
		interval; a 6" wide vein occurs at 93.0 to 93.5 - 108.1 to 110.7 - quartz-carbonate veinlets (1/4 to 1/2") containing small blebs of pyrrhotite	3318 3391 3319	tr	96.0 100.5 105.8		4.5 5.3 5.0		.003 .002 .003		l
110.8	126.5	- light to medium grey, fine grained quartzo- feldspathic arenite - the unit is well fractured; thin, randomly oriented fractures are often lined with chlorite and fine grained or flaky pyrite (+ quartz-carbonate); disseminated pyrite also occurs - quartz pods and lenses up to 1" wide are common; several contain disseminated pyrite	3320 3321			115.8 120.8	5.0 5.0		.001		
126.5	159.9	- 122.6 - S-folded quartz vein (1/2" wide) containing fine grained pyrrhotite in the fold noses  Metagreywacke	3322	1-2	120.8	125.8	5.0		.001		į
140.50 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	159.9	- light to medium grey, medium grained, poorly foliated									

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO. SMZ-88-9 SHEET NO. 3 OF 6

FOOTAGE				SAMPI	E			ASSAYS	T. I am hi was maybe.
FROM 10	DESCRIPTION	110	SUL PH	FROM	FOOTAGE 10	TOTAL	*	OAYON	Çheçk
	Average Modes  Framework 70% Matrix 30% Quartz 75% Biolite 60% Feldspar 25% Chlorite 40% Sulphides - trace to 1%				; 				
	<ul> <li>most of the unit has undergone shearing; the degree of shearing sharply increases towards the bottom of the unit</li> <li>numerous felsic and intermediate intrusive dikes occur, ranging in size from 1" to 1' wide; many contain disseminated pyrite</li> <li>quartz-carbonate veinlets and small pods of milky quartz are common; most contain minor pyrite</li> <li>stringers and small blebs of pyrite occur throughout the sediments (well fractured)</li> </ul>								
	- 127.1 - 1" wide greenish-white quartz-feldspar porphyry dikelet containing small grains of pyrrhotite - 129.5 to 131.1 - granitic dike, no visible sulphides - 135.3 to 137.0 - granitic dike; no visible sulphides - 146.5 to 152.4 - sediments locally display highly contorted bedding - 152.4 to 154.6 - granitic dike; approximately 70% quartz, 20% K-feldspar and 10% biotite; minor chlorite along fractures - 159.5 to 159.8 - narrow granitic dike at contact; trace pyrite	3325 3326 3327	tr-1 tr-1 tr-1 tr-1	129.5 134.5 139.5 144.5 148.5 152.4	•	3.7 5.0 5.0 5.0 4.0 3.9 2.2		.001 .002 .003 .002 .003 .001	

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-9 SHEET NO. 4 Of 6

1001	LAGE				SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	110	· SULPH IDES	FROM	FOOTAGE	TOTAL	;		AUTON	Check.	
159.9	174.4	Mafic Metavolcanics - medium to dark green, fine grained, well foliated (sheared) at 55-65° to the core axis  Average Modes										
		Amphibole 60-70% Chlorite 25-35% Biotite 2-5% Sulphides trace										
		<ul> <li>well foliated schist consisting of fine prismatic crystals of actinolite-tremolite, chlorite, and minor biotite</li> <li>trace disseminated pyrite and rare molybdenite</li> <li>entire unit is weakly carbonatized (finely</li> </ul>								٠		
		disseminated carbonate, discrete veinlets are rare) - several small sections of highly incompetent clayey, schistose material - 166.0 to 174.4 - core recovery about 70% - 174.0 - foliated at 70° to the core axis	3331 3392 3332	tr	159.6 164.6 171.9	171.9	5.0 7.3 2.5		!	.002 .002 .001		
174.4	192.6	Metagreywacke  - light to medium grey, medium grained, poorly foliated wacke, as per 126.5 to 159.9  - well fractured with several highly sheared intervals, most fractures contain minor pyrite  - broad folding occurs throughout the unit  - 175.0 - foliated at 35° to the core axis  - 177.0 - foliated at 50° to the core axis  - 177.8 to 178.7 - several quartz pods (1/2 to 1"	3333	tr	174.4	179.0	4.6			.001		
. ANGRIGGES - TORONTO - 365. T. AR		wide): trace disseminated pyrite - 180.0 - foliated at 35° to the core axis			1/7.7	1,9.0	4.0			•001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-9 SHEET NO 5 of 6

1001	AGE	OF FOURTHON			SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	ИО	" SULPH IDES	FROM	FOOTAGE TO	TOTAL		OZ TON	Check	
		- 182.7 to 183.2 - highly sheared section; incompetent brecciated material, some sections	3334	tr	179.0	184.0	5.0		.001		
		infilled with green clay - 186.9 to 187.8 - numerous closely spaced fractures and narrow clay seams oriented at roughly 50° to the core axis; foliation appears to approximately	3335	tr	184.0	189.0	5.0		<.001		
		parallel to the core axis - 191.2 to 192.6 - highly fractured, blocky core; several narrow clay seams	3336	tr	189.0	192.6	3.6		.002		
192.6	195.2	Loss of Core - possibly a highly sheared clay seam which washed away during drilling								}	
195.2	396.0	Granitic Intrusive - mostly light grey, occasionally light pink, medium grained, mostly massive and equigranular  Average Modes	3337 3338 3339	- 	195.2 204.0 213.0	200.2 209.0 218.0	5.0 5.0 5.0		.002 .002 .001		
		Quartz 50-70% Orthoclase 10-30% Plagioclase 5-10% Biotite 3-10%									
	   	Sericite 1-4% Muscovite trace to 3%									
		<ul> <li>predominantly medium grained granite, grading into granodiorite in several places</li> <li>several sections with fine anastomosing, sericite bands show a weak foliation</li> <li>minor quartz veining</li> </ul>									
	! !										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-9 SHEET NO. 6 Of 6

1001AGE	OF (CDIDZION			SAMPL	ASSAY5			
ROM TO	DESCRIPTION	110	" SIII PH IDES	FROM	FOOTAGE		 AUTON	Check
	- 231.0 to 233.8 - thin sericite bands throughout this section; weak foliation at 70° to the core axis; thin bands of brick red hematite also occur	3340		230.5		5.0	<.001	
	- 257.7 to 261.1 - thin, crosscutting quartz- carbonate stringers containing abundant hematite	3341 3342 3343 3344	-	241.0 252.0 257.0 271.0	257.0 261.5 276.0		.001 .001 .001 <.001	
	(0 to 10° to core axis); sericite is also common throughout this interval - 300.0 to 304.0 - several quartz-carbonate veinlets	3345 3346		284.0			.001	
	running nearly parallel to the core axis	3347 3348	<u>-</u>	310.0 322.0	315.0 327.0	5.0 5.0	.001	
	<ul> <li>- 335.0 to 336.5 - trace to 1% disseminated pyrite</li> <li>- 341.0 to 346.0 - several sections of blocky, broken core; fractures are coated with a thin layer of green clay</li> </ul>	3349 3350	tr	334.5 341.0	346.0		.002	
	<ul> <li>- 358.2 to 360.2 - blocky, broken core; two narrow (1/4") clay seams</li> <li>- 376.0 - quartz-tourmaline vein, 1/8" wide, oriented at 60° to the core axis</li> </ul>	3351 3352		357.0 370.0			<.001 .001	
	- 378.2 - quartz-carbonate-hematite veinlet, 3/4" wide; trace pyrite	3353 3354 3355	-	375.0 386.0 391.0	391.0	5.0	.002 <.001 <.001	
396.0	END OF HOLE							

NAME OF	PROPERTY	a Maria Zee				
HOLE NO.	SMZ-88-10	LENGTH	407'			_
	24+00W, 12+00N					_
LATITUDE		DEPARTURE	n			
LEVATION		AZIMUTH	180	DIP	-550	
CIADIED.	February 7, 1988	CHICHED	February 9	. 1988		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
217'	-55°				
407'	-53 ⁰				
			j i		

HOLE NO. SMZ-88-10_{SHEET NO.} 1 of 1 REMARKS Claim #Pa 861513

Summary Log

LOGGED BY Eric Timoshenko

	ary /, 1988 FINISHED FEDRUARY 9, 1988									
IAGE	DESCRIPTION			SAMP	LΕ			,		
10	SUMMARY LOG	ΝО.	SULPH IDES	FROM	FOOTAGE TO	TOTAL.	¥	35	02/10N	Check.
190.8	Casing									
253.3	Banded Iron Formation - chert - magnetite + grunerite - 2 to 5% pyrite, trace to 2% pyrrhotite 205.8 to 208.9 - graphitic argillite 222.5 to 226.2 - intercalated wacke and siltstone									
259.9	Metasiltstone							!	!	
271.1	Metagreywacke	1								
281.4	Metaconglomerate									
287.2	Interbedded Metasiltstone and Metagreywacke			i						
291.7	Interbedded Chert and Mafic Tuff									
407.0	Mafic Metavolcanics 315.1 to 315.8 - iron formation, trace to 1% pyrrhotite, chalcopyrite									
	190.8 253.3 259.9 271.1 281.4 287.2 291.7	SUMMARY LOG  190.8 Casing  253.3 Banded Iron Formation - chert - magnetite + grunerite - 2 to 5% pyrite, trace to 2% pyrrhotite 205.8 to 208.9 - graphitic argillite 222.5 to 226.2 - intercalated wacke and siltstone  259.9 Metasiltstone  271.1 Metagreywacke  281.4 Metaconglomerate  287.2 Interbedded Metasiltstone and Metagreywacke  291.7 Interbedded Chert and Mafic Tuff  407.0 Mafic Metavolcanics 315.1 to 315.8 - iron formation, trace to	SUMMARY LOG  190.8 Casing  253.3 Banded Iron Formation - chert - magnetite + grunerite - 2 to 5% pyrite, trace to 2% pyrrhotite 205.8 to 208.9 - graphitic argillite 222.5 to 226.2 - intercalated wacke and siltstone  259.9 Metasiltstone  271.1 Metagreywacke  281.4 Metaconglomerate  287.2 Interbedded Metasiltstone and Metagreywacke  291.7 Interbedded Chert and Mafic Tuff  407.0 Mafic Metavolcanics 315.1 to 315.8 - iron formation, trace to	SUMMARY LOG  No. supplies  190.8 Casing  253.3 Banded Iron Formation  - chert - magnetite + grunerite  - 2 to 5% pyrite, trace to 2% pyrrhotite 205.8 to 208.9 - graphitic argillite 222.5 to 226.2 - intercalated wacke and siltstone  259.9 Metasiltstone  271.1 Metagreywacke  281.4 Metaconglomerate  287.2 Interbedded Metasiltstone and Metagreywacke  291.7 Interbedded Chert and Mafic Tuff  407.0 Mafic Metavolcanics  315.1 to 315.8 - iron formation, trace to	190.8 Casing  253.3 Banded Iron Formation - chert - magnetite + grunerite - 2 to 5% pyrite, trace to 2% pyrrhotite 205.8 to 208.9 - graphitic argillite 222.5 to 226.2 - intercalated wacke and siltstone  259.9 Metasiltstone  271.1 Metagreywacke 281.4 Metaconglomerate 287.2 Interbedded Metasiltstone and Metagreywacke 291.7 Interbedded Chert and Mafic Tuff 407.0 Mafic Metavolcanics 315.1 to 315.8 - iron formation, trace to	SUMMARY LOG  No. SUPPL FROM TO  190.8 Casing  253.3 Banded Iron Formation  - chert - magnetite + grunerite  - 2 to 5% pyrite, trace to 2% pyrrhotite  205.8 to 208.9 - graphitic argillite  222.5 to 226.2 - intercalated wacke and siltstone  259.9 Metasiltstone  271.1 Metagreywacke  281.4 Metaconglomerate  287.2 Interbedded Metasiltstone and Metagreywacke  291.7 Interbedded Chert and Mafic Tuff  407.0 Mafic Metavolcanics  315.1 to 315.8 - iron formation, trace to	SUMMARY LOG  NO. SUFER FOOTAGE  NO. SUFER FOOTAGE  NO. SUFER FOOTAGE  NO. SUFER FOOTAGE  NO. SUFER FOOTAGE  NO. SUFER FOOTAGE  FOOTAGE  FOOTAGE  NO. SUFER FOOTAGE  NO. SUFER FOOTAGE  NO. SUFER FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  NO. SUFER FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  NO. SUFER FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAGE  FOOTAG	SUMMARY LOG  No. SUMMARY LOG  No. SUMMARY LOG  No. SUMMARY LOG  No. SUMMARY LOG  No. SUMMARY LOG  No. SUMMARY LOG  No. SUMMARY LOG  FROM TO TOTAL  SUMMARY LOG  No. SUMMARY LOG  FROM TO TOTAL  SUMMARY LOG  No. SUMMARY LOG  FROM TO TOTAL  SUMMARY LOG  FROM TO TOTAL  SUMMARY LOG  No. SUMMARY LOG  FROM TO TOTAL  SUMMARY LOG  FROM TO TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  SUMMARY LOG  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  FROM TO  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL  TOTAL	SUMMARY LOG  No. Supply Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footage  Footag	190.8 Casing  253.3 Banded Iron Formation - chert - magnetite + grunerite - 2 to 5% pyrite, trace to 2% pyrrhotite 205.8 to 208.9 - graphitic argillite 222.5 to 226.2 - intercalated wacke and siltstone  259.9 Metasiltstone  271.1 Metagreywacke  281.4 Metaconglomerate 287.2 Interbedded Metasiltstone and Metagreywacke 291.7 Interbedded Chert and Mafic Tuff  407.0 Mafic Metavolcanics 315.1 to 315.8 - iron formation, trace to

NAME	OF	PROPERTY	Santa	Maria Z	eemel Lake		
		SMZ-88-10		LENGTH	407'		
L OC A T	ION	24+00W, 12	4 0 0 N		·		 
START	ED_	February 7,	1988	FINISHEL	February	9, 1988	 

FOOTAGE	DIP	HTUMISA	FOOTAGE	DIP	AZIMUTH
217' 407'	-55 ⁰ -53 ⁰				

HOLE NO. SMZ-88-10sHEET NO. 1 of 6
REMARKS Claim # Pa 861513

LOGGED BY Eric Timoshenko

FOOT	AGE	D.E. S. C. P. I. P. J. J. O. N.	I		SAMP	LE	,		,	SSA	Y S	
FROM	10	DESCRIPTION	NO.	SULPH- IDES	FROM	FOOTAGE TO	TOTAL	36	×	OZ/TON	Check oz/ToN	
0	190.8	Casing										
190.8	253.3	Banded Iron Formation								l		
		<ul> <li>oxide facies iron formation (banded chert - magnetite + grunerite) interbanded with actinolite - chlorite schist (possible tuff bands) and minor graphitic argillite</li> <li>Average Modes</li> </ul>										
		Bands Chert 40-60% Magnetite 15-20% Grunerite 15-25% Actinolite+Chlorite 10-15% Argillite 2-5%  Accessories Pyrite 2-5% Pyrhotite trace to 2% Carbonate 2-3%										
		<ul> <li>discontinuous, irregular and anastomosing bands of magnetite and grunerite are interbanded with generally wider actinolite - chlorite bands and boudinaged chert; band width varies greatly over the section (usually 1/8 to 1/2")</li> <li>several highly brecciated intervals; shear fractures are common with minor displacement of bands</li> </ul>										
		- frequent crosscutting quartz-carbonate veinlets (most 1/4" wide) oriented at high angles to the core axis (60-80°)										

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO. SMZ-88-10 SHEET NO. 2 of 6

100	LAGE	DESCRIPTION			SAMPL	E		ASSAYS				
FROM	10	DESCRIPTION	но	* SULPH IDES	FROM	FOOTAGE To	TOTAL		-	OZ TON	Check	
		<ul> <li>sulphide mineralization consists mainly of pyrite with lesser pyrrhotite; vuggy blebs and stringers up to 1/2" wide, mostly concordant or subconcordant</li> </ul>										
		190.8 to 205.8 - highly gruneritic; poorly banded section, minor sulphide mineralization (trace to 1%) - 190.8 to 196.3 - highly contorted banding; predominant banding angle is between 20-30° to the core axis	3393	tr	190.8	194.4	3.6			.002		
		- 194.4 to 196.3 - several crosscutting quartz-carbonate veinlets carrying trace sulphide	3356	tr	194.4	196.6	2.2			<.001		
		- 198.6 to 199.1 - heavily brecciated section; very small stringers and blebs of pyrrhotite	3357		196.6					.001		
		- 201.0 to 205.0 - banded at 30-35° to the core axis	3358	tr	201.0	205.8	4.8			.002		
		205.8 to 208.9 - dark grey to black graphitic argillite; gradational contacts; the unit contains mm size, concordant quartz-carbonate veinlets and fine pyrrhotite stringers (trace to 1% sulphide); bedding is at 40° to the core axis	3359	tr	205.8	208.9	3.1			.001		
		208.9 to 222.5 - this interval is more uniformly banded with a lower abundance of grunerite (approx. 15%); wide chert bands (1/2 to 2"), nearly all of which are boudinaged; trace to 2% sulphide		tr-2 tr-2			4.1 4.6			.002 .001		
		- entire section is banded at 50° to the core axis - 217.6 to 222.5 - several brecciated sections (2-6" wide)	3362	tr-2	217.6	222.5	4.9			.001		
_ANGPIDGES = TOPONTO = 366-1468		222.5 to 226.2 - intercalation of clastic sediments; mostly silstones with minor fine grained wacke; trace sulphide	3363	tr	222.5	226.2	3.7			<.001		

NAME OF PROPERTY. Santa Maria Zeemel Lake

FOOT	LAGE	DESCRIPTION	SAMPLE						ASSAYS		
FROM	10	DESCRIPTION	110	SULPH IDE 5	FROM	FOOTAGE.	TOTAL		AU 07 TON	Check	
		226.2 to 234.3 - as per 208.9 to 222.5, with fairly uniform banding, boudinaged chert, 5-10% grunerite and trace to 2% sulphide; actinolite - chlorite bands are more frequent and wider (up to 3") in the interval - banded at 45-50° to the core axis		tr-2 tr-2	1		4.0 4.1		.001 .002		
		234.3 to 253.3 - similar to above; actinolite - chlorite bands are well mineralized, mostly with pyrite (3-10% sulphide throughout this interval); pyrite stringers (1/2" to 1" wide) are mostly concordant and contain numerous small vugs - disseminated sulphide and small stringers occur in the chert bands - majority of the section is banded at 45° to the core axis		5-10 5-10	239.2	239.2 244.0 249.0 253.3	5.0		.002 .001 <.001 .002		
253.3	259.9	Metasiltstone - grey-green, very fine grained, well foliated siltstone - composed essentially of very fine grained felsic material (dominated by quartz) and fine grained chlorite; minor quartz veining - foliated at 50° to the core axis - gradational into lower wacke unit	3370	-	253.3	258.3	5 <b>.</b> 0		.001		İ
259.9	271.1	Metagreywacke  - grey-green, fine to medium grained, moderately well foliated wacke (framework 20%, matrix 80%)  - similar to the above siltstone, except coarser grained; framework consists mostly of quartz, in a matrix of chlorite and biotite  - quartz-carbonate veining is very minor; small concordant veinlets and pods  - no visible sulphides	3371	-	263.0	268.0	5.0		<.001		

NAME OF PROPERTY ... Santa Maria Zeemel Lake

HOLE NO. SMZ-88-10 SHEET NO. 4 of 6

100	AGL	OF CORDINA			SAMPL	E		ASSAYS				
# ROM	10	DESCRIPTION	NO	SUL PH	FROM	FOOTAGE TO	TOTAL	;	*	ozAH,	Çþeç,k	
271.1	281.4	- foliated at 45° to the core axis - gradational into lower conglomerate unit  Metaconglomerate - matrix supported conglomerate consisting of subangular to rounded quartz pebbles (15-20%) in a matrix composed mainly of biotite with lesser fine grained felsic minerals and chlorite	3372	-	271.9	276.9	5.0			.002		
		Average Modes  Framework (15-20%) Quartz 100%  Matrix (80-85%) Biotite 60-70% Felsics 15-20% Chlorite 15-20%										
		<ul> <li>quartz-carbonate veining minor, mostly small (approx. 1/8") crosscutting veinlets</li> <li>no visible sulphides</li> <li>several rectangular clasts occur which could be plagioclase, indicating that this unit may be a highly sheared mafic intrusive; no alteration occurs at contacts</li> <li>foliated at 50° to the core axis</li> </ul>										
281.4	287.2	Interbedded Metasiltstone and Metagreywacke  - mostly wacke with narrow interbeds of siltstone, descriptions as per above  - minor interbedded chert; chert bands often contain pyrrhotite and pyrite stringers  - foliated at 45° to the core axis  - 282.0 to 282.5 - concordant milky quartz vein; minor carbonate; chloritic inclusions; no visible sulphides  - 284.3 - narrow concordant stringers and small blebs of pyrite in a cherty siltstone	3373	tr	281.4	285.4	4.0			.001		
OCT OCT OCT OCT OCT OCT OCT OCT OCT OCT												

r Often

NAME OF PROPERTY Santa Maria Zeemel Lake

HOLE NO SMZ-88-10 SHEET NO. 5 of 6

F 001	AGE	DESCRIPTION			SAMPI				 ASSAYS		
FROM	10	DESCRIPTION	ИО	" SUL PH	FROM	FOOTAGE To	TOTAL	;	AU 07 TON	Check.	
287.2	291.7	Interbedded Chert and Mafic Tuff  - gradational upper contact; interbedded cherty siltstone and chlorite tuff near the top of the interval; chert bands become more prominent lower in the section - concordant to subconcordant pyrite stringers, several up to 1/4" wide; occur throughout the unit; minor fine grained pyrrhotite also occurs - 290.4 to 291.7 - brecciated chert; brown chert fragments in a chloritic matrix containing several small quartz-carbonate stringers; trace sulphide	3374		287.2				.002		
291.7	407.0	Mafic Metavolcanics -predominantly dark green, fine grained well foliated mafic tuff (chlorite schist) with minor fine grained flows; varying degrees of silicification throughout the unit					,				
ANGE-10615 - CHON C - 499-198		Average Modes Chlorite 60-85% Amphibole 5-10% Biotite 5-10% Plagioclase 0-15% Chert 0-5% Quartz+Carbonate 2-5% Sulphide trace  - most of the unit is weakly silicified and carbonatized; several sections of pervasive silicification occur, with numerous concordant to subconcordant veinlets in a highly biotitic matrix - minor chert bands occur, interbedded with tuffaceous volcanics - trace disseminated pyrite and chalcopyrite	3376		291.7				.002		
-ANGETOGES											

NAME OF PROPERTY. Santa Maria Zeemel Lake

HOLE NO SMZ-88-10 SHEET NO. 6 of 6

FOOTAGE		SAMPLE					ASSAYS			
OM TO	DESCRIPTION	но	SUL PH	FROM	FOOTAGE 10	TOTAL			AU TON	Chęck
	- 304.5 to 308.1 - weakly silicified interval; 10-20% biotite in the matrix; foliated at 45° to the core axis	3377	tr	304.5	308.1	3.6			<.001	
	- 310.7 to 315.1 - weakly silicified, highly biotitic interval, as per above	3378	tr	310.7	315.1	4.4			.001	
	- 315.1 to 315.8 - weakly banded iron formation consisting of dark green, very fine grained, magnetite-rich, argillaceous material, trace to 1% disseminated pyrrhotite and chalcopyrite; banded at 40° to the core axis; several small garnets occur at both contacts	3379	tr-1	315.1	316.1	1.0			.001	
	<ul> <li>320.8 to 321.0 - highly garnetiferous band of pelitic sediment</li> <li>329.0 - crosscutting quartz-carbonate veinlet containing several small chalcopyrite blebs</li> </ul>	3380	tr	320.7	325.7	5.0	į		.002	
	<ul> <li>329.8 to 330.1 - concordant quartz-carbonate vein; chloritic inclusions, no visible sulphides</li> </ul>	3381	tr	328.8	331.3	2.5			.001	
	- 337.4 to 342.4 - several 1/4 to 1/2" wide chert bands occur interbedded with tuffaceous volcanics in this interval	3382	tr	337.4	342.4	5.0			.002	
	- 348.0 - foliated at 35° to the core axis	3383		348.9		5.0			.002	
	<ul> <li>- 358.2 to 367.1 - boundinaged and brecciated chert bands up to 1" wide occur throughout this section; minor pyrrhotite stringers</li> </ul>	3384 3385		358.2 362.2	362.2 367.2	4.0 5.0			.002	
	<ul> <li>361.0 - foliated at 25° to the core axis</li> <li>367.1 to 384.0 - several highly silicified sections</li> <li>and many small chert bands occur in this interval</li> </ul>	3386 3387		367.2 372.2	372.2 377.2	5.0 5.0			.001	
	- 378.0 - foliated at 48° to the core axis - 403.0 - foliated at 42° to the core axis	3388 3389 3390	tr	377.2 388.0 402.0	393.0	5.0 5.0 5.0			<.001 <.001 <.001	
407.0	END OF HOLE		i							
	•									

APPENDIX D
ASSAY CERTIFICATES

APPENDIX C
LEGEND AND DIAMOND DRILL SECTIONS

# LEGEND FOR DIAMOND DRILL HOLE SECTIONS ZEEMEL LAKE PROPERTY

Pickle Lake Area, Patricia M.D., Ontario

es
SYMBOLS  Geological contact 6  Bedding Foliation
Fault, shear zone
Lost coreLC
si - silicification se - sericitization ch - chloritization ca - carbonatization bx - brecciated
shr - sheared  Mineralization  s - sulphides po - pyrrhotite py - pyrite cp - chalcopyrite as - arsenopyrite sp - sphalerite ga - galena mo - molybdenite gf - graphite

Fig. 5

magnetite

quartz

biotite

mt -

qtz bte -



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No	MI-1817/6763		Di	ate: Se	ptemb	er 17	, 1987
Received		28	Samples ofF	Rock			
Submitted by	Geocanex Ltd.		<i>P</i>	tt'n:	Mr.	н. Ј.	Hodge
*	Santa Maria Re	esources Ltc		C.C.	Mr.	G. G.	Plaskett
Project:	ZEEMEL LAKE			C • C •	Mr.	B. A.	Huston
	Sample No.	Au oz/ton	Sample No	. Au	oz/t	on	
	19001	.002	19021		.002	2	
	19002	.002	19022		.004	+	
	19003	.001	19023		.003	3	
	19004	.002	19024		.003	3	
	19005	.001	19025		<.001		
	19006	.001	19026		<.001		
	19007	.001	19027		<.001		
	19008	.001	19028		.001		
	19009	.001					
	19010	.002					
	19011	.002					
	19012	.002					
	19013	.002					
	19014	.002		Γ		<u> </u>	1.1:1:01
	19015	.001				ec'd	1 2
	19016	<.001					
	19017	.001		{		п. / к. И. Н <b>.</b>	
	19018	.001		ļ	J.1	¥1.1 1	
	19019	.002			File:		
	19020	.001			<i>,</i>		
		• • • • • • • • • • • • • • • • • • • •	`		/		
					/		
					/		
			ASSAYERS (	ONTARIO)	LIMITED		
		Per	· · · · · · · · · · · · · · · · · · ·	/			
				<u> </u>			
			J. van	Engéle	n Mg	ır.	



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No.	MI-1824/6786			Date: September	22, 1987
Received			Samples of	Drill Core	
Submitted by	<u>Geocanex Ltd.</u> "Santa Maria R	esources"		Att'n: Mr. H. J. c.c. Mr. G. G.	
Project:	ZEEMEL			c.c. Mr. B. A.	Huston
Sample No.	Au oz/ton	Sample No.	. Au oz/to	on Sample No.	Au oz/ton
19029	.007	19049	<.001	19069	<.001
19030	.001	19050	<.001	19070	<.001
19031	<.001	19051	<.001	19071	.001
19032	.001	19052	<.001	19072	.001
19033	.001	19053	<.001	19073	.002
19034	<.001	19054	<.001	19074	.002
19035	<.001	19055	<.001	19075	.002
19036	.001	19056	<.001	19076	.004
19037	.001	19057	<.001		
19038	<.001	19058	<.001		
19039	<.001	19059	<.001		
19040	<.001	19060	.001		
19041	<.001	19061	.001		
19042	<.001	19062	<.001		
19043	.001	19063	<.001		
19044	.001	19064	<.001		
19045	<.001	19065	<.001		
19046	<.001	19066	<.001		
19047	<.001	19067	<.001		
19048	<.001	19068	<.001		
				< /	

ASSAYERS (ONTARIO) LIMITED

J. van Engelen Mgr

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING - ORE DRESSING - REPRESENTATION



33 CHAUNCEY AVENUE TORONTO, ONTARIO MBZ 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-01/6804			Date: Septemb	per 24, 1987
Received		48	Samples of	Drill Core	
Submitted by	Geocanex Ltd. "SANTA MARIA R	ESOURCES"		c.c. Mr. B.	
Project:	ZEEMEL			c.c. Mr. G	. G. Plaskett
Sample No.	Au oz/ton	Sample No.	Au oz/tor	n Sample No	. Au oz/ton
19077	.002	19097	.001	19118	.002
19078	<.001	19089	.014	19119	.007
19079	<.001	19100	.001	19120	.008
19080	<.001	19101	<.001	19121	.015
19081	<.001	19102	<.001	19122	.009
19082	<.001	19103	<.001	19123	.008
19083	.001	19104	<.001	19124	.007
19084	<.001	19105	<.001	19187	.009
19085	<.001	19106	<.001		
19086	<.001	19107	<.001		
19087	.002	19108	.001		
19088	.56(.52	) 19109	.001		
19089	.010	19110	.002		
19090	.002	19111	.001		
19091	.001	19112	.001		
19092	<.001	19113	.001		
19093	.001	19114	.001		
19094	.001	19115	<.001		
19095	.001	19116	.001		
19096	.001	19117	.002		

ASSAYERS (ONTARIO) LIMITED

. / - / . . .



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No	GE0-03/6819		Date: September 28, 1987
Received	Sept. 18/87 63	Samples of	Drill Core
Submitted by	Geocanex Ltd.		Att'n: Mr. H. J. Hodge
	"SANTA MARIA RESOURCES"		c.c. Mr. G. G. Plaskett
			c.c. Mr. B. A. Huston

Project: ZEEMEL

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19125	.002	19146	.001	19167	.001
19126	.001	19147	.001	19168	.001
19127	<.001	19148	.002	19169	.009
19128	.002	19149	.001	19170	.001
19129	.001	19150	.002	19171	.001
19130	.001	19151	.002	19172	.019
19131	.002	19152	.001	19173	.010
19132	.001	19153	.002	19174	.005
19133	.002	19154	.002	19175	.001
19134	.001	19155	.001	19176	<.001
19135	.002	19156	.001	19177	<.001
19136	.001	19157	<.001	19178	.001
19137	.001	19158	.001	19179	<.001
19138	.002	19159	<.001	19180	<.001
19139	.001	19160	.001	19181	.001
19140	<.001	19161	<.001	19182	.001
19141	.001	19162	.001	19183	<.001
19142	.002	19163	<.001	19184	<.001
19143	.001	19164	.001	19785	<.001
19144	.001	,19165	.001	19186	<.001
19145	.001	19166	.001	1,9282	.001

ASSAYERS (ONTABIO) LIMITED

J. van Engelen Mgr.

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING - ORE DRESSING - REPRESENTATION



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-04/01/6819		Date:	Septemb	er 28,	1987
Received	Sept. 21/87 96 s	amples of	Drill	Core		
Submitted by	Geocanex Ltd.				1. J. Ho	
	"SANTA MARIA RESOURCES"				5. G. Pl 3. A. Hu	

Project: ZEEMEL

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19188	.001	19208	.001	19228	.001
19189	.001	19209	.001	19229	.001
19190	<.001	19210	<.001	19230	.001
19191	<.001	19211	.001	19231	.001
19192	<.001	19212	<.001	19232	.001
19193	<.001	19213	.001	19233	.001
19194	<.001	19214	<.001	19234	.001
19195	.001	19215	<.001	19235	.002
19196	.001	19216	<.001	19236	.001
19197	<.001	19217	.001	19237	<.001
19198	<.001	19218	<.001	19238	.001
19199	.001	19219	<.001	19239	.001
19200	.001	19220	.001	19240	.001
19201	<.001	19221	.001	19241	.001
19202	.001	19222	.001	19242	.001
19203	<.001	19223	.001	19243	<.001
19204	.001	19224	.001	19244	.001
19205	.001	19225	.001	192/5	.001
19206	.001	19226	<.001	19246	<.001
19207	<.001	19227	.001	19247	.001

ASSAYERS (ONTARIO) LIMITED



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No.	GEO-04/02/6819		Date: September 28, 1987
Received	Sept. 21/87 96	Samples of	Drill Core
Submitted by	Geocanex Ltd. "SANTA MARIA RESOURCES"		Att'n: Mr. H. J. Hodge c.c. Mr. G. G. Plaskett
			c.c. Mr. B. A. Huston

Project: ZEEMEL

Sample No.	Au oz/ton	Sample No.	Au oz/ton
19248	.001	19267	<.001
19249	<.001	19268	.001
19250	<.001	19269	.001
19251	<.001	19270	.001
19252	<.001	19271	.001
19253	<.001	19272	.002
19254	<.001	19273	.001
19255	.001	19274	.001
19256	.001	19275	.001
19257	<.001	19276	.001
19258	<.001	19277	<.001
19259	<.001	19278	.001
19260	<.001	19279	<.001
19261	.001	19280	<.001
19262	.001	19281	.001
19263	<.001		
19264	.002		
19265	<.001		$\overline{}$
19266	<.001		
19267	<.001	*	/
			/

assayers (Ontario) Limited

Per



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate NoGE0-07/6883			Date: October 7, 1987				1987	
Received	Sept. 25/87	55	Samples of	Drill C	ore	<del>-,</del>		***************************************
Submitted by	Geocanex Ltd.			Att'n:	Mr.	н.	J.	Hodge
				C.C.	Mr.	G.	G.	Plaskett
			<del></del>		Mr		н_	Adame

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19379	.001	19399	<.001	19419	<.001
19380	<.001	19400	<.001	19420	.001
19381	<.001	19401	<.001	19421	.001
19382	<.001	19402	<.001	19422	.001
19383	<.001	19403	<.001	19423	.003
19384	<.001	19404	<.001	19424	.002
19385	<.001	19405	<.001	19425	.002
19386	<.001	19406	<.001	19426	.003
19387	.001	19407	.001	19427	.002
19388	.001	19408	.001	19428	.002
19389	<.001	19409	.001	19429	.001
19390	<.001	19410	.001	19430	<.001
19391	.001	19411	.002	19431	<.001
19392	<.001	19412	<.001	19432	.001
19393	<.001	19413	.001	19433	.002
19394	<.001	19414	<.001		
19395	<.001	19415	.001		
19396	.001	19416	.001		
19397	.001	19417	.001	. — )	
19398	<.001	19418	<.001		

ASS	AYERS (ONTARIO) L	IMITED	
	47	17	
Per			



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GE0-08/6883			Date:0	ctob	er :	7,	1987
Received	Oct. 5/87	61	Samples of	Drill C	ore			
Submitted by	Geocanex Ltd.			Att ¹ n:	Mr.	н.	J.	Hodge
				C.C.	Mr.	G.	G.	Plaskett
				C - C -	Mr.	-J -	Α.	Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19434	.001	19454	: .003	19474	.003
19435	.002	19455	.002	19475	.003
19436	.001	19456	.001	19476	.002
19437	.001	19457	.001	19477	.002
19438	<.001	19458	.001	19478	.001
19439	.001	19459	.002	19479	.003
19440	.001	19460	.002	19480	.001
19441	.001	19461	.001	19481	.001
19442	<.001	19462	.001	19482	.001
19443	<.001	19463	<.001	19483	<.001
19444	.001	19464	.002	19484	.001
19445	.001	19465	.002	19485	<.001
19446	.001	19466	.002	19486	.001
19447	<.001	19467	.002	19487	.001
19448	<.001	19468	.001	19488	.001
19449	.001	19469	.001	19489	.001
19450	.001	19470	.001	19490	.001
19451	.001	19471	.003	19491	<.001
19452	.002	19472	.003	19492	.001
19453	.003	19473	.003	19493	.001
		· •		19494	.001

ASSAYERS (ONTARIO) LIMITED

Per _____



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-05/6883		Date:0	ctob	er '	7,	1987
Received	Sept. 30/87 63	Samples of	Drill C	ore			
Submitted by	Geocanex Ltd.		Att'n:	Mr.	Ha	J.	Hodae
			C.C.	Mr.	G.	G.	Plaskett
		<del></del>	0-0-	Mr	J	Α.	Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19495	.001	19516	<.001	19537	<.001
19496	<.001	19517	<.001	19538	<.001
19497	<.001	19518	<.001	19539	<.001
19498	<.001	19519	<.001	19540	<.001
19499	<.001	19520	<.001	19541	<.001
19500	<.001	19521	<.001	19542	<.001
19501	<.001	19522	<.001	19543	<.001
19502	<.001	19523	<.001	19544	<.001
19503	<.001	19524	<.001	19545	<.001
19504	<.001	19525	<.001	19546	<.001
19505	<.001	19526	<.001	19547	<.001
19506	<.001	19527	<.001	19548	<.001
19507	<.001	19528	<.001	19549	<.001
19508	<.001	19529	<.001	19550	<.001
19509	<.001	19530	<.001	19551	<.001
19510	<.001	19531	<.001	19552	<.001
19511	.001	19532	<.001	19553	<.001
19512	<.001	19533	<.001	19554	<.001
19513	<.001	19534	<.001	19553	<.001
19514	<.001	19535	<.001	19556	<.001
19515	<.001	19536	<.001	19557	<.001

ASSAYERS (ONTARIO) LIMITED

Per		<u></u>	 
	•	1	



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-09/02/6895			Date:0	ctobe	er S	,	1987	
Received	Oct. 5/87	96	Samples of	Drill C	ore				
Submitted by	Geocanex Ltd.			Att'n:	Mr.	н.	J.	Hodge	
				C.C.	Mr.	G.	G.	Plaskett	_
				0 - 0 -	MIL.	.1 -	н.	Adams	

Sample No.	Au oz/ton	Sample No.	Au oz/ton
19343	.001	19363	.002
19344	.001	19364	.002
19345	.001	19365	<.001
19346	<.001	19366	.001
19347	.001	19367	.001
19348	.001	19368	<.001
19349	.002	19369	<.001
19350	.001	19370	<.001
19351	<.001	19371	.001
19352	<.001	19372	<.001
19353	.001	19373	<.001
19354	.002	19374	.001
19355	.002	19375	<.001
19356	.003	19376	<.001
19357	.002	19377	<.001
19358	.003	19378	<.001
19359	.002		
19360	.001		
19361	.002		
19362	.004		

ASSAYERS (ONTARIO) LIMITED

Per _____



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No	GEO-09/01/6895			Date:	Octob	ber	9,	1987
Received	Oct. 5/87	96	Samples of	Drill C	ore			
Submitted by	Geocanex Ltd.			Att'n:	Mr.	Н.	J.	Hodge
				c.c.	Mr.	G.	G.	Plaskett
				C - C -	Mr.	.1	Н.	Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19283	.001	19303	.006	19323	.002
19284	.007	19304	.004	19324	.001
19285	<.001	19305	.002	19325	.001
19286	.001	19306	.003	19326	<.001
19287	.001	19307	.003	19327	.001
19288	.006	19308	.002	19328	.001
19289	<.001	19309	.003	19329	<.001
19290	<.001	19310	.003	19330	.001
19291	.001	19311	.003	19331	<.001
19292	.001	19312	.002	19332	<.001
19293	.003	19313	.003	19333	<.001
19294	.008	19314	.002	19334	.002
19295	.001	19315	.002	19335	.002
19296	.001	19316	.002	19336	.002
19297	•002	19317	.002	19337	.001
19298	.004	19318	.003	19338	.001
19299	.001	19319	.001	19339	<.001
19300	.002	19320	.003	19340	.001
19301	.001	19321	.002	19344	<.001
19302	.002	19322	.002	19342 /	.001
				\ /	

ASSAYERS (ONTARIO) LIMITED

Per _____



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-10/6895		Date:October 13, 1987					
Received	Sept. 30/87	8	Samples of	Drill Core				
Submitted by	Geocanex Ltd.			Att'n:				
							Plaskett	

Sample No.	Au oz/ton
19669	<.001
19670	<.001
19671	<.001
19672	.001
19673	<.001
19674	<.001
19675	.001
19676	< .001

ASSAYERS (ONTARIO) LIMITED

Per _



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No.	GEO-11/6895			Date:0	ctober 13, 1987
Received	Oct. 1/87	57	Samples of	Drill C	ore
Submitted by	Geocanex Ltd.			Att'n:	Mr. H. J. Hodge Mr. G. G. Plaskett
					Mr. J. H. Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19721	.001	19741	.001	19761	.001
19722	.001	19742	.004	19762	.001
19723	<.001	19743	.003	19763	.002
19724	.005	19744	.002	19764	.002
19725	.022	19745	.003	19765	.002
19726	.004	19746	.016	19766	•002
19727	.002	19747	.004	19767	.001
19728	.002	19748	.004	19768	.001
19729	.001	19749	.003	19769	.004
19730	.002	19750	.001	19770	.004
19731	.004	19751	.001	19771	.005
19732	.004	19752	.002	19772	.005
19733	.004	19753	° 005	19773	.007
19734	.004	19754	.001	19774	.006
19735	.005	19755	.002	19775	.007
19736	.005	19756	.008	19776	.007
19737	.003	19757	.003	19777	.005
19738	.008	19758	.001		
19739	.002	19759	.002		
19740	.001	19760	.002		

ASSAYERS (ONTARIO) LIMITED



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

#### **Certificate of Analysis**

Certificate No	GEO-13/01/6901			Date:	Octo	ber	14	, 1987
Received		7.3	Samples of	Drill (	<del>ore</del>			
Submitted by	Geocanex Ltd.			Att [†] n:				
								Plaskett
				C • C •	- MT -	J.	П.	Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19558	<.001	19578	.001	19598	<.001
19559	.001	19579	.001	19599	<.001
19560	.001	19580	<.001	19600	.002
19561	<.001	19581	<.001	19701	.001
19562	.001	19582	.001	19702	<.001
19563	.002	19583	.001	19703	<.001
19564	.001	19584	.001	19704	.001
19565	.001	19585	<.001	19705	.001
19566	<.001	19586	.001	19706	<.001
19567	.001	19587	<.001	19707	.001
19568	.002	19588	<.001	19708	<.001
19569	.001	19589	<.001	19709	.001
19570	.002	19590	<.001	19710	<.001
19571	.001	19591	<.001	19711	<.001
19572	•002	19592	<.001	19712	.001
19573	.002	19593	<.001	19713	<.001
19574	.001	19594	.001	19714	<.001
19575	.001	19595	<.001	19715	<.001
19576	.001	19596	<.001	19716	<.001
19577	.002	19597	<.001	19717	<.001

ASSAYERS (ONTARIO) LIMITED

Per



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate NoG	0-12/6901	-	Dat	te: October 14	1987
Received0	ct. 3/87	68Sa	amples ofD	rill Core	
Submitted byG	eocanex Ltd.		A	tt'n: Mr. H c.c. Mr. G. (	J. Hodge G. Plaskett
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s				c.c. Mr. J.	1. Adams
Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19601	.007	19624	<.001	19647	.009
19602	.007	19625	.002	19648	.012
19603	.006	19626	.001	19649	.005
19604	.002	19627	<.001	19650	.005
19605	.002	19628	.001	19651	.007
19606	.002	19629	<.001	19652	.012
19607	.003	19630	.003	19653	.001
19608	.002	19631	<.001	19654	.001
19609	.005	19632	<.001	19655	.001
19610	.003	19633	.003	19656	.002
19611	.002	19634	.004	19657	.002
19612	.002	19635	.011	19658	.002
19613	.003	19636	.010	19659	<.001
19614	.002	19637	.004	19660	<.001
19615	.001	19638	.004	19661	<.001
19616	.002	19639	.005	19662	<.001
19617	.002	19640	.010	19663	.001
19618	.001	19641	.004	19664	<.001
19619	.002	19642	.004	19665	.002
19620	<.001	19643	.003	19666	.001
19621	.002	19644	.009 🤇	19667	<.001
19622	<.001	19645	.005	19668	<.001
19623	<.001	19646	.006		/
			ASSAYERS	ONTARIO) LIMITED	
		Per .		/, //	
			J. van	Engelen Mgr.	

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING -ORE DRESSING - REPRESENTATION



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-13/02/6901		-	Date:0	ctobe	er í	14,	1987
Received		73	Samples of	Drill C	ore	·		
Submitted by	Geocanex Ltd.			Att'n:				
								Plaskett
				C.C.	M.L.	J.	н.	Adams

Sample No.	Au oz/ton	
19708	.001	
19709	.001	
19710	.001	
19711	<.001	
19712	.001	
19713	<.001	
19714	<.001	
19715	<.001	
19716	<.001	
19717	<.001	
19718	.001	
19719	<.001	
19720	<.001	

ASSAYERS (ONTARIO) LIMITED



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No	GEO-14/6901			Date:0	ctob	er í	14,	1987
Received		53	Samples of	Drill C	ore	. <del></del>		
Submitted by	Geocanex Ltd.			Att'n:				Hodge Plaskett
								Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19778	<.001	19798	.002	19818	.002
19779	<.001	19799	.001	19819	.001
19780	<.001	19800	<.001	19820	.001
19781	<.001	19801	<.001	19821	<.001
19782	<.001	19802	.001	19822	.004
19783	<.001	19803	<.001	19823	<.001
19784	<.001	19804	<.001	19824	<.001
19785	<.001	19805	.001	19825	.001
19786	<.001	19806	<.001	19826	<.001
19787	<.001	19807	<.001	19827	<.001
19788	<.001	19808	<.001	19828	<.001
19789	<.001	19809	<.001	19829	<.001
19790	<.001	19810	.001	19830	<.001
19791	.001	19811	.001		
19792	.002	19812	.002		
19793	.002	19813	.001		
19794	.002	19814	<.001		
19795	.002	19815	.002		
19796	.002	19816	<.001		
19797	.002	19817	.002		

ASSAYERS (ONTARIO) LIMITED



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No. GE0-15/6942		Date: <u>October 21, 1987</u>			
Received	17_	Samples of	Drill Core		
Submitted by	Geocanex Ltd.		Att'n: Mr. H. J. Hodge c.c. Mr. G. G. Plaskett		
			c.c. Mr. J. H. Adams		

Sample No.	Au oz/ton
19900	.004
19901	.001
19902	.001
19903	.001
19904	.001
19905	.002
19906	.001
19907	.001
19908	.001
19909	.001
19910	.001
19911	.002
19912	.001
19913	.002
19914	.001
19915	.001
19916	.001

ASSAYERS (ONTARIO) LIMITED

Per ...

J. van Engelen Mgr.

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING YORE DRESSING - REPRESENTATION



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No.	GEO-16/6942		ţ	Date: October 2	1, 1987
Received		69	Samples of	Drill Core	
Submitted by	Geocanex Ltd	•		c.c. Mr. G.	
				c.c. Mr. J.	H. Adams
Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19831	.001	19854	.003	19877	.003
19832	.001	19855	.003	19878	.003
19833	.001	19856	.004	19879	.002
19834	.001	19857	.003	19880	.003
19835	.002	19858	.001	19881	.003
19836	.003	19859	.002	19882	.003
19837	.002	19860	.002	19883	.005
19838	.001	19861	.002	19884	.004
19839	.002	19862	.002	19885	.003
19840	.001	19863	.001	19886	.003
19841	.002	19864	.003	19887	.002
19842	.001	19865	.002	19888	.003
19843	.002	19866	.002	19889	.003
19844	.002	19867	.002	19890	.003
19845	.001	19868	.002	19891	.001
19846	.002	19869	.002	19892	.002
19847	.001	19870	.002	19893	.002
19848	.003	19871	.004	19894	.002
19849	.002	19872	.002	19895	.001
19850	.002	19873	.007	19896	.002
19851	.001	19874	.003	19897	.002
19852	.001	19875	.002	19898	.002
19853	.003	19876	.003	19899	.001
			ASSAYER	S (ONTARIO) LIMITED	
		<b>D</b>		/_//	

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING - ORE DRESSING - REPRESENTATION

/J. van Engelen



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No. GE0-17/6965		Date: 0ctober 26, 1987					
Received	74	Samples of	Drill Co	re			
Submitted by .	Geocanex Ltd.		Att'n:				
							Plaskett Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton
19677	.001	19697	<.001
19678	<.001	19698	<.001
19679	<.001	19699	<.001
19680	.001	19700	<.001
19681	.001	19918	.001
19682	.001	19919	<.001
19683	.002	19920	.001
19684	.001	19921	.001
19685	.002	19922	.001
19686	.001	19923	.001
19687	.002	19924	<.001
19688	.001	19925	<.001
19689	.001	19926	.001
19690	<.001	19927	.001
19691	<.001	19928	.001
19692	<.001	19929	.001
19693	.001	19930	.001
19694	.001	19931	.001
19695	.001	19932	.001
19696	.001	19933 (	. 0,01
			<b>/</b> >

ASSAYERS (ONTARIO) LIMITED

Per

Í. van Engelen Mgr

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING - ORE DRESSING - REPRESENTATION



33 CHAUNCEY AVENUE TORONTO, ONTARIO MBZ 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate NoGE0-17/02/6965		Date: <u>October 26, 1987</u>					
Received		74	Samples of	Drill C	ore	<del></del>	
Submitted by	Geocanex Ltd.						Hodge
							Plaskett

Sample No.	Au oz/ton	Sample No.	Au oz/ton
19934	.001	19954	.001
19935	.001	19955	.001
19936	.001	19956	.001
19937	.001	19957	<.001
19938	.001	19958	<.001
19939	.001	19959	.001
19940	<.001	19960	.001
19941	.001	19961	<.001
19942	<.001	19962	.001
19943	<.001	19963	.001
19944	.001	19964	.002
19945	<.001	19965	<.001
19946	.001	19966	.001
19947	<.001	19967	.001
19948	<.001		
19949	.001		
19950	<.001		
19951	.001		
19952	<.001		
19953	.001		

ASSAYERS (ONTARIO) LIMITED

van Engelen Mgr

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING - ORE DRESSING - REPRESENTATION



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate NoGE0-18/01/6978		Date:0	ctobe	<u>r 2</u>	9,	1987	
Received	Samples of	Drill C	ore				
Submitted by <u>Geocanex Ltd.</u>		Attin:				<u>Hodge</u> Plaskett	
						Adams	=

Sample No.	Au oz/ton	Sample No.	Au oz/ton
12020	.007	12040	.007
12021	.006	12041	.005
12022	.004	12042	.003
12023	.004	12043	.003
12024	.007	12044	.003
12025	.006	12045	.003
12026	.006	12046	.004
12027	.005	12047	.008
12028	.006	12048	.004
12029	.006	12049	.003
12030	.005	12050	.001
12031	.005	12051	•002
12032	.006	12052	.003
12033	.006	12053	.002
12034	.003	12054	.002
12035	.004	12055	.002
12036	.005	12056	.003
12037	.004	12057	.003
12038	.007	12058	.003
12039	.004	12059	.005

#### **ASSAYERS (ONTARIO) LIMITED**

Per	
-----	--

### **Certificate of Analysis**

Certificate No. GEO-	-18/02/6978		Date:0	ctober 2	29,	1987
Received	71	Samples of	Drill C	ore		
Submitted byGeog	canex Ltd.					<u>Hodge</u> Plaskett
				Mr. J.		

Sample No.	Au oz/ton	Sample No.	Au oz/ton
12060	.002	12080	<.001
12061	.001	12081	.001
12062	.004	12082	.001
12063	.001	12083	.002
12064	<.001	12084	.001
12065	<.001	12085	.001
12066	<.001	12086	<.001
12067	<.001	12087	<.001
12068	.001	12088	<.001
12069	.004	12089	.001
12070	.002	12090	.001
12071	.001		
12072	<.001		
12073	<.001		
12074	.001		
12075	.001		
12076	.002		
12077	.001		
12078	.002		
12079	.001		

#### **ASSAYERS (ONTARIO) LIMITED**

Per	'			
-----	---	--	--	--



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No	GEO-19/6978			Date: October	29 <b>,</b> 1987
Received		75	Samples of	Drill Core	
Submitted by	Geocanex Ltd.			Att'n: Mr. H.	J. Hodge G. Plaskett
					H. Adams
Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
17897	.004	17917	.001	17937	<.001
17898	.003	17918	<.001	17938	.001
17899	.002	17919	.001	17939	.002
17900	.002	17920	.002	17940	.002
17901	.003	17921	<.001	17941	.002
17902	.003	17922	.001	17942	.001
17903	.002	17923	.002	17943	<.001
17904	.002	17924	.002	17944	.001
17905	.001	17925	.002	17945	.001
17906	.002	17926	.001	17946	<.001
17907	.001	17927	.003	17947	.001
17908	<.001	17928	.002	17948	.001
17909	.002	17929	.002	17949	.001
17910	.002	17930	.001	17950	.001
17911	.002	17931	.003	17951	<.001
17912	.001	17932	.001		
17913	.002	17933	.001		
17914	.003	17934	.001		
17915	.002	17935	.002		
17916	.002	17936	.002		

#### **ASSAYERS (ONTARIO) LIMITED**

Per	
T G I	



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No.	GEO-20/02/699	2	i	Date: October 30	, 1987
Received		129	Samples of	Drill Core	
Submitted by	Geocanex Ltd.			Att'n: Mr. H. c.c. Mr. G. c.c. Mr. J.	J. Hodge G. Plaskett H. Adams
				Caca title of	m. Addms
Sample No.	Au oz/ton	Sample No.	Au oz/tor	Sample No.	Au oz/ton
17834	.001	17855	.002	17876	<.001
17835	.002	17856	<.001	17877	.001
17836	<.001	17857	<.001	17878	.001
17837	.001	17858	<.001	17879	.001
17838	<.001	17859	<.001	17880	.003
17839	.003	17860	<.001	17881	.002
17840	<.001	17861	<.001	17882	<.001
17841	<.001	17862	.001	17883	.001
17842	<.001	17863	.001	17884	.001
17843	.001	17864	<.001	17885	.001
17844	<.001	17865	.003	17886	<.001
17845	.001	17866	.001	17887	<.001
17846	<.001	17867	<.001	17888	.002
17847	.001	17868	<.001	17889	.002
17848	.002	17869	<.001	17890	.002
17849	<.001	17870	.002	17891	<.001
17850	.003	17871	.001	17892	.001
17851	.002	17872	.001	17893	.001
17852	<.001	17873	.001	17894	<.001
17853	.001	17874	.003	17895	<.001

**ASSAYERS (ONTARIO) LIMITED** 

17896

<.001

.002

J. van Engelen Mgr.

17875

.001

17854



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

#### **Certificate of Analysis**

Certificate No	GEO-20/01/69		Date: .	October 30	1987
Received		129 San	nples ofDri	ll Core	
Submitted by	Geocanex Ltd.			'n: Mr. H. J .c. Mr. G. G	
		\(\frac{1}{2}\)		.c. Mr. J. H	. Adams
Sample No	. Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
19968	.001	19990	<.001	17812	<.001
19969	<.001	19991	<.001	17813	.001
19970	.002	19992	<.001	17814	<.001
19971	.002	19993	.001	17815	<.001
19972	.001	19994	<.001	17816	<.001
19973	<.001	19995	<.001	17817	.001
19974	.001	19996	<.001	17818	<.001
19975	.001	19997	<.001	17819	.001
19976	.001	19998	.002	17820	<.001
19977	.001	19999	.002	17821	<.001
19978	<.001	20000	.001	17822	<.001
19979	.001	17801	.001	17823	<.001
19980	.002	17802	.001	17824	.001
19981	<.001	17803	.002	17825	.001
19982	.001	17804	<.001	17826	.001
19983	.001	17805	.002	17827	<.001
19984	.002	17806	.002	17828	.001
19985	.002	17807	.002	17829	<.001
19986	.001	17808	.001	17830	<.001
19987	<.001	17809	.002	17831	<.001
19988	.001	17810	<.001	17832	<.001
19989	.001	17811	<.001	17833	.001
			ASSAYERS (ON	ITARIO) LIMITED	



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-21/01/6996			Date: 0ctober 30, 1987
Received		79	Samples of	Drill Core
Submitted by	Geocanex Ltd.			Att'n: Mr. H. J. Hodge
				c.c. Mr. G. G. Plaskett

Sample No.	Au oz/ton	Sample No.	Au oz/ton
12091	.005	12111	.002
12092	.003	12112	.003
12093	.002	12113	.003
12094	.002	12114	.003
12095	.002	12115	.003
12096	.002	12116	.003
12097	.002	12117	.002
12098	•005	12118	.001
12099	.002	12119	.003
12100	.002	12120	.003
12101	.001	12121	.003
12102	.002	12122	.001
12103	.001	12123	.003
12104	.002	12124	.003
12105	.002	12125	.003
12106	.001	12126	.003
12107	.002	12127	.003
12108	.001	12128	.003
12109	.003	12129	.004
12110	.002	12130	.001

#### **ASSAYERS (ONTARIO) LIMITED**



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate NoGE0-02/6996	Date: <u>October 30, 1987</u>
Received 79 Sar	nples of Drill Core
Submitted byGeocanex Ltd.	Att'n: Mr. H. J. Hodge c.c. Mr. G. G. Plaskett
	C.C. Mr. J. H. Adams

Sample No.	Au oz/ton	Sample No.	Au oz/ton
12131	.003	12151	.004
12132	.002	12152	.002
12133	.003	12153	.002
12134	.003	12154	.002
12135	.003	12155	.001
12136	.003	12156	.002
12137	.002	12157	.003
12138	.001	12158	.003
12139	.001	12159	.003
12140	.001	12160	.003
12141	.001	12161	.003
12142	<.001	12162	.003
12143	<.001	12163	.005
12144	.001	12164	.001
12145	.001	12165	.002
12146	.001	12166	.002
12147	<.001	12167	.001
12148	.001	12168	.002
12149	.001	12169	.002
12150	.001		

#### **ASSAYERS (ONTARIO) LIMITED**

Per	
-----	--



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

### **Certificate of Analysis**

Certificate No	GEO-22/01/701	6	Dar	te: <u>November</u>	5, 1987
Received		91	Samples ofD	Drill Core	
Submitted by	Geocanex Ltd.		A:		J. Hodge G. Plaskett
				c.c. Mr. G.	
Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/tor
12170	.003	12190	<.001	12210	.002
12171	.002	12191	.001	12211	<.001
12172	.002	12192	.001	12212	.002
12173	.003	12193	.001	12213	.002
12174	.003	12194	.001	12214	.001
12175	.002	12195	.002	12215	.002
12176	.001	12196	.003	12216	•002
12177	.002	12197	.002	12217	.002
12178	.001	12198	.002	12218	.001
12179	.002	12199	.001	12219	.001
12180	.002	12200	.001	12220	.001
12181	•002	12201	.003	12221	.002
12182	.002	12202	.002	12222	.002
12183	.003	12203	.002	12223	.003
12184	.002	12204	.002	12224	.003
12185	.001	12205	.001	12225	<.001
12186	.001	12206	<.001	12226	.001
12187	<.001	12207	.001	12227	.001
12188	.001	12208	.002	12228	.001
12180	< 001	12200	002	12220	001

**ASSAYERS (ONTARIO) LIMITED** 

D	for the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o
Per	77.2.3



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate NoGE0-22/02/7016			Date: November 5, 1987	
Received		91	Samples of	Drill Core
Submitted by _	Geocanex Ltd.			Att'n: Mr. H. J. Hodge
				c.c. Mr. G. G. Plaskett

Sample No.	Au oz/ton	Sample No.	Au oz/ton
12230	.001	12250	<.001
12231	<.001	12251	<.001
12232	<.001	12252	<.001
12233	.001	12253	<.001
12234	.002	12254	<.001
12235	<.001	12255	<.001
12236	<.001	12256	<.001
12237	<.001	12257	<.001
12238	<.001	12258	<.001
12239	.002	12259	<.001
12240	.001	12260	<.001
12241	.001		
12242	.001		
12243	.002		
12244	.002		
12245	<.001	•	
12246	<.001		
12247	<.001		
12248	<.001		
12249	<.001		

#### ASSAYERS (ONTARIO) LIMITED

Per
-----



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No	GEO-28/7	029			Date: No	vember 9, 1	1987
Received			69	Samples of	Drill C	ore	
Submitted by	Geocanex	< Ltd. (	SANTA MARI	a -zzenel)	Att ¹ n: c.c.	Mr. H. J. Mr. G. G. Mr. J. H.	Hodge Plasket Adams
Sample No.	Au oz/ton	Sample No	Au . oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
12001	<.001	17952	<.001	17972	.001	17592	<.001
12002	<.001	17953	<.001	17973	<.001	17593	<.001
12003	<.001	17954	<.001	17974	<.001	17594	<.001
12004	<.001	17955	<.001	17975	<.001	17595	<.001
12005	<.001	17956	<.001	17976	<.001	17596	<.001
12006	<.001	17957	<.001	17977	<.001	17597	<.001
12007	<.001	17958	<.001	17978	<.001	17598	<.001
12008	<.001	17959	<.001	17979	<.001	17599	<.001
12009	<.001	17960	.001	17980	<.001	18000	<.001
12010	<.001	17961	<.001	17981	<.001		
12011	<.001	17962	.001	17982	<.001		
12012	<.001	17963	<.001	17983	<.001		
12013	<.001	17964	<.001	17984	<.001		
12014	.002	17965	.001	17985	<.001		
12015	<.001	17966	<.001	17986	<.001		
12016	.001	17967	.001	17987	<.001		
12017	<.001	17968	.001	17988	<.001		
12018	.001	17969	<.001	17989	<.001		
12019	<.001	17970	<.001	17990	<.001		
12500	Z 001	17071	< 001	17001	< 5001	/	

ASSAYERS (ONTARIO) LIMITED



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No.	GE0-25/7029		Date: November 9, 1987	
Received			Drill Core	
Submitted by	Geocanex Ltd. SANTA	MARIA - ZEGMEL	Att'n: Mr. H. J. Hodge c.c. Mr. G. G. Plasket	
			c.c. Mr. G. G. Plasket	<u>t</u>

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
12261	.002	12281	.002	12301	.002	12321	.001
12262	.001	12282	.002	12302	.002	12322	.001
12263	.001	12283	.001	12303	.002	12323	.002
12264	<.001	12284	.002	12304	.002	12324	<.001
12265	.001	12285	.002	12305	.001	12325	.001
12266	.002	12286	.002	12306	.001	12326	.002
12267	.002	12287	.002	12307	.001	12327	.001
12268	.002	12288	.002	12308	.001	12328	.002
12269	.002	12289	.001	12309	.001	12329	.001
12270	.001	12290	.002	12310	<.001	12330	.001
12271	.001	12291	.002	12311	.001	12331	.002
12272	.002	12292	.002	12312	<.001	12332	.002
12273	.001	12293	.001	12313	.001	12333	.002
12274	.002	12294	.001	12314	.001	12591	.002
12275	.002	12295	.001	12315	.002		
12276	.002	12296	.001	12316	.002		
12277	.002	12297	.001	12317	.002		
12278	.002	12298	.002	12318	.001	-	
12279	.003	12299	.002	12319	<b>Q</b> 001	)	
12280	.003	12300	.002	12320	.001		·

ASSAYERS (ONTARIO) LIMITED

X /

J. van Engelen



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

#### **Certificate of Analysis**

Certificate No	6E0-24/7029			Date: November	9, 1987
Received		67	Samples of	Drill Core	
	Geocanex Ltd.				J. Hodge
Submitted by	geotaliex Leal	(SANIA I MEN	- cenecy	C.C. Mr. G.	G. Plasket
				c.c. Mr. J.	H. Adams
Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
12424	.002	12447	<.001	12469	.001
12425	.001	12448	.001	12470	.001
12426	.001	12449	.002	12471	<.001
12427	.001	12450	.001	12472	.001
12428	.004	12451	<.001	12473	.001
12429	.001	12452	<.001	12474	.003
12430	.001	12453	.001	12475	<.001
12431	.001	12454	.001	12476	.001
12432	.001	12455	.002	12477	<.001
12433	.001	12456	.002	12478	.001
12434	.001	12457	.001	12479	.002
12435	.002	12458	.002	12480	.002
12436	.002	12459	.001	12481	.002
12437	.001	12460	.001	12482	.002
12438	.002	12461	.001	12483	.002
12439	.001	12462	.002	12484	.002
12440	.001	12463	.002	12485	.002
12441	.002	12464	.002	12486	<.001
12442	.001	12465	<.001	12487	.001
12443	.001	12466	<.001	< 12488 /	<.001
12444	<.001	12467	<.001	12489	.001
12445	<.001	12568	.001	12490	.001
12446	<.001				•
			ASSAYE	RS (ONTÁRIO) LIMITED	<b>&gt;</b> 2.5
		Per		1-,//	
			J	an Engelen Mgr.	



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No.	GEO-27/7029		t	Date: November 9,	1987
Received		46 San	nples of	Drill Core - SANTA	MARIA - 2504
Submitted by	Geocanex Ltd.	(Sawta MARIA	- SEEMEL)	Att'n: Mr. H. J. c.c. Mr. G. G.	Plaskett
				c.c. Mr. J. H.	Adams
Sample No.	Au oz/ton	Sample No.	Au oz/to	on Sample No.	Au oz/ton
12491	.002	12511	.004	12531	.001
12492	.002	12512	.003	12532	.001
12493	.001	12513	.003	12533	.001
12494	.001	12514	.003	12534	.002
12495	.002	12515	.003	12535	.002
12496	.001	12516	.003	12536	.003
12497	.001	12517	.008		
12498	.001	12518	.003		
12499	<.001	12519	.006		
12500	.070	12520	.005		
12501	.006	12521	<.001		
12502	.003	12522	.007		
12503	.003	12523	.017		
12504	.003	12524	.002		
12505	.003	12525	.001		
12506	.003	12526	<.001		
12507	.003	12527	.001		
12508	.003	12528	.002		
12509	.003	12529	<.001		
12510	.003	12530	.001		

ASSAYERS (ONTARIO) LIMITED

Per _____

J√∕van Engelen Mgr.



<.001

.001

.001

<.001

<.001

.002

<.001

<.001

<.001

12548

12549

1255012551

12552

12553

12554

12555

12556

33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No	GE0-32/7050		D	ate: November 1	2, 1987
Received	***************************************	53Sa	amples of	Orill Core	<del></del>
Submitted by	Geocanex Ltd.	SANTA MARIA -	ZEEMEL)		J. Hodge
					G. Plaskett H. Adams
Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
12537	.001	12557	<.001	12577	<.001
12538	.001	12558	<.001	12578	.001
12539	.001	12559	<.001	12579	.001
12540	.001	12560	<.001	12580	.001
12541	.002	12561	<.001	12581	.001
12542	.001	12562	<.001	12582	.001
12543	.001	12563	.001	12583	<.001
12544	<.001	12564	.001	12584	<.001
12545	<.001	12565	.002	12585	<.001
12546	<.001	12566	<.001	12586	<.001
12547	.001	12567	.002	12587	<.001

12568

12569

12570

12571

12572

12573

12574

12575

12576

.002

.001

.002

.002

.002

.001

.002

.001

.001

ASSAYERS (ONTARIO) LIMITED

12588

12589

<.001

<.001

Per _____

J. yan Engelen 'Mgr.



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No	GEO-45/7110			Date:	Novemb	er	26, 1987
Received		10	Samples of	Drill C	ore		
Submitted by	Geocanex Ltd.			Att'n:			
							Plaskett

Project: SANTA ZEEMEL LAKE

Sample No.	Au oz/tor
1035	.001
1036	.001
1037	.001
1038	.002
1039	.003
1040	.002
1041	.002
1042	.002
1043	.002
1044	N/S

ASSAYERS (ONTABIO) LIMITED

Per _

. van Engelen Mgr.



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No.	GEO-78/7425	Date: February 19, 1988
Received	61 Samples of	Drill Core
Submitted by	Geocanex Ltd. Santa Maria Resources Ltd.	
		c.c. Mr. B. A. Huston

Project: ZEEMEL

Sample No.	Au ppb	Sample No.	Au ppb	Sample No.	Au ppb
3061	<5	3081	15	3101	83
3062	21	3082	49	3102	73
3063	37	3083	52	3103	207
3064	35	3084	95	3104	87
3065	31	3085	191	3105	95
3066	79	3086	98	3106	87
3067	70	3087	123	3107	59
3068	59	3088	131	3108	161
3069	21	3089	105	3109	89
3070	11	3090	121	3110	113
3071	15	3091	75	3111	53
3072	31	3092	91	3112	61
3073	25	3093	183	3113	73
3074	21	3094	87	3114	83
3075	9	3095	95	3115	97
3076	35	3096	99	3116	85
3077	57	3097	75	3117	71
3078	41	3098	63	3118	87
3079	33	3099	55	311,9	51
3080	19	3100	97	3120	261
				/3/12/1	179

ASSAYERS (ONTARIO) LIMITED

Per

J_∳∕van Engelen

Mgr.



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

"CORRECTED COPY"

Certificate No.	GEO-78/7425		Date	Febru	uary 19, 1988
Received		61	Samples ofDrill	Core	
Submitted by _	Geocanex Limit	e d	Att'r	n: Mr.	H.J. Hodge
		sources Ltd.	c.(	. Mr.	G. Plaskett
PROJECT:	ZEEMEL LAKE		C. (	. Mr.	B.A. Huston
Sample	No. Au oz/ton	Sample No.	Au oz/ton	Sample	No. Au oz/ton
. 3061	<.001	3081	<.001	3101	.002
3062	.001	3082	.001	3102	.002
3063	.001	3083	.002	3103	.006
3064	.001	3084	.003	3104	.003
3065	.001	3085	.005	3105	.003
3066	.002	3086	.003	3106	.003
3067	.002	3087	.004	3107	.002
3068	.002	3088	.004	3108	.005
3069	.001	3089	.003	3109	.003
3070	<.001	3090	.004	3110	.003
3071	<.001	3091	.002	3111	.002
3072	.001	3092	.003	3112	.002
, 3073	.001	3093	.005	3113	.002
3074	.001	3094	.003	3114	.002
3075	<.001	3095	.003	3115	.003
3076	.001	3096	.003	3116	.002
3077	.002	3097	.002	3117	.002
3078	.001	3098	.002	3118	.003
3079	.001	3099	.001	3119	.002
3080	.001	3100	.003	3120	.008
				3121	.005

ASSAYERS (ONTARIO) LIMITED



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No	GEO-81/ 7451		Da	te: February	25, 1988
Received		60	Samples ofDri.	ll Core	
Submitted by	Geocanex Limite	ed	Att		
					laskett
"Santa Mar	ria Resources - 2	Zeemel Lake	Project"	.c. Mr. B.A.	Huston
Sample N	No. Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
3001	.004	3021	.004	3041	.004
3002	.001	3022	.002	3042	.003
3003	.006	3023	.001	3043	.006
3004	.002	3024	.003	3044	.005
3005	.001	3025	.002	3045	.010
3006	.004	3026	.004	3046	.003
3007	.002	3027	.003	3047	.005
3008	.002	3028	.002	3048	.004
3009	.004	3029	.001	3049	.005
3010	.002	3030	.002	3050	.003
3011	<.001	3031	<.001	3031	.004
3012	<.001	3032	<.001	3502	.006
3013	.002	3033	.004	3053	.003
3014	.004	3034	.005	3054	.003
3015	.007	3035	.004	3055	.004
3016	.001	3036	.003	3056	.004
3017	.002	3037	.006	3057	.003
3018	.003	3038	.009	3058	.004
3019	.002	3039	.004	3059	.004
3020	<.001	3040	.005	3060	.003

**ASSAYERS (ONTARIO) LIMITED** 

Per _____



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

ificate No. GEO-80/ 7	451	Date: _	February 25, 198
eived	44	Samples ofDrill C	Core
omitted byGeocanex_I	imited	Att'n:	Mr. H.J. Hodge
		c.c.	Mr. G. Plaskett
		c.c.	Mr. B.A. Huston
"Santa Maria Re	sources - Zeeme:	l Lake Project"	
Sample No.	Au oz/ton	Sample No.	Au oz/ton
3266	.003	3289	.003
3267	.002	3290	.002
3268	.001	3291	<.001
3269	.002	3292	.002
3270	.002	3293	.004
3271	.003	3294	<.001
3272	.002	3295	<.001
3273	.004	3296	<.001
3274	.003	3297	.001
3275	<.001	3298	.001
3276	.001	3299	<.001
3277	.001	3300	.001
3278	.004	3301	.002
3279	.002	3302	.006
3280	<.001	3303	.003
3281	.002	3304	.001
3282	.003	3305	.002
3283	.006	3306	.004
3284	.004	3307	.002
3285	.003	3308	<.001/
3286	.003	3309	.005-
3287	.003		
3288	.002	ASSAYERS (ON	TARIO) LIMITED

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING - ORE DRESSING - REPRESENTATION



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2  $\,\cdot\,\,$  TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No	GEO-83/01/ 745		Date	February 2	6, 1988
Received		128	Samples ofDrill	Core	
Submitted by	Geocanex Limit	ed	Att'n:		
			c.c.		
"Santa Ma	aria Resources -	Zeemel Lake			
Sample No	o. Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
3122	.002	3144	.002	3166	.002
3123	.001	3145	.002	3167	.004
3124	.005	3146	.001	3168	.005
3125	.002	3147	.003	3169	.002
3126	.003	3148	.004	3170	.003
3127	.004	3149	.002	3171	.003
3128	.001	3150	.002	3172	.001
3129	.002	3151	.002	3173	.003
3130	.002	3152	.004	3174	.002
3131	.002	3153	.002	3175	.002
3132	.003	3154	.003	3176	.001
3133	.002	3155	.004	3193	.002
3134	.003	3156	.004	3194	.003
3135	.002	3157	.003	3195	.003
3136	.006	3158	.004	3196	.002
3137	.004	3159	.003	3197	.004
3138	.002	3160	.003	3198	.002
3139	<.001	3161	.002	3199	.003
3140	.001	3162	.003	3200	.003
3141	<.001	3163	.002	3 <b>2 0</b> ₎ 1	.002
3142	.001	3164	.002	32,62	.003
3143	.002	3165	.002	3203	.002
			ASSAYERS (O	NTÁRIO) LIMITED	ı



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

#### **Certificate of Analysis**

Certificate No.	GE0-79/7451			Date:F	ebruary 26, 1988
Received		56	Samples of	Drill C	ore
Submitted by _	Geocanex Limite	d		Att'n:	Mr. H.J. Hodge
	Santa Maria Res	ources		C.C.	Mr. G. Plaskett
PROJECT:	Zeemel Lake			C.C.	Mr. B.A. Huston
	Sample No.	Au ppb			
	3177	73			
	3178	113			
	3179	115			
	3180	93			
	3181	85			
	3182	81			
	3183	195			
	3184	81			
	3185	97			
	3186	67			
	3187	43			
	3188	59			
	3189	67			
	3190	57			
	3191	73			
	3192	80			

#### ASSAYERS (ONTARIO) LIMITED

_	
Per	



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No. GEO-79/ 7451		Date: _	February 26,	1988
Received	56	Samples of Drill C	Core	
Submitted byGeocanex Limit	ed	Att'n: c.c.	Mr. H.J. Hodo Mr. G. Plaske	tt
"Santa Maria Resources -	Zeemel Lake	Project" c.c.	Mr. B.A. Hust	on
Sample No. Au oz/ton	Sample No	. Au oz/ton	Sample No.	Au oz/ton
3177 .002	3570	.001	3590	.001
3178 .003	3571	<.001	3591	<.001
3179 .003	3572	<.001	3592	.001
3180 .002	3573	.001	3593	.001
3181 .002	3574	.001	3594	.002
3182 .002	3575	.002	3595	.001
3183 .007	3576	<.001	3596	<.001
3184 .002	3577	.001	3597	<.001
3185 .003	3578	.001	3598	.001
3186 .002	3579	<.001	3599	<.001
3187 .001	3580	.002	3600	.001
3188 .002	3581	.001	3601	.001
3189 .002	3582	<.001	3602	.001
3190 .002	3583	.003	3603	<.001
3191 .002	3584	.001	3604	<.001
3192 .002	3585	.002	3605	<.001
3566 .001	3586	.003		
3567 .002	3587	.002		
3568 .001	3588	.002		
3569 .002	3589	.002	/	

ASSAYERS (ONTARIO) LIMITED

Per .	<del></del>	<u></u>
-------	-------------	---------



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate NoG	EO-83/02/ 745	57		Date: _	Febi	ruary	26, 1988	
Received		128	Samples of	Drill C	ore			
Submitted byGe	ocanex Limite	ed		Att'n:		H.J.		
				c.c.	Mr.		askett Huston	
"Santa Maria	Resources -	Zeemel Lake	Project"		141.	D.A.	nuscon	
Sample No.	Au oz/ton	Sample No.	Au oz/	ton Sa	mple	No.	Au oz/tor	1
3204	.001	3226	.003		3248		.002	
3205	<.001	3227	.002		3249		.003	
3206	.001	3228	.004		3250		.001	
3207	.002	3229	.001		3251		.002	
3208	.002	3230	.001		3252		.004	
3209	.002	3231	.002		3253		.009	
3210	.002	3232	.017		3254		.009	
3211	.002	3233	.004		3255		.002	
3212	.003	3234	.004		3256		.003	
3213	.003	3235	.002		3257		.003	
3214	.002	3236	<.001		3258		.001	
3215	.004	3237	.002		3259		.001	
3216	.003	3238	.003		3260		.002	
3217	.001	3239	.003		3261		.003	
3218	.003	3240	.004		3262		.007	
3219	.001	3241	.003		3263		.004	
3220	.002	3242	.004		3264		.004	
3221	.002	3243	.003		3265		.002	
3222	.003	3244	.004				· }	
3223	.003	3245	.002			v	,	
3224	.003	3246	.001					
3225	.006	3247	<.001		.,	1		

**ASSAYERS (ONTARIO) LIMITED** 

	Sec. 16.	
Per		7



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No	GEO-82/7457		Date: February 26, 1988
Received	65	Samples of	Drill Core
Submitted by	Geocanex Limited		Att'n: Mr. H.J. Hodge
			c.c. Mr. G. Plaskett

"Santa Maria Resources-Zeemel Lake Project"

Sample No.	Au oz/ton	Sample No.	Au oz/ton	Sample No.	Au oz/ton
3501	.003	3523	.001	3545	.002
3502	.004	3524	.002	3546	.002
3503	.003	3525	.003	3547	.004
3504	.001	3526	.003	3548	.003
3505	.002	3527	.004	3549	.003
3506	.003	3528	.004	3550	.001
3507	.002	3529	.007	3551	<.001
3508	.002	3530	.005	3552	.003
3509	.003	3531	.003	3553	.003
3510	.003	3532	.007	3554	.002
3511	.003	3533	.004	3555	<.001
3512	.004	3534	.002	3556	.004
3513	.003	3535	.003	3557	<.001
3514	.002	3536	.001	3558	.002
3515	.001	3537	.003	3559	<.001
3516	.003	3538	.002	3560	.001
3517	.004	3539	.003	3561	.001
3518	.003	3540	.002	3562	.002
3519	.002	3541	.003	3563	.001
3520	.003	3542	.002	3564	.003
3521	.003	3543	.003	3565	.002
3522	.001	3544	.005	· · ·	

**ASSAYERS (ONTARIO) LIMITED** 



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

	Certificate No.	GEO-84	/7457			D	ate: Fe	bruary	26, 19	88
	Received			51	Samples of	Dril	l Core			
	Submitted by	Geocanex	Ltd.			Att'ı		н.ј. н		
		Santa Ma	ria Resource	es Ltd.		C.(				
		Zeemel L	ake Project			C.(	c. Mr.	B.A. H	uston	
	Sample	e No. A	u oz/ton	Sample	No.	Au oz,	/ton	Sample	No.	Au oz/tor
	360	6	.001	3626		.001		3646		.002
	360	7	.001	3627		.001		3647		.003
	360	8	.001	3628		.001		3648		.003
	360	9 <	.001	3639		.001		3649		.003
	361	0	.002	3630		.001		3650		.002
	361	1	.001	3631		.001		3651		.003
	361	2	.002	3632		.001		3652		.002
ı	361	3	.003	3633		.001		3653		.001
	361	4	.001	3634		.001		3654		.003
	361	5	.001	3635		.002		3655		.004
	361	6	.006	3636		.001		3656		.003
	361	7	.002	3637		.001				
•	361	8	.003	3638		.004			i e de que se se super por la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la	A management
ì	361	9	.002	3639		.004		•	1939	
	362	:0	.001	3640		.003				ا این زیردندر مهمیاه سده ایاف ا
	362	<b>.</b> 1	.006	3641		.002	,		P. School on the China	TOTAL CARDON
	362	22	.001	3632		.002	;	,	Disaper agreement to	n The surface and a second
	362	23	.003	3643		.004		Commence of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	and the rates that you give.	
Ì	362	2.4	.003	3644		.001		- 10.50 magazi	teres de la constantina de la prim	Contractional SQU City Blance
•	362	25	.002	3645		.002		Destroy	dradda fra bildwa ab.	
							Ļ	and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	n kanasan magan saan ii yaya Marada yak uu iya ii ji aa ji	or of the sales and sales and sales
								·		
					4	ASSAYERS	S (ONTARIO	) LIMITED		
							. ,	. , — · · · · · · · · · · · · · · · · · ·		

Per ______



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate	No. <u>GEO-84/7457</u>			Date: Feb.	ruary 26, 1988
Received_		50	Samples ofD	rill core	
<b>6</b> h	by <u>Geocanex Limit</u>	ha-	Δ	tt'n: Mr.	H.J. Hodge
Submitted	by Geocaties Himit			c.c. Mr.	G. Plaskett
"Santa	Maria Resources -	Zeemel Lake	Project"	c.c. Mr.	B.A. Huston
Sample	No. Au oz/ton	Sample No.	Au oz/tor	sample	No. Au oz/ton
3606	.001	3626	.001	3647	.003
3607	.001	3627	.001	3648	.003
3608	.001	3628	.001	3649	.003
3609	<.001	3629	.001	3650	.002
3610	.002	3630	.001	3651	.003
3611	.001	3631	.001	3652	.002
3612	.002	3632	.001	3653	.001
3613	.003	3633	.001	3654	.003
3614	.001	3634	.001	3655	.004
3615	.001	3635	.002	3656	.003
3616	.006	3636	.001		
3617	.002	3637	.001		
3618	.003	3638	.004		
3619	.002	3639	.004		
3620	.001	3540	.003		
3621	.006	3641	.002		
3622	.001	3642	.002		
3623	.003	3643	.004		
3624	.003	3644	.001	***	``\
3625	.002	3645	.002		
		3646	.002		

**ASSAYERS (ONTARIO) LIMITED** 

Per	* •		(	
rei		 		



3329

.003

#### **ASSAYERS (ONTARIO) LIMITED**

33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

## **Certificate of Analysis**

Certificate No	GEO-85/01/7480		1	Date:March	4, 1988
Received		84	Samples ofDri	ll Core	
Submitted by	Geocanex Limit	e d	Att	c.c. Mr. G.	
PROJECT: Sa	anta Maria Reso	urces - Zee	mel Lake	e.e. Mr. B	A. Huston
Sample	No. Au oz/ton	Sample	No. Au oz/to	on Sample	No. Au oz/ton
3310	.001	3330	.001	3350	.001
3311	.001	3331	.002	3351	<.001
3312	.001	3332	.001	3352	.001
3313	.001	3333	.001	3353	.002
3314	.003	3334	.001	3354	<.001
3315	.003	3335	<.001	3355	<.001
3316	.002	3336	.002	3356	<.001
3317	.006	3337	.002	3357	.001
3318	.003	3338	.002	3358	.002
3319	.003	3339	.001	3359	<b>√</b> 001
3320	.001	3340	<.001	3360	.002
3321	.002	3341	.001	3361	.001
3322	.001	3342	.001	3362	.001
3323	.001	3343	.001	3363	<.001
3324	.002	3344	<.001	3364	.001
3325	.003	3345	.001	3365	.002
3326	.002	3346	.002	3366	.002
3327	.003	3347	.001	3367	.001
3328	.001	3348	.002	3368	<.001

#### **ASSAYERS (ONTARIO) LIMITED**

3369

.002

Per	
Per	

J. van Engelen Mgr.

.002

3349



33 CHAUNCEY AVENUE TORONTO, ONTARIO M8Z 2Z2 · TELEPHONE (416) 239-3527

# **Certificate of Analysis**

Certificate No.	GE0-85/02/7480			Date: _	March 4, 1	988
Received		84	Samples of	orill	Core	
Submitted by _	Geocanex Limited		•	Att'n:		Hodge askett
				C.C.	Mr. B.A.	Huston
PROJECT:	Santa Maria Resou	rces - Ze	emel Lake			
	Sample No.	Au oz/to	on Sample	e No.	Au oz/ton	
	3370	.001	339	D	<.001	
	3371	<.001	339	1	.002	
	3372	.002	339	2	.002	
	3373	.001	339	3	.002	
	3374	.002				
	3375	.002				
	3376	.001				
	3377	<.001				
	3378	.001				
	3379	.001				
	3380	.002				
	3381	.001				
	3382	.002				
	3383	.002				
	3384	.002				
	3385	.002				
	3386	.001				
	3387	.002				
	3388	<.001				
	3389	<.001				

ANALYTICAL CHEMISTS - ASSAYING - CONSULTING - ORE DRESSING - REPRESENTATION

**ASSAYERS (ONTARIO) LIMITED** 





APPENDIX A
CERTIFICATES OF QUALIFICATION

#### CERTIFICATE OF QUALIFICATION

#### THIS IS TO CERTIFY THAT:

I have been a resident of Kingston, Ontario since 1982.

I have worked as an exploration geologist in the Pickle Lake area since 1986.

I am a 1986 graduate of Queen's University with a B.Sc. (Eng.) degree in Geological Engineering (Mineral Resources and Exploration).

I supervised the recent exploration program on the Zeemel Lake property from September 3, 1987 to February 9, 1988.

The statements contained in this report are based upon field observations and a study of pertinent assessment work records of the Ontario Geological Survey, and geological reports and maps published by the Ontario Ministry of Natural Resources.

In this report, I have disclosed all relevant material, descriptive and interpretative, which is, to the best of my knowledge, necessary to gain a complete understanding of the viability of the project and the recommendations.

DATED THIS 26 DAY OF Many 1988

Brian A. Huston, B.Sc. (Eng.) Geologist

( Thunk

· Ministry of Natural -Resources

Report of Work DOCUMENT No. W8303.210

Instructions - Supply required data on a separate form for each type of work to be recorded (see table below).

For Geo-technical work use form no. 1362 "Report of Work (Geological, Geophysical, Geochemical and Expenditures)".

The Mining Act

Sesz. Libraty
Postal Address of Recorded Holder

SANTA MARIA RESOURCES LIMITED

Prospector's Licence No. T-614

- 85 Richmond Street West, Toronto, Ontario M5H 2C9 (416-366-3947)

Summary of Work Performance and Distribution of Credits

Total Work Days Cr. claimed	<u> </u>	Aining Claim	Work	N	lining Claim	Work	N	Aining Claim	Work
15, <del>325</del> days	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.
for Performance of the following work, (Check one only)	Pa	861413	140	Pa	861421	140	Pa	861429	140
Manual Work		861414	140		861422	140		861430	140
Shaft Sinking Drifting or		861415	140		861423	140		861431	140
other Lateral Work.  Compressed Air, other		861416	140		861424	140		861432	140
Power driven or mechanical equip.		861417	140		861425	140		861501	140
Power Stripping		861418	140		861426	140		861502	140
Diamond or other Core drilling	34	861419	140		861427	140		861503	140
Land Survey		861420	140		861428	140		861504	140

All the work was performed on Mining Claim(s): see attached

(Zeemel Lake sheet)

Required Information eg: type of equipment, Names, Addresses, etc. (See Table Below)

G 2278

Midwest Drilling, 180 Cree Crescent, Winnipeg, Manitoba R3J 3Wl

Drilling performed between September 3, 1987 and February 9, 1988

Please see "Summary" of attached report 15,825 performed 211 not allowable - no core taken re 88-3- overburden drilling

15,051 using this report 8,751 in reserve for future use

ONTARIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE.

> SEP 6 1988

RECEIVED

JUN 28 1988 🗠

PATRICIA MINING DIVISION

Date of Report

June 20,1988

Certification Verifying Report of Work

I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

Name and Postal Address of Person Certifying

G. G. Plaskett, Suite 808 85 Richmond Street West Toronto

June 20, 1988

M5H 2C9

Table of Information/Attachments Required by the Mining Recorder

Table of Thiorniation/Atta	criments nequired by the winning necorder		
Type of Work	Specific information per type	Other information (Common to 2 or more types)	Attachments
Manual Work			
Shaft Sinking, Drifting or other Lateral Work  Compressed air, other power driven or mechanical equip.		Names and addresses of men who performed manual work/operated equipment, together with dates and hours of employment.	Work Sketch: these are required to show the location and extent of work in relation to the
		With dates and floars of simpleymont.	
Power Stripping	Type of equipment and amount expended, Note: Proof of actual cost must be submitted within 30 days of recording.	Names and addresses of owner or operator together with dates when drilling/stripping	nearest claim post.
Diamond or other core drilling	Signed core log showing; footage, diameter of core, number and angles of holes.	done.	Work Sketch (as above) in duplicate
Land Survey	Name and address of Ontario land surveyer.	Nil	Nil



Report of Work

Instructions - Supply required data on a separate form for each type of work to be recorded (see table below).

For Geo-technical work use form no. 1362 "Report of Work (Geological, Geophysical, Geochemical and Expenditures)".

#### The Mining Act

Postal Address of Recorded Holder Name Prospector's Licence No. SANTA MARIA RESOURCES LIMITED T-614

Summary of Work Performance and Distribution of Credits

Total Work Days Cr. claimed	^	Mining Claim	Work	N	lining Claim	Work	٨.	lining Claim	Work
	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.	Prefix	Number	Days Cr.
for Performance of the following work. (Check one only)	Pa	861505	140	Pa	861513	140_	Pa	861521	140
Manual Work		861506	140		861514	140		861522	140
Shaft Sinking Drifting or		861507	140		861515	140		861523	140
other Lateral Work.  Compressed Air, other		861508	140		861516	140		861524	140
Power driven or mechanical equip.		861509	140		861517	140		861525	140
Power Stripping		861510	140		861518	140			
Diamond or other Core drilling		861511	140		861519	140	<i>b</i> , <i>n</i> ,		
Land Survey		861512	140		861520	140_			

Required Information eg: type of equipment, Names, Addresses, etc. (See Table Below)



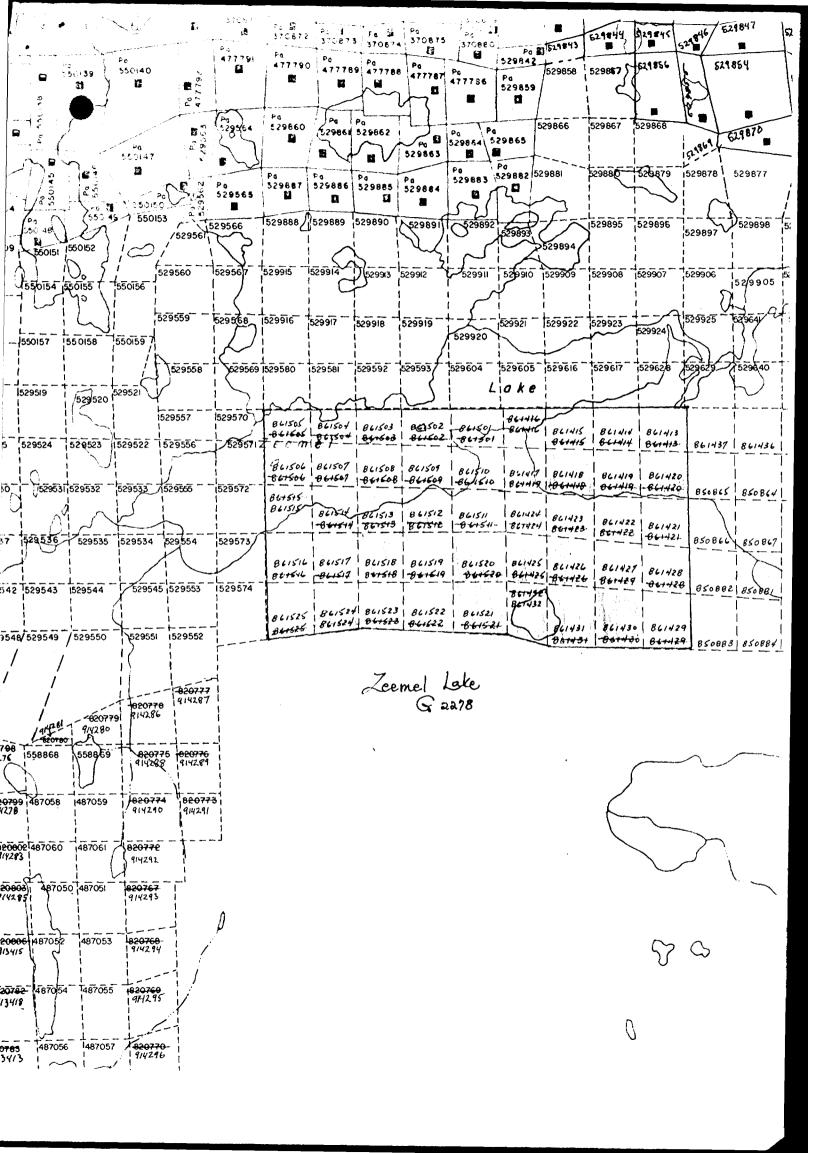
Date of Report Recorded Holder or Agent (Signature)

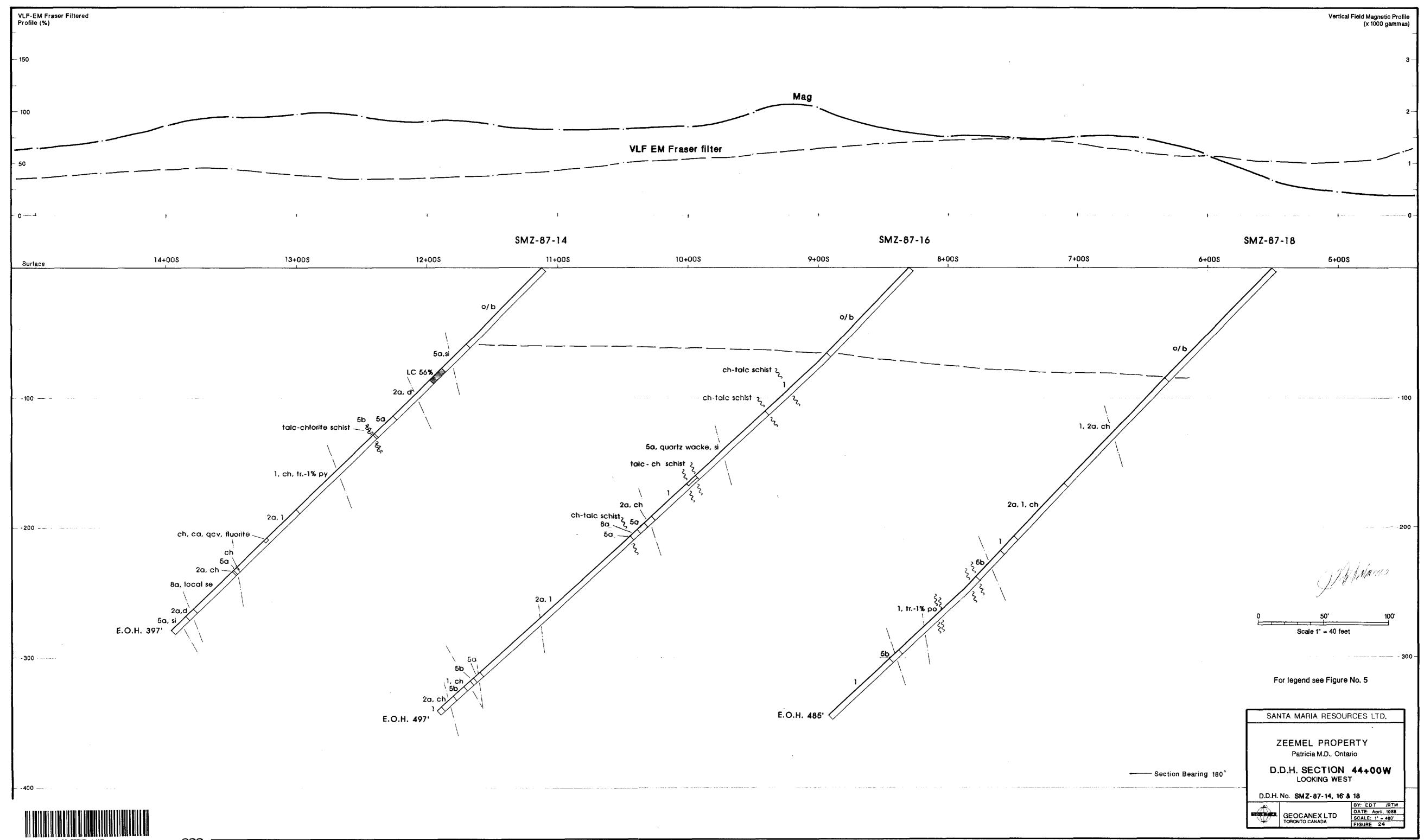
Certification Verifying Report of Work

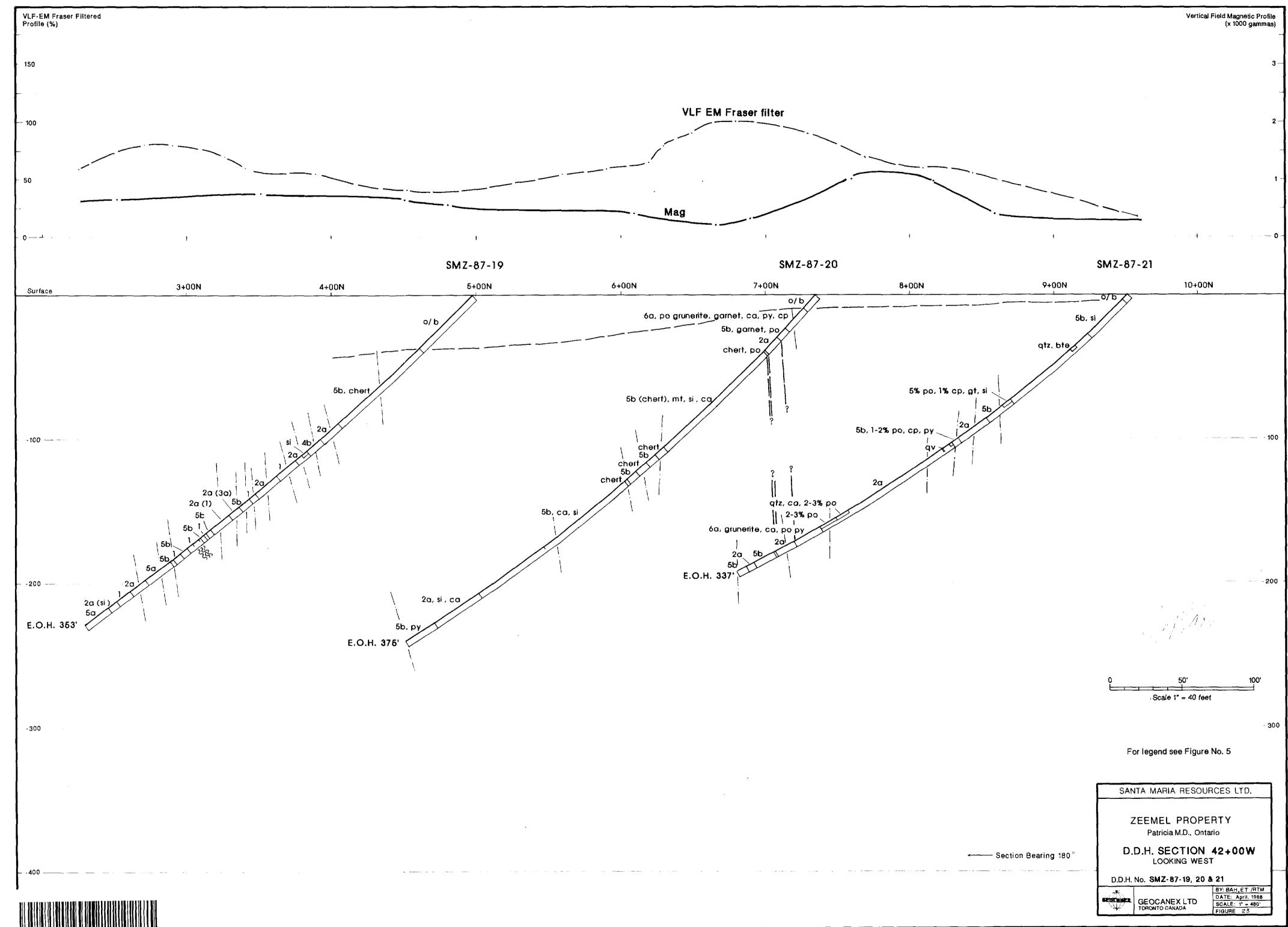
I hereby certify that I have a personal and intimate knowledge of the facts set forth in the Report of Work annexed hereto, having performed the work or witnessed same during and/or after its completion and the annexed report is true.

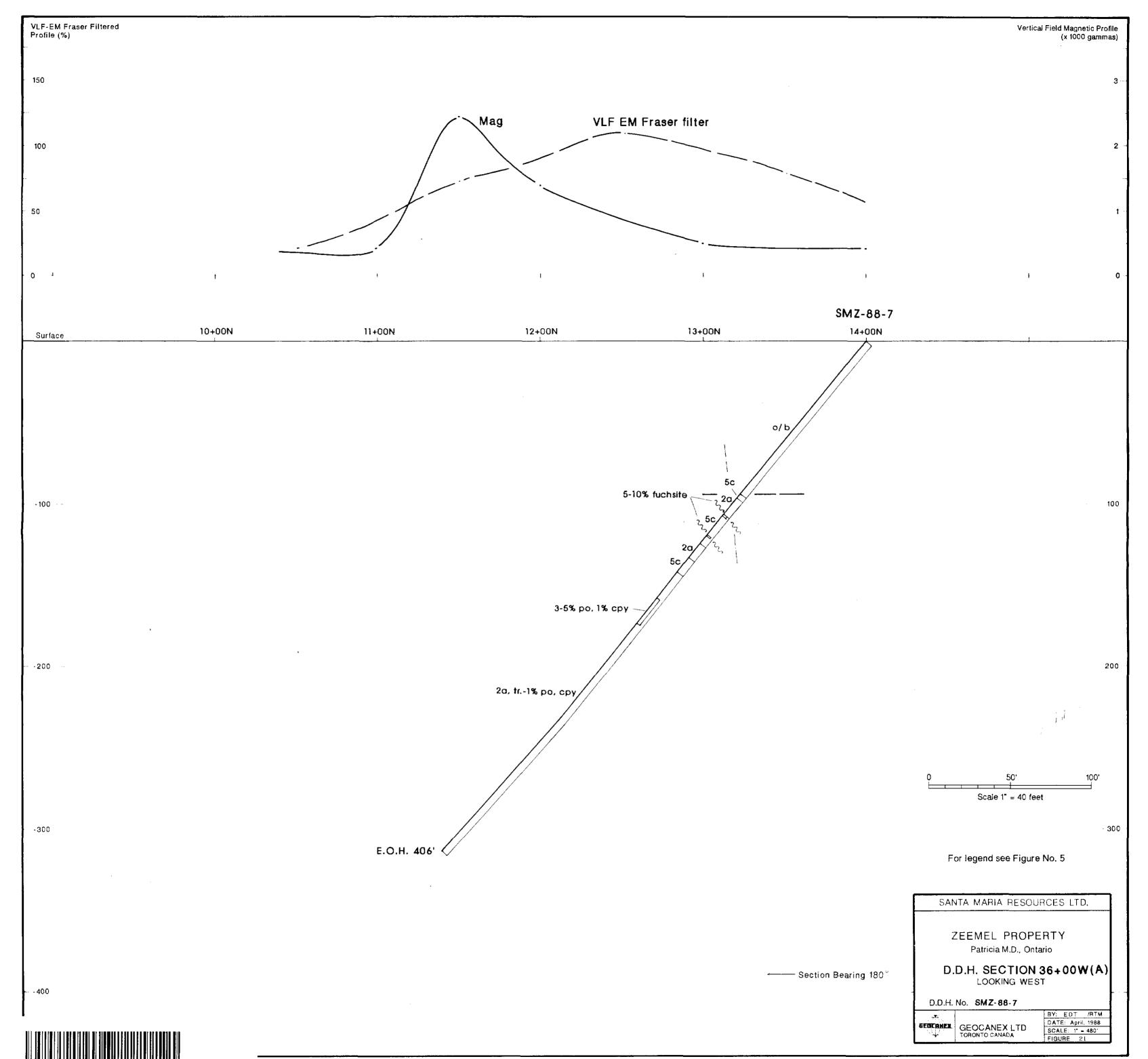
Name and Postal Address of Person Certifying

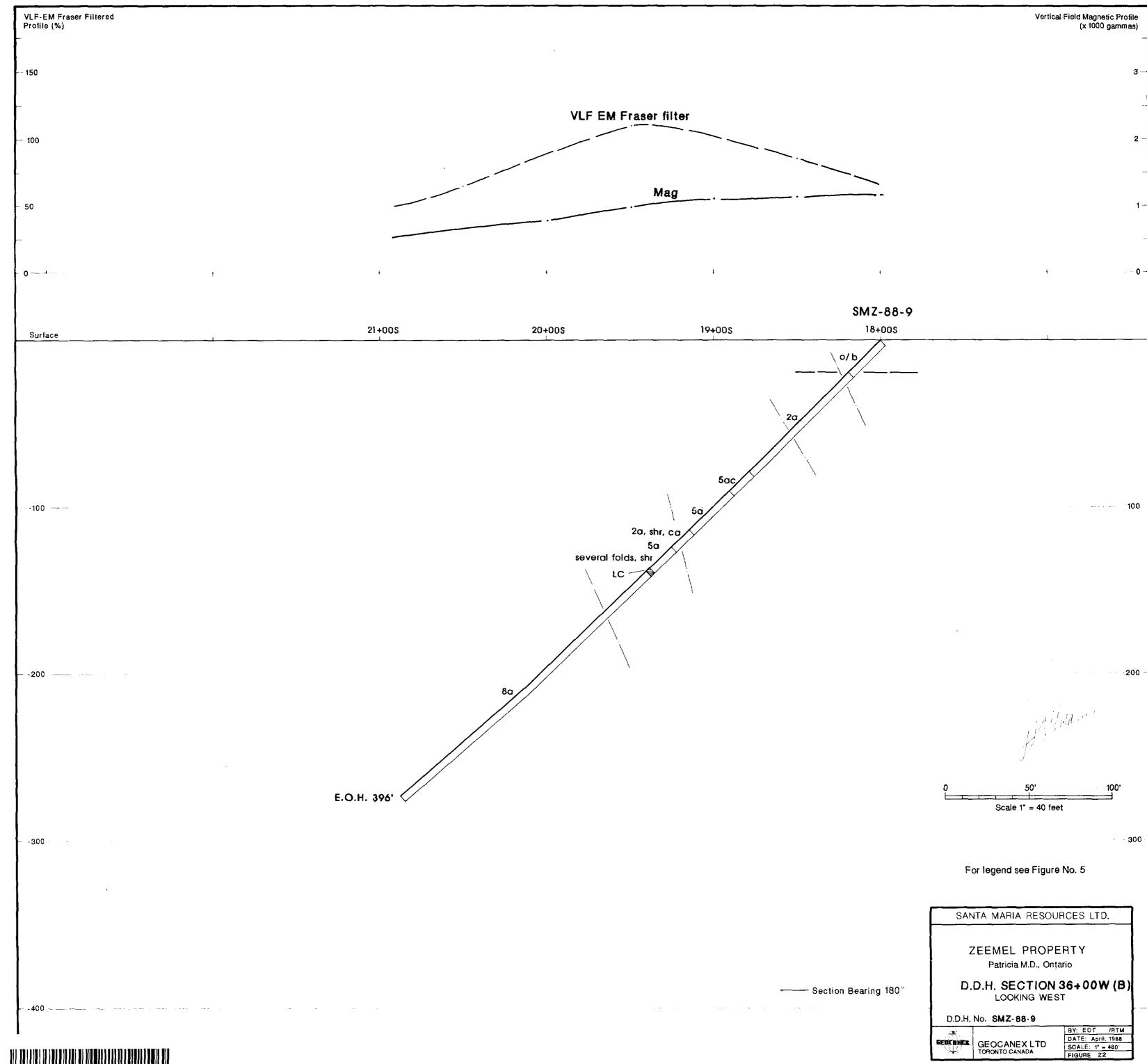
Date Certified Certified by (Signature)

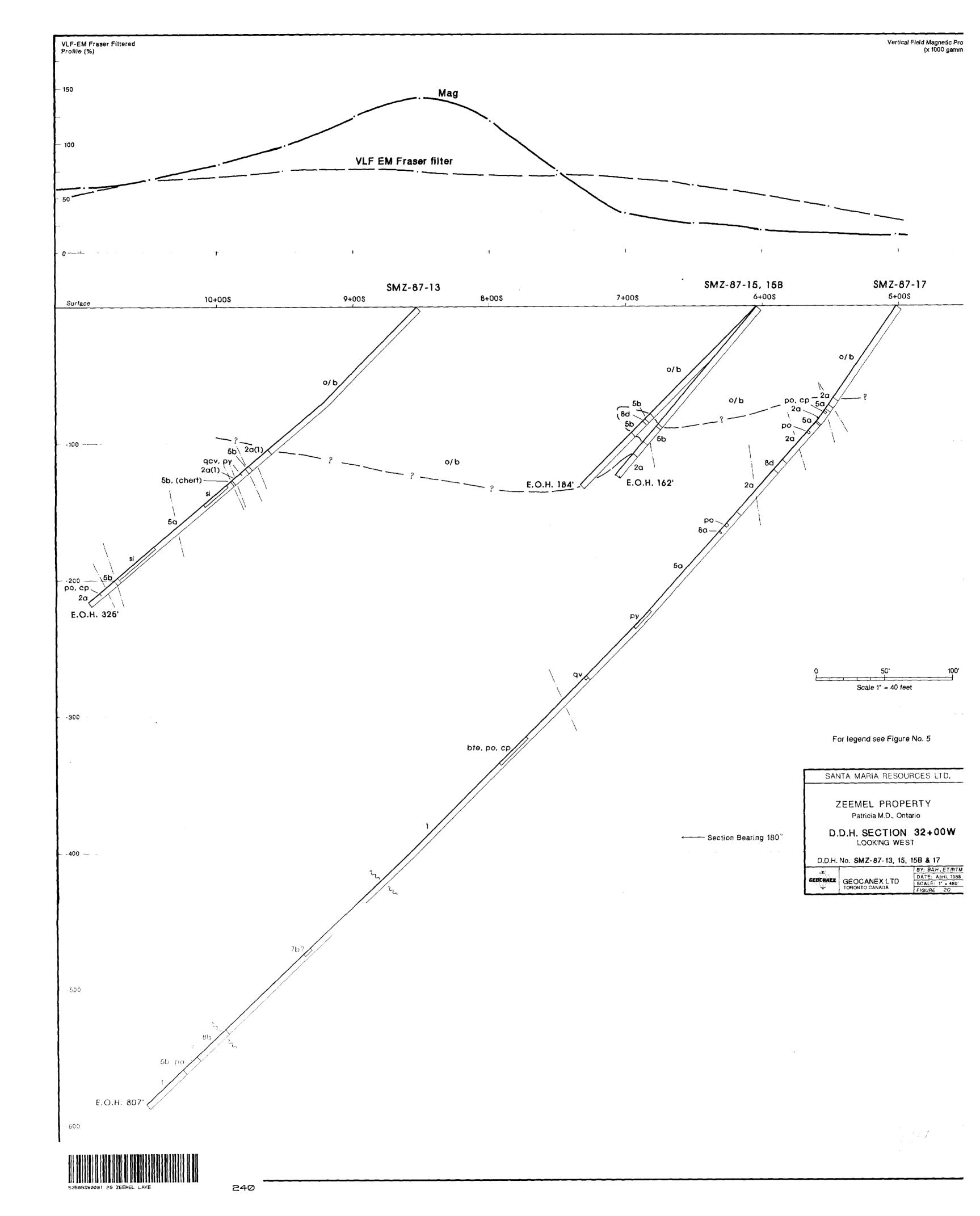

Table of Information/Attachments Required by the Mining Recorder

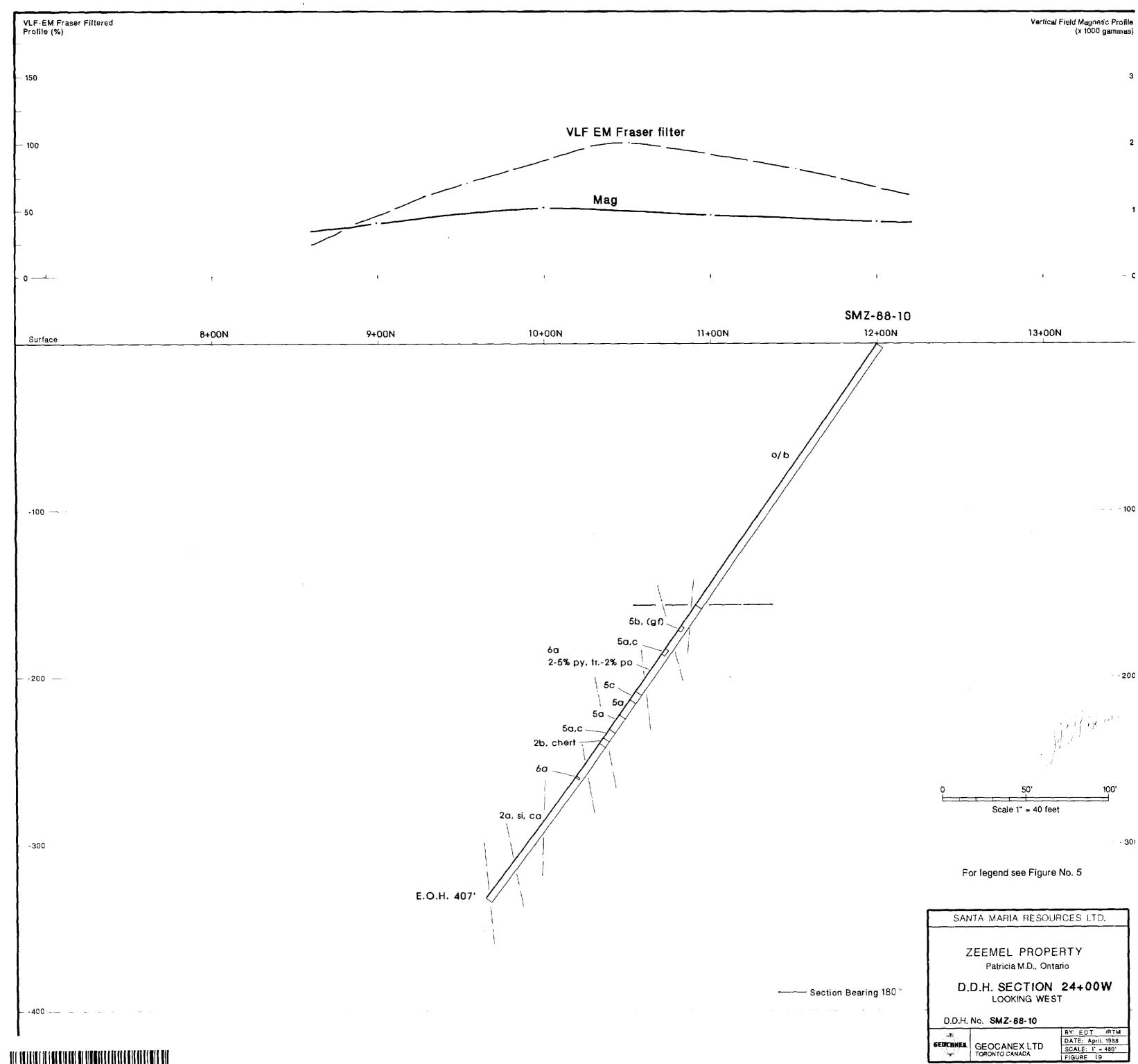

Type of Work	Specific information per type	Other Information (Common to 2 or more types)	Attachments	
Manual Work				
Shaft Sinking, Drifting or other Lateral Work	Nil	Names and addresses of men who performed manual work/operated equipment, together with dates and hours of employment.	Work Sketch: these are required to show the location and	
Compressed air, other power driven or mechanical equip.	Type of equipment	With dates and nears of employment.	extent of work in relation to the nearest claim post.	
Type of equipment and amount expended Note: Proof of actual cost must be submit within 30 days of recording.		Names and addresses of owner or operator together with dates when drilling/stripping	mearest ciami post.	
Diamond or other core drilling	Signed core log showing; footage, diameter of core, number and angles of holes.	done.	Work Sketch (as above) in duplicate	
Land Survey	Name and address of Ontario land surveyer.	NII	Nil	

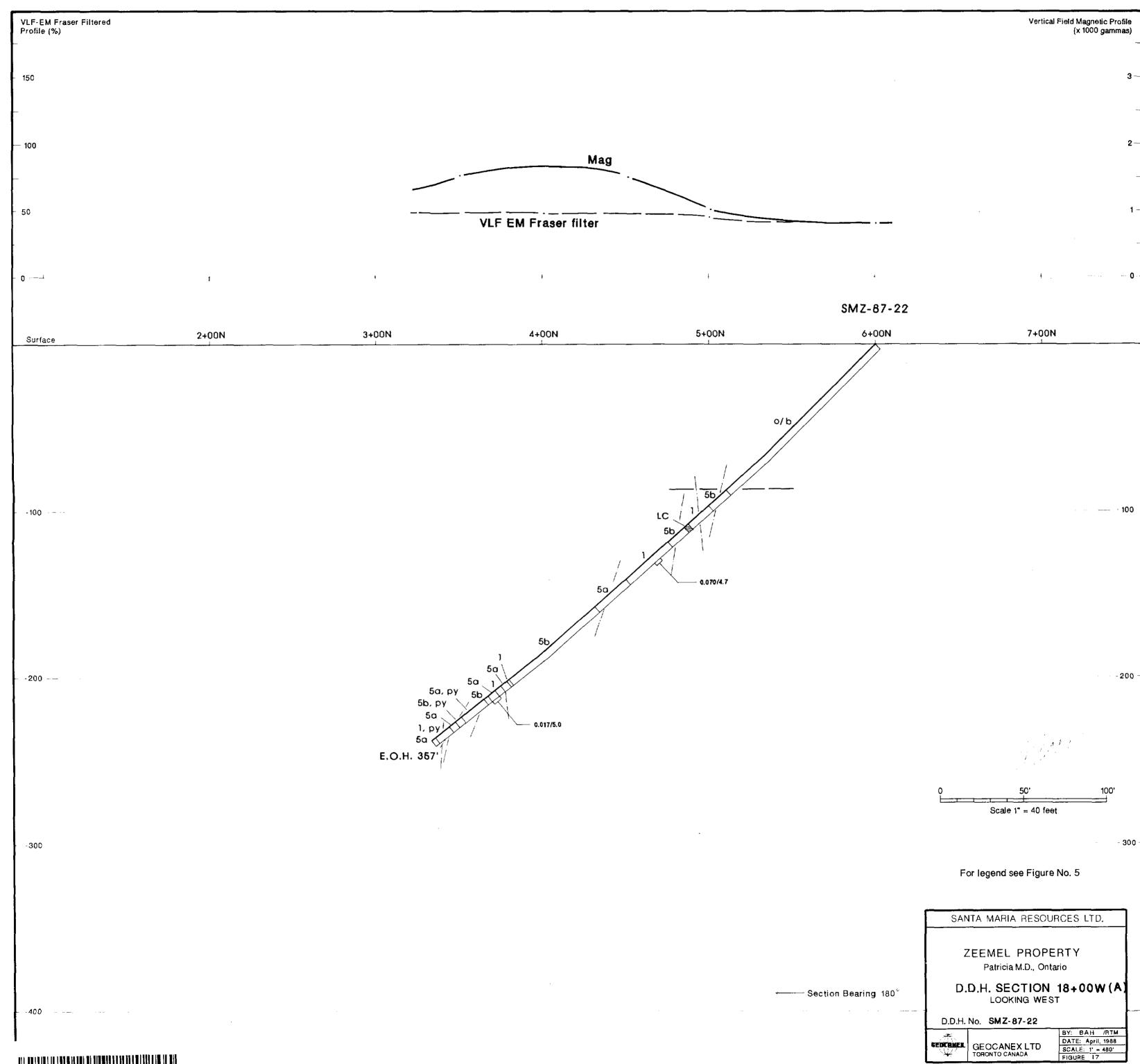

#### Attachment 1

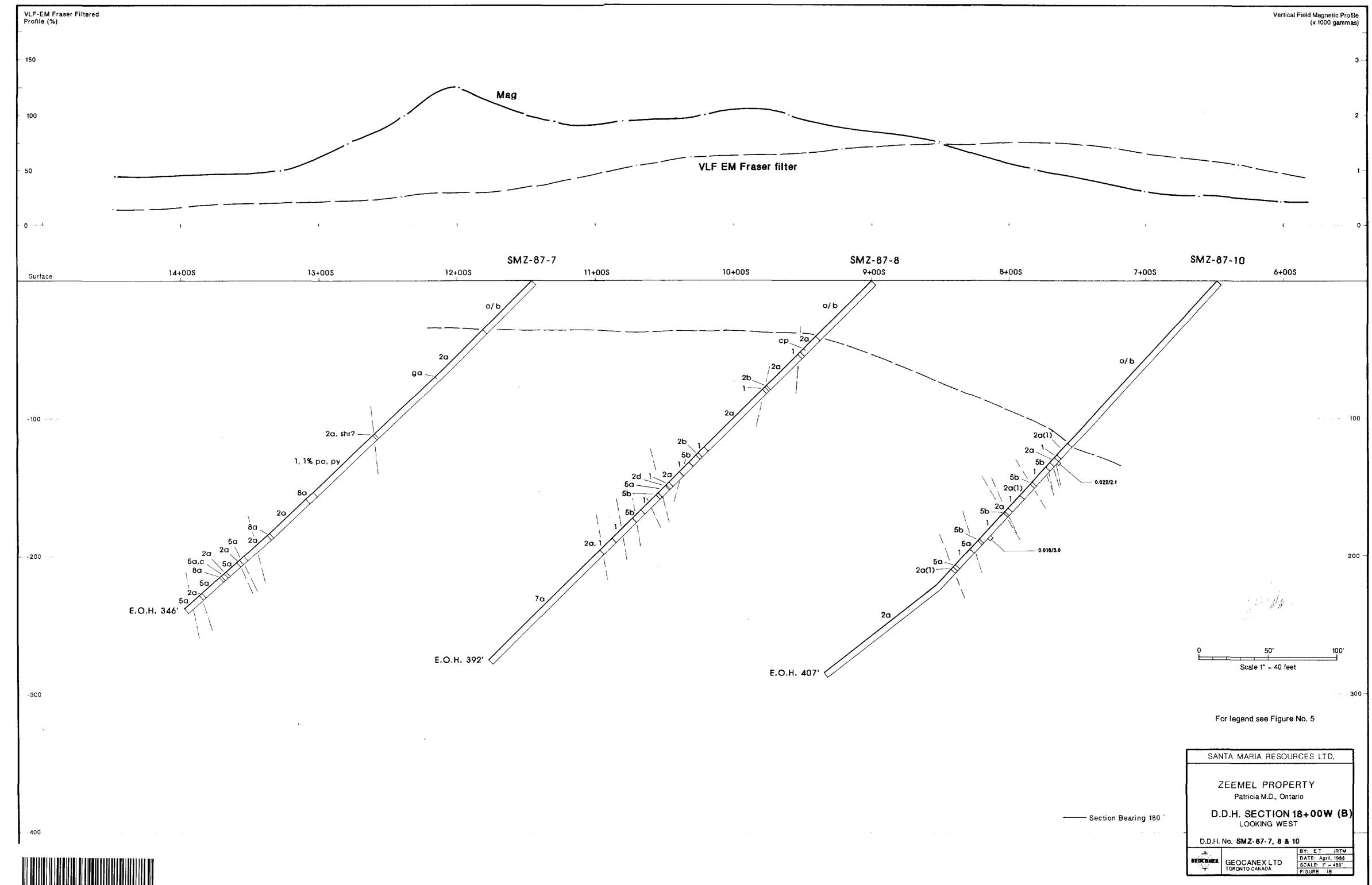

All drilling was performed on mining claims: 861418, 861419, 861420, 861425, 861426, 861430, 861431, 861432, 861512, 861513, 861514, 861517, 861518, 861520, 861521, 86/524

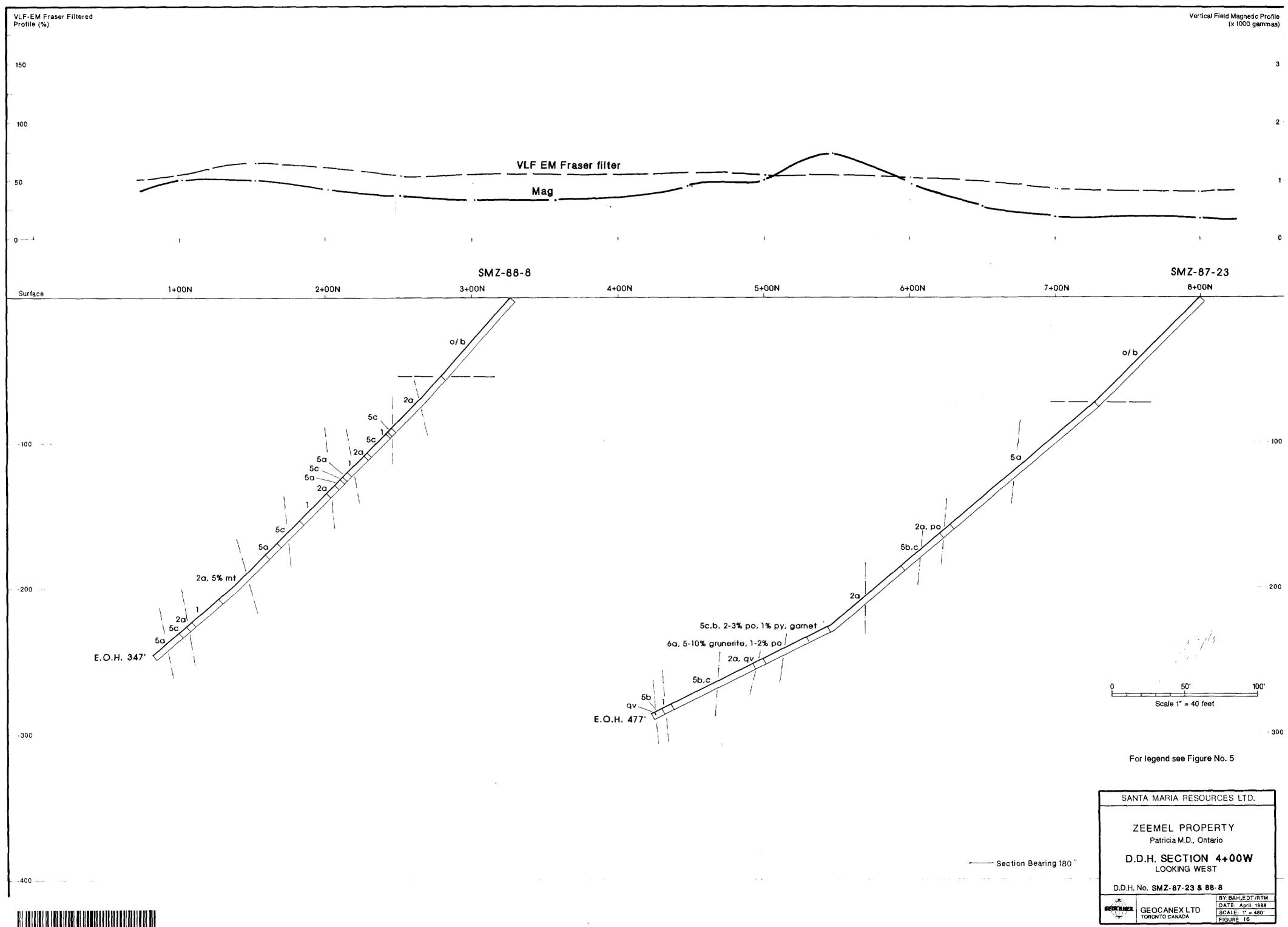


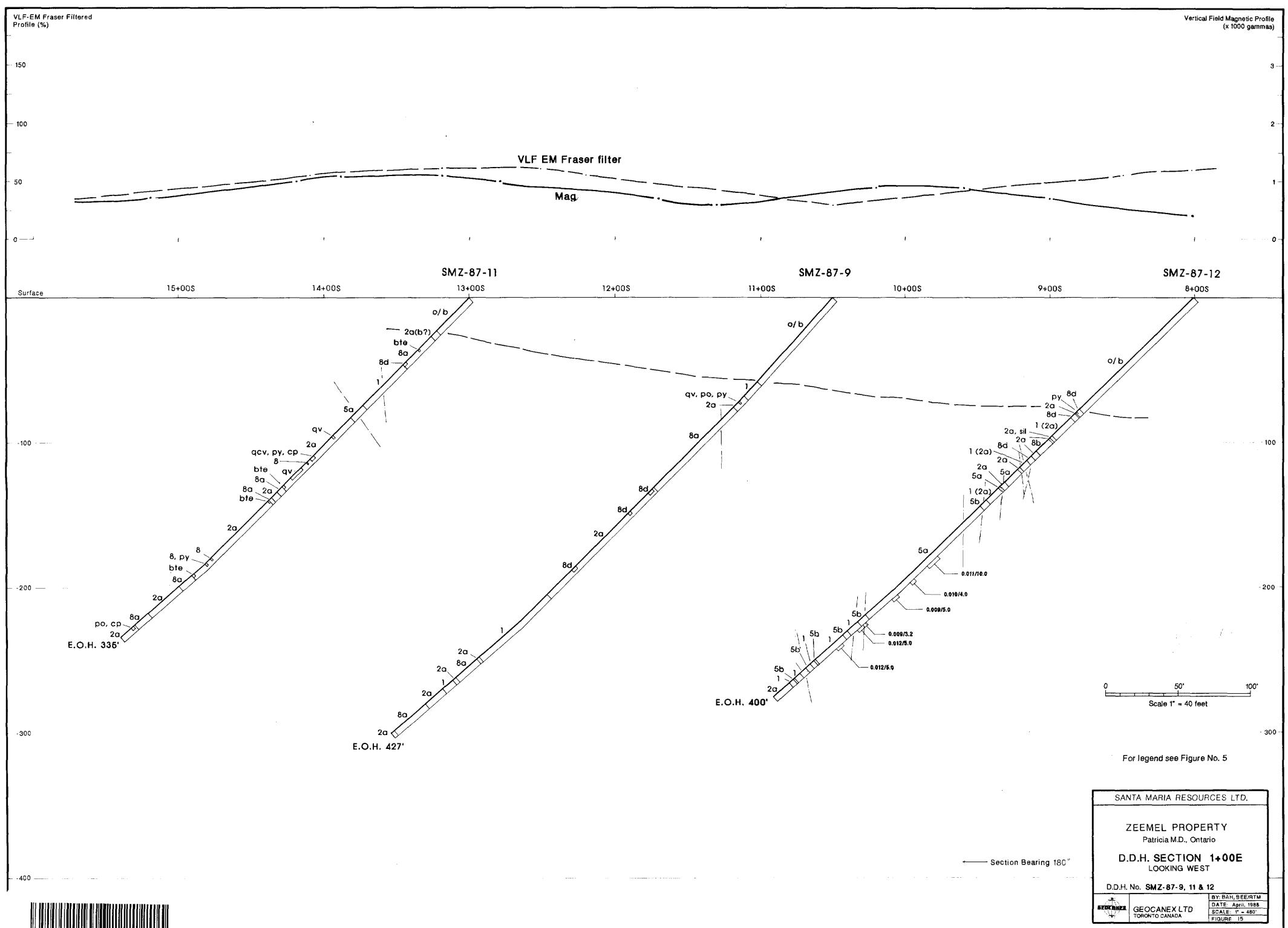



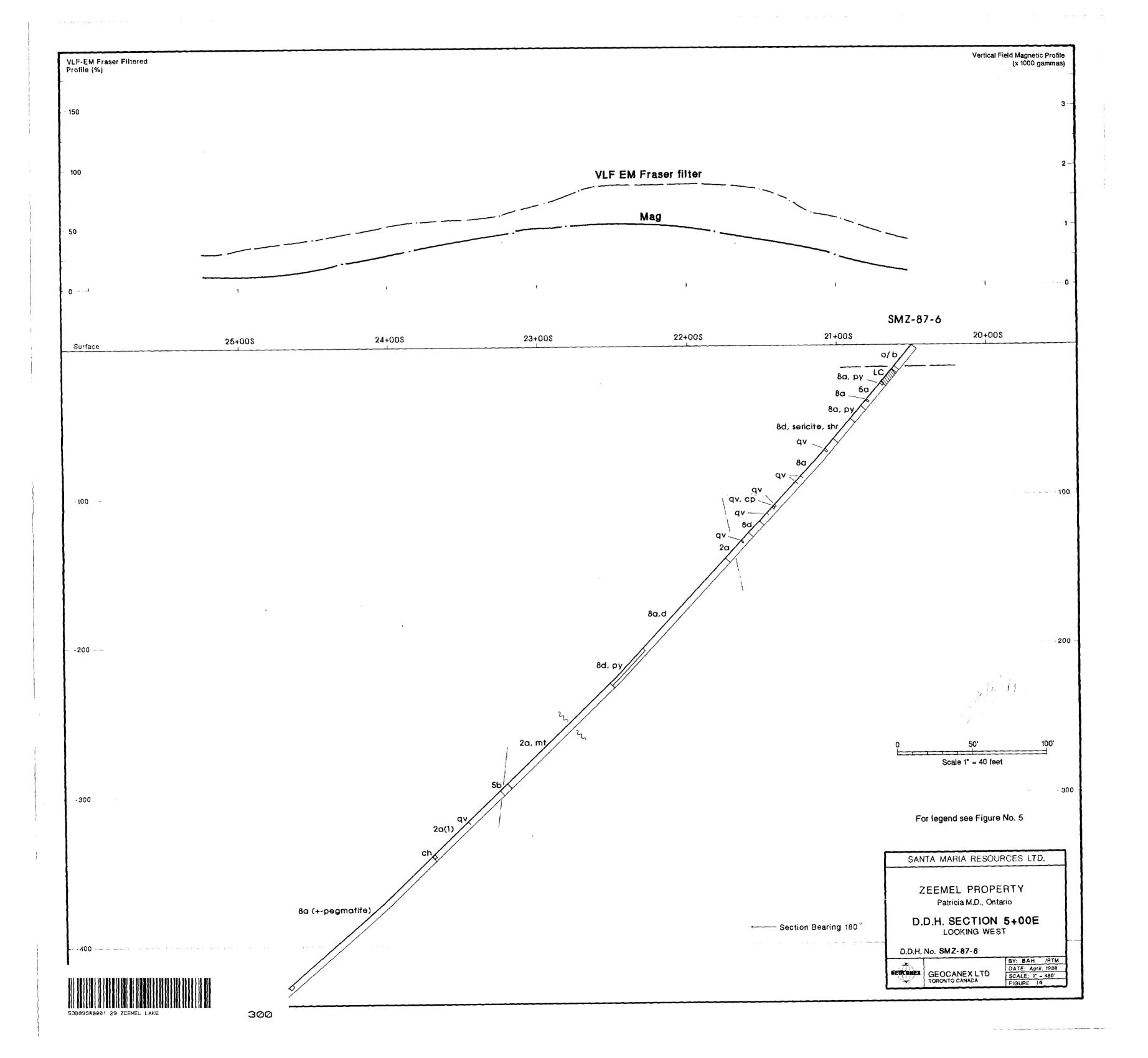



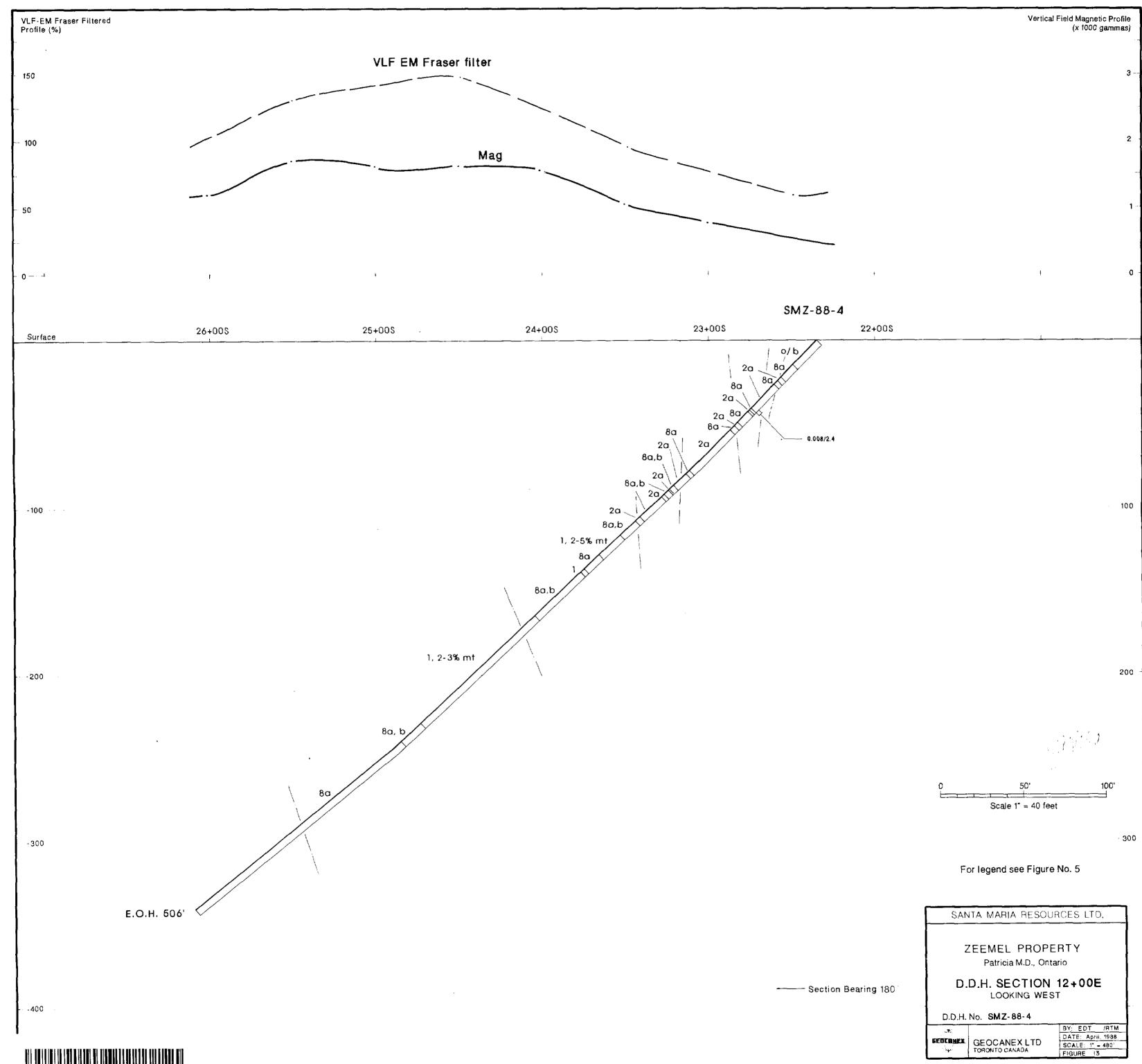



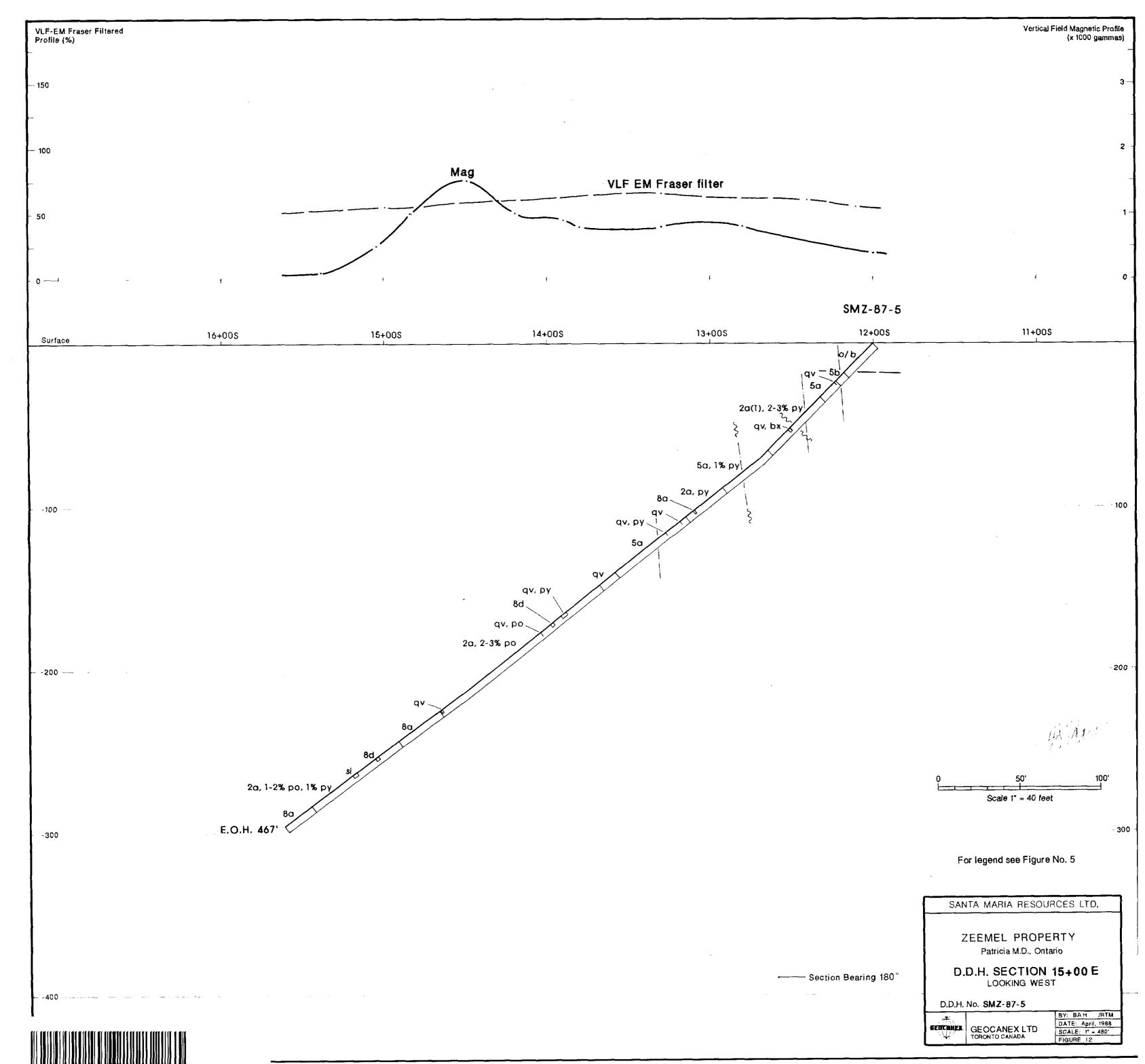



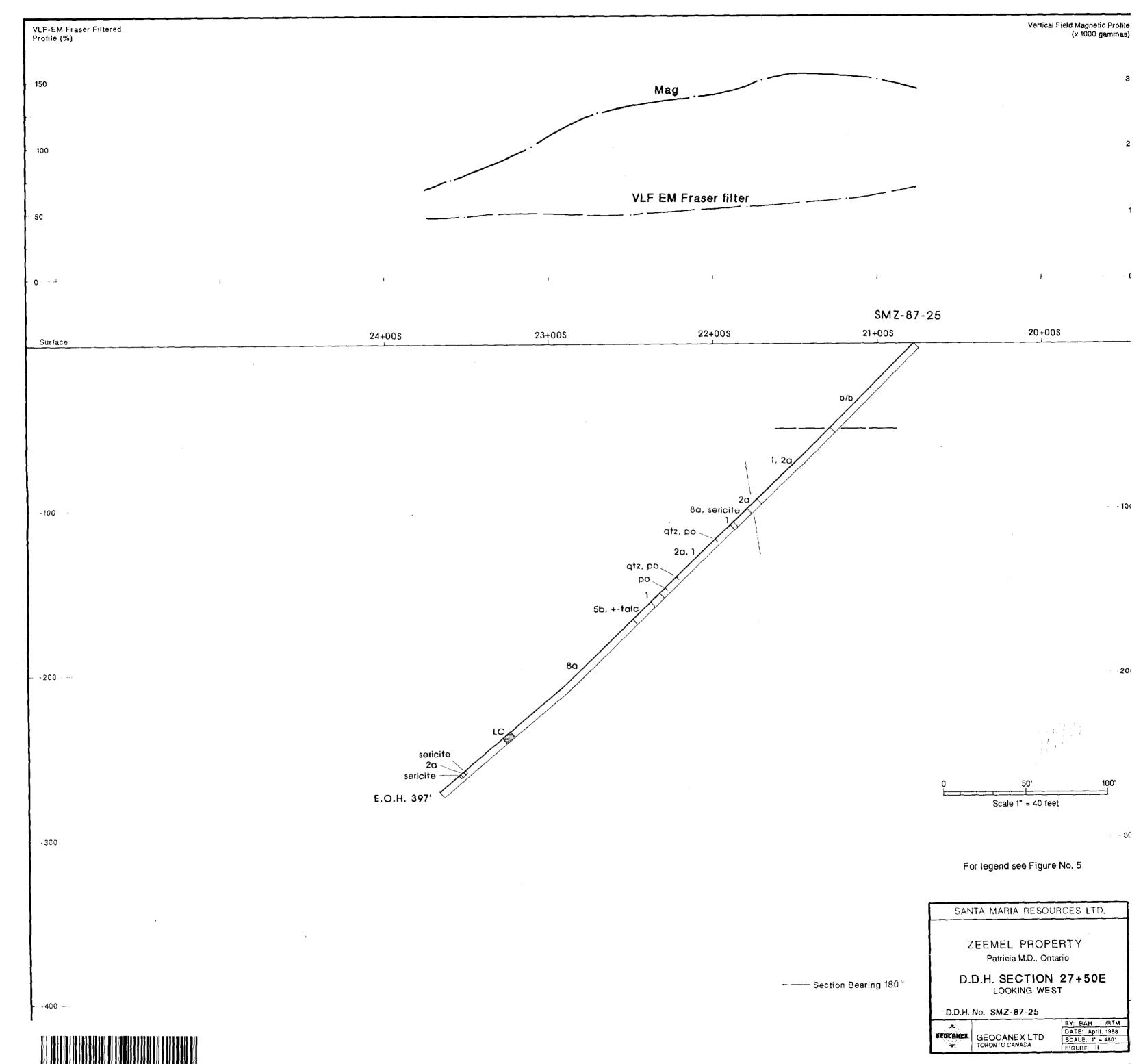



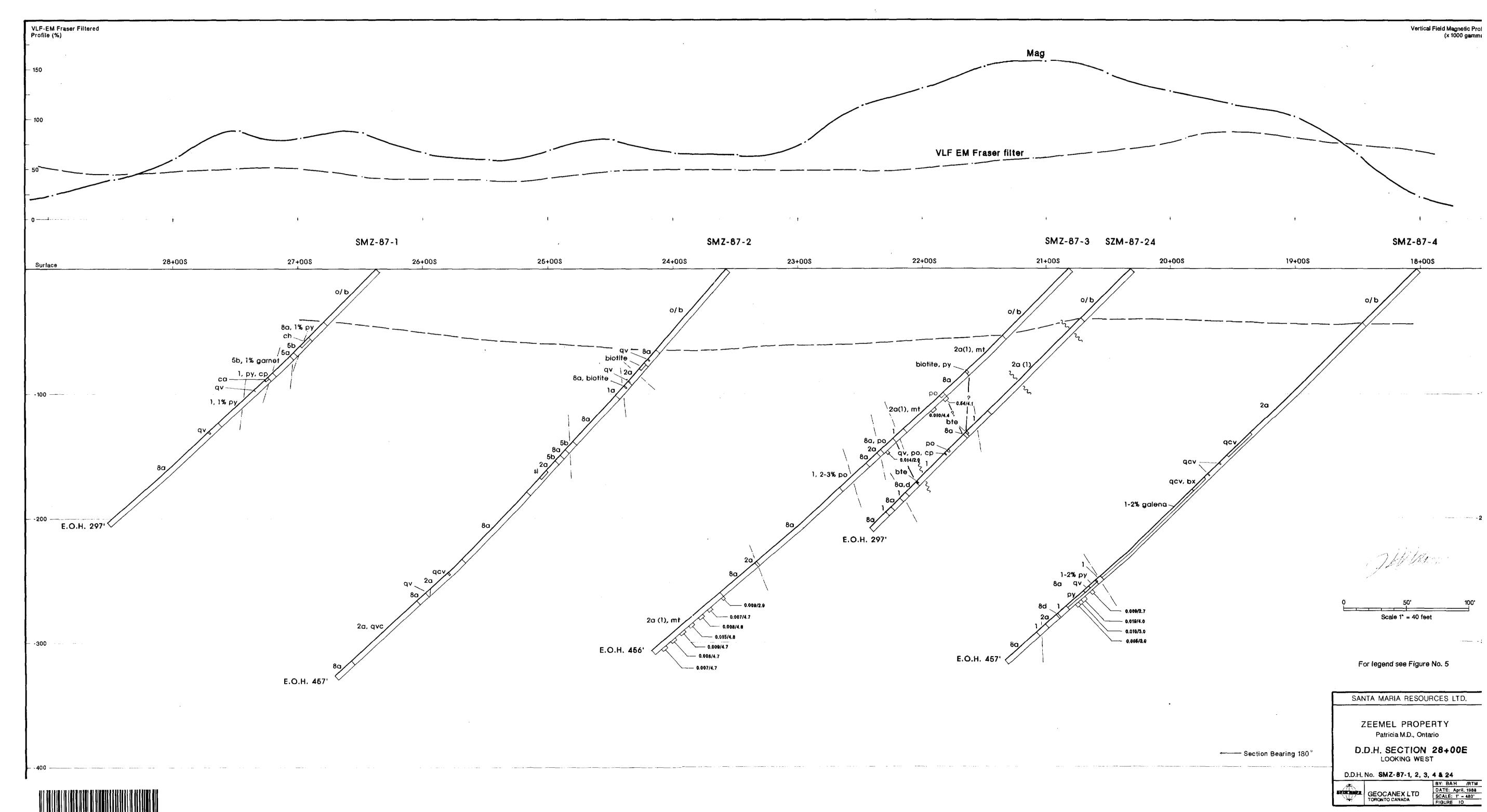



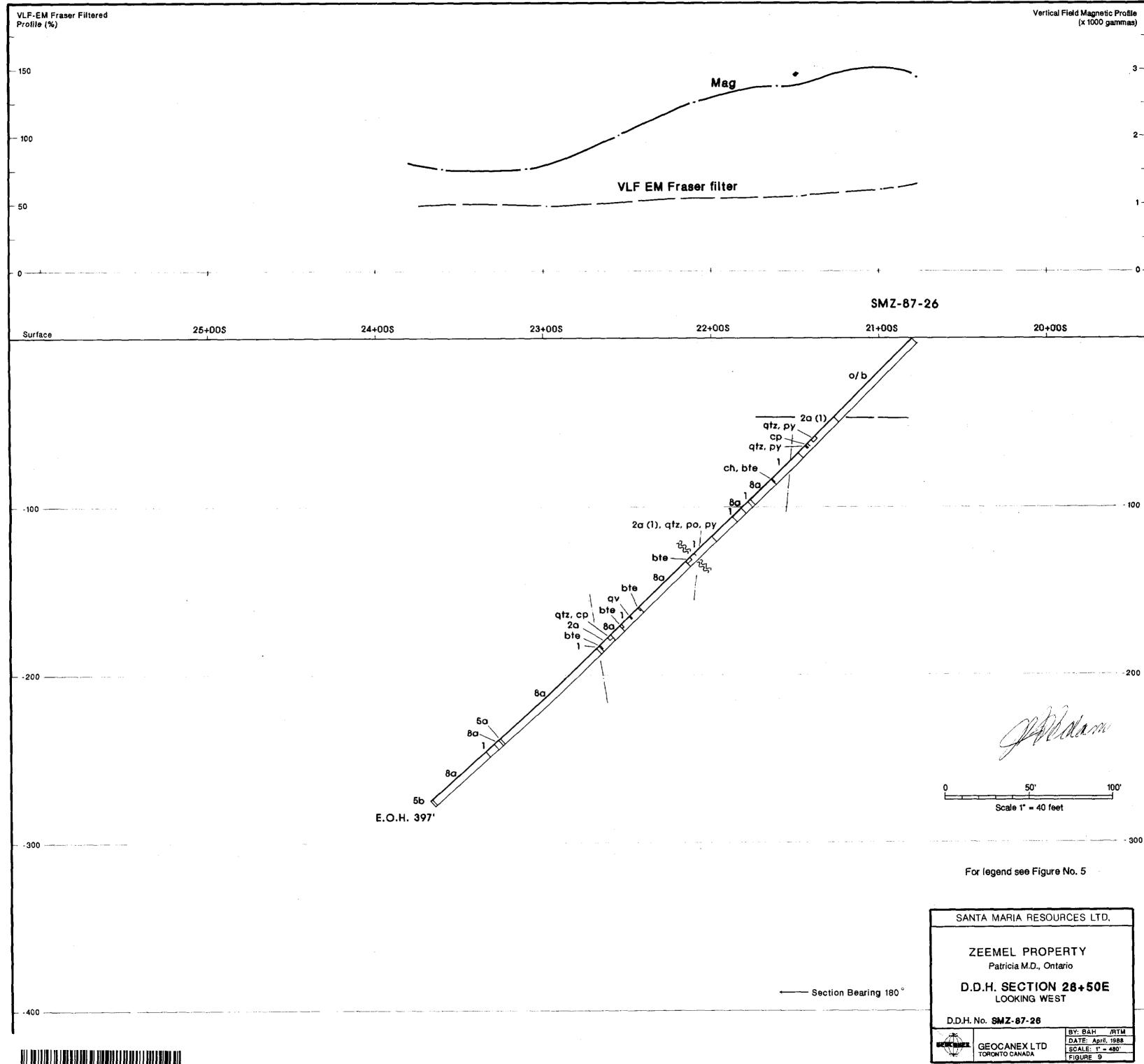



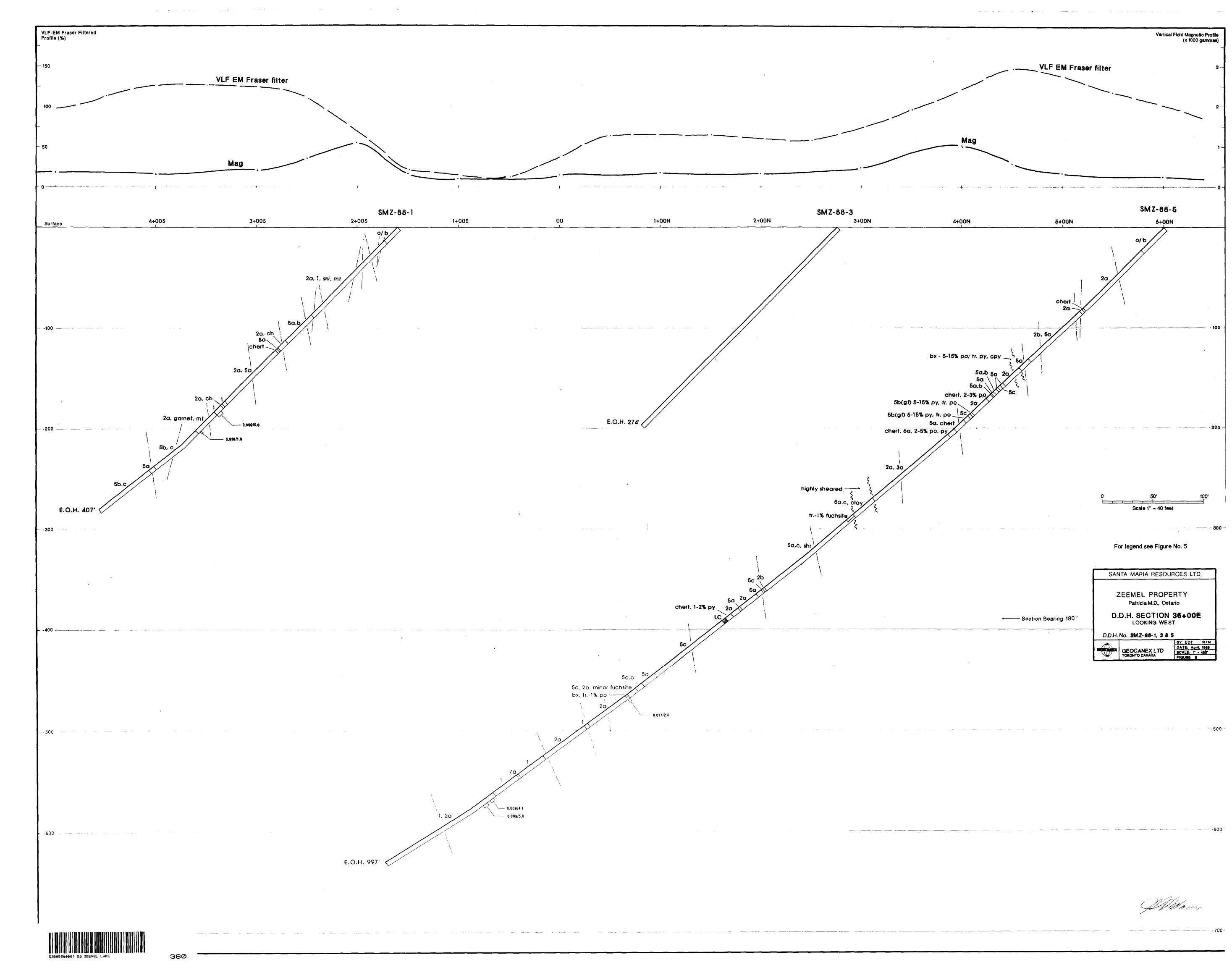



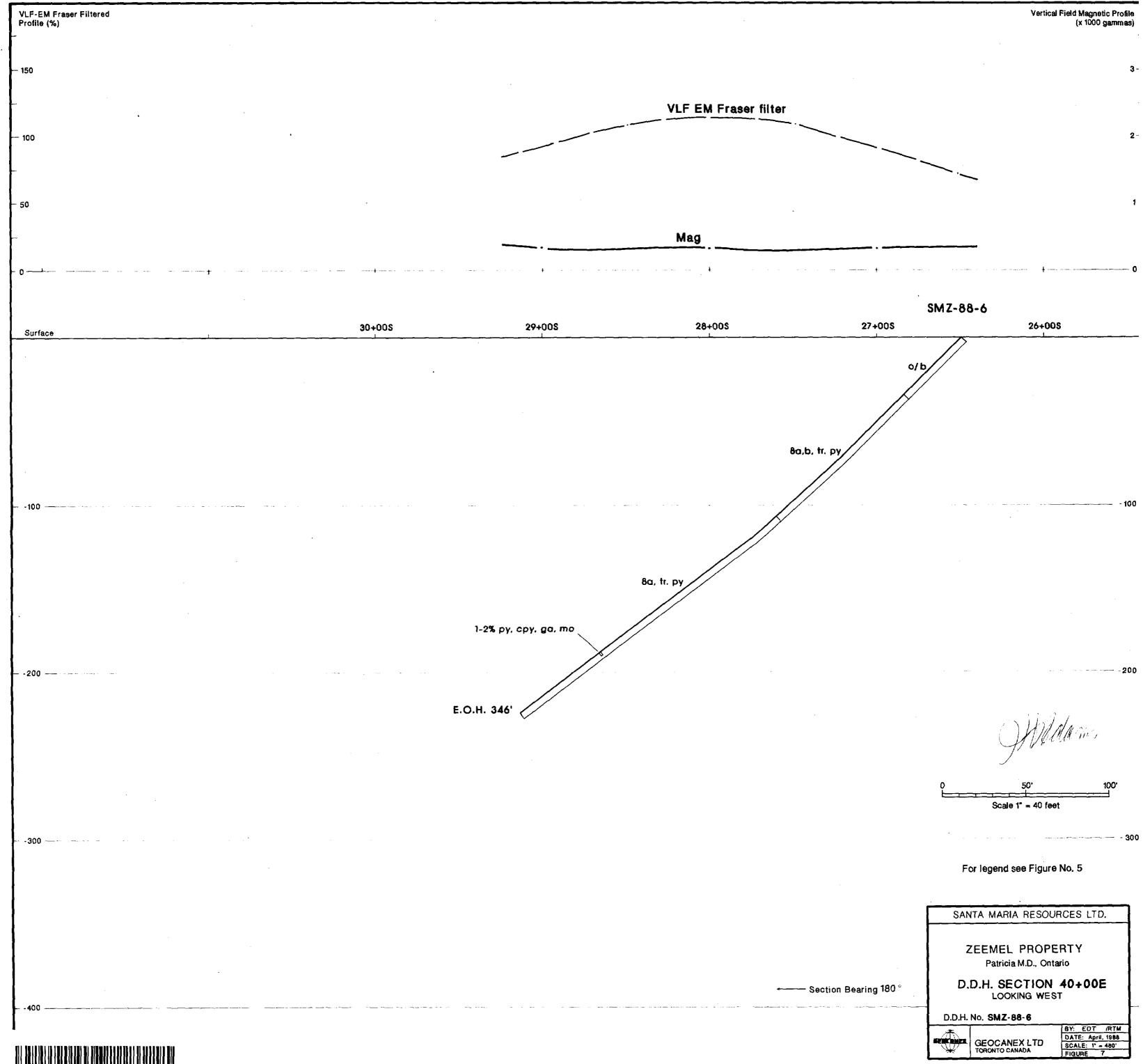



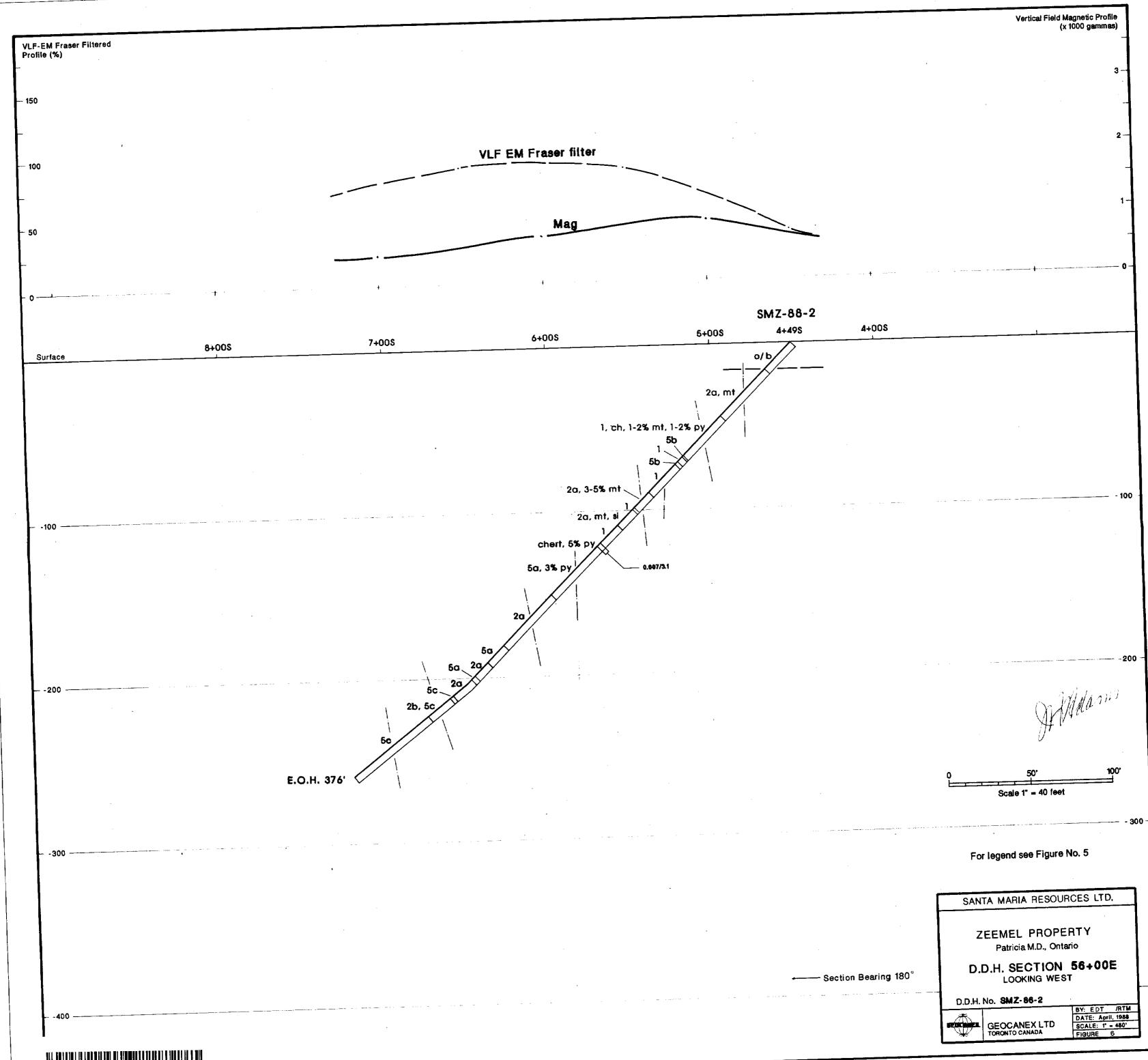












MAGSWARA 20 TEENEL LAVE

370

