

DIAMOND DRILLING

AREA: KEEYASK LAKE

REPORT NO: #21

WORK PERFORMED FOR: MOSS-POWER RESOURCES LTD.

RECORDED HOLDER: SAME AS ABOVE [k]

: OTHER []

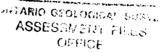
CLAIM NO.	HOLE NO.	FOOTAGE	DATE	NOTE
PA 1009775	KE-90-1	199.0'	FEB/90	(1)
PA 1009776	KE-90-2	249.0'	FEB/90	(1)
PA 1009776	KE-90-2A	60.0'	FEB/90	(1)
PA 1009776	KE-90-3	499.0'	FEB/90	(1)
PA 1009776	KE-90-3A	79.0'	FEB/90	(1)
PA 1009776	KE-90-3B	60.0'	FEB/90	(1)
PA 1009775	KE-90-4	579.0'	FEB/90	(1)

NOTE: (1) w9003.202, FILFD NOVEMBER, 1990

REPORT

ON

DIAMOND DRILLING PROGRAM
ON THE


KEEYASK LAKE PROPERTY

PATRICIA MINING DIVISION, DISTRICT OF KENORA NORTHWESTERN ONTARIO

FOR

MOSS-POWER RESOURCES INC.

53B/14

AUG 07 1990

RECEIVED

TABLE OF CONTENTS

Ø10C

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	PROPERTY DESCRIPTION	2
4.0	LOCATION, ACCESS AND SERVICES	5
5.0	PHYSIOGRAPHY AND VEGETATION	5
6.0	PREVIOUS WORK	6
7.0	REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION	7
	7.1 Regional Geology	7
	7.2 Economic Mineralization	9
8.0	PROPERTY GEOLOGY	11
9.0	SUMMARY OF GEOPHYSICS	13
10.0	DIAMOND DRILLING PROGRAM	15
	10.1 Description of Program	15
	10.2 Discussion of Results	16
	10.2.1 Rock Types	16
	10.2.2 Gold Mineralization	21
11.0	CONCLUSIONS	23
12.0	RECOMMENDATIONS	24
13.0	ESTIMATED COST OF RECOMMENDED PROGRAM	24
14.0	REFERENCES	25

APPENDICES

A	CERTIFICATE OF QUALIFICATION	(Back	of	Report)
В	LEGEND AND DIAMOND DRILL SECTION	11	**	11
С	DIAMOND DRILL HOLE LOGS	. 11	**	11
D	ANALYTICAL CERTIFICATES	11	**	**

LIST OF TABLES

I SUMMARY OF DIAMOND DRILLING RESULTS 18

LIST OF FIGURES

		<u>Page</u>
1	LOCATION MAP	3
2	CLAIM MAP	4
3	PROPERTY LOCATION AND REGIONAL GEOLOGY	8
4	PLAN OF DRILLING	17
5	LEGEND	Appendix B
6	DIAMOND DRILL SECTION L88+00N	Appendix B

1.0 SUMMARY

A 1,725 foot diamond drilling program was carried out in February, 1990, on the Keeyask Lake property of Moss-Power Resources Inc. The property consists of 120 claims located approximately 110 miles north-northwest of Pickle Lake, Ontario.

The property lies at the northwest end of the North Caribou Lake Greenstone Belt and covers portions of three unconformably juxtaposed supracrustal assemblages: the Agutua Arm Metavolcanics, the Keeyask Lake Metasedimentary-Metavolcanic Complex and the Eyapamikama Lake Metasediments, and the contact to the west with felsic intrusive rocks of the Weagamow Batholith.

Ground geophysical and geological surveys were carried out on the property in 1988 but it has not previously been drilled. The current program was limited to drilling across an unexposed portion of the Keeyask Lake Complex in an area of intersecting magnetic and VLF-EM anomalies oblique to the trend of stratigraphic units from which anomalous gold values were obtained in sparse bedrock exposures further to the south.

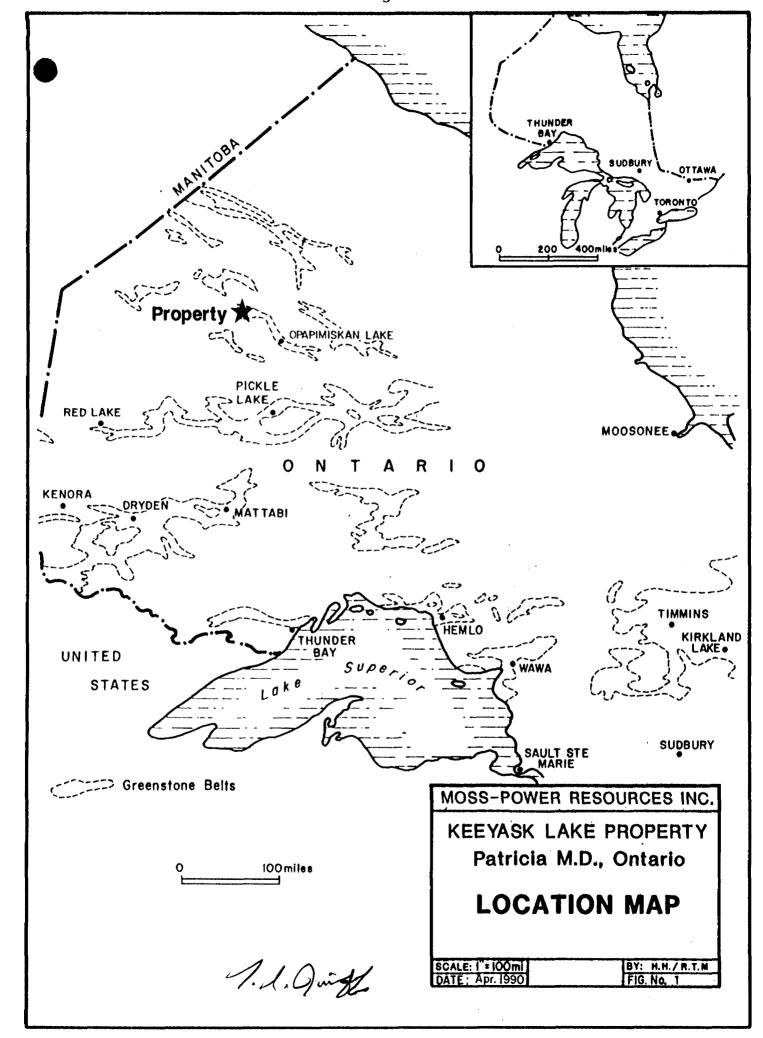
Anomalous but sub-economic gold values (up to 0.014 ounces of gold per ton over 3.5 feet) were intersected in the central portion of the Keeyask Lake Complex.

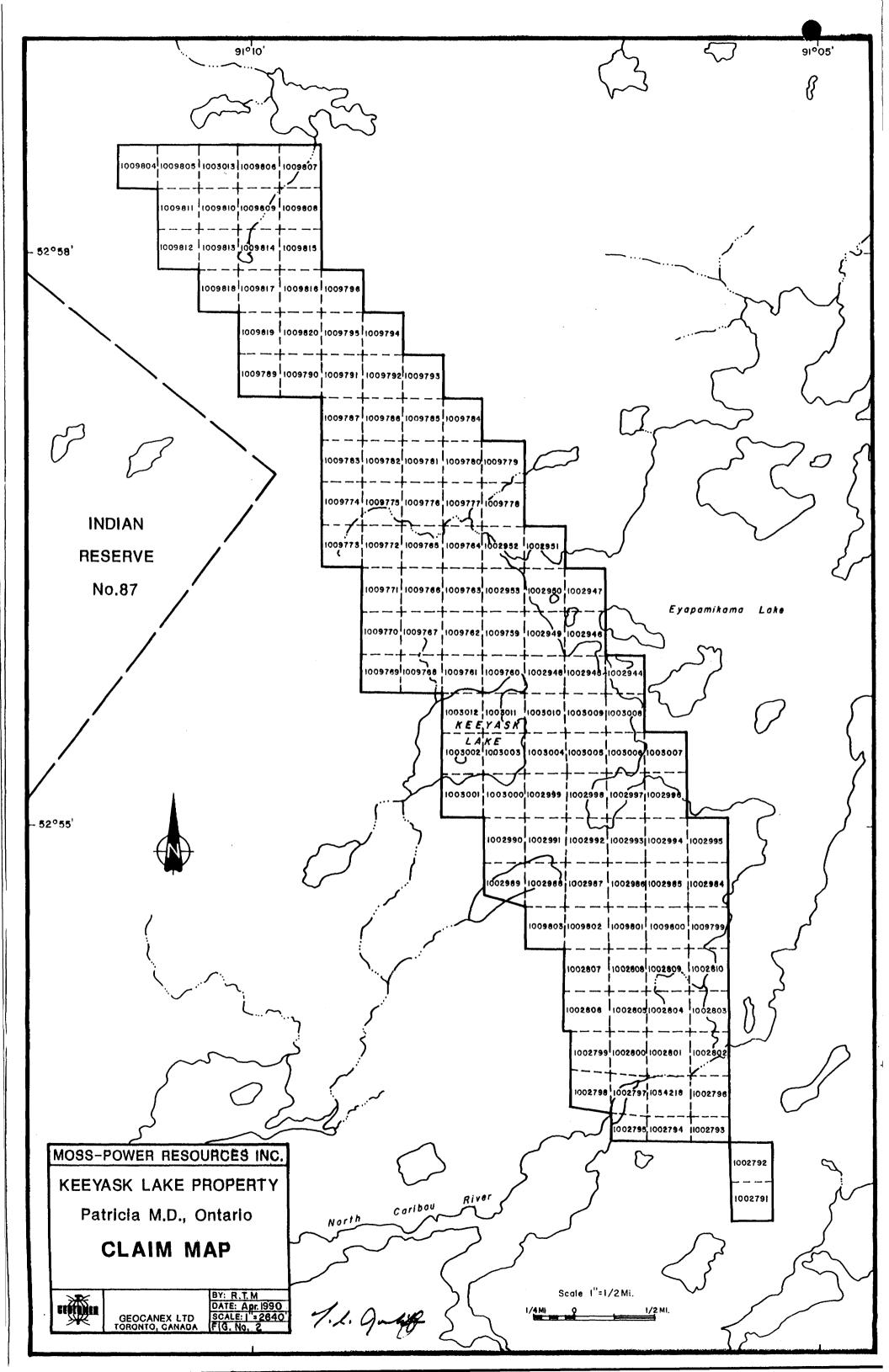
A 6,000 foot diamond drilling program is recommended to test other favourable geological and geophysical targets outlined by the surface exploration programs. The estimated cost of the recommended drilling program is \$324,000.

2.0 INTRODUCTION

A diamond drilling program consisting of seven drill holes with a total footage of 1,725 feet was carried out between February 8 and February 25, 1990, on the Keeyask Lake property owned by Moss-Power Resources Inc. The property is located about 110 miles north-northwest of Pickle Lake, Ontario (Figure 1).

Drilling was contracted to W.G. Langley Ltd. under the supervision of Geocanex Ltd. Geocanex personnel involved in the work were as follows:


Tom Jolliffe Project Geologist Toronto, Ont.
Scotty Necan Core Splitter Osnaburgh, Ont.


3.0 PROPERTY DESCRIPTION

The property consists of 120 contiguous mining claims in the Patricia Mining Division, District of Kenora, in Northwestern Ontario (Figure 2). The claims are shown on the Ministry of Natural Resources Plan No. G-2085, Keeyask Lake Area.

The claim numbers and dates of record are as follows:

Claim Num	Recording Dates		
Pa 1002791-1002810	inclusive	(20)	July 22, 1987
Pa 1002944-1002953	inclusive	(10)	July 22, 1987
Pa 1002984-1003013	inclusive	(30)	July 22, 1987
Pa 1009759-1009787	inclusive	(29)	July 22, 1987
Pa 1009789-1009796	inclusive	(8)	July 22, 1987
Pa 1054218		(1)	July 13, 1988
	Total	120	Claims

The claims are held by Moss-Power Resources Inc., Suite 400, 2 Toronto St., Toronto, Ontario, M5C 2B6.

4.0 LOCATION, ACCESS AND SERVICES

The property is located in Northwestern Ontario (52° 56' N, 91° 07' W) at the west end of Eyapamikama Lake, approximately 110 air miles north-northwest of Pickle Lake.

Access to the property is gained by helicopter or by ski- or float-equipped fixed wing aircraft from Pickle Lake or Weagamow Lake (seven miles to the west). Highway 808, an all-weather road from Pickle Lake to Windigo Lake, ends approximately 30 miles south of the property. A winter road from Windigo Lake to Weagamow Lake, open from late January to April, passes within about six miles of the property. Highway 599, a paved all-weather road, connects Pickle Lake to the CNR main transcontinental line at Savant Lake, 90 miles to the south and the Trans-Canada Highway at Ignace, 180 miles to the south.

Pickle Lake, a mining and transportation centre with a population of approximately 350, can provide most services and supplies. A daily commercial air service operates between Pickle Lake and Thunder Bay.

5.0 PHYSIOGRAPHY AND VEGETATION

The Keeyask Lake property is situated at the west end of Eyapamikama Lake, along the western margin of the North Caribou Lake Greenstone Belt, from a point near Pakiagama Lake at its south end to the vicinity of Miskeesik Lake at its north end.

A sand and boulder plain with interspersed morraine, esker and drumlinoid surficial deposits covers 30% to 40% of the property. Ridges, particularly on the east shore of Eyapamikama Lake are up to 75 feet in height. The ice direction during the last glaciation is indicated to be from the north to northwest.

Bedrock exposure is limited to 1-2% on the property. Black spruce covers much of the region, along with a mixture of jack pine, poplar and birch in elevated areas, and alders, tamarack and balsam in low-lying wet sections.

6.0 PREVIOUS WORK

In 1938, the geology of the region was mapped at a scale of one inch to one mile by the Ontario Department of Mines (Satterly, 1939).

In 1960, an airborne magnetic survey was flown in the area by the Ontario Department of Mines.

In 1984, the area was mapped at a scale of one inch to one-half mile by the Ontario Geological Survey (Bartlett et al., 1985).

In 1985, Comstate Resources Ltd.carried out geological mapping and lithogeochemical sampling (Au, Cu) on a claim group covering the southern one-third of the present property.

Also in 1985, the property was covered by a regional air-

borne electromagnetic and total intensity magnetic survey flown by Aerodat Limited for the Ontario Geological Survey.

In 1987, the Keeyask Lake Property was staked by Moss Resources Ltd.

In 1988, Moss Resources Ltd. carried out ground magnetic and VLF-EM surveys, followed by geological mapping, prospecting, stripping and lithogeochemical sampling.

7.0 REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION

7.1 Regional Geology

The Keeyask Lake Property is underlain by the northwestern portion of the North Caribou Lake Greenstone Belt (Figure 3), an Archean assemblage of predominantly mafic metavolcanics, volcaniclastics and metasediments forming part of the Sachigo Subprovince within the Superior Province of the Canadian Shield. The belt extends in an east-west to north-south arc from Weagamow Lake in the northwest to Opapimiskan Lake in the southeast. South of Opapimiskan Lake, the belt bifurcates into two major lobes, one extending south through Libert Lake, the other east through the Forester-Neawagank Lakes area.

Banded oxide facies iron formation, grunerite-chert iron formation and cherty chemical metasediments are commonly present near the metavolcanic-metasedimentary contacts. Ultramafic flows and intrusives occur locally. The belt is bounded by felsic intrusive masses to the north, south and west. The Weagamow Batholith to the west varies from massive granodiorite to a possibly subvolcanic felsic quartz-

phyric rock in the area north of Keeyask Lake near the contact with the greenstone belt.

Metamorphic grades range from greenschist to lower-middle amphibolite facies.

The North Caribou Lake Belt has undergone two major deformation events. The first produced isoclinal folding and the formation of a large synclinal structure along the axis of the belt, extending in an arc from Eyampamikama Lake to Opapimiskan Lake. The second event created open to closed folds with steeply dipping axial planes and moderate to steep plunges. The axial planar cleavage is an important ore-forming structure in the region.

7.2 Economic Mineralization

Gold occurrences are present throughout the belt, most commonly in association with iron formation.

A number of gold deposits have been discovered on the Musselwhite property owned by a consortium comprised of Placer Dome Inc., Canadian Nickel Co. Ltd. and Corona Corp. The West Anticline Zone and the East Bay Syncline (Snoppy Lake) Deposits are located two miles apart on the south shore of Opapimiskan Lake. The Esker Zone is located about two miles to the north-northwest. The gold-bearing zones are concentrated in the crests or vertically dipping limbs of tight parasitic folds within garnet-hornblende-chert-grunerite iron formation. A strong axial planar cleavage is believed to be the conduit for gold mineralization, which occurs in quartz-pyrrhotite veins and in sulphide replacement zones.

Surface and underground drilling has delineated 7.4 million tons grading 0.20 ounces of gold per ton (based on a cut-off of 0.10 ounces of gold per ton) in the East Bay area (1989 Annual Report, Placer Dome Inc.). Published reserves for the West Anticline Zone are over 3.2 million tons at 0.17 ounces of gold per ton. Reserve estimates have not yet been published for the Esker Zone.

Other showings on the Musselwhite property include auriferous quartz veins in mafic metavolcanics on the northwest side of Opapimiskan Lake (Kenpat Vein) and gold associated with iron formation on the Paseminon River to the north of Libert Lake.

The Opapimiskan Lake, Karl Zeemel and Libert Lake properties of Moss-Power Resources Inc. adjoin the Musselwhite property to the north, southeast and south, respectively. On the Opapimiskan Lake and Karl-Zeemel properties, numerous significant gold intersections have been obtained in geological environments similar to the Musselwhite deposits. Gold showings are also present on the Libert Lake property.

Several gold occurrences have been found in northwestern part of the North Caribou Lake Belt. On the Teal prospect and Moss-Power's Agutua Arm property, to the southwest of the Keeyask Lake property, gold-silver mineralization is associated with sulphide-bearing quartz-carbonate veins in sheared mafic volcanics. The Teal prospect lies within the North Caribou River Fault, a major regional fault zone which is also the host for gold zones on the Moss-Power Randall Lake property to the south of the Keeyask Lake property. On the north side of Eyapamikama Lake, a similar major deformation zone is host for gold mineralization at Arseno Lake, Castor Lake, McGruer Lake and on the Moss-Power Stanley Lake

property. In addition, Northern Dynasty has intersected volcanogenic massive sulphide (lead-zinc) mineralization at Arseno Lake.

At the southeast end of the North Caribou Belt, on the Inco property at Sage Lake and the Moss-Power Neawagank Lake properties, numerous significant gold values have been encountered in shear zone hosted quartz-sulphide veins and iron formation, and in quartz-arsenopyrite-carbonate veins in sheared gabbro.

8.0 PROPERTY GEOLOGY

The geology of the Keeyask Lake property is described in detail in a report on the geological mapping and prospecting program by Corkery (1988). The following is a summary.

The property lies at the northwest end of the North Caribou Lake Greenstone Belt and covers portions of three unconformably juxtaposed supracrustal assemblages: the Agutua Arm Metavolcanics, the Keeyask Lake Metasedimentary-Metavolcanic Complex and the Eyapamikama Lake Metasediments. The supracrustal rocks are bounded to the west by the felsic intrusive rocks of the Weagamow Batholith.

The Agutua Arm Metavolcanics, in the southwest portion of the property, are comprised mainly of intermediate flows and tuff breccia. They are unconformably overlain to the east by metasediments belonging to the Keeyask Lake Complex.

The north-northwest trending Keeyask Lake Complex consists of a metasedimentary assemblage to the west and overlying metavolcanics to the east. The metasediments are comprised

of polymictic and oligomictic pebble and cobble conglomerate, quartz wacke and arenite, feldspathic wacke and arenite, siliceous siltstone and mudstone, marlstone, calcareous chert, chert and lean oxide facies iron formation. The metavolcanics are comprised of ultramafic flows with interdigitized and overlying mafic flows to the east. The metasedimentary-metavolcanic package is interpreted to be pinched out in the northern one-third of the property by the Weagamow Batholith. At the south end of the property, the boundary between the metasediments and ultramafic flows is faulted, deformed and altered. The fault may be the extension of the Centre Lake Splay off the North Caribou River Fault. The mafic flows are unconformably overlain to the east by the Eyapamikama Lake Metasediments.

The Eyapamikama Lake Metasediments are dominated by matrixand clast-supported polymictic conglomerates in the central portion of the property, with dominant wacke, mudstone and arenite to the north and south. Surface exposures of the contact with the Keeyask Lake metavolcanics are brecciated or sheared.

The Weagamow Batholith to the west intrudes all three supracrustal packages. It is typically a hornblende granodiorite but a possibly subvolcanic felsic quartz-phyric phase may also be present.

The rocks on the property have undergone regional metamorphism ranging from upper greenschist to lower amphibolite facies.

9.0 SUMMARY OF GEOPHYSICS

The regional airborne electromagnetic and total intensity magnetic survey carried out for the Ontario Geological Survey in 1985 shows a north-northwest trending linear magnetic anomaly which bisects the southern three-quarters of the Keeyask Lake property. The survey also shows the presence of a weak linear northeast trending magnetic anomaly in the Weagamow Batholith, three quarters of a mile northwest of Keeyask Lake.

Ground magnetic and VLF-EM surveys were carried out on the property in 1988 (Medd, 1988). In conjunction with the results from geological mapping, the geophysical surveys outline five geological domains: the Eyapamikama Lake Metasediments to the east, the mafic and ultramafic domains of the central Keeyask Lake Complex, the Agutua Arm Metavolcanics to the southwest, and the Weagamow Batholith to the northwest.

Hosted within the west half of the ultramafic metavolcanic domain is at least one strong, semi-continuous magnetic band representing lean iron formation. Parts of this horizon are conductive, indicating possible secondary pyrrhotite-pyrite mineralization within the iron formation. Attenuations in the magnetic anomaly over the iron formation may reflect variations in the magnetite/chert ratio and/or alteration of magnetite to grunerite and iron sulphides.

A distinct magnetic anomaly in the lower magnetic intensity domain associated with the Weagamow Batholith trends east-northeast from the west edge of the property (L80N/59W) and intersects the main northwest trending magnetic anomaly (which widens out and decreases in intensity) at about

L88N/31W. The cross-cutting magnetic anomaly is also present on the regional airborne survey map (Ontario Geological Survey, 1985) and may reflect the presence of regional northeast to east-northeast faulting and alteration. A moderately strong north-northwest trending conductor in the same area (L88N/28+40W) appears to lie at the approximate junction of the linear north-northwest trending conductor associated with the iron formation horizon and a second linear conductor trending more to the northwest, which coincides with a linear topographic low and may reflect the presence of a fault.

The intersection of magnetic anomalies and VLF-conductors described above indicates a highly favourable structural and geochemical environment for gold deposition and is the basis for the present limited diamond drilling program consisting of a fence of drill holes across the area of intersecting geophysical anomalies on L88N, in the vicinity of base line 30W.

Several interesting geophysical features are present on the remainder of the property. Magnetic patterns reveal a number of east-west cross-cutting fault/shear structures. There is no conclusive indication of folding but the presence of parallel anomalies and variations in anomaly widths and trends suggests that some folding may have occurred.

The majority of VLF-EM conductors are interpreted as representative of concordant to sub-concordant fault/shear structures and/or lithological contacts. The dominant conductive feature is the unconformable west boundary of the clastic metasedimentary domain. A number of strong continuous conductors mark this boundary and could reflect graphite-sulphide mineralization.

10.0 DIAMOND DRILLING PROGRAM

10.1 Description of Program

The focus of the diamond drilling program was an area of intersecting geophysical anomalies in an overburden-covered area around L88N/Baseline 30W. Anomalous gold was obtained from surface channel sampling (Corkery, 1988) further to the south in a lean oxide facies iron formation unit (and associated quartz veins) trending north-northwest into the drilling target area.

The drilling program was carried out by W.G. Langley Ltd. between February 8th and February 25th, 1990, under the supervision of Geocanex Ltd. A total of 1,725 feet was drilled (B.Q. size), including four completed holes (KE-90-1 to KE-90-4) and three holes (KE-90-2A,-3A and -3B) which were abandoned in overburden. Casing was pulled after completion of each hole.

Drill core was logged, split and stored in the drill camp at the south end of the most westerly peninsula on the north side of Eyapamikama Lake, approximately 2.5 miles eastnortheast of the drill area.

Units, zones and features considered favourable for gold mineralization were sampled by splitting in lengths generally ranging from 1 foot to 5 feet per sample (average sample interval: 4.0 feet). These included iron formation, shearing, alteration, quartz (tealcite) veins and sulphide mineralization. In total, 224 samples, representing 68% of the cored material, were taken.

Samples were shipped to Accurassay Laboratories Ltd. in

Thunder Bay where they were crushed, split and pulverized to -150 mesh and analyzed for gold by fire assay, with AA finish (5 ppb gold detection limit). Six of the samples were also tested for 30 additional elements by emission spectrographic analysis following HF digestion.

The plan of drilling is shown in Figure 4. The legend (Figure 5) and diamond drill section (Figure 6) are shown in Appendix B. Diamond drill logs are contained in Appendix C. All assay certificates are listed in Appendix D.

10.2 Discussion of Results

Table I is a brief summary of each drill hole.

10.2.1 Rock Types

Drill holes KE-90-1 to KE-90-4 provided a cross-section through the Keeyask Lake Complex and the contact with the Weagamow Batholith. The contact with the Eyapamikama Lake Metasediments was probably also intersected.

In drill core, the Keeyask Lake Complex consists of dominant conglomerates and wackes, particularly in the underlying western portion with secondary ultramafic flows, and in the central portion with intercalated chert, calcareous chert, marlstone, lean oxide facies iron formation and siltstones; the overlying eastern portion is comprised of dominant mafic to ultramafic flows with secondary conglomerate and wacke.

The conglomerates are dominantly polymictic, with less common oligomictic quartz pebble conglomerates. They are generally light to darkish grey, in parts with a greenish or brownish tinge, and matrix-supported. The matrix is

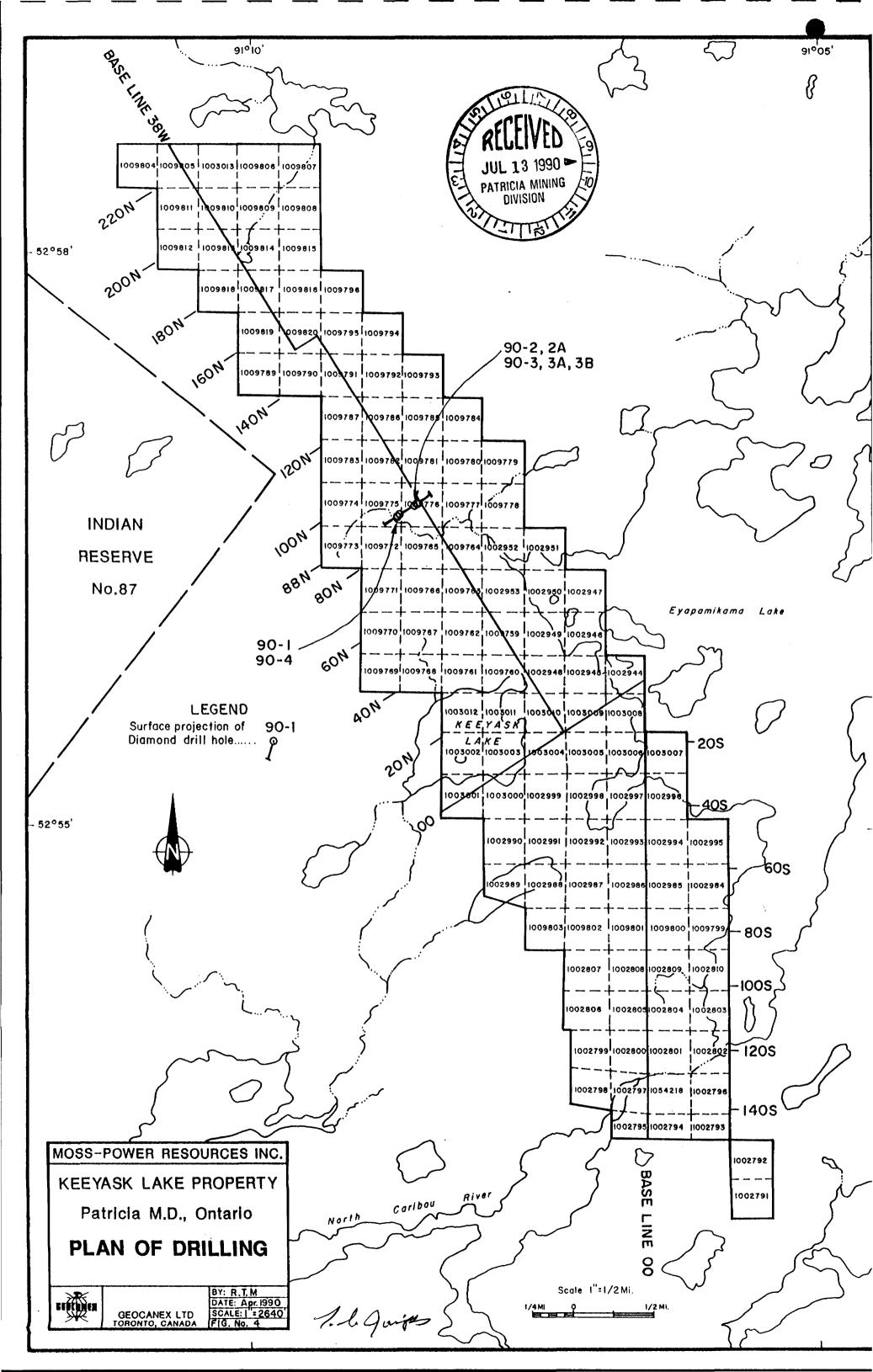


TABLE 1
SUMMARY OF DIAMOND DRILLING RESULTS

	1	 		ASSAY RESULTS				LTS
Drill Hole Number	Grid	Length (feet)		Intersection (Width (feet)	l Oz. Au l i /ton i	Au pob	Samole Description
KE-90-1	I 88+00N, I 34+02W	1 9 9	Granodiorite (100%)	76.4 - 80.9 	4.5	1 (0.002)	3 5	Granodiorite with minor contorted 1/2" magnetite seams and minor
KE-90-2A	88+00N, 1 31+33W	60	Abandoned; broke off casing in overburden i	i i		1 1 i		; ; ;
KE-90-2	1 88+00N, 1 1 31+33W		Conglomerate (60%) and wacke. 11% core recovery over 40° interval from 99.0° to 139.0°	i i i				i ;
KE-90-3A	88+00N,		4' interval cored (conglomerate). Broke off casing in overburden and abandoned hole.	, 		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
KE-90-3B	88+00N 31+22W	60	Intersected broken casing from KE-90-3A. i Abandoned hole.	i i		; ;		
KE-90-3	i 88+00H, ii i 31+27W ii ii ii	49 9 i i i	Conglomerate (61%), mafic metavolcanics (22%), ultra-mafic flows; minor quartz is macke and siltstone. Probable conductor (up to 20% pyrhotite and pyrite) between it	89.5 - 90.7 	1.2 2.5	0.013 i i i i i 0.017 i	4 37 594	Brecciated dolomite - quartz vein; fuchsite; semi-massive to massive arsenopyrite
	i ; ;		331.9° and 337.4°. Conglomerate below if 433.0 may belong to Eyapamiskana Lake if Metasediments.	i i 434.7 - 436.2 I	1.5	i i i i i i i i i i i i i i i i i i i	297	I fuchsite; disseminated to banded i I or massive arsenopyrite. i I Mafic metavolcanic with 15% quartz-I
	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	i i	i ; i	i i i		i i		carbonate bands and lenses; pyrite

TABLE 1
SUMMARY OF DIAMOND DRILLING RESULTS

	1]	i I			ASSAY	RESUL	. T \$
Drill Hole Grid Length Mumber Location (feet)	• •	Intersection (feet)	Widtn (feet)	i üz. Au i i /ton i	Au ppb	Sample Description		
KE-90-4	88+00N, 34+55W		Conglomerate (35%); chert, marlstone, calcareous chert and lean magnetite-	300.6 - 303.1	2.3	0.010	347	Ultramafic schist with 40% dolomite (± quartz, chlorite) veins; trace pyrite
		 	chert iron formation (18%); granodiorite (15%), ultramafic flows (13%); wacke (7%) and siltstone (6%); minor mafic (to ultramafic) flows. 	447.7 - 450.2 	3.5	0.014	495	Interbanded chert, marlstone and muc- stone; a few magnetite-rich bands (lean interpretation); with 5 to 10% carbonate unartz veinlets, 5 to 15% pyrite and arsenopyrite (1 pyrrhotite) in bands,
	1 3	i	i l	i		i i		along fractures and disseminates.
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		i I I I	490.8 - 492.0 l l	1.2	i 0.004 i i i	149	Chert pebble conplomerate with 0.5" massive arsenopyrite bands (in chert fragments?).
	1	i	i	i		1 !		1
	1 I	 	! !	i		1 1		1
			I	Ĺ		1		İ
			1	ļ.		1		i
	j 1	i	i ;	1		1 1		
	, ,	· ·	' I	i		1 1		i
	1	ļ	i I	i		i i		i
	1	İ	!	i		l i		
	i i) 1	1		1 1		<u> </u>
	, . i i	i		i		, , l i		1
	1 1	i	i i	i		i i	•	i
		!	!	1		i I		1
	1 1	i]) 		1 1		i
	· 1	ì	,	1		. , ,		•
	i i	i	Ĺ	i		i i		i
	1 1	I	l l	1		į į		i

18a -

typically homogeneous and slightly foliated, with a composition of dominant rounded or ovoid to subangular smokey grey quartz sand (1-2mm) and granule (2-4mm) clasts, and varying proportions of interstitial finer grained quartz, chlorite, sericite, muscovite/biotite, carbonate (calcite, dolomite) and feldspar, along with minor sulphides (pyrite tpyrrhotite tarsenopyrite) on foliation planes and disseminated in the Conglomerate pebbles generally constitute less than 25% of the total, except where there is an increase in the proportion of smokey quartz pebbles (<7mm) which form a continuum with the finer-sized granule and sand clasts in the matrix. Other rock fragments, ranging up to 60mm but generally less than 30mm, include rounded granodiorite clasts, rounded to angular chert clasts, subrounded to angular clasts of intermediate and felsic flows, and tabular to angular siltstone/mudstone clasts.

Other common clastic metasediments include quartz wacke, wacke, quartz arenite, siltstone and mudstone. The coarser of these clastics are similar to the conglomerate matrix and in several sections are gradational from conglomerate with a decrease in the proportion of pebble clasts. The fine clastics are less abundant and concentrated in the central portion of the Keeyask Lake Complex. They are typically calcareous and thinly laminated (sheared?) to massive.

Chemical metasediments were intersected under the peak of the magnetic anomaly in the center of the Keeyask Lake Complex. They are colour banded black-grey-white-yellowish white on a scale from <0.05 inches to 2.3 feet and consist of interbedded marlstone (dolomitic and calcitic), calcareous chert and chert, with minor magnetite-rich bands (lean oxide facies iron formation) and green-black mudstone interbeds. Pyrite and arsenopyrite (tpyrrhotite) are asso-

ciated sulphides (ranging up to 15%). The stratigraphically higher (more easterly) cherts are brecciated.

Ultramafic metavolcanics (talc-chlorite-carbonate schists) and lesser mafic metavolcanics occur in the lower and central parts of the Keeyask Lake Complex but are most common in the upper (eastern) portion. The ultramafics are pale greenish white to grey, fine- to medium-grained and strongly foliated, in part with highly contorted laminae and irregular pods and lenses of carbonate. They are composed of varying proportions of talc, chlorite and carbonate, with common carbonate-quartz (±chlorite, tourmaline) veinlets. The mafic metavolcanics are pale to dark greenish grey, foliated, and in parts gradational to ultramafic in composition.

The Weagamow Batholith is light to medium grey with a slight pale greenish tinge, unfoliated and slightly porphyritic (subhedral to anhedral smokey quartz (3-6mm) in a medium- to fine-grained feldspar-quartz matrix), with a granodiorite or granite composition (<10% hornblende). Assessory minerals include pyrite, minor pyrrhotite and chalcopyrite, along with trace molybdenite.

The polymictic pebble/cobble conglomerate intersected toward the bottom of borehole KE-90-3 differs somewhat from other conglomerate intersections and may be part of the overlying Eyapamikama Lake Metasediments. It contains larger clasts (up to 20cm) with a higher proportion of granodiorite/granite, along with biotite-muscovite (tquartz, sericite) schist and chlorite (tbiotite) schist. The biotite-muscovite content of the matrix and many of the larger clasts gives the rock a distinctive brownish tinge. However, the dominant smokey quartz sand and granule clasts in the matrix are

similar to the conglomerates and wackes to the west.

The presence of multiple sheared and brecciated intervals in the central portion and the lack of correlation between units in overlapping boreholes suggests that significant faulting has occurred, along with truncation and/or duplication of some of the stratigraphic sequence.

10.2.2 Gold Mineralization

Borehole KE-90-1 was intended to test the western part of the broad magnetic anomaly and the unexposed contact between the Weagamow Batholith and the Keeyask Lake Complex but the contact was not intersected. The hole was cored entirely in the intrusive, which proved to be slightly magnetic due to the presence of minor irregular magnetite rich seams. These may be a residue from assimilation of the lower part of the Keeyask Lake Complex, although no distinct xenoliths of supracrustal rocks were observed. The intrusive is slightly porphyritic but the texture is probably not indicative of a subvolcanic phase. Minor to trace chalcopyrite and molybdenite are present, but no significant gold mineralization was intersected.

Borehole KE-90-2 was drilled in the direction of grid west to test the lower (western) part of the Keeyask Lake Complex and the contact with the Weagamow Batholith. The hole was stopped short when the metasedimentary-metavolcanic sequence proved to be overturned, with westerly dips in this area, and the low core angles resulted in poor core recoveries. No significant mineralization was encountered.

Borehole KE-90-3 was drilled in the direction of grid east to test the middle and upper part of the Keeyask Lake Com-

plex and a strong conductor. The hole encountered sheared and brecciated clastic metasediments in the upper (stratigraphically lower) section, with minor gold concentrations, including 0.013 ounces of gold per ton over 1.2 feet (brecciated dolomite-quartz vein with abundant arsenopyrite and minor fuchsite) and 0.017 ounces of gold per ton over 2.5 (brecciated conglomerate and wacke with abundant arsenopyrite and minor fuchsite). The lower part of the hole was cored in predominant mafic and ultramafic metavolcanics. The conductor was intersected in strongly carbonatized, deformed (faulted?) mafic metavolcanics with quartz-carbonate veinlets and common (up to 20%) sulphides pyrrhotite, pyrite (tchalcopyrite, sphalerite) - mainly along foliation planes and disseminated. A third intersection, grading 0.009 ounces of gold per ton over 1.5 feet, was cored near the bottom of the hole in a mafic metavolcanic band with quartz-carbonate veinlets and minor pyrite, within a conglomerate unit which may be part of the stratigraphically overlying Eyapamikama Lake Metasediments.

Borehole KE-90-4 was targeted to intersect the contact between the Weagamow Batholith and the Keeyask Lake Complex and test the lower to middle portion of the metasedimentary-metavolcanic assemblage, including the area under the peak of the magnetic anomaly. The contact zone proved to be faulted, with carbonatization in the intrusive and common quartz-carbonate veining in the metasediments and metavolcanics but no significant gold values were obtained. Three minor gold concentrations were intersected in the lower half of the hole, including 0.010 ounces of gold per ton over 2.3 feet in a deformed ultramafic metavolcanic unit with abundant carbonate (±quartz, chlorite) veinlets, 0.014 ounces of gold per ton over 3.5 feet in sulphidic (pyrite, arsenopyrite, pyrrhotite) chert (±magnetite) and carbonate chemical

metasediments, and 0.004 ounces of gold per ton over 1.2 feet in chert pebble conglomerate containing common arsenopyrite.

Most of the anomalous gold intersections are in the central part of the Keeyask Lake Complex, in the vicinity of the magnetic high. Faulting may have truncated other economically favourable portions of the stratigraphic sequence in this area. Surface sampling of limited bedrock exposures to the south also yielded anomalous gold values (Corkery, 1988).

11.0 CONCLUSIONS

The 1990 diamond drilling program tested a cross-section of the Keeyask Lake Metasedimentary-Metavolcanic Complex in an area of favourable geophysical anomalies. The drill holes intersected anomalous but sub-economic gold values in the central part of the Complex.

Although there was no indication of an economic deposit in the immediate vicinity of the drill holes, the results provide further evidence that the Keeyask Lake Complex is anomalous in gold. The widespread occurrence of anomalous gold values in samples taken from the generally sparse bedrock exposures to the south and the presence of several geophysical anomalies indicate that drilling should be carried out to test other favourable targets on the property.

12.0 RECOMMENDATIONS

A 6,000 foot diamond drilling program is recommended to test additional favourable geological and geophysical targets outlined by the 1988 surface exploration programs.

13.0 ESTIMATED COST OF RECOMMENDED PROGRAM

Diamond Drilling - 6,000 feet

\$270,000

@ \$45/foot (all inclusive)

Contingency 20%

54,000

Total Cost

\$324,000

Respectfully submitted,

Thomas S. Jolliffe, B.Sc.(Eng.)

Geocanex Ltd.

14.0 REFERENCES

- Bartlett, J.R., Breaks, F.W., DeKemp, E.A., and Shields, H.N., 1985. Precambrian Geology of Eyapamikama Lake Area (Opapimiskan Lake Project), Kenora District (Patricia Portion); Ontario Geological Survey, Map P.2834, Geological Series Preliminary Map. Scale 1:31,680. Geology 1984.
- Breaks, F.W, Bartlett, J.R., Osmani, I.A., Finamore, P.F., and Wallace, H., 1985. Precambrian and Quaternary Geology of the North Caribou Lake Area, District of Kenora, Patricia Portion; p. 268-276 in Summary of Field Work and Other Activities 1985, Ontario Geological Survey, Miscellaneous Paper 126.
- Corkery, 1988. Report on Geological Mapping, Prospecting and Geochemical Sampling on the Keeyask Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario for Moss Resources Ltd.; 42 p. Ontario Ministry of Natural Resources Assessment Work Files, Sioux Lookout, Ontario.
- Medd, S.B., 1988. Report on Magnetic and VLF-EM Surveys on the Keeyask Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario for Moss Resources Ltd.; 38 p. Ontario Ministry of Natural Resources Assessment Work Files, Sioux Lookout, Ontario.
- Ontario Geological Survey, 1982. Map 2292, Big Trout Lake North Caribou Lake Geological Compilation Series.

 Scale: one inch to four miles.

- Ontario Geological Survey, 1985. Airborne Electromagnetic and Total Intensity Survey, Opapimiskan Lake Area, District of Kenora, Patricia Portion; by Aerodat Limited, Geophysical/Geochemical Series, Map 80725. Scale 1:20,000.
- Ontario Ministry of Natural Resources Assessment Work Files, Sioux Lookout, Ontario.
- Piroschco, D.W., Breaks, F.W., and Osmani, I.A., 1989. The Geology of Gold Prospects in the North Caribou Lake Greenstone Belt, District of Kenora, Northwestern Ontario; Ontario Geological Survey, Open File Report 5698, 94 p.
- Satterly, J., 1939. Geology of the Windigo North Caribou Lakes Area; Ontario Department of Mines, Vol. 48, Part 9, pp. 1-32, accompanied by Map 48h. Scale one inch to one mile. Geology 1938.
- Thurston, P.L., Sage, R.P., and Siragusa, G.M., 1979.

 Geology of the Winisk Lake Area; District of Kenora,
 Patricia Portion; Ontario Geological Survey Report
 193.

APPENDIX A

CERTIFICATE OF QUALIFICATION

CERTIFICATE OF QUALIFICATION

I, Thomas S. Jolliffe, of 1217 - 44 St. Joseph Street, Toronto, Ontario, certify that:

- 1. I am a graduate of Queen's University with the degree of Bachelor of Science (Geological Engineering) in 1971.
- 2. I have worked as an exploration and mine geologist since 1971.
- 3. I supervised the diamond drilling program on the Keeyask Lake Property from February 8th to February 25th, 1989.
- 4. The statements contained in this report, and the conclusions reached, are based upon the field work and a comprehensive study of all relevant assessment work records of the Ontario Geological Survey, and geological reports and maps published by the Ontario Ministry of Natural Resources.
- 5. In this report, I have disclosed all relevant descriptive and interpretive material which is, to the best of my knowledge, necessary to gain a complete understanding of the viability of the project and the recommendations.

DATED THIS I'M DAY OF May , 1990

1. A. goinglo T.S. Jolliffe, B.Sc. (Eng.)

Geologist

APPENDIX B

LEGEND AND DIAMOND DRILL SECTION

QUATERNARY

Stream, lake, bog deposits Glacial, glaciofluvial lacustrine

LATE PRECAMBRIAN (Keeweenawan?)

11 11a Diabase

EARLY PRECAMBRIAN

10 Intermediate and Felsic Intrusives

- 10a Granite pegmatite
- 10b Aplite
- 10c Granite
- 10d Syenite
- 10e Quartz monzonite
- 10f Granodiorite
- 10g Trondjemite
- 10h Quartz diorite
- 10) Diorite
- IOk Unsubdivided gneiss
- 101 Granite gneise

9 Mafic Intrusives

- 9a Unsubdivided
- 9b Gabbra
- Leucogabbro
- Plagioclase phyric gabbro
- 9**e** Peridotite
- Pyroxenite

Iron Formation

8

- 8a Oxide facies
- Carbonate facies
- 8c Silicate facies

Sulphide facies

7 Chemical Metasediments

7a Chert

6

5

- 7b Calcitic marble
- 7c Dolomitic marble

Clastic Metasediments

- 6a Clast supported conglomerate
- 6b Matrix supported conglomerate
- Oligomictic conglomerate
- Polymictic conglomerate
- Sandstone, unsubdivided
- 6f
- 6a Arenite
- Mudstone, argillite
- Feldspathic wacke
- Feldspathic arenite
- Quartz arenite

Schistose rock ± amphibole,± biotite,

± garnet, ± chlorite of probable

sedimentary origin

Felsic and Intermediate Subvolcanic Rocks

- 5a Unsubdivided
- Quartz-feldspar porphyry
- 5c Quartz porphyry
- 5d Feldspar porphyry

Felsic Metavolcanics

- 4a Massive fine-medium grained flow
- 4b Pyroclastic breccia, tuff breccia
- 4c Tuff, lapilli tuff

Intermediate Metavolcanics

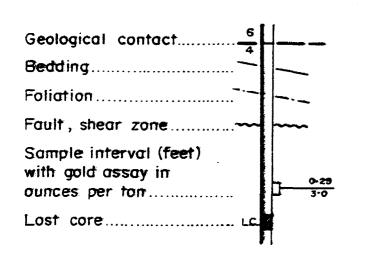
3

2

3a Massive fine-medium grained flow

Geological Legend

- 3b Flow breccia
- 3c Pyroclastic breccia, tuff breccia
- Tuff , lapilli tuff


Mafic Metavolcanics

- 2a Massive fine-medium grained flow
- Amygdaloidal flow
- Varialitic flow
- Pillowed flow, pillow breccia 2đ
- Flow breccia
- Medium-coarse grained flow centres
- Plagioclase-phyric flow
- Amphibolite 217
- Co-magmatic sills, dikes
- Pyroclastic breccia, tuff breccia
- Tuff, lapilli tuff
- 21 Charite ± amphibale schist

Ultramafic Metavolcanics

- la Massive fine-medium grained flow
- Spinifex textured flow
- 1c Tate-carbonate ± magnetite ± amphibale
 - ± serpentine ± chlorite schist

Symbols

strong weak

SilicificationSIL , sil	Visible goldVG	Gruneritegrun
SericitizationSER: , ser	Sulphides s	Siderite sid
Carbonatization CAR , car	Pyrite py	Dolomite dol
ChloritizationCHL , chl	Pyrrhotite po	Ankerite ank
Brecciation BX , bx	Chalcopyritecp	Garnet gnt
Shearing SH , sh	Arsenopyriteasp	Epidoteep
	Sphaleritesph	Tourmaline tl
	Galenaga	Xenolithxn
	Graphitegr	Mylonitemyl
	Magnetite mt	Scheelitesch
	Limonitelim	Carbonatecc
	Hematite hem	Quartz / Carbonate
	Molybdenitemo	veins
		Quartz / Carbonate

Abbreviations

stringers.....qs/cs

1.1. gonts

IOSS-POWER RESOURCES INC.

KEEYASK LAKE PROPERTY

Patricia M.D., Ontario.

TO ACCOUNT

GEOCANEX LTD TORONTO, CANADA

DATE: March 90 FIG. Na.

mr TJ/RTM

APPENDIX C

DIAMOND DRILL HOLE LOGS

STARTED: February 8th, 1990

NAME OF PROPERTY: Keeyask Lake HOLE NO.: KE-90-1 LENGTH: 199.0 feet L88+00N, 34+02W LOCATION: **ELEVATION:** AZIMUTH:

240° (Grid West) DIP: FINISHED: February 10th, 1990 Footage 0.0 1 -42.5°1 199.0 | -42.4°|

SHEET NO: 1 Of 1 HOLE NO: KE-90-1 Pa 1009775

Summary Log

LOGGED RY: T.S. Jolliffe

CLAIM NUMBER:

l Foot	tage	l Description) x	 Number	Samp I F	l e Footage		l As	s a y s	
From	l To	l Summary Log	Sulphides		I From	To	Total	i Au i Oz/ton	Au ppb	Au Check
0.0	1 24.4	ICASING AND OVERBURDEN RUBBLE	!	!		• • • • • • • • • • •		!		
1 24.4 1	1 1 29.0	 WACKE (Boulder?)	‡ 	i	i t			l i		•
1 29.0	i i 199.0	 GRANODIORITE	<u> </u>	1	 			 		
1 1	199.0	 END OF HOLE	i 	l i	1 1			ŧ I		i
i i	i I	 	1	 	 			i i		ì
1			1	} !	1			i I		i
1 1	, 		1 1		i i			 		!
1 1	! !	1	,)	!	1			, -		• !
i i	! !		1	! !	! 			1		ļ
i i	i I	! !	1	; 	!]) 		1 1
i i	i I] i	1	i I	l J			l I		i (
1 1	 	1 1	1	i I	I I		į	} 		i i
}	 	i 1	i 1	} }	l I		1	 		1
1 1		i	i 1]) 1		1] }		i !

NAME OF PROPERTY: Keeyask Lake

HOLE NO.: KE-90-1 LENGTH: 199.0 feet
LOCATION: L88+00N, 34+02W
ELEVATION: AZIMUTH: 240 (Grid West) DIP: -42.5°
STARTED: February 8th, 1990 FINISHED: February 9th, 1990

Footag		Dip	HOLE NO: KE-90-1	SHEET NO:1 of 4
•				
1 0). O i	-42.5° i	CLAIM NUMBER:	Pa 1009775
1 199	.0 1	-45°		
1	1	1		
I	i	ı	LOGGED RY: T.S. Jo	lliffe

Foot	tage	l Description	 *	 Number	Sampi F	l e Footage		1	.	
From I	l To	1	Sulphides 		l From	То	Total	l Au l Oz/ton	Au ppb	Au Check
0.0	24.4	ICASING AND OVERBURDEN RUBBLE						!		
24.4	29.0	IWACKE - darkish grey, medium- to fine-grained, strongly Ifoliated (5°to 25°to core axis). Possible boulder	10.5 -2	3101	24.4	29.0	4.6	(0.002	(5	
1		AVERAGE MODES: Feldspar 30-40x Guartz 30-40x Biotite 25-35x Sericite 10-15x Calcite 2-5x Pyrite 0.5-2x						; ; ; ; ; ;		
 		Minor coarser quartz and feldspar grains. IPyrite finely disseminated. ISlightly more annealed approaching contact below.		 	 			; ; ;		
29.0		IGRANDDORITE: light grey with slight pale greenish tinge, Imedium grained, massive, unfoliated.			 			1 		
, 1 1 1 1 1		AVERAGE MODES: Feldspar 50-75x Guartz 20-45x Sericite 5-15x Hornblende 5-10x Calcite trace-2x Pyrite			; ; ; ; ; ;		!	· • • • • • • • • • • • • • • • • • • •		

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-1

SHEET NO: 2 of 4

Foo	tag	e 	Description	 	l Number	Sampi	l e Footage		1	ssays	
From	i To	.		Sulphides		From	То	Total	l Au l Oz/ton	Au ppb	Au Check
on de de de de de de de	 		Pyrrhotite (0.5% Tourmaline (0.5% Molybdenite(?) trace	 	 			to the did the lab did plu the gar	† 	. Oan dan iku iku dar gar gar gar Gr	50 gu gu gu gu gu
	1		Anhedral to subhedral, medium-grained quartz in fine- to medium-grained feldspathic metrix	 	 	 			 		
	} 		29.0 -upper contact? (core angle not preserved) 37.0' to 37.5' -cavity	 trace	3102	1 29.0	34.0	5.0	 (0.002	⟨5	
	 		39.0' to 43.1' -minor irregular seams with tourmaline needles -minor blebs of calcopyrite and pyrrhotite minor specks of molybdenite(?)	10.5	1 3103 1 1	39.0 	43.1	4.1	(0.002	(5	
]]		43.1' to 47.6' -70% cavities -minor irregular magnetite-rich seam at 44	itrace	3106	43.1	47.6	4.5	 (0.002	(5	
	 		47.6° to 51.1° -includes (1" quartz veinlet (15° to core axis) with minor chalcopyrite and pyrrhoti blebs at 48.4°	i(1 te i	1 3104 i	i 47.6	51.1	3.5	 (0.002 	(5	
	1	! 	51.1' to 54.6' -includes quartz-tourmaline seam (22° to coaxis) with minor pyrite at 53.3'	re trace	i 3105	1 51.1 -	54.6	3.5	 {0.002 	(5	
	; ; ;		59.0 to 64.0' -with 1/2" quartz veinlet with minor pyrit blebs, trace molybdenite(?) (30° to core axis)	e (0.5	1 3107 1	; i 59.0 i	64.0	5.0	i (0.002	₹5	
	i	i		1 1	, 	 		j	· }		

NAME OF PROPERTY:

Keeyask Lake

HOLE NU: KE-90-1

SHEET NO: 3 of 4

F o o	t a	g e	- t	Description	 X	 Number	Samp	l e Footage		i	5 5 A Y 5	
From	1	To	 		Sulphice		i From	ĩo	Total	i Au i Oz/ton	Au ppb	Au Cneck
	1		1 76.4' to 85.4'		ltrace	1 3108	76.4	80.9	4.5	1 (0.002	3 5	
] 		1 1	magnetite seams up to 1/2" wide; also minor quartz veinlets (55 ° to core axis) from 83.6' to 84.5'	itrace 	1 3109 1 1	1 80.9 1	85.4	4.5	i (0.002 i	⟨5	
	i i I		1 85.4' to 90.4'	sericitized between 86.0' and 87.0' (55° to	i Itrace i	 3110 	i 85.4	90.4	5.0	1 (0.002 1	₹5	
	i i		ì	core axis).	1	1	1)		
	1		99.0' to 102.0'	-includes 0.1" black chert 'veinlet' (23° to core axis) at 100.5'	itrace	3111	99.0	102.0	3.0	<0.002	₹5	
	i		1118.6' to 123.6'	line) veinlets - character sample (23° to cor		3112	1 118.6	123.6	5.0	(0.002	₹5	
	1		1129.0' to 134.0'	axiswith 0.2" magnetite-rich veinlet (25° to core axis) at 130.9?	l Itrace i	1 3113	1 129.0	134.0	5.0	1 (0.002	₹5	
	1		1 1139.8' to 148.3'	-cavity?] i	1 1	 			 		
	l i		1149.0' to 154.0'	(50° to 60° to core axis) strace pyrite	itrace I	i 3114	1 149.0	154.0	5.0	(0.002	(5	
	j j		1	-may include core from following interval (154.0' to 159.0')	ł i) 	† 1		:	! !		
	i		1154.0' to 159.0'	-no core (cavity and/or ground core)))	1	1		I) 		
	l i		1164-01 to 124-01	-with minor quartz (± magnetite, calcite,	i itrace	1 1 3115	1 164.0	169.0	5 A	(0.002	(5	
	i		120-10- 10 17410-	chlorite) veinlets 1"wide (40° to 62° to core		1 3115	1 169.0	174.0		(0.002 (0.002	(5 (5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-1

SHEET NO: 4 of 4

Foo	tage		Description		i I Number	Samp:	l e Ootape		İ	5 5 A Y 5	
From	i To	 		Sulphides		i From	То	Total	Au Oz/ton	Au ppb	Au Check
]	axis) - may be thin shears or relict iron formation bands.	 	 i !	1			1		
	 	1183.1' to 184.4'	-pale grey, fine-grained felsic dyke $(55^{\circ}$ to core axis) with $10\times$ medium-grained quartz and feldspar phenocrysts	itrace i	1 3117 	181.0	186.0	5.0	(0.002	⟨5	
	 	1190.0' to 195.0'	-with minor quartz-calcite (\pm chlorite) veinlets ($1/2"$ wide at various angles ($20~$ 0 to $55~$ 0) to core axis	itrace	; i 3118 	190.0	195.0	5.0	, (0.002 	₹5	
	i 199.	O IEND OF HOLE		! } !	, 	1 1 1			1 1 j		
	i	ł l i] 	 	i i			i i i		
	1 1 1	1 1 1		! ! !	i i i	1 1 1			! }		
	}]] i 	 	1 6 1] i i		
	1	1	1.1 gwed	 		i 1			i I		
	l	1		1) 			!	 		

NAME OF PROPERTY: Keeyask Lake

LENGTH: 249.0 feet

HOLE NO.: KE-90-2 LOCATION:

ELEVATION

L88+00N, 31+33W

AZIMUTH:

240° (Grid West)

DIt.:

STARTED: February 12th, 1990

FINISHED: February 15th, 1990

Footage Dip | 0.0 1 -45° 1 200.0 | -44.5°| HOLE NO: KE-90-2

SHEET NO: 1 Of 1

CLAIM NUMBER:

Pa 1009776

Summary Log

LOGGED BY: T.S. Jolliffe

Foo	t a g e	l Description	 	 Number	S & m p	l e Footage				* 5 5 5 5 5 5 5 5
From	l I To		Sulphides		l From	To	Total	i Au I Oz/ton	Au ppb	Au Check
0.0	1 66.0	ICASING AND OVERBURDEN	i	 I				i		
66.0	i 141.2	 Conglomerate	} 	ł 	i i	•]]		
141.2	1 249.0		} 	1	1			i i		
	1 249.0	I LEND OF HOLE	1	i I	i i			 		
) 1	} 1	1	i i] [t I		
	ł 1	i 1	1	i I	i F			i I		
	i 1	! !	i i) 	i			!		
	1	 	å Ⅰ	 	i l		,			
	i	1 1	#	, 	 			 		
	 	, 1 i	i	, 	, 		'	}		
	i i	1	i i		,]		:	 		
	1	, :	1	1	}		:	 		
	1] :	• 	1		! !			; 		
	1	I	i	j	ı		•			

NAME OF PROPERTY: Keeyask Lake

HOLE NO.: KE-90-2 LENGTH: 249.0 feet

LOCATION: L88+00N, 31+33W

ELEVATION: AZIMUTH: 240° (Grid West) DIP: - 45°

STARTED: February 12th, 1990 FINISHED: February 15th, 1990

	Footage	Dip		HOLE NO: KE-90-2	SHEET NO:1 of 4
•			1		
1	0.0 (-45°	i	CLAIM NUMBER:	Pa 1009776
1	200.0 1	-45°	j		
i	1		j.		
1	1		- 1	LOGGED RY: T.S. Jo	lliffe

F o o	tage	l - Description	 	i Number	Samp	l e Footage		i A	5 5 A Y E	•
From	i i To		iSulphides J	i	i From	To	Total	i Au i Oz/ton	Au ppb	Au Check
0.0	66.0	ICASING AND OVERBURDEN	i	1				 I		
	1	1 45' to 49' - wacke boulder (suggests that wacke at top of	1] 	i i			 		
	i	KE-90-1 may also have been boulder).	i	i	ì			i i		
66.0	141.2 	ICONGLOMERATE - slightly preenish-grey, matrix-supported poly- imictic pebble conglomerate.	i i	i I	i I			i i		
	i i	I AVERAGE MODES:	1 1	ė j	1			i I		
	i I	Guartz	j 1	j I	1			i i		
	1	Sericite/muscovite 10-40% Feldspar 5-10%	1	i 1	1			j i		
	i	Calcite 1-3x Pyrite 0-0.5x	1	} !	1			} :		
	1	I Magnetite O-trace	; !	!	1			i		
) ì	! !Matrix (90%): ~ predominantly medium-grained (fine pebbles	1	i i	1			 		
	i I	(0.3%) , angular (\pm brecciated) to rounded, smokey grey quartz $(35-60\%)$, sub-foliated to randomly oriented; with foliated,	1	l ∮	1			 		
	i i	!fine-grained, greenish-grey interstitial chlorite-sericite- !muscovite (40-65%)	I	 	i i		 	 		
	!		1	- 	i					
	; {	igrey and greenish grey, angular to rounded, intermediate to	1 }	! }	1		i	1		

NAME OF PROPERTY: Keep

Keeyask Lake

HOLE NO: KE-90-2

SHEET NO: 2 of 4

F o o	t a		l -i Description	 X	 Number	Samp	l e Footape		i	5 5 8 Y 5	
From	1	To	1	Sulphides	;	l From	То	Total	Au Oz/ton	Au ppb	Au Cneck
	i		Ifelsic flow fragments sub-aligned with foliation, minor grano-	1	i	i					
	i		ldiorite clasts.	1	1	I			1		
	1			1	1	I			ŀ		
	ı		IFoliation: 67' - 25° to core axis	1	į.	ì			i		
	1		80' - 23° to core axis	!	1	1			1		
	!		83' - 15° to core axis	!	1	1			ì		
	!		90' - 30° to core axis 98' - 0° to 10° to core axis	1	!	!			i		
	1		118' - 0"to 10" to core axis	1	1	1					
	ı		118' - U to 5' to core axis	1	1) ,			1		
			iMinor quartz-calcite veinlets, generally parallel to foliation.	:	1						
	1		Minor pyrite coatings on foliation planes.	1	1	1					
	- 1		inition pyrite coatings on follacion planes.	1	1	1			†		
	1		66.0' to 71.0' -character sample	1	; 3119	66.0	71.0	E A	i (0.002	/5	
	1		1 84.0' to 89.0' -minor pyrite on foliation planes	(0.5		84.0	89.0		1 (0.002	(5 (5	
	i		99.0' to 109.0 -97% lost (ground) core	1 10.3	1 STEA	1 04.0	67.0	3.0	1 (0.002	(5	
	i		1109.0' to 119.0' -64% lost (ground) core (3.6' of core)	i trace	3121	109.0	119.0	10.0	1 (0.002	⟨5	
	}		1119.0' to 129.0 ->99% lost (ground) core (1" of core)	I	, 0111	1	113.0	10.0	1 10.000	13	
	i		1129.0' to 139.0' -95% lost (ground) core (0.5' of core)	, trace	3122	i 129.0	139.0	10.0	, (0.002	(5	
	i		1139.0' to 141.2' -below section with core loss	trace		1 139.0	141.2		(0.002	(5	
	•		i	1	1	i 20310	1411	E- E	1 10.000	(5	
141.2	i	249.0	WACKE AND CONGLOMERATE - dominant grey, medium-to fine	i.	i	i e			, i		
	i		Iprained, unsorted wacke with minor ((5%) polymictic	i	ì	i		i	ì		
	ļ		iconglomerate clasts (pebbles, cobbles) interbedded with	i	i	1			i		
	i		Ipolymictic conglomerate (typical, as from 66.0' to 141.2');	i	ł	i		i	i		
	1		igrades to fine oligomictic (quartz) pebble conglomerate.	1	í	ł			· 		
	ŀ			i	i	1		1	l		
	İ		1	•	1	+		·	l		
	1		1	ì	i	i		i	i		
	í		1	I	ł	i		i	i		

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-2 SHEET NO: 3 of 4

	tage	1 222.15010		l Number	Samp	l e Footage		j.	5	
From	l To	1	Sulphides		i From	То	Total	i Au i Oz/ton	Au ppb	Au Check
	1) AVERAGE MODES (Wacke)	1]	-, i			 		
	1	1	1	I	1			I		
	1	Feldspar 30-55%	1	f .	1			1		
	i	Quartz 30-55x	1	1	1			ł		
	1	Chlorite 15-40x	í	ı)			l		
	1	Sericite/muscovite	1	1	1			i		
	1	(/Biotite?) 5-10x	1	ļ	1			i		
	1	Calcite <1%	¥	i	I			ı		
	1	Pyrite 0-1x	1	j	ı			1		
	ı		i	i	ı			1		
	ŀ	Wacke has weak but distinct foliation:	ł	ı	J			ì		
	I) 0° at 149°	l .	Į.	1			•		
	i	0-5° at 170'	i	ı)			ì		
	1	0-5° at 182'	1)	i			i		
	i	10° at 196'	i	l	i			· I		
	i	19° at 211'	ł	i	i			i		
	i	26° at 228'	i	I	i			, I		
	i	i 21° at 243.3°	i	i	į			, i		
	1	1	i	I	í			, 1		
	i	Minor pyrite coatings on foliation planes.	i	i	i			, 1		
	i	I	i	i	i		,			
	i	Minor (2%) quartz (± plagioclase, chlorite, calcite, pyrite)	i	1	i			, I		
	i	Iveinlets at 10° to 40° to core axis.	(0.5	3124	141.2	144.0	2 A	(0.002	5	
	i	1	1	1	1	24410	2.0	1	3	
	i		i (1	3125	1 144.0	147.2	3 2	(0.002	⟨5	
		i calcite) veinlets, trace to 1% pyrite; at 15°		, Ollo i	1	17/16	3.5	10.000	,,,	
	i	to 23° to core axis.	i	• I	i			, . I		
	,	I OU TO AD COLE MYIB!		, I	i		1	; 1		
			0.5	3126	1 147.2	151.7	4 6		(5	
	,	35° to core axis.	. 0.3	3160	1 14/*5	191.7	4.0	(0.002	(2)	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-2

SHEET NO: 4 of 4

F 0 0	tage		Description	 	 Number	Samp:	l e Footage		i .	55 a y 5	
From	l To	1		Sulphides		From	То	Total	i Au I Oz/ton	Au	Au Check
	 - -	1249.01) with medi	73' to 182.6', 194.6' to 226.0', 231.0 to ium- to coarse-grained quartz typical of rix above, but few larger clasts - could be le conglomerate.	i 	i i k	 			 		
	1	1171.0' to 176.0'	- very minor quartz-plagioclase-calcite (\pm chlorite) veinlets with pyrite (character sample) at 10 $^{\circ}$ to 40 $^{\circ}$ to core axis.	tr - 1	1 3127 1	171.0	176.0	5.0	1 (0.002 i	6	
		1194.0' to 199.0'	-minor pyrite coatings, minor ((1" quartz- plagioclase-calcite-chlorite veinlet at 24°	1 (1	1 3128	1 194.0	199.0	5.0	1 (0.002	₹5	(0.00
	1	1	to core axis.	trace	3129	1 199.0	200.9	1.9	i (0.002	⟨5	
	1	1200.9' to 205.9'	-minor ((i") quartz-plagioclase veinlets (possible tourmaline).	i trace	1 3130 1	200.9	205.9	5.0	 (0.002 	14	
	}	1226.0' to 229.0'	-finer grained wacke with pyrite coatings	(1	3131	226.0	229.0	3.0	1 (0.002	⟨5	
	; 	1234.0° to 249.0°	-minor quartz veinlets (20 $^{\circ}$ to 40 $^{\circ}$ to core axis) slightly more common.	(0.5) trace (0.5)	3133	i 234.0 i 239.0 i 244.0	239.0 244.0 249.0	5.0	0.002 1 (0.002 1 (0.002	(5 (5 (5	
		243.31	-pale buff, finely laminated siltstone band (1")	1	1	1	2.,,,		 	,-	
	1 249.0	I DIEND OF HOLE		1	<u> </u>	1			 		
	1	i		1	1	1			İ		
	ì	; }	_	ì	, 	i			i İ		
)	į	1. L. guiff	i e	i	i		!	i		

NAME OF PROPERTY: Keeyask Lake
HOLE NO.: KE-90-2A LENGTH: 60 feet
LOCATION: L88+00N, 31+33W

...

ELEVATION: AZIMUTH: STARTED: February 11th, 1990 240° (Grid West) DIP: - 45°

FINISHED: February 12th, 1990

Footage		Dip		HOLE NO: KE-90-2A	SHEET NO:1 of 1
		-45°		CLAIM NUMBER:	Pa 1009776
· I	1		i		

LOGGED BY: T.S. Jolliffe

Footage Description i Number Footage |Sulphides|-----Αu To From From | To Total | Oz/ton Check 60.0 ICASING AND OVERBURDEN - intersected several boulders 0.0 1 l(predominantly wacke) IN.B. - casing broke off at 59 feet; could not be retrieved. Hole abandoned. Moved collar position 8" and redrilled ! (KE-90-2) 1. 1. Jull

NAME OF PROPERTY: Keeyask Lake HOLE NO: KE-90-3 SHEET NO: 1 Of 2 Footage HOLE NO.: KE-90-3 LENGTH: 499 feet LOCATION: L88+00N, 31+27W -44.0°1 0.0 1 CLAIM NUMBER: Pa 1009776 060°(Grid East) **ELEVATION:** AZIMUTH: DIP: 1 0.003 -42.3°1 STARTED: February 18th, 1990 FINISHED: February 21st, 1990 400,0 i -37.0°I Summary Log LOGGED BY: T.S. Jolliffe

·. .:

Foo	t a 	g e	l Description	i ! *	 Number	Sam p	l e Footage) As	5 8 A Y 5	;
From	1	To	Summary Log	Sulphides 	 	i From	То	Total	i Au I Oz/ton	Au ppb	Au (Check
0.0	1	77.0	ICASING AND OVERBURDEN	1	l 		~~~		· · · · · · · · · · · · · · · · · · ·		, ,
77.0	1	86.9	I CONGLOMERATE	1	} }	1		:	} 		i
86.9	i	90.7	ISILTSTONE] [! !	} }			 		! !
90.7	į	102.7	CONGLOMERATE	1	i i	1			İ		} !
102.7	 	106.2	IQUARTZ WACKE	1	i j	i		į			
106.2	1	108.3	I CONGLOMERATE	1	1 F	} }		1	})
108.3	! !	123.0	IBRECCIA ZONE	! !	i !	1 		ļ			, 1
123.0	1	128.8	IINTERBEDDED WACKE AND SILTSTONE	\$ }]	!		l I			1
128.8	! !	159.3	CONGLOMERATE	! !	i) }		i			i
159.3	i !	162.3	ISILTSTONE	i I	! !	l Í		-			
162.3	ł	167.4	I CONGLOMERATE	} }) }	i i		 			!
167.4	l i	170.1	I ISILTSTONE	1 	i •) }		i i			1
	j i		1	i I	}) 		} !			<u>.</u> 1

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 2 of 2

F o o		g e	l Description	l ≭	i i Number	Samp	l e Footage		i As	says	
From	i	To		Sulphides		l From	То	Total		Au ppb	Au Check
170.1	!	264.9	CONGLOMERATE	!	!		6 64 66 66 66 ₆₆ 66 66 66 66 66 66 66 66 66 66 66 66		 		
264.9	i	284.3	IALTERED MAFIC FLOWS	!	1	1			1 		
284.3	i	309.4	ICONGLOMERATE	i i	ł 1	i j			} 		
309.4	i	384.4	I IMAFIC TUFFS AND FLOW	1 1	1 1	i i			i i		
384.4	i	433.0	 ULTRAMAFIC METAVOLCANIC	<u> </u>	i i	 			1 i		
433.0	i	499.0	 CONGLOMERATE	i i) -] 		
	l i	499.0	I LEND OF HOLE	1 (1 	} i			 		
	l i		∤ 1	! !	} 	i i			i		
	i I		i 1] 	1	1			l		
	1		[}	i i			·	1		
	İ			Í	! !						
	1		1	;]	! !		!	<u> </u>		
			•	1 	! !	; ;		İ	 		
	i		1	! !	! !	! !			İ		
	1		1 	 	l i	!]		 	ŀ		
	i		1 1) 	l 1	i I			i		

NAME OF PROPERTY: Keeyask Lake

ME OF PK LE Nû.:		LENGTH: 499 feet	} 	FOOTage	DIB	; , ;	HULE NU:	KE-90-3	SHEET NU:	. 1 07 1
CATION: EVATION:		L88+00N, 31+27W AZIMUTH: 060° (Grid East) DIP: -44° 18th, 1990 FINISHED: February 21st, 1990	 	0.0 200.0 400.0	1 -42.3	1	CLAIM NUM	BER: : T.S. Jol	Pa 100977 liffe	'6
F o o t	9	t Description	X 	i Number	Samp:	emmanama l e Footage		i A	5 5 A Y 5	
From I	To) 1	Sulphide 		From	To	Total	, 1	Au ppb	Au Check
0.0	77.0	ICASING AND OVERBURDEN: -wacke and granitic gneiss boulders land rubble.	 	i	 		7 M 44 64 54 54 64 64 64) 		
77.0 i	86.9	ICONGLOMERATE: - slightly greenish-grey, well foliated, Igenerally matrix-supported, oligonictic quartz pebble iconglomerate.	1	; ; ;	; i l			1 		
i I		I AVERAGE MODES:	1	i	i i			 		
- 1		Quartz	ŧ	i	I			ì		
i		Chlorite 25-45x	1	i	1			ì		
ı		Sericite 5-15%	ı	1	1			i		
ł		Carbonate 1-10%	4	1	i)		
1		i Pyrite trace	<u>l</u>	j	<u> </u>			ĺ		
1		IClasts consist of rounded to ovoid (elongated in plane of		(l					
:		ifoliation) smokey quartz:	1	1	1) 1		
i		coarse sand (1-2mm) 10-85%	i	, 1	7 1			I ł		
i		pranules (2-4mm) 10-70x	i	j	, i			• 1		
i		pebbles (4-7mm) 2-30x	i	i	1			, I		
ł		I	1	ŀ	l			j		
1		<pre>!Also, rare larger pebbles up to 50mm (quartz, siltstone, !mudstone, dolomite (brecciated vein fragment?).</pre>	i	 	 			} 1		
i		1	1	Ė	I					
!		IMatrix (30-60%) consists of foliated interstitial chlorite,	1	1	i			l		

Isericite and carbonate (calcite, dolomite).

i Footage

Dip |

HOLE NO: KE-90-3 SHEET NO: 1 Of 19

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 2 of 19

			Description	, i *	i Number	Samp	Footage		i	5 5 A Y 5	
From	l i	To	 	Sulphide		From	To	Total	l Au l Oz/ton	Au ppb	Au Check
!	 		IGradational to quartz wacke with decrease in granule/pebble icontent.	l !	 			Sir Cas Cas spa san (an Ca) Ca?) 		
	 		 Bedding/foliation at 48° to 65° to core axis.	 	†]	† †			f 		
	i		1 77.0' to 85.4' -with 5% boudinaged to brecciated dolomite	trace	3136	77.0	81.2	4.2	· · (0.002	(5	
1	1 		<pre>(± quartz, chlorite) veinlets; concordant to subconcordant</pre>	trace	1 3137 1	81.2	85.4	4.2	(0.002 	(5	<0.002
! !	! 		85.4° to 86.9° -75% dolomite (#quartz, chlorite) veins, brecciated toward contacts	(0.5	1 3138 1	65.4 	86.9	1.5	1 1 (0.002 1	8	
86.9	i i		ISILTSTONE - grey, with light grey, greenish grey and buff- lgrey laminae, thinly laminated to very thinly bedded (<0.3cm	tol) 						
!			3cm) siltstone; gradational to fine-grained wacke.	1	!	1)		
ı	! !		: AVERAGE MODES:	-	1	1					
			Chlorite/Sericite 65-85%	1	1	}			i		
	i I		Quartz 10-30x	i	i	i					
1	ì		Carbonate 5-15x	i	ì	i			1		
,	ł		Arsenopyrite 0-20%	ı	i	1					
ļ	l		Fuchsite 0-10x	F	ļ	1					
1	ŀ		l Pyrite 1-3x	1	1	i			1		
,	j		Pyrrhotite	!	1	1			1		
ı	I		Magnetite trace	J	1	I			ı		
	1		1	1	i .	ı		1	1		
1	!		Laminated at 47° to 67° to core axis.	ł	ı	i					
j			With 5-10% dolomite-quartz (+arsenopyrite, pyrite,	1	1	i					
į			<pre>lpyrrhotite) veinlets: generally concordant, commonly iboudinaged to brecciated, with sulphides concentrated in</pre>	l .	1	1		i			

...

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3 SHEET NO: 3 of 19

Foot			Description		 Number	Samp:	l e Footage		1	ssays	
From I	To)		Sulphides		From	To	Total	I Au I Oz/ton	Au ppb	Au Check
1			pressure shadows of boudins.	i	1	-,			!		
 			With greenish fuchsitic laminae. Pyrite/phyyhotite coatings land fine needle-like prisms of arsenopyrite on foliation plane	 	1 	1			; ;		
į			86.9' to 89.5' -1-3% pyrite (±pyrrhotite, arsenopyrite)	1-3	3139	86.9	89.5	2.6	(0.002	29	
! i } !			-dolomite-quartz vein (at 50° to core axis); generally brecciated; with thin fuchsite seams; semi-massive to massive fine-grained arsenopyrite between 89.9° and 90.4°; 2-3% pyrite (±pyrrhotite)	1 25-30 1 1	i 3140 	89.5	90.7	1.2	 0.013 	437	
90.7	10	i	CONGLOMERATE - typical, as from 77.0' to 86.9' Foliated at 47° to 67° to core axis. Includes minor ((1%) larger chert pebbles. Slightly sheared in parts.	tr0.5 trace trace	3142	90.7 95.7 99.2	95.7 99.2 102.7	3.5	1 (0.002 1 (0.002 1 (0.002	(5 (5 84	
1			99.2'-102.7' With a few needles of arsenopyrite(?)	1	! 	i I		İ	i I		
102.7	10	6.2	QUARTZ WACKE - grey, coarse, weakly foliated quartz wacke.	i (1	l 1 3144	1 102.7	106.2	3.5	i (0.002	17	
 		 	AVERAGE MODES: Quartz 60-75% Chlorite 20-40% Carbonate 1- 4% Pyrite (0.5% Arsenopyrite(?) (0.5% Pyrrhotite trace	f 	 			, , , , ,			

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 4 of 19

	y 5
Chlorite matrix.	Au Check
Foliated at 45° to 60° to core axis.	,
Minor thin ((0.5") dolomite-quartz veinlets - concordant. Several pencil-thin carbonate veinlets at 35° to core axis (sub perpendicular to foliation). Minor pyrite and needles of arsenopyrite (?). Minor pyrite and	
Iperpendicular to foliation).	
106.2 108.3 CONGLOMERATE - slightly greenish grey, foliated oligomictic 2-13 3145 106.2 108.3 2.1 (0.002	
Iquartz pebble conglomerate.	
Quartz 50-75%	20.002
Chlorite 15-40%	
Carbonate 2-5%	
Pyrite 2-10%	
Arsenopyrite (?) 0.5-3%	
i igrey chert clasts up to 30mm.	

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 5 of 19

F 0 0 1	t a 	ů e	l Description) 	* i	Number	Samp	l e Footase		i As	5	
roni .	i	To		ÍS	ulphides		l From		Total	∮ Au ∤ Oz/ton	Au	Au Enec
									10041	. 02/001	 pyu	
	 		Pyrite aggregates commonly associated with large chert c (pressure shadows).	clasts	 		i i			1		
! !	, , j		Increasing very fine-grained prismatic needles of silver metallic mineral - arsenopyrite (?), stibnite(?).	, 	i					, 		
108.3	; 	123.0	BRECCIA ZONE - interbedded typial quartz pebble conglome I(75%) and quartz wacke, moderately to strongly brecciate with minor to common shear/slip planes but only minor in pervasively sheared/mylonitized; in less deformed sectio large chert pebbles retain shape; in more brecciated sectioned; wedge-shaped chert and mudstone pebble fragments cut aloushear planes. Shearing at 45° to 65° to core axis.	ed intervalsions intervals	, i i i i		1 1 1 1 1 1			; ; ; ; ; ;		
 	 		 Slickensides on foliation planes pitch south.	1 1 ;	 		1 i			i i i		
# 	 		i108.3° to 110.8° -with abundant fine-grained bands and seminated silver metallic needles of stibnite (?) (arsenopyrite?) and pyrit and below core of coarser-grained ((2m massive to massive sulphides between 1 and 110.1°; with 5-10% fuchsite.	i e abovei m) semil	25-45 	3146	108.3 	110.6	2.5	i 6.017 	594	
; ; i	() i i		1110.8 to 113.5 -predominantly finer-grained wacke grassiltstone; generally unbrecciated, with chloritic shear planes; decreasing distinated pyrite and silver metallic mine	h some i sem- i	i 1-5 i i	3147	 110.8 	113.5	2.7	(0.002	⟨5	
i			i needles; minor pyrrhotite (tmagnetite?		i					•		

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 6 of 19

F 0 0 1	tage	l Description	i *	 	Number	Samp I F	e ootape		1	s s a y s	
From i	! i To	 		des i		I From	То	Total	i Au I Oz/ton	Au ppb	Au Check
i	 	1113.5° to 117.0° -moderately strongly brecciated congl with larger brecciated chert and silt fragments; minor disseminated pyrite pyrrhotite; rare silver metallic mine needles.	stone and	1	3148	113.5 	117.0	3.5	(0.002 	⟨5	
į	; 	il17.0° to 119.0° —as above, except highly brecciated	i ,	(1 	3149	117.0	119.0	2.0	(0.002 	(5	
 	 	1119.0° to 123.0° -interbanded wacke and conglomerate; brecciation; sheared to mylonitized b to 3".		(1 (1	3150	 119.0	123.0	4.0	(0.002	⟨5	
123.0	128.8	INTERBEDDED WACKE AND SILTSTONE - grey to pale buff grewwacke (70 %) with pale greenish grey, laminated to massive itsiltstone.	• •			i 123.0 i 125.9	125.9 128.8		(0.002 (0.002	(5 (5	
 		 Wacke composed of 20-75% quartz clasts ((2mm) in chlori sericitic matrix. Minor ((5%) fuchsite. Trace to 0.5% pyrite/pyrrhotite.		1		1 		i	 		
128.8	159.3	! ICONGLOMERATE - greenish-grey to grey, massive to moderat Ifoliated, polymictic pebble/cobble conglomerate.	tely i	 		i 		<u> </u>	i - 		
		I AVERAGE MODES:	ı)		j		1			
,	. 	Quartz 50-75%	,	1		# 					
i i		Chlorite 20-40%	i	'		; 		!			
i		Feldspar 10-30%	i	i		I		1			
i		Sericite 2-20x	i	i		I		, i			
i		Calcite 1- 5x	4	i		i		i			
ì			1	ì		ì		ì			

NAME OF PROPERTY: K

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 7 of 19

+ 0 0	t a g	e ! Description	i i ×	i I Number	Sam p	l e Footase		i A	ssay s	5
rom	 T	1		 	i From	To	Total	Au Oz/ton	Au ppb	Au Checi
		Town Street Stre			-					
	1	i Pyrite trace - 1%	1	!	1			1		
	1	Pyrrhotite trace Fuchsite trace	1	1	1					
	1	Fuchsite trace	1	1	1			1		
	1	Approximately 15-20% large generally rounded pebbles and	1	!	.			1		
	1	cobbles (up to 20cm), predominantly granodicrite (slightly	1	1	,			1		
	;	iporphyritic - medium to coarse-grained smokey quartz in pale	;	1				1		
	1	loff-white to slightly greenish feldspathic matrix, with minor	1	i	1			1		
	i	(5cm) angular and lensoid	1	1				\$		
	1	pebbles of siltstone (including two green fuchsitic clasts)	1	1	1					
	1	land chert. Granodiorite similar to intrusive in KE-90-1.	1	1	1			1		
	1	i dilo cherc. Granoutorite Similar to intrusive in Re-90-1.	-	1	1					
	;	Larger clasts supported by quartz pebble conglomerate		1	1			1		
	i	(typical, as from 77.0' to 86.9', except generally with high	1	1	,			:		
	i	iproportion (50 to 75%) of 1-4mm quartz clasts).	1	•	·			1		
	i	}	,	i				1		
	i		i	i	,			, I		
	i	ito core axis.	i		i			,		
	i		í	i	i			i		
	i	1128.8' to 132.8' -with very minor fuchsitic siltstone clasts.	trace	3153	1 126.6	132.8	4.0	<0.002	(5	
	1	1	1	1	i		,,,,	, (0.00 2		
	i	1137.2' to 142.2' -more pronounced chloritic shear foliation;	1 tr-3	3154	1 137.2	142.2	5.0	(0.002	(5	
	ł	includes 0.5" band at 140.5' with common	1	1	ı			1	•	
	ì	pyrite and fine needles of silver metallic	i	4	i					
	i	mineral (stibnite?).	4	i	i		i	i		
	1	I .	i	i	1			ì		
	1	1145.0' to 148.2' -includes two quartz veinlets ((1") at 37°	1 (0.5	3155	1 145.0	148.2	3.2	(0.002	(5	
	i	i and 55 ° to core axis; minor pyrite.	1	i	•		1	i		
	ł	}	ł	ŀ	1			ł		
	1	1148.2' to 152.2' -includes minor chert and fuchsitic siltstone	1 (0.5	3156	1 148.2	152.2	4.0	(0.002	(5	

1.5

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 8 of 19

F o o	t 4	a g e	Description	 *	i i Number	Samp]	l e Footage	- Till -	i	s s a y s	
From	} 	To		Sulphides	i	From	То	Total	i Au i Oz/ton	Au ppb	Au Check
] 		1148.2' to 152.2' -includes minor chert and fuchsitic siltstone clasts.	i (0.5	3156 	1 148.2	152.2	4.0	1 (0.002	⟨5	
	i i		1155.3' to 159.3' -above 157.9' matrix is dark prey fine quartz wacke.	(0.5	i 3157 i	1 155.3	159.3	4.0	 (0.00 2 	(5	
159.3			ISILTSTONE - pale green to white, massive to shear foliated I(at 55° to core axis) siltstone; possible highly altered imafic or intermediate flow. Could be boulder within conligiomerate.	trace 	 3158 	159.3	162.3	3.0	 (0.002 	₹5	
	1 1 1		AVERAGE MODES: Feldspar 5-70% Guartz 25-40% Sericite 5-65% Calcite 10-30%	} 	} i } i i	1 1 1 1 1		i] 		
	1		Fuchsite 1-5% Fyrite trace	, 	,) 			' 		
	, 1 1		ICommon thin, diffuse, irregular calcite veinlets above 1621. IIncreasingly sheared, sericitized, bleached, carbonatized Itoward bottom. Upper part more fuchsitic.	 	;] 	 		į !	' i i		
162.3	1		ICONGLOMERATE - typical, as from 128.8' to 159.3'. Foliated at 153° to core axis.	i tr-1	3159	162.3	167.4	5.1	(0.002	⟨5	
167.4	1		ISILTSTONE - similar to less altered portion from 159.3° to 1162.0° except less carbonate; includes angular pebbles (up to 17cm) of conglomerate matrix (ouartz wacke). With 0.2" quartz-lplagioclase (#chlorite) veinlet with minor fine silver	 tr-1 	3160	1 167.4 i	170.1	2.7 i	(0.002	₹5	

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 9 of 19

******	3==:	-====			*******	********	******		*****		20220N6PE	
Foo		g e		Description	 *	 Number	Samp	l e Footase		i A	55 a y 5	
From	ł	To	 	<i>D</i> e s c r 1 p t 1 b ii	Sulphides		From	To	Total	i Au I Oz/ton	Au ppb	Au Check
	1			and aggregates, and minor pyrite, at 65° ong upper contact.					dan (600 450 160 160 160 160 160 160 160 160 160 16	 		
170.1	 	264.9	llarge cobbles (u) 	ypical, as from 128.8' to 159.3', except: more p to 25cm), more abundant mottled white and problem of the components of the congomerate matrix gradational to quartz more commonly dark grey than pale greenish at 50° to 65°.	i i	; 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		·	1 1 1 1 1		
	i		1 1170.1' to 175.1'	-below contact.	trace	1 1 3161	1 170.1	175.1	5.1	1 	(5	
	1 1 1		1205.4' to 210.6'	-includes (0.5" irregular quartz veinlets from 205.4° to 206.4° and 2" quartz (± tourmaline?) veinlet at about 45° to core axis from 210.0° to 210.6°.	trace	1 3162 	205.4	210.6	5.2	(0.002	(5	
	1 		1236.0° to 238.3°	-with 15% brecciated quartz (\pm plagioclase) veinlets at 25 $^{\circ}$ to 85 $^{\circ}$ to core axis.	 trace 	1 3163 1	1 236.0 1	238.3	2.3 i	(0.002	₹5	
ı	; 		1257.4' to 262.4'	-with 5% quartz-calcite veinlets sub- perpendicular to core axis; 1cm lensoid pyrrhotite-rich clast at 260.1%.	, (0.5 	3164 	257.4 	262.4	5.0 i	<0.002	(5	
!	1 1 1		1262.4' to 264.9'	-75% quartz-dolomite (\pm tourmaline, calcite, plagioclase) vein with minor pyrite; upper and lower contacts at 88° and 83° to core axis, respectively.	' 	3165 	262.4	264.9	2.5 	(0.002	∢ 5	
ļ	 		1		i I	 	i i		j i			

1.5

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3 SHEET NO: 10 of 19

Foo	t a 	g e	} ·I Description	} i	l I Number	Sampi I	l e Footape		i A i	5 	
From	1	To	1	Sulphides 	1	i From	To	Total	i Au i Oz/ton	Au ppb	Au Check
264.9	 	284.3	IALTERED MAFIC FLOW - very pale to dark green, fine-grained, imassive, foliated mafic flow.	i i	i !				† 	une dag taje une der Um der den der	
	† 		I AVERAGE MODES:	l L	i L) I			i L		
	j I		I Chlorite 15-70% I Feldspar 15-50%	i i	i i	i i			i		
i	į		I Quartz 5-60x	i i	, İ	Í			į		
	j I		I Carbonate 5-40% I Fuchsite(?) 2-5%	! 	f I	1			i i		
	1		Sericite 0-10x	İ	Ì	1			ŀ		
:	ŧ I		Talc 0-10% Pyrite trace	l İ	l i	 			† 		
	ļ			i	1	1			1		
•	; ; ;		Highly altered (silicified), pale green toward upper and lower lcontacts, fractured with irregular chlorite and quartz- icarbonate veinlets.	! 	! 	; ;			! ! !		
i	i		1	i	i	1			i		
:	} 		More chloritic central portion wth up to 35% highly irregular lanastomosing and boxworks carbonate veinlets. Foliated at 153° to 68° to core axis.] 	} 	 			 		
į	ļ			· 	· •	i		į	I		
†	 		1264.9' to 271.6' -pale green, silicified; includes minor xeno- liths of quartz wacke (chloritic alteration	trace trace		1 264.9 1 268.2	268.2 271.6		1 (0.002 1 (0.002	(5 (5	
i	i i		halo at contacts).			j I			l		
Ì	1		1271.6' to 282.6' -typical		3168	271.6	277.1		(0.002	₹5	
i	i i		1	 	3169	277.1	282.6	5.5	(0.002	(5	
i	i		1282.6' to 284.3' -pale green, silicified		3170	282.6	284.3	1.7	(0.002	₹5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO:11 of 19

Foo	t a	g e	l Description	i 1 %	l I Numper	Samp	l e Footane		i A	5 5 8 Y 1	5
rom	 	То	·	Sulphides		i From	To	Total	i Au i Oz/ton	Au ppo	Au Chec
284.3	i i	309.4	ICONGLOMERATE- dark to medium grey with slight brownish tinge, ifoliated to massive polymictic pebble conglomerate.	 	i !		t dat dan gal dap dar dan dan dan dan dan da	- () ((((((((-	 		
	1		AVERAGE MODES:	i	! !	i			i I		
	}		I Quartz 25.60x	1	i	i			i		
	ì		Chlorite 25-60x	i	1	i					
	į.		Carbonate 5-35x	İ		i			J		
	1		Feldspar 5-30%	1	 				i		
	ı		Muscovite/Biotite 2-10x	1	}	i			I		
	ţ		I Pyrite tr2x	1	i	ı					
	i		I Fuchsite trace	i i	ì	i			1		
	i		1	i	i	1			i		
	1		Matrix (65-85%) typically quartz wacke - angular to rounded	i 1	ì	1			ì		
	ı		iquartz sand clasts ((2mm) with smaller proportion (5-20%)	1	ł	i			i		
	i		ipranules (2-4mm) and pebbles (4-7mm) in fine chloritic	1 1	l	1			I		
	i		(#feldspathic?) groundwass; darker brownish-grey colour than	1 i	1	1			ł		
	1		(conglomerates intersected higher in drillhole may be caused	1 1		1		:	i		
	ì		by increasing muscovite/biotite content.	1 -	l	i			i		
	į		1) [1		i	i		
	i		(10 to 60mm) polymictic pebble clasts rounded to ovoid	1 1		1			i		
1	i		for subangular; dominant quartz pebble englomerate and quartz	1 1		i		I			
	i		iwacke clasts may be derived from conglomerates/wackes inter-	1 1		1		i	i		
,	1		isected to the west; also siltstone and chert clasts.	1 i		1		ì			
	1		I	1 1		1			l		
			Increasingly carbonate altered (calcite), particularly below	1 1		ŧ		i			
	i		1302'.	i i		ì		!			
;	i			i i		i		i			
	l		ifoliated at 55° to 75° to core axis.	1 }		1		ĺ			
i	i		1	i i		1		i			
	Ì		1294.0' to 296.5' -includes massive veinlet (1") of soft silver	5 1	3171	1 294.0	296.5	2.5	(0.002	(5	
:	į		metallic mineral (stibnite?) at 63°to core	i i		i		+			
;	1		l axis.	ì		ì		į			

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO:12 of 19

Foo	tage	; -I Description	 	l i Number	Samp:	e ootage		i A	5 5 A Y 5	
From	l To	 	Sulphides 		From	To	Total	l Au l Oz/ton	Au ppb	Au Check
] 	-prisms (striated), needles and granular masses; at 295.21; minor graphite) 	 	1			l !		
	1	1 (296.5' to 299.0' -includes dolomite-quartz (+calcite, chlorite vein (65° to core axis) from 298.1' to 298.8'			296.5	299.0 301.9		(0.002 (0.002	(5 (5	
	1	1301.9' to 309.4' -increasingly carbonatized; grades to quartz wacke below 306.9'.	 	l 3174 l 3175	i 301.9 i 306.9	306.9 309.4		(0.002 (0.002	⟨ 5 ⟨5	
309.4	1 1 384.4	IMAFIC TUFFS AND FLOWS - dark green-grey, generally thinly llaminated mafic tuff.	 	! i !	i i		1	 		
	1	AVERAGE MODES: Chlorite 40-75%	; 	1 F 1	1			1 		
	1 	Carbonate 15-55%	 	i i	! ! !		•	} 		
	1	Quartz (5x Pyrite)	1	 	1			} 		
)	Pyrrhotite) 2- 7% IPossible ultramafic (minor spinifex texture in parts -	! 	,) 		1	; i 		
	1	Ichlorite-altered actinolite lathes?) but not very talcose. I Typical alternating thin laminae (or lenses) of chlorite and	 	} } 	i 1		: !	 		
	1	carbonate.] 	 				 		
	1	Small-scale folding (kink bands, Z- and S-folds, irregular		1 	1 		1			

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO:13 of 19

tage	 -	Description	 	i I Number	,			A I	5 5 A Y 5	
l l To	! !		Sulphides		From	То	Total	i Au I Oz/ton	Au ppb	Au Cneck
1			i i	i i	† }			j j		
 	Ifoliated but not	well laminated - probable flows. Laminated	, ; ;	! ! !	, , ,			; } !		
 	1309.4' to 311.9'	-upper part brecciated unlaminated - probable brecciated flow; 10% concordant carbonate-quartz veinlets; pyrite	 tr1 	i i 3176 i	309.4	311.9	2.5	i (0.002	₹5	
i i i	311.9' to 314.9'	-talcose, highly contorted to brecciated; minor spinifex textures - probable ultra-mafic; 5-10% quartz-carbonate veinlets.	trace 	, 3177 	311.9	314.9	3.0	(0.002	₹5	
i i	1314.9' to 324.9'	-very minor quartz-carbonate veinlets, (irregular pods and concordant veinlets) increasing pyrrhotite.			314.9 319.9	319.9 324.9			(5 (5	
1 1 1	1324.9 to 328.4	,	i	1 1 3180 1 1	324.9	328.4	3.5	(0.002	₹5	
1 1 1 1 1	1328.4' to 331.9'	pyrrhotite/pyrite; also minor flakes of	l	1 i 3181 i i	328.4 i i	331.9	3.5 i	(0.002	⟨5	
	1		Description	Description X Sulphides To	Description Mumber Sulpnides Sulpni	Description X Number Sulphides Trom Trom Trom Trom Trom Trom Trom Trom Tro	Description To	Description X Number Footage	Description X Number Footage	Description X Number Footage

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO:14 of 19

ate) veinlet at 332.1; associated pyrrhotite! pyrite, trace chalcopyrite (tsohalerite?); up to 20X pyrrhotite finely disseminated in	y s	5 5 8 Y 5) A 1	i	e ootage	Sampl F	Number	i ≭	Description (= :	 9 Ď 6	
ate) veinlet at 332.1; associated pyrrhotite! pyrite, trace chalcopyrite (tsphalerite?); upl to 20% pyrrhotite finely disseminated in strongly carbonatized tuff. 1334.9' to 337.4' -includes brecciated quartz-calcite veinlet 5-20 3183 334.9 337.4 2.5 (0.002 334.9') to 335.4' -includes brecciated quartz-calcite veinlet 5-20 3183 334.9 337.4 2.5 (0.002 334.9') to 335.2' - possible	Au Ched			Total	īo	From		Sulphides:	i i))	To	From
(upper and lower contacts 75° and 70°, respectively) from 334.9' to 335.2' - possibl	27	27	(0.002	3.0	334.9	331.9	3182	5-15 i	ate) veinlet at 332.1% associated pyrrhotite pyrite, trace chalcopyrite (#sphalerite?); upl to 20% pyrrhotite finely disseminated in	1331.9' to 334.9'		the first and current and
and pyrite (80:20) between 335.9'and 336.7'.	7	7	(0.002	2.5	337.4	334.9	3183	5-20 i	(upper and lower contacts 75° and 70° , irespectively) from 334.91 to 335.21 - possiblifault contact slightly oblique to lamination i (contorted, may not give true indication of strike but suggests strike more to south-	1334.9' to 337.4'		
disseminated pyrrhotite and pyrite (not 3-7 3185 342.4 347.4 5.0 (0.002 (5 1				į į		! - -		, 	• • • • • • • • • • • • • • • • • • • •			
disseminated pyrrhotite and pyrite (not 3-7 3185 342.4 347.4 5.0 (0.002 (5 0.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 (5 1.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 on core surface). 3-7 3186 347.4 351.4 4.0 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 351.4 (0.002 on core surface). 3-7 3187 351.4 351.4 351.4 351.4 (0.002 on core surface)	(5	(5	(0.002	5.0 i	342.4	337.4	3184	3-7	-strongly carbonatized, with common finely	1337.4' to 351.4'		
	(5	(5	(0.002	5.0 1	347.4	342.4	3185	3-7 1	• •	1		
i veinlets with associated pyrrhotite	(5	₹5	(0.002	4.0 i	351.4	347.4	3186	3-7 1	obvious on core surface).	i 1		
actinolite?).	(5	⟨5	(0.002	2.5 ())	354.9	351.4	3187	2-5 	veinlets with associated pyrrhotite (toyrite) at 352.0° and 354.3°; moderately to strongly carbonatized; minor spinifex i	1351.4' to 354.9'		
				i I				i i		i I		
1 = 1354.9 to 362.1 -more massive (probable flow), spinifes $1 = 1-2$ 3188 358.9 358.5 $2.4 + 76.00$				i				1	1			
The state of the s		(5 (5			358.5	354.9	3168	1-2	-more massive (probable flow); spinifex	1354.9' to 362.1'		

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 15 of 19

F o o		g e	-1	Description	 	i Number	Samp	l e Footage		1	5 5 A Y 5	δ
From)	To	1		Sulphides	1	i From	To	Total	d Au d Oz/ton	Au ppb	Au Check
	 		 	veinlets; contorted, vuggy carbonate veinlet at 361.3' with pyrrhotite/pyrite concentration (+trace chalcopyrite).	 	i ! !	(
	, , ,		362.1' to 365.1'	-with concordant to irregular carbonate- quartz veinlets (3" and 1") at 363.5° and 364.9°; moderately carbonatized.	1-4	3190 -	362.1	365.1	3.0	(0.002	(5	
	1 1 1		1365.1' to 370.1'	-5 to 10% thin concordant calcite veinlets; moderately strong carbonatization; pyrite ± pyrrhotite along foliation planes.	1 1-2	1 1 3191 1	365.1 i	370.1	5.0	1 (0.002 i	₹5	
			370.1' to 374.4'	-upper part talcose (ultramafic?); 3" quartz-carbonate veinlet (55° to core axis) at 371.3°; lower part with vuggy calcite veinlets, and bands and irregular aggregates of pyrrhotite and pyrite up to 10%; possible magnetite.	2-7	1 3192 	370.1 i	374.4	3.3	(0.002 	(5	
	 		1374.4' to 384.4'	-moderately to strongly carbonatized; possible flow from 378.8' to 381.5'.	(1 trace trace	3194	374.4 378.8 381.5	378.8 381.5 384.4	2.7	1 (0.002 1 (0.002 1 (0.002	(5 (5 (5	
384.4	1	433.0	iultramafic flows(† † †	1 	; ; ;			; ; ; ;		
	i i		I Talc/chlo i Carbonato i Quartz		i i	i i i) } 			 		

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 16 of 19

Foo		. g e	!	Description	 *	l Number	Samp;	e Dotage		ŀ	5	
From	1	To	1		Sulphides		From	То	Total	i Au i Oz/ton	Au ppb	Au Chec
900 Str. Gar Gar Gar	1		Iregularly laminat	t grey-white bands and veinlets. (0.02'-0.5'), ed, buckled to highly contorted, and irregular Probably intraformational folding resulting ty.		 	 			 		
	i i		 Foliated predomin	antly at 60° to 75° to core axis.) 	! !	!			! !		
	1		 388.4° to 389.9° 	-includes 3" concordant carbonate-quartz- tourmaline veinlet at 389.1° with trace pyrite, chalcopyrite; 35% tourmaline needles and aggragates.	i trace i trace I		1 384.4 i 388.4 i	388.4 389.9		 (0.002 (0.002 	(5 (5	
	i i i		1 1389.9' to 407.2'	-with minor (2%) carbonate-quartz (±tour-maline) veinlets ((1"); minor pyrite,	 trace (0.5		1 389.9 1 394.0	394.0 398.2		 (0.002 (0.002	(5 (5	
	l I		1	pyrrhotite.	i trace		398.2 1 402.2	402.2 407.2		(0.002	(5 (5	
	 		1407.2° to 410.2°	-with 0.8' and 0.5' concordant quartz-carbon- ate tourmaline veins at 408.2' and 409.9'; minor pyrite and pyrrhotite.	! (0.5 trace 		i 407.2 i 410.2	410.2 413.7		 	(5 (5	
] 		 413.7' to 417.7' 	-with about 15% concordant carbonate-quartz- tourmaline veinlets, associated pyrite, pyrrhotite and trace chalcopyrite.	 	 3204 	413.7	417.7	4.0	i (0.002 i	₹5	
	 		 417.7' to 420.7' 	-minor irregular quartz-carbonate and quartz-carbonate-tourmaline veinlets ((2") at 419.7' and 420.2'.	 trace 	i I 3205 I	i 417.7	420.7	3.0	 (0.002 	₹5	
	1		 	1	i 1	 	i		1	i I		

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 17 of 19

Foot	a g e	l -i Description	i ì x	i Number	Sampl			j A	s s a y s	
1		l vescription		Number 	r 	ootage		i Au	Au	Au
ron i	To	1	1	i	From	To	Total	0z/ton	ppb	Cnec
		1420.7' to 433.0' -with 1" to 3" concordant quartz-carbonate	trace	1 3206	1 420.7	424.2	3.5	(0.002	(5	
1		tourmaline veinlets at 422.7', 425.3',	ì	1 3207	1 424.2	428.2	4.0	1 (0.002	₹5	
1		426.7' and 431.8'.	i	1 3208	i 428.2	431.2	3.0	i (0.002	⟨5	
ì			i .	3209	431.2	433.0	1.8	1 (0.002	₹5	
 		1433.0° -lower contact at 70° to core axis.	1	! !	1			 		
۱ 433.0 ا	499. N	ICONGLOMERATE - light and dark grey with brownish to greenish	1	j i	1			1		
100.0 i	4,,,,,	Itinge, foliated polymictic pebble/cobble conglomerate	i	1	i			, I		
i		(Eyapamikama Lake Metasediments?).	i	, I	i			i		
i				• {	i			i		
i		AVERAGE MODES:	i	i	ì			i		
i		1	1	i	i			i		
i		i MATRIX - (15-85%)	1	1	1			l		
i		1 Quartz 25-90×	i	i	ì			ì		
i		Sericite 7-70%	4	ł	í			J		
ļ		Muscovite/Biotite 5-20%	1	l	1			l		
1		Pyrite tr - 0.5%	1	i	i			i		
ł			j	l	i		i	l		
i		i CLASTS -	i	i	ì			ì		
1		Granodiorite/	1 1	ì	i			İ		
1		Granite 30-65%	1	l	1			l		
i		Biotite-Muscovite	i i	l	i		i	İ		
ł		(±Guartz, Sericite)	i	i .	1			l		
i		Schist 25-50x	j i	İ	j			i		
ı		Chlorite	4	l	4			ł		
i		(±Biotite) Schist 5-20%	į i	i	ŀ			l		
ł		Chert 2- 5x	i i	l	i		I	İ		
Ì		Guartz-Feldspar	j l	l	ì		i	i		
ł		i Porphyry 1-2%	i i	1	i			i		

1.1

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 18 of 19

	tage	 Description	i i ×	l I Number	Samp.	l e Footage		l A:	5 S A Y S	
From	i To	· · · ·	Sulphides		From	To	Total	Au Oz/ton	Au ppb	Au Check
	 	IMatrix composed of quartz wacke (grading to quartz arenite) Iconsisting of rounded to angular (commonly subrounded, Islightly ovoid) quartz (generally 0.5 to 2mm) in a fine-grained Isericite, muscovite/biotite matrix. Clasts range rom 4mm Ito 200mm (most common in range from 25mm to 60mm).	 	 						
	1 1			 	† † †					
	1		! ∤) 			í ⅓		
	; ;	1433.0° to 434.7° -quartz wacke with minor conglomerate pebbles	! !	1 3210 	433.0	434.7	1.7	, (0.002	⟨5	
	1	1434.7° to 436.2° -mafic metavolcanic - banded greenish-grey to light grey with about 15% quartz-carbonate bands and lenses; pyrite coatings.	0.5-1	1 3211 1	1 434.7 1	436.2	1.5	1 0.009 1	297	
	1 1 1	1436.2' to 441.4' -quartz wacke, as from 433.0' to 434.7', includes 1" quartz (±tourmaline) veinlet at 438.2'.	trace	 3212 	i 436.2	441.4	5.2	1 1 (0.002 1	(5	
	1) 	 	1			i i		
	i	1		İ	i i			i		

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3

SHEET NO: 19 of 19

F o o	tage	l Description	i i ×	 Number	Samp) F	l e Footage		ŧ	5	
From	i To	,	Sulphide:		l From	То	Total	l Au i Oz/ton	Au ppb	Au Cneck
) } !	iCharacter samples of conglomerate taken at 454', 474' and 494'.	(0.5 (0.5 trace	1 3214	i 454.0 i 474.0 i 494.0	459.0 479.0 499.0	5.0	(0.002 (0.002	⟨5 ⟨5 ⟨5	
	499.0	PEND OF HOLE	; ;	1 1	i i		•	1 		
	 	1 1 1		; ; !	1			! 		
	i i			i i	i i		i !	! 		
	, 	1 1		; i i	1		ļ	 		
	; 	1. de garifs		, 	1 i i i		i i j			
	i 			i i i))		i i			
	; i l] 	t i		j 1 1			
	, 			i i	; }		\$ } i			
)]	1 1		; }	1) i			

NAME OF PROPERTY: Keeyask Lake
HOLE NO.: KE-90-3A LENGTH: 79 feet
LOCATION: L88+00N, 31+22W
ELEVATION: AZIMUTH: 060° (Grid West) DIP: - 45°
STARTED: February 17th, 1990 FINISHED: February 17th, 1990

Foota	•	ip i	HOLE NO: KE-90-3A	SHEET NO: 1 of 2
1				
ì	1	i	CLAIM NUMBER:	Pa 1009776
i	ł	t		
1	1	1		

LOGGED BY: T.S. Jolliffe

Footage I Description i Number Footage |Sulphides|----Αu To 0z/ton Check From 75.0 ICASING AND OVERBURDEN - granitic gneiss boulders. 0.0 1 79.0 ICONGLOMERATE - slightly greenish-grey, matrix-supported, 1-2 | 3135 75.0 1 75.0 79.0 4.0 | (0.002 18 ifoliated oligomictic pebble conglomerate. AVERAGE MODES: Quartz 35-70× 30-60× Chlorite Muscovite/sericite 5-25% Feldspar 5-10% Calcite 2-10× Pyrite trace-2% Pyrrhotite (0.5x ⟨0.5% Magnetite |Generally ovoid to sub-rounded, fine to very fine (2-6mm) ismokey quartz peobles (10-50%) in foliated matrix of dominant | i Ichlorite and sand-sized quartz grains. One coarse (25mm) rounded quartz pebble. Fragment-supported in parts. |Foliation/bedding at 48° to 65° to core axis.

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-3A SHEET NO: 2 of 2

Foo	o t a	g	l Description) Number	Samp	l e Footape		ŧ	5	
From	ŀ	To	1	Sulphides 		l From	īo	Total	i Au i Oz/ton	Au ppb	Au Cneck
* No. 22 gm epr epr **	 		177.4' to 79.0' -65% brecciated carbonate (dolomite?)-quartz-chlorite veins with 1-2% pyrite, trace pyrrhotite; minor (1%) fine-grained lenses of grey metallic mineral (pyrite?).	i] 			 		
	† † 	79.0	IEND OF HOLE: (abandoned - broke off $^{\dagger}B^{\dagger}$ casing between 60° and 170°).	1 	; ; }	1 1 1			1 } f		
	; ; ;		} î ∤ 1	∤ i } I	ł i i l	; ; ;			 		
	1		} ! !	i i i	i 	i ! !			i i i		
			1. l. gings	 	, 	 					
	 			; 	 	; i i			 		
	i i		1 1 1 1	i 	1 i 	1 i i i		 	! ! !		
	i] 	i :	i i !	∤ i i		1	! 		

STARTED: February 17th, 1990

NAME OF PROPERTY: Keeyask Lake
HOLE NO.: KE-90-3R LENGTH: 60 feet
LOCATION: L88+00N, 31+22W

ELEVATION: AZIMUTH: 060° (Grid East)

060° (Grid East) DIP: -47° FINISHED: February 18th, 1990 LOGGED BY: T.S. Jolliffe

Footage		 	Description	l i x	 Number		Sample Footage			1	l Assays i			
From	i i	To	i i		Sulphide		i Fr			Total	; } (Au Oz/ton	Au ppb	Au Check
0.0	 I	60.0	ICASING			1	 				i			
	 		I IEND OF HOLE IKE-90-3A)	(abandoned - intersected broken casing from	} 	1 1] 				 			i J
	j		1		1	1	1				i			ļ
	1		i I		1	1	i				! ∤			i
	!		1		l .	1	l ,				l			!
	! l		i		1	1	1			ı	l 			l
	l		1		l .	1	i				ĺ			
	i i		1		† 	+	i				i I			
	l		Ì		i i	ĺ	i				i			
	l I		1	111	i I	1	1			į	i i			j
	i		i	T.S. gaiff	i	i	i			i	i			i
	 		1	1 6	1	1	į			:	ì			ì
	i		1		i	i	i			i	ì			
	 		1		1	1	i.			1	!			!
	, 		i		i	1	¦				i i			j
					1	1	1			1	j			į
	ł		I		ŀ	1	ı			ı	i			,

NAME OF PROPERTY: Keeyasi	Lake		Ì	Footage	Dio	HOLE NO: KE-90-4	SHEET NO: 1 Of d
HOLE NO.: KE-90-4	LêNGTH: 579 feet		+ -				
LOCATION: L88+00N,	34+55₩		F	0.0 +	-45.5° i	CLAIN NUMBER:	Pa 1009775
ELEVATION: AZIMUTH	: 060°(Grid East)	Dīf: -4	45.5	199.0 i	-42.0° i		
STARTED: February 23rd, 19	90 FINISHED:	February 25th, 199	90 i	399.0 +	-43.0° 1		Summary Lor
·			i	579.0 1	-42.5° i	L066ED RY: T.S. Jol:	uite
			· ·				

1	Foo	t e	ţ e	i Description	;) X	I i Numper	Sample Footage		•	i A		
i		1		1	Sulphice					Au	Au	Au
1	From	t	ĩo	i Summary Log	1	•	ı From	ΪO	Toval	0z/con	aga	Dneck ·
i	0.0	1	14.5	ICASING	+	())		
1	14.5	i i	100.2	i IGRANDDIORITE	i F	1	1			! !		i
i	100.2			i FRAULT/BRECCIA ZONE	+	•	; ;			ı ,		
ì		1		1	1	,	i			:		
1	105.2	i i	132.0	QUARTZ WACKE/ARENITE	' 	,	· i~			i ,		i
1	132.0	i	149.1	IULTRAMAFIC SCHIST	1	1	1					
i	149.1	i	270.4	ICONGLOMERATE	ĺ	i	í					
1	270.4	i i	325.8	I IULTRAMAFIC SCHIST	† 	· ·	•					
1	325.8	i	365.2	I ICONGLOMERATE	i I	1 j	1 ;			•		
i	365.2	i		i IMUDSTONE	ì	1	1)		
i		1		1	1	i	1			!		
i	378.1	1	388.1	CONGLOMERATE/WACKE	•	† †	1			i		
ı,	388.1	j i		ISILTSTONE (SHEAR ZONE?)	1	1	,					
i	400.9	1		I ICONGLOMERATE/WACKE	i	1	,		:			ı
1	407.1	i	450.2	I IINTERBEDDED MARLSTONE-CHERT-MUDSTONE (LEAN IRON FORMATION)	1	i r	j 1					

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 2 of 2

Foo	+ >					енияния 5 а m р		*****		====== 5	
			Description	, , x	Number		Footage		i		
From	i	To	Summary Log	Sulphide		From	То	Total	i Au i Oz/ton	Au ppo	Au Check
458.4		480.8	IMAFIC (TO ULTRAMAFIC) FLOW	1	ı	!			!		
480.8	1	504.0	ICONGLOMERATE	!	1	1			i		
504.0	i	548.6	ICHERT BRECCIA	1	1	i			1		
548.6	i i	555.4	I ICONGLOMERATE AND WACKE	İ	i	i i			1		
555.4	i I	564.8	I ICHERT BRECCIA	i I	1	i i			1		
564.8	1	570.1	I ICONGLOMERATE AND WACKE	i i	i I	ł			i i		
570.1	i ļ	576.0	 CALCAREOUS SILTSTONE	1	i i	i i			i I		
576.0	İ		 QUARTZ WACKE	i i	1	i i			4 i		
2,200	ŀ		I END OF HOLE	1	I	i i			i i		
	ļ	573.0	The of fide	i]				i		
	1			1	}	1			i		
	i i		i I	1	i i	i			 		
	i i		1 1	ì	i I	i I			i		
	1		i } .	i 1	j I	i i			i I		
	i I		1	i i	i i	i			i i		
	i i		i 1	i	1	1					

STARTED: February 23rd, 1990

NAME OF PROPERTY: Keeyask Lake Footage Dio i HOLE NO: KE-90-4 HOLE NO.: KE-90-4 LENGTH: 579 feet -45.5°1 L88+00N, 34+55W 0.0 1 CLAIM NUMBER: LOCATION: -45.5° ELEVATION: AZIMUTH: 060° (Grid East) DIF: 199.0 | -42.0°1

FINISHED: February 25th, 1990

Sample Footage * | Number Description Footage |Sulphides|----Αu | From To Total | Oz/ton Check From 14.5 ICASING 0.0 100.2 IGRANODIORITE- light to medium grey with slight pale greenish 14.5 | Itinge, homogeneous, massive, unfoliated quartz-phyric granodiorite AVERAGE MODES: 50-65% Feldspar Quartz 30-40% 5-10× Hornblende 1- 5x Sericite Chlorite 1- 5% 0- 5% Calcite/dolomite Pyrite trace-(1% Pyrrhotite trace-(1% Chalcopyrite 0-(0.5% |Subhedral to anhedral medium-grained (typically 3mm to 6mm) Ismokey quartz phenocrysts in off-white (to pale greenish) !feldspathic matrix. 14.5 19.0 4.5 | (0.002 (5 trace | 3216 1 19.0' to 24.0' -with 0.4' smokey quartz veinlet (15° to | trace-1 | 3217 19.0 24.0 5.0 | (0.002 (5) core axis; minor pyrrhotite, chalcopyrite and pyrite at 20.9'; 2" quartz-carbonate veinlet (20° to core axis) at 22.91.

399.0 i

579.0 i

-43.0°1

-42.9°1

SHEET NO: 1 Of 19

Pa 1009775

LOGGED BY: T.S. Jolliffe

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 2 of 19

Foo	t a p (e		Description	I ∤ ≴	i I Number	Samo:	l e Footape		i A	5 5 A Y 5	
From	i I To	1			Sulphides 	 	! From	То	Total	i Au i Oz/ton	Au ppb	Au Cneck
	i 1	 	27.4' to 28.1'	-cavity	trace	3218	1 24.0	29.0	5.0	(0,002	⟨5	
		i	33.9' to 34.3'	-cavity	j l	' 	i			, 		
	 	1	35.3' to 35.6'	-cavity		, } i	1			, 		
	; ; !	 	40.0° to 45.0°	-character sample: typical chloritic seams (32 $^{\circ}$ to 38 $^{\circ}$ to core axis) and fractures with minor pyrite and pyrrhotite coatinos.		1 3219 1	40.0	45.0	5.0	(0.002	(5	
	1	1	65.7' to 102.2'	-variably weak to moderate chloritic	: i trace :	3220	65.7	70.7	5.0	1 (0.002	(5	
	ł	ł		foliation (50° to 75° to core axis); weak to	i trace i	3221	1 70.7	75.7	5.0	(0.002	₹5	
	j	1		moderate carbonatization.	l i	3555	75.7	80.7	5.0	(0.002	(5	
	i !	ì			(I	3223	80.7	85.7	5.0	(0.002	(5	
	1	1	88.9' to 89.3'	-sheared (approx. 70° to core axis), brecciated, banded calcite-chlorite-quartz (± tourmaline?) vein.	trace	3224	85.7	90.7	5.0	(0.002	₹5	
	1 1 1	, , , ,	92.5' to 102.2'	-quartz phenocryts becoming generally smaller brecciated, with sericitic chloritic matrix similar to quartz wackes/arkose in succeeding section.	l ,	3225	90.7	94.7	4.0	(0.002	₹5	
	 	1	95.6' to 96.2'	-banded to brecciated calcite-chlorite quartz vein at about 65° to core axis.	trace 	3226	94.7	97.7	3.0	(0.002	(5	
	1	11	00.0' to 100.2'	-pyrite becomes fairly common within 2" of contact (at 58° to core axis).	0.1	3227	97.7	100.2	2.5	(0.002	₹5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 3 of 19

F 0 0		-	l Description	1 ×	i I Numbe	Sam er	p l e Footașe		i A	5 5 A Y 5	
From	i	То	1	Sulphide	s	From	То	Total	i Au i Oz/ton	Au ppb	Au Cneck
100.2	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		IFAULT/BRECCIA ZONE - predominantly (70%) brecciated dolomite- lquartz-chlorite and quartz-carbonate veins with light grey iquartz wacke/arenite; slightly fuchsitic; foliated in parts lat 48° to 70° to core axis; pyritic dominantly close to upper icontact.	1.3 	322 <i>t</i>	100.	2 105.2	5.0	{0.002 	(5	gar gan kan dan gan dan
105.2	i	132.0	IQUARTZ WACKE/ARENITE - grey, foliated quartz wacke/arenite.	(0.05 (0.05 (0.05	1 3230	110.	0 114.7	4.7	0.002 0.002	(5 (5 (5	
	1		I AVERAGE MODES: I Guartz 60-85%	 	1	1			† 		
	; ;		Sericite	 	} } }	 			† 		
	1 1		I IAngular to subrounded smokey quartz clasts (predominantly 10.5mm to 2mm in variable (15-40%) sericite-quartz-chlorite imatrix.	 	1 1 1	, 			! ! !		
]]]			; 	1	; 			; 		
	 		i i dolomite-quartz (±chlorite) vein (highly altered felsic volcanic?); massive, home-geneous; upper contact at about 80° to core axis.	trace	1 3238 1 1	119.4 	124.0	4.6	1 (0.0 02 	(5	
	1] 	 0.5-1	1 3233	 124.6	127.9	3.9	 (0.00 2	(5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 4 of 19

Foo	t a g e	i -I Description	i *	i I Number	Samol	l e Footașe		ŧ А.	5 5 A Y 5	
From	i To		Sulphides		From	To	Total	i Au I Oz/ton	Au pob	Au Cneck
	1 1 1	1127.9' to 132.0' -includes dolomite-quartz (±chlorite) veins from 127.9' to 128.9' (50° to core axis) and 130.8' to 132.0' (lower contact 53° to core axis).		1 3234 1 1	127.9 	132.0	4.1	{0.002 	(5	an da da ga da da da da da da
132.0	149.1 149.1	IULTRAMAFIC SCHIST - pale greenish-white, fine- to medium- Igrained, highly foliated talc -carbonate-chlorite schist.	trace trace trace	3236	132.0 136.5 1 141.0	136.5 141.0 145.4	4.5	(0.002 (0.002	(5 (5 (5	
	 	AVERAGE MODES: Talc 30-70% Carbonate 20-60% Chlorite 10-25% Pyrite trace	i i i i	 	 			 		
	1 t 1	lVery soft, powdery (scratches with fingernail) but not istrongly greasy (brucite common?). ! !Foliated at 54° to 68° to core axis.	1 1	i 	1 1 1		i] 		
!	; 	1145.4° to 149.1° -dolomite-quartz (± chlorite) vein (similar to interval 119.4° to 124.0°); contacts at about 58° to core axis.	trace 	1 1 3238 1 1	1 145.4	149.1	3.7	<0.002	⟨5	
149.1	270.4 	ICONGLOMERATE AND WACKE/ARKOSE - lightish to darkish grey, in loarts with slight greenish to brownish tinge, quartz wacke/larkose with 2% to 25% polymicitic peobles (±cobbles).	1 1 1	, 	; 		; 			
;	; 	1	· •	 	i i		1			

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4 SHEET NO: 5 of 19

								*****		****	*****		
Foo	t	a g e	1		1		1	Samp	1 e		I A	5 5 a y £	ė
			!	Description	1	*	Humber		Footage		I		
From	ł	To	1		18	ulphides	 	l From	To	Total	Au Oz/ton	Au ppb	Au Check
								-					
	1		i	AVERAGE MODES:	I		i	1			ł		
	1		l l		1		Į.	· ·			i		
	į		1	MATRIX)		ł	i			ı		
	1		1	Quartz 70-95%	į		I	1			1		
	- 1		ı	Chlorite 2-25%	1		ı	1			ŀ		
	ì		J	Sericite 2-15%	1		ŀ	1			ŧ		
	j		1	Pyrite 0-0.5%	ŀ		1	‡			ļ		
	ł		1	Pyrrhotite O-trace	ł		ł	ì			i		
	ł		1		1		1	1			i		
	1		- 1	PERBLES (± CORBLES)	1		1	1			F		
	5		ŧ		1		1	•			l		
	1		ı	Chlorite Schist 30-50%	1		I	4			ļ		
	i		- 1	Biotite/Muscovite	i		ı	1			1		
	ł		1	Schist 25-40%	1		j	1			i		
	ı		1	Chert 5-15%	1		I	1		!	1		
	į.		i	Siltstone 5-15%	ł		i	i			l		
	i		1	Granodiorite/	i		l	i		1	· 		
	i		i	Granite 5-10×	i		, I	i		·	1		
	ì		1		i		I	i			,		
	í		IMat	trix typically composed of predominant rounded to sub	annluar i		i	i			•		
	i			artz (0.3mm to 1mm, less commonly up to 4mm) clast su	•		, I	i			,		
	i			borderline arkose. Schist pebbles typically elonga	• •		1	1			1		
	i			pear as bands or lenses; cherts and granodiorite/gran	,		, i	1			•		
	i			re rounded. Conglomerate pebbles typically 10 mm to 4			, 1	i			' 		
	i			th minor cobbles up to 110mm.	V 1887114 1		' 	1					
	i		i	on milion copoles up to livema	1		, 1	1			1		
	1		10~1	cose/wacke matrix typically massive very homogeneous,	anly i		• !	1		1	. 		
	1			akly foliated. Foliation at about 55° from core axis		ļ	l I	1					
	- 1		1 426	WIN TOTTERED . LOTTERTON ER EROUR OF TLOM COLS SXIP	• !		,	1					
	-		11123			/A AF	1 2020	1 445 -	454 4	F A 1		,-	
	I		1811	th decrease in conglomerate pebbles, grades to quartz	atkose/	(0.05	3239	1 149.1	154.1	5.0	(0.002	. (5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4 SH

SHEET NO: 6 of 19

Foot	tage		Description	i ×	l I Number	Samp:	l e Footage		I A	s s a y s	
i rom l	i I To	1		Sulphides		l From	То	Total	i Au i Oz/ton	Au ppb	Au Check
1	!	iwacke in parts (2	·5-35x)	ŀ	i				í		
i	; }	1 1179.0' to 199.0'	-slightly more chloritic. Shear foliation in	 tr0.5	, 1 3240	1 179.0	184.0	5.0	, (0.002	(5	
i	ì	1	parts; very minor ((2") quartz-dolomite	1 tr0.5	1 3241	1 184.0	189.0	5.0	1 (0.002	₹5	
i	1	1	veinlets; minor pyrite.	tr0.5	1 3242	189.0	194.0	5.0	1 (0.002	(5	
1	ı	1		tr0.5	3243	1 194.0	199.0	5.0	1 (0.002	₹5	
I	}	1214.0' to 226.0'	-as above; includes 0.5" fuchsitic quartz	1 (0.5	1 3244	1 214.0	218.0	4.0	(0.002	(5	
	ŧ	ı	veinlet at 214.6'; minor pyrite, trace	tr0.5	3245	218.0	222.0	4.0	(0.002	₹5	
ı	l	i	pyrhotite.	l tr.	1 3246	1 222.0	226.0	4.0	1 (0.002	⟨5	
(ŧ	1	•	1	3247	i 261.4	266.4	5.0	(0.002	₹5	
1	ł	1266.41 to 270.41	-with about 30% carbonate-quartz veins	i tr.	3248	1 266.4	270.4	4.0	(0.002	₹5	
1	1	1	(including 266.6' to 267.7'); lower contact	i	i	1			ļ		
1	} 1	1	at 80°.	1	1	1) 1		
270.4	325.8	ULTRAMAFIC SCHIST lat 40° to 55° to	- typical, as from 132.0' to 149.1'. Foliated core axis.	1	, 	1			, 		
: i	 		le intraformational folding in parts)	i	1	1			' 		
, 	 	1270.4' to 271.8'	-dolomite (± quartz, chlorite) vein	1	, 1 3249	270.4	271.8	1.4	(0.002	⟨5	
; ;	, 	271.8' to 291.8'	-typical: with 5-15% concordant to irregular	,	, 1 3250	271.8	276.8	5.0	(0.002	₹5	
1	1	1	dolomite (± quartz, chlorite) veinlets.	I tr.	I 3251	1 276.8	281.8	5.0	(0.002	⟨5	
·	}	1	•	1	3252	8.1.8	286.8	5.0	(0.002	(5	
i	1	1		1	1 3253	286.8	291.8		(0.002	(5	
i				}	1	1			l		
		1291.8' to 296.3'	-with about 35% dolomite (quartz, chlorite)	1	1 3254	291.8	296.3	4.5	(0.002	(5	
i		1	veins, including 293.7' to 294.9'.	ł	1	1			I		
		1	,,	i	1	1		ı	i		
i	:]	1296.31 to 300 At	-15% veins, as above.	i	3255	1 296.3	300.8	4.5	(0.002	₹5	

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 7 of 19

F D D	t a !	9 e	! 	Des	cription		i I Number	Samp:	l e Footape		I	55	
rom	i i	Γο	 			Sulphides 		l From	То	Total	l .Au l Oz/ton	Au ppb	Au Check
	i i		1300.8' to 303.1'	-40% vein	s, as above	trace	3256	300.8	303.1	2.3	0.010	347	
	1		1303.1' to 305.6'	-10% irre	gular dolomite veinlets.	trace	I 3257	303.1	305.6	2.5	(0.002	₹5	
	; 		1305.6' to 309.3'		(± quartz, chlorite) vein; very ite coatings on fracture.	trace	3258	305.6	309.3	3.7	(0.002	₹5	
	1		1309.3' to 321.8'	-typical;	minor veins, as above.	1	1 3259 1 3260	309.3 313.5	313.5 317.7		(0.002 (0.002	(5 (5	
	1		i 1			1	3261	317.7	321.8	4.1	(0.002	(5	
	1		1321.8' to 325.8'		mite (±chlorite, quartz) veins and rtz veinlets.	1	3262	321.8	325.8	4.0	(0.002	₹5	
325.8	1 3				h-green with light grey-white olymictic conglomerate.	 	! !	 		I	 		
	1		I AVERAGE	MODES		1	; i	1			; 		
	1		 MATRIX Chlorite		35-70×	1	! !	1		! !	 		
	i		i Guartz		25-60x	1	, 	1		,			
	1		l Carbonat I Pyrite	. e	5-20× <0.5×	1	i I	1		}			
	i		1		10.02	i	}	i		i			
	į.		I CLASTS			1	1	1		ı			
	1		Chlorite	Schist	70-90×	1	l	1		ı			
	!		Chert		5-15x	!	•	<u> </u>		1			
	3		Siltston	6	5-15x	1	†	1		ł			

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 8 of 19

F o o	tage	! ! Description	i ×	 Number	Samp.	l e Footage		I A	5 5 a y 5	
rom	i i To	1	Sulphides	1	1 From	To	Total	i Au I Oz/ton	Au ppb	Au Check
	 	Predominant chlorite schist pebbles (±cobbles) typically lelongated (bands and lenses 10mm to 50mm wide) in plane of ifoliaton; minor rounded to ovoid chert pebbles.	i ! !	 	 		der der der der der der der der	i ! !	jer gan dan gan gan dan jaur gan gan g	on on on out of the B
	1	Matrix composed of smokey grey quartz (± carbonate) granules (2-4mm) and sand ((2mm) generally supported by more common	, 1 1	1	 					
	•	Foliated at about 54° to core axis.	\$ •	1	:			• •		
	; 		(0.5	1 3263 1	1 325.8	328.8	3.0	1 (0.002 1	(5	
	1		trace trace		328.0 350.2 362.2	333.8 355.2 365.2	5.0	1 (0.002 1 (0.002	(5 (5 (5	
365.2	378.	######################################	1	1	1			f 		
	1	AVERAGE MODES	1	1	1) 		
]]	Chlorite 60-80% Carbonate 15-35%	 	! !	! !			i !		
	į	Quartz (5x	į	i	i			i		
	l l	Pyrite trace to 10% Pyrrhotite trace	1	 	1		į	 		
	1		1	1	1			l		
	i i	Typically alternating thin chlorite and carbonate laminae. Foliated at about 57° to core axis. A few minor quartz wacke	; }	! }	1		1	l l		
		Iclasts. Possibly sheared, altered mafic metavolcanic with	İ		Ì		!	• •		
	1	iminor wacke xenoliths.	1	ı	1		1	i		

NAME OF PROPERTY: Keeyask Lake

HOLF NO: KF-90-4

SHEET NO. 9 of 19

						(************************************	HOLE NO:	KE-90-4	SHEET NO:	9 of 19	
Foo	t a	g e	l Description		l I Number	San p	l e Ootage		ŀ	5 S A Y S	_
rom	1	To	1	Sulphides	j	From	То	Total	i Au I Oz/ton	Au ppb	Au Chec
	 	ier dies des des des pla	1365.2° to 370.2° -predominantly (70%) dolomite-quartz (± chlorite) veins above 367.6°; up to 10% pyrite (± pyrrhotite) near upper contact.	! 2-4 !	1 3267 	365.2	370.2	5.0	(0.002	⟨5	
	! !			tr1	, 1 3268 !	370.2	375.1	4.9	(0.005	⟨5	
	 		1375.1° to 378.1° -SHEAR ZONE: sheared to mylonitized siltstone and quartz wacke, with 30% carbonate-quartz veins; at 45° to 63° to core axis.	(1 	, 1 3269 1	375.1	378.1	3.0	, (0.002 	(5	
378.1	1		CONGLOMERATE/WACKE - mottled greenish-grey oligomictic matrix- supported quartz pebble conglomerate (grading to quartz wacke parts); sheared (at 45° to 55° to core axis).) 	1 	 			} 		
	1		AVERAGE MODES		, !	1			, 		
	 		Chlorite	 	i 	1		!	 		
	} 		 Similar to interval from 325.8° to 365.2°, except without larger polymictic pebbles and cobbles.	 	† 	 		; 	! 		
	1					 			 		
			1379.0° to 381.1° -dolomite ±quartz vein	, -	3270	378.1	383.1	5.0	(0.002	₹5	
	i I		 381.7° to 382.4° -mylonitic sear with 30% dolomite-quartz veining	1 1	1 1 1 3271	1 1 383.1	388.1	5.0	(0.002	(5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET N0:10 of 19

Foot	tage	l Description	i) *	l Number	Samp?	l e Footape		I A	5	
From	l To		Sulphides		From	То	Total	l Au l Oz/ton	Au ppb	Au Check
388.1	400.9 	ISILTSTONE (SHEAR ZONE?) - dark greenish-brown, thinly laminated	(0.5	3272 3273 3274	i 388.1 i 392.3 i 396.6	392.3 396.6 400.9	4.3	(0.002 1 (0.002 1 (0.002	(5 (5 (5	
1	 	Chlorite 20-70x Carbonate 15-50x Biotite 5-50x Quartz 10-20x ILaminae folded/buckled in parts (similar to ultramafic - intraformational folding).	; ; ; ; ;					; ; ; ; ;		
1	 				} ! !			, 		
400.9	 	IFoliated at 40° to 63° to core axis, on average. ICONGLOMERATE/WACKE - similar to interval from 378.1° to 388.1°; Iupper contact gradational with decrease in shearing - suggests Impressional to 400.9° may be Isheared coarser clastics; foliated at 50° to 59° from core Iaxis; with pyrite (±pyrrhotite coatings).		3275	 	405.4	4.5	 <0.002 	(5	
; ; ;) 	1405.4° to 407.1° - finer grained quartz wacke in part; altered (silicified) dark grey-black; fractured with pyrite and pyrrhotite fillings.		3276	1 405.4	407.1	1.7	 (0.002 	(5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4 SHEET NO:11 of 19 Sample Footage ASSAYS Description | Number Footage |Sulphides|--Αu Check To 1 From To Total i Oz/ton From IINTERBEDDED MARLSTONE, CHERT AND MUDSTONE (LEAN IRON FORMATION)! 1407.1 1450.2 i- very fined grained, interbedded carbonate-chert-mudstone, lwith minor magnetite-chert bands. AVERAGE MODES Calcite Dolomite 35-60× (Ankerite?)) 25-45% Chert Chlorite 10-15× 0-10% Magnetite Pyrite tr-7% Arsenopyrite 0-7% Pyrrhotite 0-4% | Dominant interbanded carbonate (calcite, dolomite - effer-Ivesces with cold HCl, does not scratch easily (chert comiponent)) and chert. (ankerite?) ion a scale from (1mm to 2.31. (Carbonate bands massive in parts (up to 2.31) medium grey, Idark grey-black and yellowish white. llaminae/beds from (1mm to 25 cm.

. .

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 12 of 19

Foo	tage		Description	 	l Number	Samp.	l e Footape		1	5 5 8 7 5	
From	l To	1		Sulphides 	, f ========= 	From	To	Total	l Au l Oz/ton	Au ppb	Au Check
	i 	Chloritic mudston wide (up to 0.81)	ne fine-grained beds generally 0.1° to 0.3°	 		 	# 		 		
	 		rey-white intervals (ankeritic?), 9' to 425.7' and 439.3' to 443.2'.	, 	, , ,	1			† † •		
	 	 Minor fracturing carbonate-quartz	(brecciated from 429.8' to 430.5') with veinlets.	, !	, 	; 			1 		
	! !	Banded at variabl about 55°.	e angles to core axis (43° to 90) - average	' 	, 	1			, 		
	! ! !	1407.1' to 410.2'	-dominant mottled light grey to dark grey/ black chert; 1.3% pyrite and arsenopyrite, minor pyrrhotite and magnetite.	! 1-4 	1 1 3277 1	407.1	410.2	3.1	(0.002	₹5	
	! 	1410.2' to 421.0'	-dominant massive medium grey and dark grey	, tr2	I 3278	410.2	414.2	3.8	{0.002	₹5	
	I	1	black carbonate beds; mineralization (pyrite,	i tr3	1 3279	1 414.0	416.4	2.4	(0.002	(5	
	1	1	arsenopyrite pyrrhotite, magnetite) largely confined to minor chert and mudstone beds.	tr1 	i 3280 I	1 416.4	421.0	4.6	(0.002 	(5	
	 	421.0° to 426.0°	-dominant (75%) white-grey-black chert (including black magnetite-rich bands), dark green-black mudstone (15-20%), with white to grey carbonate (5-10%); minor pyrite.		, 3281 	1 421.0	426.0	5.0	(0.002	₹5	
	 	i	arsenopyrite (± pyrrhotite?).	 	, 			!]]		
	1	1426.0° to 429.0°	- predominant (85-95%) laminated to massive, grey to black carbonate; minor chert; pyrite		3282	426.0	429.0	3.0	<0.002	₹5	
	1	i	and arsenopyrite.	ŀ	I	1			!		

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4 SHEET NO: 13 Of 19

*======		*****				*******	******	******		*****	*****
Foo	t a	a g e	l -i Description	 *	 Number	Sam p	l e Footage		I A	s s a y s	
From	i i	To		Sulphides		From	To	Total	i Au i Oz/ton	Au ppb	Au Check
	 		1429.0° to 435.8° -interbanded chert and carbonate (+10% mudstone); fractured to brecciated in parts sheared; magnetite-rich bands; variable pyrite, arsenopyrite (± pyrrhotite) in band and along fractures.	. 1		429.0 432.4 	432.4 435.8		(0.002 (0.002	(5 (5	
	1 1 1		1435.8° to 443.2° -predominant (80%) banded light to dark greblack, yellowish-white and white chert (including magnetite-rich bands), with 15% carbonate bands and minor mudstone; pyrite ± arsenopyrite.	v, 0.5 tr2		1 435.8 1 439.3 1	439.3 443.2		(0.002 (0.002	(5 (5	
			1443.2° to 450.2° -light-grey, grey, dark grey/black and dark greenish grey interbanded chert (50%), carbonate (35%) and mudstone; 5-10% carbon ate quartz veinlets (in part, subperpendicu to banding); common pyrite and arsenopyrite with pyrrhotite; concentrated in bands, als along subperpendicular fractures and dissemminated; some magnetiferous bands.	5-15 		1 443.2 4 447.7 1	447.7 450.2	_	(0.002 0.014	(5 495	
450.2	1	458.4	ISILTSTONE - light grey with brownish-green tinge, fine-graine ithinly laminated (becoming massive in parts) siltstone.	;	' 	; 					
	 		AVERAGE MODES Chlorite) Muscovite) 50-80× Dolomite 15-45×		} ! !	 					
	i		Pyrite tr3x	1	I	1		,			

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 14 Of 19

Foo	t a	g e	l -I Description	i *	 Number	Samp?	l e Tootage	· · · 	1	5 5 a y 5	
From] 	To	 	Sulphides 	 	From	То	Total	I Au I Oz/ton	Au ppb	Au Check
	 		Possibly altered (carbonatized) intermediate to mafic meta- volcanic.	1	 	 			 		
	! !				! 				! 		
	l l			(0.5	1 1 3289	1 450.2	455.2	5.0	(0.002	(5	
458.4	 	4A0.A		0.5-4	! 3290 	455.2 	458.4	3.2	 (0.002 	⟨5	
450.4	 	400.0	Igrey, fine-grained, foliated mafic flow.	i	ŧ	i			, 		
ı	! !		AVERAGE MODES	<u>;</u>	, 	İ			! }		
	 		Chlorite	; ; ;	7 } 1			i	! 		
I	 		Pyrite 0-2% Pyrrhotite 0-2%	i i	' 	 			; 		
I	i i			1	! !	1			 		
i i	l l i			1	i i 3291 i	 458.4 	461.4	3.0 i	 {0.002	(5	
	 			i i 2-4	I I 3292	 461.4	463.6	2.2	i (0.002	(5	
	į Į		and pyrrhotite associated.		3293	1 463.6	467.9	4.3	(0.002	⟨5	
[l I		1	 	1 3294 1 3300	1 467.9 1 469.8	469.8 472.2		(0.002 (0.002	(5 (5	

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 15 Of 19

	NGLOMERATE - grey to light grey, massive to foliated oligo- etic, matrix supported chert pebble conglomerate. AVERAGE MODES		1 3295 1 3296 1	From 	To 476.5 480.8		Au Oz/ton (0.002	Au ppb 	Au Check
	ctic, matrix supported chert pebble conglomerate.	 						(5	
	ctic, matrix supported chert pebble conglomerate.	1	' 	1		7.0	(0.002	(5	
	AVERAGE MODES		l '	<u> </u>			!] !		
		i	! !	<u> </u>			! 		
	MATRIX (60-95%)		! -	! 		į	[
	Quartz 85-100%	1	•	1 		1	<u> </u>		
	Chlorite 0-15% Sercite 0-15%	1	l] 		ı	 		
	Fuchsite trace	i	I	, i			}		
	Pyrite trace	i	'	, 					
	Pyrrhotite trace	i	I				1		
	Arsenopyrite 0-1%	i		• •					
	ni seliopy i 10e V 12	ï	'	ï			1		
	CLASTS	i	I I	, I					
	OLAS 10	i		,])]		
	Chert 90×	i		, I					
į į	Chlorite Schist 10×	i	' 	1					
	011201120C 0C1122V 1VP	i i		, I			•		
J 1834-91	trix composed of rounded to angular smokey quartz (0.5mm to	i		, 1			' 		
	i) in fine quartz ground mass.	i		, 1					
1 1 1	77 III I I III Quarter ground mass.	i		; !		,			
i ichart	ert pebbles (predominantly 10-30mm) rounded to angular.	i	, 	,		i	1		
, , , , , , , , , , , , , , , , , , ,	to publical tribumatimitival as somet toutions so milystells	1		I		ï			
i ionne:		1	·	, I					
l igener	pears similar to conglomerates intersected previously, except			1					

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 16 Of 19

	ca	9 e	} ∤ Description	 *	i Number	Samp			ł A	5 5 a y 5	
	1		vescription	Sulphides			Footage 		i Au	Au	Au
TOM	1	To	1	l	1	From	To	Total	Oz/ton	ppb	Checi
]		Iquartz cement with fewer (20-30%) angular smokey quartz Ifragments and increasing chert pebbles/cobbles; becomes chert Ibreccia below 504 feet, suggesting tectonic rather than Isedimentary origin.	 	 	† 			 	p. 00 for 60 de 60 to 20 to	to the fire can giv an
	1		IFoliated at 40° to 65° to core axis.	1		į			! !		
	 		1480.8' to 485.8' -with POX chert (± mudstone) bands (beds rather than large pebbles/cobbles?)	trace		1 480.8 1 485.8	485.8 490.8		(0.002 (0.002	(5 (5	
	1		1490.8° to 492.0° -with 0.5" massive arsenopyrite bands (in chert fragments?)	10	3301	1 490.8	492.0 496.0	4.0	(0.004 (0.002	149 (5	
1	1		1 1	i trace		1 496.0 1 500.0	500.0 504.0		(0.002	(5 (5	
504.0				! ! !	! ! !	 					
	1		AVERAGE MODES	į	1				 		
	}			}	! !	•			 		
1	1		Dolomite & Calcite) 15-20% Chlorite 3-10%	1	ł	1		· 1	 		
1	1		Pyrite tr1% Magnetite 0-1%	1] }	1		!	 		
ı	i I		Pyrrhotite trace Fuchsite 0-0.5%	1	† •	1		I	 		
	į		 Portions wth matrix similar to interval above ~ angular to	1	İ	i		j	· 		

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 17 Of 19

Foo	tage	; ·! Description	 %	 Number	Samp:	e ootage		ł	5	
From	l l To		Sulphides	1	l From	То	Total	Au Oz/ton	Au ppb	Au Check
	1	Irounded smokey grey quartz ((2mm) in white-grey cherty ground- lmass.	} !	1	1			 		
	} }		i trace	1 3304 1 3305	504.0	509.0 513.5		(0.002 (0.002	(5 (5	
	, 	Minor thin chloritic shear fractures at low angles to core laxis have striations pitching at abut 30° toward grid south; lpyrite smeared out along shear planes.	 					; ; ;		
	1	1513.5' to 517.0' -dominant greenish black mudstone with chart			513.5	517.0		(0.002	(5	
	1	I fragments; subparallel to core axis in part.	i trace	1 3307	517.0	522.5	4.5	1 (0.002	(5	
	i	1522.2' to 522.4' -chert fragment with black magnetite-rich	i trace	3308	1 522.5	523.5	2.0	(0.002	⟨5	
	I	l band.	tr0.5	i 3309	1 523.5	527.5	4.0	(0.002	₹5	
	1	!	i tr0.5	3310	527.5	531.5	4.0	1 (0.002	(5	
	1	1532.1' to 533.3' -yellowish to grey chert with minor	1 0.5	i i 3311	531.5	533.5	2.0	 (0.002	(5	
	i	magnetite-rich bands, minor pyrite	trace		533.5	538.5		(0.002	(5	
	1	(±pyrrhotite?)	0.5	3313	538.5	542.3	3.8	(0.002	(5	
	: 	1542.3 to 544.6 -matrix chloritic - has more of a 'conglo- merate' look; pyrite coatings more common.	1	1 3314 I	542.3	544.6	2.3	(0.002	(5	
	1	1	i 0.5	3315	1 544.6	548.6	4.0	(0.002	(5	
548.6	1 555.4	ICONGLOMERATE AND WACKE - dark grey, massive polymictic pebble	1 1	3316	548.6	552.0	3.4	(0.002	₹5	
	1	iconglomerate.	i 1	3317	552.0	555.4	3.4	(0.002	(5	
	1	I	1	l	1		1	i		
	1	AVERAGE MODES	1	I	1			l		
	1	1	1	1	I		1	i		
	1	I Quartz 65-80%	i	i	1			Ī		

NAME OF PROPERTY: Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 18 Of 19

Fo	o t	g e	l Description	 *	 Number	Samp	l e Footage		l	5 5 a y 5	
From	 	To	1	Sulphides 	 	From	То	Total	i Au i Oz/ton	Au ppb	Au Check
	 		Chlorite 10-20x Muscovite 10-20x Carbonate 2-5x Pyrite 1x		i i i i	 			 		
	1 1			 	 			i	 		
	; ; !		Pyrite coatings on chloritic fractures and in fractured chert pebble.	r 	, 	 		i			
	į		Islightly fliated at 43° to 50° to core axis.	, 	, !	i		I			
555.4	1 1 1 1		ICHERT BRECCIA - brecciated chert and dolomitic chert, in part lwith chloritic breccia matrix; similar to portions of interval Ifrom 504.0' to 548.6'. With pyritic fracture coatings is inilar to previous intervals; also pyrrhotite bands and Ifracture-fillings in chert. Includes unbrecciated quartz wacke Iband from 556.1' to 556.5'.	(0.5 1 		1 555.4 1 560.1 1	560.1 654.8		(0.002 (0.002	(5 (5	
564.8	B 		ICONGLOMERATE AND WACKE - similar to interval from 548.6° to 1555.4°; wacke above 567.7°; conglomerate below includes ipyrite-rich fragment. Pyrite coatings on fractures.	(1 1-2		564.8 567.7	567.7 570.1		<0.002	(5 (5	
570.1	 		ICALCAREDUS SILTSTONE - olive green, thinly laminated calcareous siltstone.	 	1 	1 		 			
	ļ		, !	i I	, 	! 		i			

NAME OF PROPERTY:

Keeyask Lake

HOLE NO: KE-90-4

SHEET NO: 19 of 19

F o (o t	a g e	i -i Description		l Number	Samp:	e Footage		I .	5 5 2 Y 5	
From	1	To		Sulphides 		i From	To	Total	i Au i Oz/ton	Au ppb	Au Check
	i		AVERAGE MODES	 	 	 			i !		
	1		Chlorite 55-75× Calcite 25-45× Quartz 2-5× Pyrite 0.5× Arsenopyrite 0.5×	 	, 	, 1 1 1			, 		
	 			 	} 	 			 		
	1			(0.5 tr1		570.1 571.3	571.3 576.0		(0.002 (0.002	(5 (5	
576.0	0	579.0	IQUARTZ WACKE - light grey, spotted with 40-80% smokey quartz igrains (generally (2mm); similar to silica-cemented matrix lin interval from 480.8° to 504.0. Massive to weakly Ifoliated at about 55° to core axis.	1 1 1	3324 	576.0 	579.0	3.0	(0.002	(5	
		579.0	IEND OF HOLE	1	i i	; !			, -		
	 		I.A. Graiffe	 	 	1 1 1 1		; !			
	 		! !	 	 - -	! ! 1		i !	† -		

. .

APPENDIX D

ANALYTICAL CERTIFICATES

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Mr. H.J. Hodge 31763 Geocanex Ltd.

Geocanex Ltd. 1003-34 King Street East

Toronto, Ontario

M5C-1E5

Date: March 5 19 90

1

Page:

Work Order # : P900004

Project : Keeyask Lake

BERS	Gold	Gold	
Customer	ppb	Oz/T	
3101	<5	<0.002	
3102	<5	<0.002	
3103	<5	<0.002	
3104	<5	<0.002	
3105	<5	<0.002	
	<5	<0.002	
	<5	<0.002	
			Check
			0
3115	<5	<0.002	
3116	<5	<0.002	
	<5	<0.002	
			Check
	3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115	Customer ppb 3101 <5	Customer ppb Oz/T 3101 <5

Per: Poine luck

P.O. BOX 604 KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Mr. H.J. Hodge 31792

Geocanex Ltd. 1003-34 King Street East

Toronto, Ontario

M5C-1E5

Page:

March 9 Date: _

Work Order # : P900005

Project : Keeyask Lake

	SAMPLE	NUMBERS	Gold	Golđ	
	Accurassay	Customer	ppb	Oz/T	
ĺ	447364	3119	<5	<0.002	
•	447365	3120	<5	<0.002	
	447366	3121	<5	<0.002	
ı	447367	3122	<5	<0.002	
	447368	3123	<5	<0.002	
_	447369	3124	5	<0.002	
I	447370	3125	<5	<0.002	
J	447371	3126	<5	<0.002	
	447372	3127	6	<0.002	
ì	447373	3128	<5	<0.002	
ı	447373	3128	<5	<0.002	Check
_	447374	3129	<5	<0.002	
	447375	3130	14	<0.002	
	447376	3131	<5	<0.002	
	447377	3132	<5	<0.002	
_	447378	3133	<5	<0.002	
	447379	3134	<5	<0.002	
	447380	3135	18	<0.002	
	447381	3136	<5	<0.002	
	447382	3137	5	<0.002	
	447382	3137	<5	<0.002	Check
_	447383	3138	8	<0.002	
	447384	3140	437	0.013	
	447385	3141	<5	<0.002	
	447386	3142	<5	<0.002	
	447387	3143	84	0.002	
	447388	3144	17	<0.002	
	447389	3145	28	<0.002	
	447389	3145	27	<0.002	Check

Pres

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

30202

Mr. H.J. Hodge Geocanex Ltd.

1003-34 King Street East

Toronto, Ontario

M5C-1E5

Date: March 12 19 90

Page:

1

Work Order # : P900010

Project : Keeyask Lake

SAMPLE	NUMBERS	Gold	Gold	
Accurassay	Customer	ppb	Oz/T	
447369	3147	<5	<0.002	
447370	3148	<5	<0.002	
447371	3149	<5	<0.002	
447372	3150	<5	<0.002	
447373	3151	<5	<0.002	
447374	3152	<5	<0.002	
447375	3153	<5	<0.002	
447376	3154	<5	<0.002	
447377	3155	<5	<0.002	
447378	3156	<5	<0.002	
447378	3156	<5	<0.002	Check
447379	3157	<5	<0.002	
447380	3158	<5	<0.002	•
447381	3159	<5	<0.002	
447382	31.60	<5	<0.002	
447383	3161	< 5	<0.002	
447384	3162	₹5	<0.002	
447385	3163	< 5	<0.002	
447386	3164	< 5	<0.002	
447387	3165	<5	<0.002	
447387	3165	<5	<0.002	Check
447388	3166	<5	<0.002	
447389	3167	<5	<0.002	
447390	3168	<5	<0.002	
447391	3169	<5	<0.002	
447392	3170	<5	<0.002	
447393	3171	<5	<0.002	
447394	3172	<5	<0.002	``
447395	3173	<5	<0.002	
447396	3174	<5	<0.002	
447396	3174	<5	<0.002	Check

Per: Blaine Will

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

30203 Geoc

Mr. H.J. Hodge Geocanex Ltd.

1003-34 King Street East

Toronto, Ontario

M5C-1E5

Page: 2

Date: March 12 19 90

Work Order # : P900010

Project : Keeyask Lake

447397 447398 3176 45 40002 447400 3178 45 40002 447401 3179 45 40002 447402 3180 45 40002 447403 3184 45 40002 447405 3186 45 40002 447406 3187 45 40002 447407 3188 45 40002 447408 3189 45 40002 447409 3190 447410 3191 45 40002 447411 3192 45 40002 447412 3193 45 40002 447414 3195 45 40002 447415 3196 45 40002 447416 3197 45 40002 447417 3198 45 40002 447418 3199 45 40002 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447419 3200 447421 3202 45 40002 447421 3202 45 40002 447423 3204 45 40002 Check	SAMPLE N		Gold	Gold	
447398 447399 3177 45 40002 447400 3178 45 40002 447401 3179 47402 3180 45 40002 447403 3184 45 40002 447404 3185 45 40002 447405 3186 47406 3187 47406 3187 47408 3189 47409 3190 47410 3191 47411 3192 47411 3192 47412 3193 47414 3195 47414 3195 47415 3196 47415 3196 47416 3197 45 40002 447416 3197 45 40002 447417 3198 45 40002 447418 3199 45 40002 447418 3199 45 40002 447419 3199 46 47418 3199 45 40002 447418 3199 45 40002 447419 3200 47418 3199 45 40002 447419 3200 47419 3200 47419 3200 47419 3200 47420 3201 47421 3202 47422 3203 45 40002 Check	Accurassay	Customer	ppb	Oz/T	•
447398 3176 <5	447397	3175	<5	<0.002	
447399 3177 <5		3176	<5	<0.002	
447400 447401 3179 45 40.002 447402 3180 45 40.002 447403 3184 45 40.002 447405 3186 45 40.002 447405 3186 47406 3187 47408 3189 45 40.002 447409 3190 447410 3191 45 40.002 447411 3192 45 40.002 447412 3193 47414 3195 45 40.002 447415 3196 45 40.002 447416 3197 45 40.002 447417 3198 45 40.002 447418 3199 45 40.002 447419 3200 447419 3200 447419 3200 447419 3200 447420 3201 447421 3202 447422 3203 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 3204 45 40.002 447423 447423 3204 45 40.002 447423 447423 4204 447423 4204 447423 4204 447423 4204 447423 4204 447423 4204 447423 4204 447423 4204 447423 4204 447423 4204 447423 4204 447423 4206 447423 4206 447423 447423 4206 447423		3177	<5	<0.002	
447401 3179 <5		3178	<5	<0.002	
447402 3180 <5	447401	3179	<5	<0.002	
447403 3184 <5		3180	<5	<0.002	
447404 3185 <5		3184		<0.002	
447405 3186 <5				<0.002	
447405 3186 <5				<0.002	
447406 3187 <5				<0.002	Check
447407 3188 <5					
447408 3189 <5				<0.002	
447409 3190 <5				<0.002	
447410 3191 <5				<0.002	
447411 3192 <5		3191	<5	<0.002	
447412 3193 <5		3192	<5	<0.002	
447413 3194 <5 <0.002			<5	<0.002	
447414 3195 <5 <0.002				<0.002	
447414 3195 <5 <0.002 Check		3195	<5	<0.002	
447415 3196 <5		3195	<5	<0.002	Check
447416 3197 <5		3196	<5	<0.002	
447417 3198 <5		3197	<5	<0.002	
447419 3200 <5		3198	<5	<0.002	
447419 3200 <5 <0.002		3199	<5	<0.002	
447420 3201 <5		3200	<5	<0.002	
447421 3202 <5 <0.002		3201		<0.002	
447422 3203 <5 <0.002		3202	<5	<0.002	
447423 3204 <5 <0.002 447423 3204 <5 <0.002 Check		3203	<5	<0.002	
447423 3204 <5 <0.002 Check					
					Check
	447424	3205	< 5	<0.002	

15.3

Per: Blaine Verterl.

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

30204 Geog

Mr. H.J. Hodge Geocanex Ltd. 1003-34 King Street East

Toronto, Ontario

M5C-1E5

Date: March 12 19 9

3

Page:

Work Order # : P900010

Project : Keeyask Lake

SAMPLE	NUMBERS	Gold	Gold	
Accurassay	Customer	ppb	Oz/T	
447425	3206	<5	<0.002	
447426	3207	<5	<0.002	
447427	3208	<5	<0.002	•
447428	3209	<5	<0.002	
447429	3210	<5	<0.002	
447430	3211	297	0.009	
447431	3212	<5	<0.002	
447432	3213	<5	<0.002	
447432	3213	<5	<0.002	Check
447433	3214	<5	<0.002	
447434	3215	<5	<0.002	
447435	3216	<5	<0.002	
447436	3217	<5	<0.002	
447437	3218	<5	<0.002	
447438	3219	<5	<0.002	
447439	3220	<5	<0.002	
447440	3221	<5	<0.002	
447441	3222	<5	<0.002	
447441	3222	<5	<0.002	Check
447442	3223	<5	<0.002	
447443	3224	<5	<0.002	
447444	3225	<5	<0.002	
447445	3226	< 5	<0.002	
447446	3227	<5	<0.002	
447447	3228	<5	<0.002	
447448	3229	< 5	<0.002	
447449	3230	<5	<0.002	
447450	3231	₹5	<0.002	
447450	3231	₹5	<0.002	Check
447451	3232	< 5	<0.002	
447452	3233	< 5	<0.002	
44/402	3233	13	101002	

Per: Blaine Luky

LF-30

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

30205

Mr. H.J. Hodge Geocanex Ltd. 1003-34 King Street East Toronto, Ontario

M5C-1E5

Date: March 12 19 90

Page:

Work Order # : P900010

Project : Keeyask Lake

			110,00	• • • • • • • • • • • • • • • • • • • •	
	NUMBERS Customer	Gold ppb	Gold Oz/T		
Accurassay	Customer	PPD	02/1		
447453	3234	<5	<0.002		
447454	3235	<5	<0.002		
447455	3236	<5	<0.002		
447456	3237	<5	<0.002		
447457	3238	<5	<0.002		
447458	3239	<5	<0.002		
447459	3240	<5	<0.002		
447459	3240	<5	<0.002	Check	
447460	3241	<5	<0.002		
447461	3242	<5	<0.002		
447462	3243	<5	<0.002		
447463	3244	<5	<0.002		
447464	3245	<5	<0.002		
447465	3246	<5	<0.002		
447466	3247	<5	<0.002		
447467	3248	<5	<0.002		
447468	3249	< 5	<0.002		
447468	3249	<5	<0.002	Check	
447469	3250	< 5	<0.002		
447470	3251	<5	<0.002		
447471	3252	<5	<0.002		
447472	3253	<5	<0.002		
447473	3254	<5	<0.002		
447474	3255	<5	<0.002		
447475	3256	347	0.010		
447476	3257	<5	<0.002		
447477	3258	<5	<0.002		
447477	3258	<5	<0.002	Check	
447478	3259	<5	<0.002		
447479	3260	<5	<0.002		
447480	3261	<5	<0.002		

Per: Blaine Juth

LF-30

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

30206

Mr. H.J. Hodge Geocanex Ltd.

1003-34 King Street East

Toronto, Ontario

M5C-1E5

Page:

March 12

_₁₉ _ 90

Work Order # : P900010

: Keeyask Lake Project

SAMPLE NU	MBERS	Gold	Gold	
Accurassay	Customer	ppb	Oz/T	
447481	3262	<5	<0.002	
447482	3263	<5	<0.002	
447483	3264	<5	<0.002	
447484	3265	<5	<0.002	
447485	3266	<5	<0.002	
447486	3267	<5	<0.002	
447486	3267	<5	<0.002	Check
447487	3268	<5	<0.002	
447488	3269	<5	<0.002	
447489	3270	<5	<0.002	
447490	3271	<5	<0.002	
447491	3272	<5	<0.002	
447492	3273	<5	<0.002	
447493	3274	<5	<0.002	
447494	3275	<5	<0.002	
447495	3276	<5	<0.002	
447495	3276	<5	<0.002	Check
447496	3277	<5	<0.002	
447497	3278	<5	<0.002	
447498	3279	<5	<0.002	
447499	3280	<5	<0.002	
447500	3281	<5	<0.002	-
447501	3282	<5	<0.002	
447502	3283	<5	<0.002	
447503	3284	<5	<0.002	
447504	3285	<5	<0.002	
447504	3285	<5	<0.002	Check
447505	3286	<5	<0.002	
447506	3287	<5	<0.002	
447507	3288	495	0.014	
447508	3289	<5	<0.002	

Per: Blame We the

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

30207

Mr. H.J. Hodge Geocanex Ltd.

1003-34 King Street East

Toronto, Ontario

M5C-1E5

Page: 6

Date: March 12 19 90

Work Order # : P900010

Project : Keeyask Lake

Accurassay Customer ppb Oz/T 447509 3290 <5 <0.002 447510 3291 <5 <0.002 447511 3292 <5 <0.002 447512 3293 <5 <0.002 447513 3294 <5 <0.002 447514 3295 <5 <0.002 447515 3296 <5 <0.002 447516 3297 <5 <0.002 447517 3298 <5 <0.002 447518 3299 149 0.004 447519 3300 <5 <0.002 447520 3301 <5 <0.002 447521 3302 <5 <0.002 447522 3303 <5 <0.002 447523 3304 <5 <0.002 447524 3305 <5 <0.002 447525 3306 <5 <0.002 447527 3308 <5	SAMPLE 1	NUMBERS	Gold	Gold	
447510 3291 <5			ppb	Oz/T	
447510 3291 <5	447509	3290	<5	<0.002	
447511 3292 <5		3291	<5	<0.002	
447513 3294 <5	447511	3292	<5	<0.002	
447513 3294 <5	447512	3293	<5	<0.002	
447513 3294 <5	447513	3294	<5	<0.002	
447514 3295 <5		3294	<5	<0.002	
447515 3296 <5		3295	<5	<0.002	
447516 3297 <5		3296	<5	<0.002	
447517 3298 <5		3297	<5	<0.002	
447518 3299 149 0.004 447519 3300 <5		3298	<5	<0.002	
447519 3300 <5		3299	149	0.004	
447520 3301 <5				<0.002	
447521 3302 <5				<0.002	
447522 3303 <5				<0.002	
447522 3303 <5					
447523 3304 <5					
447524 3305 <5				<0.002	
447525 3306 <5					
447526 3307 <5					
447527 3308 <5				<0.002	
447528 3309 <5					
447529 3310 <5				<0.002	
447530 3311 <5				<0.002	
447531 3312 <5					
447531 3312 <5					
447532 3313 <5					
447533 3314 <5					
447534 3315 <5 <0.002					
447535 3316 <5 <0.002					
447330 3317 33 30,002	447536	3317	₹5	<0.002	

Per: Blaine Jutel

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

30208

Mr. H.J. Hodge Geocanex Ltd.

1003-34 King Street East

Toronto, Ontario

M5C-1E5

Page: 7

90

Work Order # : P900010

Date: ___ March 12

Project : Keeyask Lake

SAMPLE NU	MBERS	Gold	Gold	
Accurassay	Customer	ppb	Oz/T	
447537	3318	<5	<0.002	
447538	3319	<5	<0.002	
447539	3320	<5	<0.002	
447540	3321	<5	<0.002	
447540	3321	<5	<0.002	Check
447541	3322	<5	<0.002	
447542	3323	<5	<0.002	
447543	3324	<5	<0.002	
447543	3324	<5	<0.002	Check

Per: Blaine Undel

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

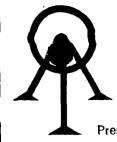
Page: 1

30343

Mr. H.J. Hodge Geocanex Ltd.

1003-34 King Street East

Toronto, Ontario


M5C-1E5

Date: April 5 19 90

Work Order # : P900009

Project : Keeyask Lake

SAMPLE NUM	1BERS	Gold	Gold	
Accurassay	Customer	ppb	Oz/T	
447364	3139	29	<0.002	
447365	3146	594	0.017	
447366	3181	5	<0.002	
447367	3182	27	<0.002	
447368	3183	7	<0.002	
447368	3183	6	<0.002	Check

30295

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604

KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5

TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Mr. H.J. Hodge Geocanex Ltd. 1003-34 King Street East TORONTO, ONTARIO

Page #1

Date: March 29 19 90

Work Order:

P900009

Project:

Keeyask Lake

SAMPLE N	UMBER	λg	A1	λs	Ba	Bi	Ca	ca
Accurassay	Customer	ppm	*	ppm	ppm	ррm	*	ppm
447291	3139	0.4	1.30	>10000	<2	<2	5.18	1.1
447292	3146	3.4	0.25	>10000	<2	<2	0.44	2.1
447293	3181	0.3	1.66	94	<2 .	<2	9.96	0.9
447294	3182	0.4	1.44	99	<2	<2	>10.00	2.2
447295	3183	0.4	2.11	43	<2	<2	7.40	1.8
		.=====:			*****	======		
		Co	Cr	Cu	Fe	Нg	K	La
		ppm	ppm	ppm	*	ррm	*	ppm
447291	3139	104	876	11	>5.00	<3	0.25	<2
447292	3146	65	743	57	>5.00	6	0.10	<2
447293	3181	51	899	54	4.92	<3	0.05	<2
447294	3182	45	773	83	>5.00	6	<0.01	2
447295	3183	75	445	102	>5.00	<3	<0.01	9
	=======================================		======	*****			=======================================	
		Mg	Mn	Мо	Na	Ni	P	Рb
		%	ppm	ppm	8	ppm	8	ррm
447291	3139	4.26	2578	2	<0.01	955	0.01	11
447292	3146	0.38	482	2	0.01	589	0.01	56
447293	3181	5.09	3577	2	<0.01	587	0.01	25
447294	3182	2.98	4187	4	<0.01	499	0.03	22
447295	3183	3.36	3026	4	<0.01	583	0.02	9

NOTE: Anomalous iron (Fe) values may be a result of contamination from the pulverizer plates during sample preparation.

Per: Dans Cut.

30296

ACCURASSAY LABORATORIES LTD.

P.O. BOX 604
KIRKLAND LAKE, ONTARIO, CANADA P2N 3J5
TEL.: (705) 567-6343

President: Dr. GEORGE DUNCAN, M.Sc., Ph. D., C. Chem (Ont.), C. Chem (U.K.), M.C.I.C., M.R.S.C., A.R.C.S.T.

Certificate of Analysis

Mr. H.J. Hodge Geocanex Ltd. 1003-34 King Street East TORONTO, ONTARIO M5C 1E5

Page #2

Date: March 29 19 90

Work Order:

P900009

Project:

Keeyask Lake

SAMPLE NUM Accurassay Cu		sb ppm	ppm Sc	sr ppm	Th ppm	Ti %	ppm V	ppm W
447291	3139	220	9	72	<10	0.03	45	<5
447292	3146	>1000	<1	6	<10	<0.01	17	<5
447293	3181	62	14	43	<10	0.01	58	<5
447294	3182	150	8	42	<10	<0.01	42	<5
447295	3183	16	7	31	13	0.01	33	<5
	=======	=======	======	======	=====	=======	======	

		2n	Zr	
		ppm	ppm	
447291	3139	13	4	
447292	3146	30	1	
447293	3181	101	4	
447294	3182	410	6	
447295	3183	145	16	

NOTE: Anomalous iron (Fe) values may be a result of contamination from the pulverizer plates during sample preparation.

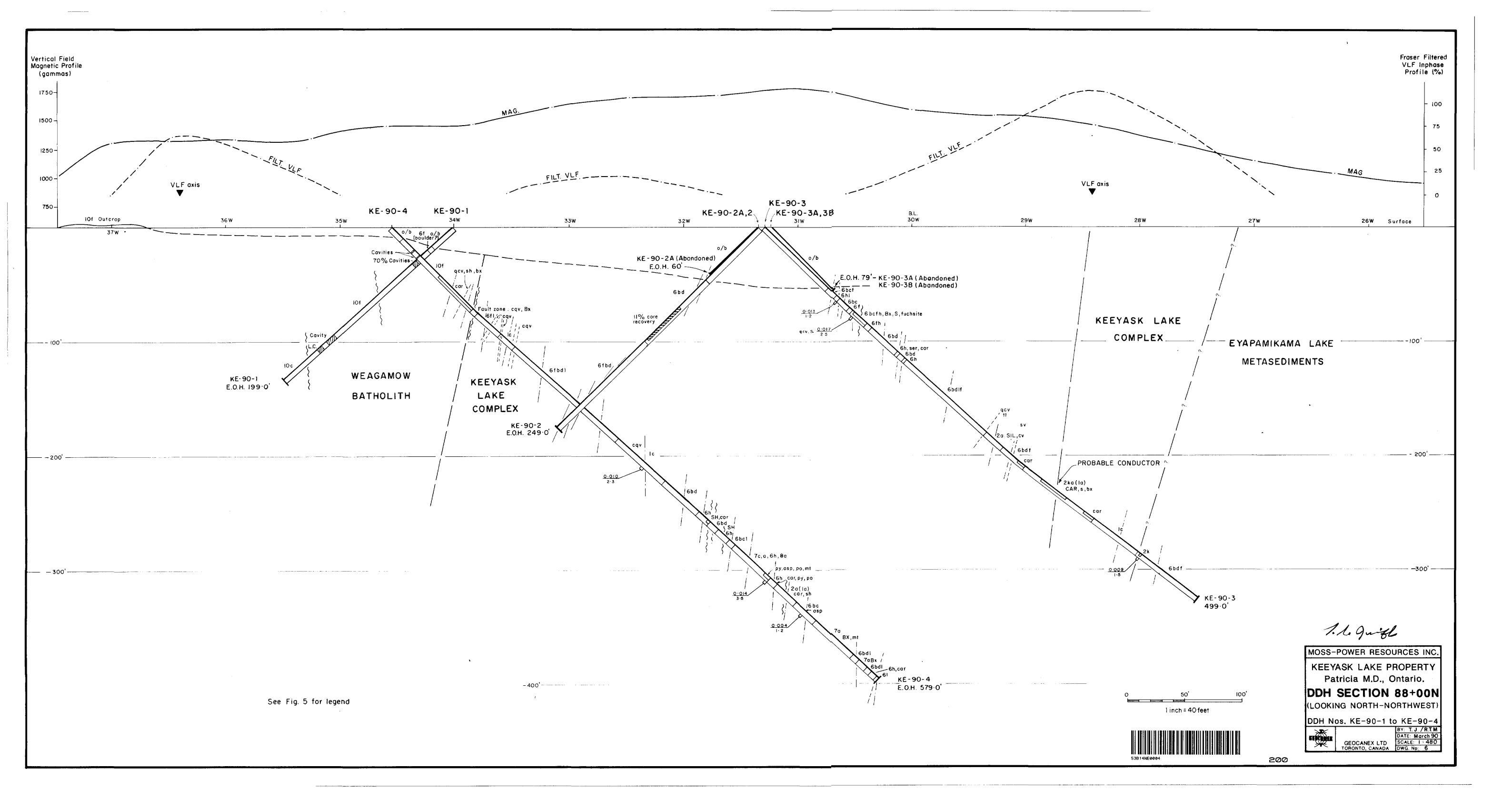
Per: Blance Julish.

900

53B14NE0004

Misc Section

ontario, ASSESS	a de la la la la la la la la la la la la la						echnical work use form no. 1362 "Report Geological, Geophysical, Geochemical and Ires)".			
Name and Postal Address of	g						Prospector's L	icence No.		
Moss-Power Re	sources	Ltd.					T 1010			
2 Tomon	+	. t	. 0	.	MEC 2DC					
<u>400 - 2 Toron</u> Summary of Work Perforn	nance and Di	et, Toronte stribution of Credi	o, Unta its	rio	MOC 286					
Total Work Days Cr. claimed		Mining Claim	Work		ining Claim	Work		g Claim	Work	
1,725	Prefix	Number	 	refix	Number	Days Cr.	Prefix	Number	Days Cr	
for Performance of the follow work, (Check one only)	ving Pa	see attacl	hed	96.50						
Manual Work										
Shaft Sinking Drifting other Lateral Work.	or .									
Compressed Air, other										
Power driven or mechanical equip.										
Power Stripping										
Diamond or other Core							 			
drilling									ļ	
Land Survey										
All the work was performed	on Mining Clair	n(s): Pa 1009	775. 10	0977	6 V	. /	lah G-	2001		
					Table Palavil	Lyask.	late 6°	7097		
equired Information eg:	type of equi	pinent, Names, Ac	auresses, etc	1266	I anie pelow)	-				
Contractor:	W.G. La	ngley Ltd.	Bramp	ton,	Ontario		Ph	-inlo		
Core Size: B	Q 1 7/1	6 ''					-1. V.	cycros		
Geologist In	Charge:	Tom S. Jo	olliffe				2	\gtrsim		
O	J	1217 - 44		osep	h	K	EVEL S	id.		
		Toronto,	Ontari	0			PACIL	18/	\	
No. of Holes:	seven	(7)					atiti	N-V K	y	
Total Footage		` '				[<u>P</u>	MUULI	A LID 1.0	?)	
10tal 100tage	• -, /.						JUL 13	1990	-)	
Dates: Febru	ary 8th	, to Februa	ary 25t	h, 1	990	Ei.	PATRICIA I	MINING LIC		
						1 2	DIVISIO		,	
Total Albricable	172	DAUC				V	7	XIII.		
10101 MINUMIC	1123	V442						No.		
Using W7003-202 RESERVE	1720	DOCLU	AENT NO							
	6-14	2 14/000	VIC. 20	ا ذ		(
KESENVE	J Day.	> M 900	3.20	ן ב	Date of Report	,	Recorded Hold	der or Agent (S	ignature)	
				- 1	July 11/			211	2	
ertification Verifying Re	port of Work							1	\	
I hereby certify that I have						Vork annexe	d hereto, havin	g performed th	ne work	
or witnessed same during a			nnexed report	is true.			~		\rightarrow	
H.J. Hodge 4	•	•	teet T	oron	to Ontar	in M50	2 2 R 6			
n.o. noage 4	00 - 2	TOLONICO SCI			Date Certified	10 (15)	Certified by (S	ignature)		
					July 11/9	0	1.10	XII.		
able of Information/Atta	chments Rec	uired by the Minir	ng Recorder				4/11	V /		
Type of Work	Spe	cific information per	type	Othe	er in Offication (Oo	mmon 40-2	or more types)	Attachr	ments	
Manual Work		**************************************	···································	1	ONTARIO G ASSES	sologica Siventi	EU ES	<u> </u>		
Shaft Sinking, Drifting or	1	Nil		Ne	mes and addresses			Mr1. 21	L	
other Lateral Work				mai	nua , work/operate	d equipmen	t, together	Work Sketc	to show	
Compressed air, other power	Type of equi	pment	***************************************	- wit	h dites and holds	e Triong	90	the location		
driven or mechanical equip.								relation to	the	
Power Stripping		pment and amount e				EIV		nearest clair	in post.	
ower ampping	1	of actual cost must b ys of recording.	e summited	•	nes and addresses . ether with dates w	of owner or	operator			
Diamond or other core	1 -	og showing; footage,	diameter of	dor		_ · · · · · · · · · · · · · · · · · · ·	• • •	Work Sketo		
drilling		r and angles of holes.		-				above) in d	·	
Land Survey	Name and ad	dress of Ontario land	survever.			Nil		Ni	!	


PROPERTY		.1 **** **** **** **** ***	CLAIM
KEEYASK	LAKE	Pа	1002791
KEEYASK		ı u	1002792
KEEYASK	LAKE		1002793
KEEYASK	LAKE		1002794
KEEYASK	LAKE		1002795
KEEYASK	LAKE		1002796
KEEYASK	LAKE		1002797
KEEYASK	LAKE		1002798
KEEYASK	LAKE		1002799
KEEYASK	LAKE		1002800
KEEYASK	LAKE		1002801
KEEYASK	LAKE		1002802
KEEYASK	LAKE		1002803
KEEYASK	LAKE		1002804
KEEYASK	LAKE		1002805
KEEYASK	LAKE		1002806
KEEYASK	LAKE		1002807
KEEYASK	LAKE		1002808
KEEYASK	LAKE		1002809
KEEYASK	LAKE		1002810
KEEYASK	LAKE		1002944
KEEYASK	LAKE		1002945
KEEYASK	LAKE		1002946
KEEYASK	LAKE		1002947
KEEYASK	LAKE		1002948
KEEYASK	LAKE		1002949
KEEYASK	LAKE		1002950
KEEYASK	LAKE		1002951
KEEYASK	LAKE		1002952
KEEYASK			1002953
KEEYASK	LAKE		1002984
KEEYASK			1002985
KEEYASK			1002986
	LAKE		1002987
KEEYASK			1002988
KEEYASK			1002989
KEEYASK	LAKE		1002990
KEEYASK	LAKE		1002991
KEEYASK	LAKE		1002992
KEEYASK	LAKE		1002993
KEEYASK	LAKE		1002994
KEEYASK			1002995
KEEYASK	LAKE		1054218

Count for KEEYASK

Credits Requested: 40 per claim = 1,720

		l 		,			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		^_	\geq	97812		
100916	1 1009786	1009785	J	1009119	1	N	(, , •	1			<u></u>	J ,	
1009783	1009702	1009181	1009780		L	ر				,	ے کے	7	
	1111	///	1009117		! - !								
100977	1000/26	KKK		100 9 178	1002951	i	, · · ·		`~~			>	
100 977] 3	1009765	1	129		~~~	كر					کر کے	-
200	1			+>	1002950							25	
	1009771	1009766	1009763	1002453	\ 0	100 2947				Eyo	ppm	, io	
	1	10	 	 		1002946		· · · ·			9		
	1009770	1009/167	100 9762	1009759		7-4	7-7	~/	-Sy	L	')		
	1009769	1009768	1009761		100 2948	100 2945	1002944	C_{2}^{f}	١٤.	0 10	7085		
		المر	1003012	1003011		1003009	100 3008		اس.[7	}	
		Ke	eyosk) d					
		ا ا کر	1003002	pke 100 3003	1003004	1003006 	1003006 -/t-1	1003007	! !				
	,	5			! ! !	1002 98	100 2497	100 299			_		
	Í	i	1003001	100 3000	1002999					()		
	y/			1002990	1002491	1002992	100 2 9 9 3	1002994	100 2995	?			
				200					1002984)	
	كرم			1002989	100 2988	100 2987	100 24 86			,	5		
		لمر		•	1009803	1009802		1009800	100 9799	,	کم		
		مرلر				700 4 802		' — — — 	- 5-		\sim		
	\rightarrow				, ! *	1002807	1002808	1002809	1002810	•	کے		
	الر	0			j	1002806	1002805	1002801	1002003	$\int \int \int d^3x dx$	Ó		
	{			į	J	 		<u></u>		لسكر	,	\sim	
	/					1 1007199	1/02800	1002801	1002802		/		
looeig	27.00	40 100793		1008114	J	1 100 2798	100/2791	1054218	1002796		كرك	•	
29170	- 10048	10.100783	 	1000114	1007892	1007897	1002195	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1002793			5	
80 10079	48 10079	41 100793	8 1008116	1008113	1007893		 	Po	719918		 		۷.
1)	1) <u> </u>		2 0	15	199 à) 	,	1002792	i (3 /))
10079	47 1100794	,	17 1008117 1405-	1009112	1 ·		780100	919916	719917	1002791			
10079	46 10070			d 10.	-!	1007888	Pa 000	Po	Po	720006	120009	9000 72005	7 720
70	\\	1	 	415			}	1		! 		2-1	
4 110079	45 100794	4 100793	5	11007897	1007896	1007887	843409	Po	۰۹۵ ا	Po	ング	7/~	1

