

DIAMOND DRILLING

AREA: RANDALL LAKE

REPORT NO: 16

WORK PERFORMED FOR: Power/C. Darveau/M. Lariviere

RECORDED	HOLDER:	Same	as	Above	[xx]
	:	Other	<u>,</u>		[]

<u>C1</u> ;	aim No.	Hole No.	Footage	Date	<u>Note</u>
Pa	720073	RL-88-1 RL-88-2	787' 523.7'	Feb/88 Jan/88	(1) (1)
Pa	720074	RL-88-3	297'	Jan/88	(1)
Pa	720073	RL-88-4 RL-88-5 RL-88-6 RL-88-7	447' 437' 447' 597'	Feb/88 Feb/88 Jan/88 Jan/88	(1) (1) (1) (1)
Pa	720074	RL-88-8	567'	Feb/88	(1)
Pa	720004	RL-88-15	662'	Feb/88	(1)
Pa	720091	RL-88-16 RL-88-17	358 ' 677 '	Feb/88 Feb/88	(1) (1)
Pa	720091	RL-88-18	357'	Jan/88	(1)
Pa	720024	RL-88-19	997 '	Feb/88	(1)
Pa	720005	RL-88-20 RL-88-20A RL-88-21	67' 797' 772'	Feb/88 Feb/88 Feb/88	(1) (1) (1)
Pa	720010	RL-88-23	608'	Feb/88	(1)
Pa	720016	RL-88-24	817'	Feb/88	(1)
Pa	720018	RL-88-25	897'	Feb/88	(1)
Pa	720029	RL-88-26	997 '	Feb/88	(1)

NOTES: (1) W8903.059, date filed May/89

ON

DIAMOND DRILLING

ON THE

RANDALL LAKE PROPERTY

DISTRICT OF KENORA, PATRICIA MINING DIVISION

NORTHWESTERN ONTARIO

FOR

POWER EXPLORATIONS INC.

53B/14

[]	ASSESS MENT FLESS	Y I
	MAR 28 1989	
	RECEIVED	/

Jon W. North, B.Sc.

April, 1988

TABLE OF

•

Page

1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	PROPERTY DESCRIPTION	4
4.0	LOCATION, ACCESS AND SERVICES	4
5.0	PREVIOUS WORK	6
6.0	PHYSIOGRAPHY AND VEGETATION	8
7.0	REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION	9
8.0	PROPERTY GEOLOGY	14
	 8.1 General Description 8.2 Agutua Arm Andesites 8.3 Keeyask Lake Complex 8.4 South Rim Basalts/Eyapamikama Lake Metasediments 8.5 Structure 8.6 Metamorphism 	14 14 15 15 17 18
9.0	SUMMARY OF GEOPHYSICS	18
10.0	SUMMARY AND RESULTS OF DRILLING PROGRAM	19
11.0	CONCLUSIONS	28
12.0	RECOMMENDATIONS	29
	12.1 Phase 1 12.2 Phase 2	
13.0	ESTIMATED COST OF RECOMMENDED PROGRAM	30
	13.1 Phase 1 13.2 Phase 2	
14.0	REFERENCES	31

APPENDICES

A	CERTIFICATE OF QUALIFICATIONS	Back	of	report
В	DIAMOND DRILL LOGS		11	н
С	LEGEND AND DIAMOND DRILL SECTIONS	11	11	11
D	ASSAY CERTIFICATES		н	14

Ø10C

TABLE NO. 1 - SUMMARY OF DIAMOND DRILL HOLESPAGE 21-27

LIST OF FIGURES

FIGURE	NO.	1	-	LOCATI	ION MAP			PAGE	3	
FIGURE	NO.	2	-	CLAIM	SKETCH			PAGE	5	
FIGURE	NO.	3		REGION	NAL GEOLO	GY AND MI	INERAL OCCURRENCES	PAGE	10	
FIGURE	NO.	4	-	PLAN C	OF DRILLI	ING		PAGE	20	
FIGURE	NO.	5	-	LEGENI)			APPENI	DIX	С
FIGURE	NO.	6		DRILL	SECTION	20+00E	RL-88-1,2 & 3	APPENI	DIX	С
FIGURE	NO.	7	-	DRILL	SECTION	22+00E	RL-88-4	APPENI	XIC	С
FIGURE	NO.	8	-	DRILL	SECTION	24+00E	RL-88-5	APPENI	DIX	С
FIGURE	NO.	9	-	DRILL	SECTION	26+00E	RL-88-6 & 7	APPENI	DIX	С
FIGURE	NO.	10	-	DRILL	SECTION	8+00E	RL-88-8	APPENI	DIX	С
FIGURE	NO.	11	-	DRILL	SECTION	112+00E	RL-88-9	APPENI	SIX	С
FIGURE	NO.	12	-	DRILL	SECTION	104+00E	RL-88-10	APPENI	DIX	С
FIGURE	NO.	13	-	DRILL	SECTION	80+00E	RL-88-11	APPENI	DIX	С
FIGURE	NO.	14	-	DRILL	SECTION	72+00E	RL-88-12	APPENI	DIX	С
FIGURE	NO.	15	-	DRILL	SECTION	64+00E	RL-88-13	APPENI	SIX	С
FIGURE	NO.	16	-	DRILL	SECTION	48+00E	RL-88-14	APPENI	DIX	С
FIGURE	NO.	17	-	DRILL	SECTION	00+00	RL-88-15,16,17 & 18	APPENI	DIX	С
FIGURE	NO.	18	-	DRILL	SECTION	98+00W	RL-88-19	APPENI	DIX	С
FIGURE	NO.	19	-	DRILL	SECTION	20+00W	RL-88-20,20A & 21	APPENI	DIX	С
FIGURE	NO.	20	-	DRILL	SECTION	280°	RL-88-22	APPENI	DIX	С
FIGURE	NO.	21	-	DRILL	SECTION	48+00W	RL-88-23	APPENI	DIX	С
FIGURE	NO.	22	-	DRILL	SECTION	64+00W	RL-88-24	APPENI	DIX	С
FIGURE	NO.	23	-	DRILL	SECTION	80+00W	RL-88-25	APPENI	DIX	С
FIGURE	NO.	24	-	DRILL	SECTION	112+00W	RL-88-26	APPENI	DIX	С

SUMMARY

Significant gold mineralization has been encountered in numerous drill holes on the Randall Lake property. The gold mineralization is associated with sheared mafic volcanics and iron formation in the North Caribou River Fault. The mineralization occurs where fault-related deformation is associated with quartz-carbonate-sulphide veinina or pervasive epigenetic sulphide mineralization.

Best results were attained from the area between L48E to L72E. RL-88-12, 13 and 14, which were drilled in this area over a structural/stratigraphic strike length of 2,400 feet, encountered gold mineralization in sheared, sulphidized and silicified iron formation and mafic volcanics. RL-88-13 contained an interval grading 0.09 ounces gold per ton over 26.7 feet. This intersection contains a 15.9 foot interval which grades 0.116 ounces gold per ton. RL-88-14 was collared 1,600 feet west of RL-88-13 and contained an interval grading 0.248 ounces gold per ton over 3.3 feet. RL-88-12 was collared 800 feet east of RL-88-13, and contained an interval grading 0.038 ounces gold per ton over 4.7 feet.

Additional diamond driling is recommended to test the continuity and tonnage potential of the mineralization encountered in RL-88-13. Drilling is also recommended in the northern part of the property where a number of untested geophysical/geological targets are located. The drilling should be carried out in two phases which consist of 15,000 drilling in Phase 1, followed feet of by additional drilling, if required, in Phase 2. The cost of Phase 1 is estimated at \$720,000.00.

1.0

2.0 INTRODUCTION

This report describes the results of a 26 hole, 15,045 foot drilling program which was carried out on the Randall Lake property of Power Explorations Inc. The work was carried out subsequent to geological/geochemical, and geophysical surveys on the property (Hodge, 1985; North, 1985, 1987). The program, supervised by Geocanex Ltd., was carried out by Midwest Drilling of Winnipeg, Manitoba between January 9 and February 24, 1988 with two BBS-17A drills and one BBS-37 drill.

The property is located approximately 110 air miles north of Pickle Lake in northwestern Ontario (Figure 1). Groceries and supplies were expedited to the campsite on Discovery Lake by air from Pickle Lake, and overland via a winter trail to the winter road connecting Pickle Lake to the Round Lake Indian reserve.

The Geocanex personnel involved in the work were as follows:

Jon North, Project Geologist, Windsor, Ont. Jan.4-Feb.24 Peter Taylor, Geologist, Kingston, Ont. Jan.6-Feb.24 Jay Drew, Assistant Geologist, North Bay, Ont. Feb.1-Feb.24 Robin Wyllie, Core Splitter, Waterloo, Ont. Jan.7-Feb.24

Samples of drill core were split at the campsite and shipped to Bell-White Laboratories in Haileybury, Ontario for gold analysis by fire assay-atomic absorption to an analytical accuracy of 0.002 oz./ton. The drill logs are included in Appendix B, drill sections are included in Appendix C, Assay Certificates are compiled in Appendix D.

3.0 PROPERTY DESCRIPTION

The property consists of 103 contiguous mining claims which are recorded on the Ontario Ministry of Natural Resources Keeyask Lake (G-2085) and Randall Lake (G-2182) claims sheets for the Patricia Mining Division, District of Kenora (Figure No. 2).

The claim numbers and recording dates are as follows:

Pa	719916-719920	inclusive	(5)	March	26.	1984
Pa	720001-720035	inclusive	(35)	March	15,	1984
Pa	720090-720100	inclusive	(11)	March	15,	1984
Pa	823409-823414	inclusive	(6)	March	25,	1985
Pa	892633-892639	inclusive	(7)	March	9,	1987
Pa	903579		(1)	March	9, :	1987
Pa	964906-964910	inclusive	(5)	March	9, 3	1987
Рa	964934-964940	inclusive	(7)	March	9, 3	1987
Pa	1006173, 10061	174	(2)	July 2	22, 1	1987
Рa	720051-720074		(24)	March	15,	1984

Total 103 Claims

The claims are currently held by Moss Resources Ltd. of 1003-34 King Street East, Toronto, Ontario, M5C 1E5. Power Explorations of the same address has the right to earn a 50% interest in the claims.

4.0 LOCATION, ACCESS AND SERVICES

The property is located in Northwestern Ontario (52°52'N, 91°91'W), and is approximately 110 air miles north-northwest of Pickle Lake and 170 miles northeast of Red Lake. Access to the property is gained by float or ski-equipped fixed-wing aircraft, or by helicopter from Red Lake or Pickle Lake. An all-weather gravel road from Pickle Lake to Windigo Lake ends approximately 25 miles south of the

property. A winter road from Windigo Lake to Weagamow Lake passes within five miles of the property.

Groceries, building materials and general mining supplies may be obtained in Pickle Lake or Red Lake.

5.0 PREVIOUS WORK

The following is a chronological account of previous exploration work on the property:

1939 - Jack Satterly mapped the geology of the area at one inch to one mile for the Ontario Department of Mines.

1959-1960 - In the winter of 1959, Geoscientific Prospectors Ltd. conducted a long-wire EM survey in the Randall Lake area. This survey covered approximately 20% of the present claims. Two anomalies were delineated, one of these runs beneath Discovery Lake in the western portion of the Randall Lake property.

1960 - An airborne magnetometer survey was flown in the area by the ODM-GSC (Map 909G, Weagamow Lake). This survey covers the entire Randall Lake property, and indicates that at least two bands of iron formation are present; one striking northeast-southwest and one north-south, with peak magnetic amplitudes of 63,000 gammas.

1978 - St. Joseph Explorations Ltd. staked six claim blocks in the area. Two of the blocks (numbers 5 and 6) covered the present property. Linecutting, geological mapping, and ground geophysics were carried out on the grids. Diamond drilling for gold and massive sulphide deposits was recommended.

- 6 -

1979 - In the fall of 1979, St. Joseph Explorations Ltd. drilled six holes totalling 1,788 feet. These six holes are located on the present claims. The salient features of the drilling are summarized in a previous report by North (1985).

1983 - The Ministry of Natural Resources published a regional geological compilation map of the area at a scale of one inch to 4 miles. This map was based on the work of numerous authors.

1984 - Moss Resources Ltd. staked 75 claims covering a 5.4 mile strike length of the North Caribou River fault, and commissioned linecutting and geophysical surveys on their Randall Lake property. Magnetics and VLF-EM surveys were carried out over the entire property in March, 1985.

1985 - The Ontario Geological Survey mapped the area in a regional survey at one inch to 1/2 mile. An accurate geological map of the area was published, elucidating a number of important features in the area related to gold mineralization.

Geocanex Ltd. mapped the Randall Lake property at one inch to 400 feet and carried out limited trenching, stripping and prospecting. Both the North Caribou River fault and a secondary splay of the fault through the Centre Lake area were found to contain anomalous gold mineralization in shear zones and quartz veins.

1986 - The Ministry of Northern Affairs and Mines flew a regional airborne magnetometer and electromagnetic survey of the area and published geophysical maps of the area at 1:20,000.

1987 - In the spring of 1987, Power Explorations Inc. staked an additional twenty claims tying on to the southern boundary of the original 75 claim Randall Lake property. Linecutting and VLF-EM surveys were carried out on the new claims in July and August of 1987.

1987 - Follow-up prospecting, trenching, and channel sampling were carried out on the original 75 claim Randall Lake property and geological mapping and lithogeochemical sampling were carried out on the new 20 claim extension to the property. Economic grade gold mineralization was discovered in several geological environments within the main east-west trending North Caribou River Fault Zone. Diamond drilling was recommended to test the extent of known gold mineralization at depth, and to test the fault for mineralization in overburden covered areas.

6.0 PHYSIOGRAPHY AND VEGETATION

A well-drained sand and boulder plain with interspersed moraine and drumlinoid surficial deposits cover 30-40% of the property. The main trend of overburden ridges indicates a northeast-southwest ice direction during the last period of glaciation. Clay-till sheets are commonly found in some of the thicker surficial deposits which may rise abruptly out of low-lying areas to heights of 20 feet.

Outcrop is exposed on 5-7% of the property, and is usually mantled by sandy overburden, while black spruce forest and thick muskeg covers low-lying areas. Lakes and rivers cover 30% of the property.

Strong physiographic lineaments are formed by northeastsouthwest trending fault scarps along outcrop ridges. This

trend reflects the regional trend of the North Caribou River fault which passes through the central portion of the property.

7.0 REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION

The property is located in the Weagamow-Eyapamikama-Opapimiskan Lakes greenstone belt of Satterly (1939). The belt is usually referred to as the North Caribou Lake belt by mining and exploration companies (Fig. No. 3).

The rocks in the belt comprise an Archean supracrustal assemblage of predominantly mafic volcanics, volcaniclastics, and sediments which form part of the Sachigo Subprovince of the Superior Province of the Canadian Shield. The regional geology and mineral occurrences are shown in Figure No. 3.

The belt extends eastward from Weagamow Lake to the east end of Eyapamikama Lake where it arcs to the south around North Caribou Lake to Opapimiskan Lake. The belt bifurcates into two lobes south of Opapimiskan Lake, with a small lobe extending south through the Libert Lake area, and a major southeastern extension of the belt extending through Markop Lake to the Forester and Neawagank Lakes area.

The stratigraphic type section for the belt is described in the area between Weagamow and Opapimiskan Lake. In this area, a central core of cross stratified wacke, arkose, arenite, and conglomerate, with minor pelitic rocks (the Eyapamikama Lake Metasedimentary Rocks) are bounded on the north and south by relatively homogeneous sequences of mafic volcanic rocks (the North Rim and South Rim Metavolcanic

Rocks). The rough bilateral symmetry of the belt, and the presence of abundant opposing stratigraphic top indicators on the rims of the belt, indicate that the rocks have been regionally folded into a tight, upright syncline.

Banded oxide facies iron formation, grunerite-chert iron formation, and cherty chemical sediments are commonly found near the metavolcanic-metasedimentary at or contacts. Gabbro and quartz-feldspar porphyry sills and dykes are found throughout the North and South Rim Metavolcanics. These intrusive rocks are normally affected by Dı structures, and are probably co-magnetic with their host rocks.

Ultramafic rocks consisting of spinifex textured flows, their altered equivalents, and narrow serpentinized ultramafic intrusive bodies have been described from a number of locations within the belt; notably in the Keeyask Lake area in the western part of the belt, the Castor-Pollux Lakes area in the North Rim Metavolcanics, and from the Opapimiskan Lake area.

The belt is bounded by granitoid paragneiss and migmatized rocks to the north, and felsic intrusives of the North Caribou Lake Batholith to the south. Relatively undeformed felsic porphyries, aplite, and pegmatite dykes and sills crosscut the mafic volcanics near the belt margins.

The regional metamorphic grade varies from greenschist to lower-middle amphibole facies.

Two prominent deformational events $(D_1 \text{ and } D_2)$ are preserved in the rocks of the North Caribous Lake belt. A third event (D_3) is locally present.

The Dı event resulted in isoclinal folding of the stratigraphy and the development of a steeply dipping axial planar cleavage (S1) which is parallel to subparallel to bedding (S_0) and has resulted in the rotation of S_0 into S1. D₁ folding resulted in the formation of the large synclinal structure seen in the Weagamow to Opapimiskan Lakes section of the belt, the axis of which approximately follows the long axis of Eyapamikama Lake. F₁ closures are rarely observed in the volcanics but steeply plunging F1 closures and intrafolial folds may be observed in banded iron formation and finely laminated sediments. Stretching lineations and mineral streaking lineations plunge steeply in S1.

A second deformation event (D_2) is evident as open to closed F_2 closures with steeply dipping axial planes and moderate to steep plunges. These folds are abundant in metasediments and iron formation and are associated with a steeply dipping axial planar cleavage (S_2) , at high angles to S_1 . The D_2 cleavage is an important ore-forming structure in the Opapimiskan Lake area where dilatant zones parallel to S_2 have ponded auriferous fluids in banded iron formation during D_2 folding of the belt in the area.

 D_3 structures are locally penetrative but, more often, are indistinct or absent. D_3 structures are usually manifested as broad, open warps in the stratigraphy and earlier fabrics.

Gold is the principle metal of economic importance in the belt. Gold mineralization occurs with quartz-pyrrhotite veins and disseminated sulphides in D_2 dilatant zones parallel to S_2 in iron formation at Opapimiskan Lake. Sulphide-bearing quartz-carbonate + tourmaline veins and

zones manifested as either S1 or S2 parallel structures are also gold-bearing throughout the belt. mineralization occurs within an S1 parallel shear with massive base metal-silver mineralization at Arseno Lake

Gold

zone

in the northwest part of the belt. Gold is also associated with a zone of intense shearing and quartz-sulphide-iron carbonate alteration in the North Caribou River Deformation zone in the west part of the belt. The North Caribou River Fault strikes approximately east-west, may be D1 related, and has a strike length of over six miles.

In the Opapimiskan Lake area, a consortium of companies headed by Dome Exploration (Canada) Ltd. has outlined two significant areas of gold mineralization. Gold occurs in deformed banded iron formation in the West Anticline zone and East Bay syncline (Snoppy Lake) area of the Musselwhite property. Gold mineralization is associated with magnetitedestructive gruneritization of oxide facies iron formation in D₂ related structures. Most of the gold is present as microscopic grains within pyrrhotite which has mineralized formation D_2 shear zones, quartz veins following iron and garnet-tourmaline-albite rich granitoid dykes S2, subparallel to S2.

Published reserves for the West Anticline zone are over 3.2 million tons at 0.17 ounces gold per ton. Reserves for the East Bay Syncline deposits are estimated at 6 million tons grading 0.2 ounces gold per ton.

In 1985, Van Horne Gold Exploration Inc. announced a gold discovery in the same band of iron formation which hosts the West Anticline and East Bay Syncline deposits.

shear

In the Neawagank Lake area, in the extreme eastern end of the belt, gold occurs in association with iron formation and in silicified shear zones within a gabbroic intrusive.

8.0 PROPERTY GEOLOGY

8.1 GENERAL DESCRIPTION

The geology of the property is described in previous assessment reports (North, 1985; 1987). The property straddles the North Caribou River Fault, which is an ENE-WSW zone of intense deformation which transects the property for total strike length of 5.4 miles. Four а Archean supracrustal packages are unconformably justaposed along the fault; the Agutua Arm andesites, Keeyask Lake metavolcanicmetasedimentary complex, South Rim basalts, and Eyapamikama Lake metasediments. Each of these sequences is unique in composition, and alteration mineralogy where affected by fault-related deformation and fluid penetration. The geology of each of these supracrustal packages is summarized below.

8.2 AGUTUA ARM ANDESITES

These rocks crop out in the northwest part of the property, and consist of light green pillowed andesite, intermediate pyroclastics and autoclastic breccia, basalt and gabbro. The stratigraphy strikes east-west and dips gently south. The rocks have an on property thickness of approximately 5,900 feet. Where affected by shearing, these rocks alter to retrograde assemblages containing variable amounts of chlorite, sericite, quartz and ankerite. Shear zones are abundant in these rocks, varying in width from a few inches to over 6 feet, and may contain up to 3-5% combined pyrite, chalcopyrite, and arsenopyrite as disseminations and small - 15 -

stringers. These shear zones are prominent north of Discovery Lake.

8.3 KEEYASK LAKE COMPLEX

This is a 2,000 foot thick north-south striking, east facing sequence which overlies the Agutua Arm andesites above an observed angular depositional unconformity. The base of this sequence consists of, in correct stratigraphic order; chert pebble conglomerate, quartz arenite, argillite, banded iron formation, ultramafic flows and plagioclase-phyric basalt.

These rocks are affected by strong folding and shearing related to two directions of faulting; an early north-south trending fault (the Centre Lake Splay), and the younger pervasive fabric of the main fault which follows the south shore of the North Caribou River and marks the contact the South Rim of basalts and the Eyapamikama Lake metasediments.

The most pervasive alteration occurs in ultramafic rocks east of Centre Lake which have pervasively altered to talc, carbonate, and chlorite and are crosscut by conjugate bull quartz stringer networks. The other lithologies in the sequence, especially banded iron formation, have been folded and sheared extensively.

8.4 SOUTH RIM BASALTS/EYAPAMIKAMA LAKE METASEDIMENTS

The South Rim Basalts with a true thickness of 4,500 feet of dark green basalt, and minor intercalations of magnetite and grunerite iron formation are exposed in the southern part of the property. This east-west trending sequence is

overturned to the south. The structural fabric of the main fault is approximately parallel to bedding in the volcanics. Innumerable concordant shear zones, filled with quartzcarbonate-sulphide veins cut these rocks. This basalt platform is conformably overlain by epiclastic rocks of the Eyapamikama Lake metasediments. The contact with these rocks is tectonized. A discontinuous band of iron formation occurs at the top of the South rim basalts, and is used to define the boundary between the South Rim and Eyapamikama Lake sequences.

The current drilling program has resulted in the definition of some new geological features of the main fault, and of tectonized the boundary between the South Rim and First, an iron formation bed Eyapamikama Lake sequences. varying from 1 foot to over 25 feet in thickness, occurs near the South Rim-Eyapamikama boundary. This bed is associated intimately with а newly defined belt of ultramafic rocks which occur in the main fault. The ultramafic belt varies in width from a few inches to over 300 The ultramafic rocks were probably flows feet. originally, however, they are pervasively altered to carbonate-chlorite-talc schist, hence no primary cooling textures were observed. In addition, by the nature of their rheology and alteration style, these ultramafic rocks have taken up much of the strain from the fault due to their ductility (talc) which was no doubt formed in the earliest stages of regional deformation. The iron formation bed hosted in these rocks deformed in a brittle manner, and often occurs as large breccia fragments and transposed blocks within the ultramafics.

The rocks of the Eyapamikama sequence consist mainly of coarse granular sericitic arkose with subordinate chloritic

- 17 -

mudstone and argillite. These rocks are intensely deformed and pervasively altered to quartz and sericite, and often contain significant widths of fault-related quartz flooding + tourmaline stringers and disseminated pyrite.

8.5 STRUCTURE

The North Caribou River Fault strikes 060° to 070° and dips 70° to 80° The fault south. is associated with a penetrative cleavage which is roughly conformable with the ENE-WSW trending South Rim and Eyapamikama Lake The fault fabric crosscuts the Keeyask and stratigraphy. Agutua Arm stratigraphy at a very high angle. Field relations indicate that the fault was active over a very long time period (i.e. it has deformed itself in the late The north-south trending Centre Lake Splay is an stages). old fault which only affects the Keeyask Lake Complex. Kinematic indicators suggest a dextral displacement of unknown magnitude in the main fault. Mineral streaking lineations and minor folds plunge 60°-70° west over most of the property and plunge vertically or steeply east at the far west end of the property.

The straight shorelines of Discovery Lake and the straight southern shoreline of the North Caribou River emulate the boundaries of the main fault. In the Discovery Lake area, mylonitized porphyroclastic quartz-sericite schist with 1/8-1/4" quartz rods form the northern rocky shoreline of the lake. The mylonite is pervasively sericitized and silicified by fault-related metasomatism. The quartz sericite schist grades into a wide zone of silicification and sulphide mineralization under the lake, and into poorly sorted massively bedded sericitized arkose which is in contact with the South Rim ultramafic belt near the southern shoreline of the Lake.

The steep rocky southern shoreline of the lake follows the the relatively massive South Rim contact of pillowed basalts, and the recessively weathered talc-carbonate schist the South Rim ultramafic belt. of Since the highly metastable ultramafic rocks altered to a ductile metamorphic assemblage during the development of the fault, most of the fault strain was taken up by these rocks leaving the South Rim basalts relatively massive even though they are proximal to this major crustal break.

8.6 METAMORPHISM

The rocks of the property are affected by regional greenschist facies middle-upper metamorphism. Rocks affected by shearing and fault related metasomatism are containing altered to assemblages abundant carbonate, sericite, chlorite and quartz.

9.0 SUMMARY OF GEOPHYSICS

A great deal of magnetic and VLF-EM activity are present on the property. The geophysical trends are conformable with the bedrock geology of the north-south trending Keeyask Lake Complex and east-northeast west-southwest trending South Rim-Eyapamikama stratigraphy. Strong VLF-EM conductor axes and intermittent magnetic highs coincide with the North Caribou River fault zone for its entire strike length on the property. The VLF-EM data indicates that the fault has a property strike length of 5.4 miles. Several bands of magnetic iron formation are indicated to be present in both the South Rim volcanics and the Keeyask Lake Complex.

Detailed magnetic and induced polarization surveys are warranted over the North Caribou River fault zone. The zone should be easily traceable in overburden covered areas by magnetics since magnetic banded iron formation was found in the fault zone at four localities on the property and to follow appears the fault throughout the property. polarization Induced surveys would aid in outlining disseminated sulphides in the fault, which are known to be associated with high grade gold mineralization on the property.

10.0 SUMMARY AND RESULTS OF DRILLING PROGRAM

Twenty-six drill holes were completed as per the recommendations of the 1987 prospecting and trenching report (North). Seven closely spaced holes were drilled on the guartz-vein gold showings between L20 and L26 east. The other 19 holes were regularly spaced along the North Caribou Fault zone for a total strike length of 4.1 miles. Hole locations are shown on the Plan of Drilling (Figure No. 4). The drill logs are enclosed in Appendix Β, and are summarized in Table No. 1. Drill Sections and legend are compiled in Appendix C.

TABL	ΕI	
------	----	--

SUMMARY OF DIAMOND DRILL HOLES

£

.

•

t

	i	LENGTH		ASSAY	OUNCES	<	-FOOTAGE	>		
HOLE NO.	LOCATION	FEET	GENERAL GEOLOGY	NO.	GOLD/TON	FROM	то	TOTAL	SAMPLE DESCRIPTION	
RL-88-1	L20E, 6+58N	787.0	Basalt flows in contact with metasediments below 150 ft. All lithologies are sheared, most intense alteration at	10010 10022 10025	0.04 0.014 0.020	117.3 168.9 181.6	118,2 172,4 182,9	.9 3.5 1.3	 Quartz vein, trace pyrite Quartz stringers in sheared sediment, 3-5% pyrite Quartz veiniets, 7% pyrite 	-
			volcanic-sediment contact.	10113	0,010	578.0	582.1	4.1	sheared, slilcifled sediment	
RL-88-2	L20E, 6+55N	523.7	Basalt in top of hole, in contact with metasediments below 113.4 feet, as per RL-88-1.	10135 10152 check	0.024 0.088 0.094	80,8 180,5	84.4 181.6	3.6 1.1	- Mudstone, 1% pyrite - Quartz vein, .5-1% pyrite, trace5% galena, 10-15% carbonate	
				10157 10163 10164 10199	0.024 0.022 0.010 0.020	194.3 218.0 221.1 377.5	199.0 221.1 223.8 381.2	4.7 3.1 2.7 3.7	 Slitstone, 1% pyrite Brecclated mudstone, trace pyrite as per 10163 Sliicified greywacke, trace pyrite 	I
RL - 88-3	L20E, 12+52N	297.0	Interbedded mudstone and grey~ wacke, shear zone from 253-271, with disseminated sulphides.							21 -
CONTARIO SE ASSESS	L22E 31.064861 SUU MENT FILE	VEY 5	Mafic volcanic in top of hole in sheared contact with inter- bedded metasediments iron	10374 check	0.094 0.090	44.1	49.1	5,0	- Concordant quartz veins, 1% chalcopyrite, .5% pyrite	
d MAR	FFICE 28 1989		formation and ultramafic schist, greywacke at end of hole.	10375 10377 check	0.014 0.108 0.104	49.1 59.0	54,0 64,0	4.9 5.0	- Brecciated mafic volcanic 6 ft. quartz vein with 1% chalcopyrite and pyrrhotite	
REC	EIVED			10378 10395	0.010 0.014	64.0 137.3	69.0 142.0	5.0 4.7	- Mafic volcanic - Siltstone, .5% pyrite	
RL-88-5	L24E, 7+27N	437,3	Mafic volcanic in top of hole, In contact with trace ultra- mafic schist, hole ends in massive greywacke.							
RL-88-6	L 26E , 7+0 1N	447.0	Mafic volcanic in top of hole, in contact with sheared inter- bedded ultramafic schist and clastic sediments, minor iron formation, hole ends in greywacke.	10238 10250	0.014 0.020	35.6 148.0	38.1 153.0	2,5	 Lean Iron formation, 1-2% pyrite, trace pyrrhotite Sheared intermediate tuff, 30% quartz stringers, 1-5% pyrrhotite 	

TABLE I

SUMMARY OF DIAMOND DRILL HOLES

	1	LENGTH		ASSAY	OUNCES	<	-FOOTAGE	>	4
HOLE NO.	LOCATION	FEET	GENERAL GEOLOGY	NO.	GOLD/TON	FROM	то	TOTAL	SAMPLE DESCRIPTION
RL-88-7	L26E, 6+15N	597.0	As per RL-88-6						
RL-88-8	8+00E, 6+07N	567.0	Dominantly mafic volcanics with narrow horizons of siltstone, ultramafic schist and gravwacke. Two parrow	10440 check	0,116 0,112	50,0	52.4	2.4	- Highly fractured mafic volcanics with cross-cutting quartz-calcite veinlets
			pyrrhotite-rich sulphide zones are found within the mafic volcanics and 2.7 feet of lean iron formation over-	10472 check	0.070 0.078	287.0	292.0	5.0	- Silicified mafic volcanics, narrow chert-magnetite bands, 0.5-1.0% pyrite and trace-0.5% pyrrhotite
				10484	0.014	355.0	360.0	5.0	- Siltstone with trace-0,5% pyrite, highly contorted calcite veinlets
				10485 10487	0.024 0.026	360.0 370.0	365.5 375.0	5.0 5.0	- As above with 1% pyrite - Numerous 5-10" quartz-calcite veins, 1% pyrite
				10488 10489	0.018 0.026	375.0 389.9	380.0 394.9	5.0 5.0	- As per 10484 - As per 10484
RL-88-9	112+00E, 1+47N	294.0	A thick sequence of felsic volcanics consisting of flows and tuffs. The target for this hole was a good VLF-EM conductor (W) which has a strike length of over 2,000 ft. No explanation for this conductor was encountered in this hole.						
RL-88-10	104E, 4+00S	347.0	Intermediate tuff overlies a sequence of interbedded inter- mediate tuff and mudstone which overlies a greywacke and mudstone. A thick package of felsic volcanics (flows) under- lies the metasediments.	10522	0.012	174.2	179.0	4.8	- Very highly sheared, deformed with strong talc-carbonate- sericite alteration, quartz veinlets and pods, trace-1% pyrite/pyrrhotite/arsenopyrite

22 -

1

TABLE	I
-------	---

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY NO.	OUNCES GOLD/TON	< FROM	-FOOTAGE TO	> TOTAL	SAMPLE DESCRIPTION
RL-88-11	80E, 2+98S	557.0	Mafic volcanics with an inter- bed of banded iron formation	10869 check	0,060 0,056	47.0	49,3	2.3	- 1.0" quartz-calcite-tourmaline velniet with trace pyrite
			(11.1' downhole thickness) overlies a sequence of alter-	10879	0.012	74.0	84.0	5.0	- Trace pyrite in a slightly
			metasediments. The iron formation is generally un-	10891	0.014	132,0	134.0	2.0	- Numerous irregular quartz velnlets with 1-2% pyrite/
			deformed and has 1-5% pyrite/ pyrrhotite and trace arsenopyrite.	10898	0,014	167.0	172.0	5.0	 pyrrhotite, trace arsenopyrite Very granular, highly sheared greywacke with trace pyrite, trace pyrrhotite
				10899	0.020	172.0	175.0	3.0	- As per 10898
-				10927	0.062	297.2	300,5	3,3	- Ultramafic volcanic with 3" and 5" silicified, calcareous Intervals with crosscutting
				10930	0.018	305,2	307.0	1.8	quartz stringers (78")<br - Siltstone with 7% arsenopyrite/ pyrite in an irregular quartz- calcite veinlet
RL - 88-12	72+00E, 0+66S	497.0	Mafic volcanics overlie meta-	10975	0.010	47.0	52.0	5.0	- Trace pyrite in mafic volcanic
	0.000		separated by two banded iron	10988	0.018	126.0	127.7	1.7	- 1-5% pyrite/pyrrhotite in a
			formations. The first iron formation encountered is	10989	0.020	127.7	128.7	1.0	brittley deformed interval of BIF
			highly deformed and folded and contains 1-3% pyrite/pyrrhotite.	9013	0,020	216.3	217.3	1.0	- 1-3% pyrite in brittley deformed iron formation
			The second iron formation	9014 chack	0.054	217.3	218.3	1.0	- As per 9013 with 20% pyrite
			and has 1-10% pyrite, 1-5% arsenopyrite and trace-2% chaicopyrite. A thick sequence	9015	0.040	218,3	219.8	1,5	- 1.0" band of 90% massive pyrite/arsenopyrite at 219.4", 3% sulphide in remainder,
			mafic to ultramafic volcanics underlie the second iron formation.	9016	0.040	219,8	221.0	1.2	- Very talcose interval in greywacke, possible ultra- matic flow
RL-88-13	64E, 1+52N	487.0	Mafic volcanic overlying a banded iron formation (26.7' down hole) with 20- 30% secondary quartz- carbonate veining, 1-10%	9064 9065	0.053 0.048	122.7 124.0	124.0 125.9	1.3 1.9	- Highly contorted quartz- carbonate veln with inclusions of host material, 1–10% pyrrhotite/pyrite, trace arsenopyrite

- 23 -

TABLE I

SUMMARY OF DIAMOND DRILL HOLES

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY NO.	OUNCES GOLD/TON	< FROM	-FOOTAGE TO	TOTAL	SAMPLE DESCRIPTION
RL-88-14	48E, 4+05N	327.0	<pre>pyrrhotite/pyrite, trace arsenopyrite throughout and 1.1' of massive pyrrhotite at the top of the unit. These units overile a sequence of interbedded metasediments and ultramafic volcanics. A strong magnetic depression and associated moderate VLF-EM conductor (P) corresponds with the iron form- ation and 1.1' band of massive sulphide within the iron formation.</pre>	9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9076 9077 9078 9079 9080 9128 9138 9138 9141	0.170 0.117 0.139 0.106 0.072 0.034 0.100 0.179 0.111 0.040 0.210 0.016 0.076 0.077 0.068 0.018 0.012 0.248/ 0.256 0.040	125.9 127.0 128.5 130.0 131.5 135.0 136.0 137.0 140.0 141.8 144.0 146.0 147.4 56.0 137.1 162.5 172.7	127.0 128.5 130.0 131.5 135.0 135.0 135.0 136.0 137.0 139.0 140.0 141.8 144.0 141.8 144.0 147.4 149.4 58.0 142.0 165.8 174.0	1.1 1.5 1.5 2.0 1.5 1.0 1.0 2.0 1.0 1.0 2.0 1.4 2.0 1.4 2.0 2.0 4.9 3.3 1.3	 70-80% massive pyrrhotite/ pyrite, trace arsenopyrite 1-15% pyrrhotite/pyrite, trace arsenopyrite with up to 30% secondary quartz veining in a BIF Highly sheared, chloritized mafic volcanic interbed with 1-3% pyrrhotite/pyrite, 1% arsenopyrite 5-15% pyrrhotite/pyrite with up to 30% secondary quartz veining Interbed of highly contorted chloritized mafic volcanic with numerous quartz veinlets Lean iron formation with 1-3% pyrrhotite/pyrite 4.5" quartz-calcite vein at 70° to core axis with inclusions of wallrock and pyrite in a slightly tacl interval Trace pyrite in a slightly tuffaceous chloritized volcanic Greenish-grey, bleached mafic volcanic with abundant (10-20%) secondary quartz veiniets (<1/2") and augen parallel to S₁ Sheared chloritized volcanic with quartz veinlets, associatedwith lean iron

- 24

1

TABL	ΕI	
------	----	--

SUMMARY OF DIAMOND DRILL HOLES

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY NO.	OUNCES GOLD/TON	< FROM	-FOOTAGE TO	> TOTAL	SAMPLE DESCRIPTION
RL-88-15	L00, 4+38N	662.0	Interbedded argillaceous wacke and mafic volcanic, intense shearing and carbonitization throughout hole, iron formation and crosscut suiphides inter- sected at bottom of hole in ultramafic schist.	9510 9513 9525 9528 check	0.016 0.014 0.022 0.152 0.150	63,4 80,8 224,1 247,0	68.4 84.2 228.7 252.0	5.0 3.4 4.6 5.0	 Taic-carbonate schist cherty sediment, 5% pyrite, trace5% pyrrhotite Mafic volcanic, .5% pyrite as per 9525
RL-88-16	L00, 11+70N	358,7	Alternating mafic voicanic and ultramafic voicanic overile a thin horizon of greywacke which lies above a banded iron formation. The iron formation (9.7' down hole) is highly distorted and has trace-10% pyrite/pyrrhotite and trace chalcopyrite. The iron formation overlies a sequence of inter- bedded chert and greywacke.	10838	0.010	243.0	246.0	3.0	- Highly silicified volcanic sheared at 20° to core axis, trace-0.5% pyrite with numerous quartz-carbonate velniets
RL-88-17	L00, 11+54N	677.0	Mafic volcanics overile a banded iron formation (28.3' down hole) with numerous crosscutting quartz-tourmaline veinlets and stringers, trace-10% pyrrhotite/ pyrite, trace-2% arsenopyrite and trace chalcopyrite. A sequence of alternating meta- sediments and mafic to ultra- mafic volcanics underlie the iron formation. The meta- sediments consist of greywackes and siltstone.	10757 check	0.052/ 0.060	376.0	380.0	4.0	- Moderately silicified with 1-3% pyrite/pyrrhotite, numerous irregular quartz- calcite pods in a mafic to ultramafic flow
RL-88-18	L00, 16+44N	357.0	An alternating sequence of mafic volcanics (flows) and meta- sediments consisting of grey- wackes and siltstone.						

- 25

1

TABLE 1

SUMMARY OF DIAMOND DRILL HOLES

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY NO.	OUNCES GOLD/TON	< FROM	-FOOTAGE TO	TOTAL	SAMPLE DESCRIPTION
RL-88-19	98+03W, 4+62N	997.0	A thick unit of mafic and ultra- mafic volcanics overlying an equally thick unit of meta- sediments with narrow horizons of interbedded volcanics. Meta- sediments consist of a quartz- sericite schist with trace-2% pyrite.						
RL-88-20	L20W, 4+28N	67.0	Mafic volcanic, highly foliated quartz-chlorite schist, hole aborted due to caving around casing.						
RL-88-20A	20+05W, 4+28N	797.0	Mainly ultramafic schist with Interbedded iron formation at top of hole, intersected highly magnetic, granular black pyroxenite intrusive from 386.0-545.1, ultramafic schist below this, highly sheared, hole ends in quartz eye rhyolite.						
RL-88-21	L20W, 10+00N	772.0	Collared in gabbro and silt- stone in contact with quartz- eye rhyolite with minor inclusions of talc-carbonate schist, fault zone intersected from 528.2-654.7, stopped hole in mafic volcanic.						
RL-88-22	L40N, 15+51E	427.0	A thick package of ultramafic volcanics separated by a banded iron formation overlie a thick interval of quartz-porphyry. The iron formation (11.3' down hole) is highly sheared and altered with trace-5% pyrite/ pyrrhotite.						

.

- 26 -

HOLE NO.	LOCATION	LENGTH FEET	GENERAL GEOLOGY	ASSAY NO.	OUNCES GOLD/TON	< From	-FOOTAGE TO	TOTAL	SAMPLE DESCRIPTION
RL-88-23	L48W, 5+56N	608.0	Collared in mafic volcanic, interbedded sheared ultramafic schist and banded iron formation from 137.8 to 308.5, from 308.5 to end of hole intersected sheared, silicified greywacke with up to 5% disseminated pyrite.						
RL-88-24	L64W, 4+74N	817.0	Mafic voicanic in top of hole in contact with interbedded iron formation and ultramafic schist, below 250 ft. intersected variably sheared and silicified quartz-sericite schist with up to 5% disseminated pyrite.	9811	0.030	97.4	102.4	5.0	- Mafic volcanic, trace-5\$ pyrite
RL-88-25	180W, 4+53N	897.0	A thick sequence of alternating mafic volcanics and interbedded ultramafic volcanics and banded iron formation overlie a package of metasediments. The iron formations are less than 5.0' wide and contain trace-1% pyrite. A highly sheared quartz-sericite schist with up to 5% dissemin- ated pyrite occurs several times within the metasediments.						
RL-88-26	L 112W, 4+34N	997.0	Mafic volcanics overlying a thick package of ultramafic volcanics crosscut by mafic intrusives (gabbro). Volcanics are followed by a thick sequence of metasediments including several quartz-sericite schist disseminated pyrite units. Mafic and ultramafic volcanics are contained within the meta- sediments. All units from the start of the ultramafic through the metasediments lie within the strong influence of the fault zone.						

TABLE 1 SUMMARY OF DIAMOND DRILL HOLES

ł 27

1

11.0 CONCLUSIONS

Gold mineralization is widespread on the property. All of the gold-bearing drill intersections contain either quartzcarbonate veins in sheared, carbonatized mafic volcanics, and to a lesser extent sediments, or sulphidized, sheared iron formation and mafic volcanics. Unfortunately, the wide zone of shearing, silicification and sulphide mineralization under Discovery Lake was not auriferous, however, a number of geological targets which were drilled beneath surface showings in the eastern part of the property were gold bearing. These results are summarized again below.

Below the high-grade surface showings between L20E and L26E, a number of significant intersections were encountered (ounces gold per ton/feet) viz: 0.088/1.1 from RL-88-2, and 0.090/5.0, 0.104/5.0 from RL-88-4. Each of these intersections contained sulphide-bearing veins quartz similar to the veins encountered on surface. An assay of 0.116/2.4 was obtained in sheared mafic volcanics with crosscutting quartz stringers in RL-88-8, 1,200 feet west of RL-88-15 was collared 2,000 feet west of RL-88-2 RL-88-2. and contained an intersection of sheared mafic volcanic grading 0.15/5.0.

The most interesting area of the property lies between L48E RL-88-12, 13, and 14 were drilled in this area, to L72E. over a structural/stratigraphic strike length of 2,400 feet. RL-88-13 contained an interval grading (ounces gold per ton/ feet) 0.09/26.7. This long intersection contains an interval which grades 0.116/15.9. This mineralization consists of quartz veins and sulphide mineralizaton in sheared iron formation and subordinate mafic volcanic. RL-88-12 was collared 800 feet east of RL-88-13 and contained an interval of sheared mafic volcanics with minor iron formation grading 0.038/4.7. RL-88-14 was collared 1,600 feet west of RL-88-13 and contained an interval of bleached mafic volcanics with secondary quartz veinlets grading 0.248 ounces gold per ton over 3.3 feet.

12.0 RECOMMENDATIONS

12.1 PHASE 1

Closely spaced diamond drilling is recommended to investigate the continuity of the gold mineralization encountered in RL-88-13. This drilling should initially be focused near the collar of this discovery hole should a mineable tonnage of mineralized rock be present in the immediate area. Fill in drilling is recommended between L48 and L72 east, since gold mineralization similar to that encountered in RL-88-13 was intersected along strike in drilling in this area. Drilling is also recommended in the Centre Lake area, since a number of untested geophysical targets are present here, and anomalous gold mineralization, and favourable geology for gold mineralization have been described in this area.

Approximately 10,000 feet of closely spaced drilling are required in the vicinity of RL-88-13, and an additional 5,000 feet of exploratory drilling are required in the Centre Lake area.

12.2 PHASE 2

Additional diamond drilling contingent upon favourable results from Phase 1.
13.0 ESTIMATED COST OF RECOMMENDED PROGRAM

13.1 PHASE 1

Fifteen thousand feet of drilling at an approximate all inclusive cost of \$40.00 per foot\$600,000.00 Contingency 20% <u>120,000.00</u> Total estimated cost of Phase 1\$720,000.00

13.2 PHASE 2

The cost of this program is contingent upon the results of Phase 1.

Respectfully submitted,

ta Non

Jon W. North, B.Sc.

14.0 REFERENCES

- Bartlett, J.R., Breaks, F.W., DeKemp, E.A. and Shields, H.N., 1985. Precambrian Geology of Eyapamikama Lake Area (Opapimiskan Lake Project), Kenora District (Patricia Portion); Ontario Geological Survey, Map P.2834, Geological Series - Preliminary Map. Scale 1:31680.
- Hodge, H.J., 1985. Report on Ground Magnetics and VLF-EM Surveys, Randall Lake Property, for Moss Horseshoe Joint Venture.
- Ministry of Natural Resources Assessment Work Files; Unpublished Assessment Reports, Ontario Geological Survey, Sioux Lookout, Ontario.
- Ministry of Natural Resources, 1983. Map 2292, Big Trout Lake-North Caribou Lake Geological Compilation Series, 1 inch to 4 miles.
- Ministry of Northern Affairs and Mines, 1986. Opapimiskan Lake Area, Airborne Electromagnetic and Total Intensity Magnetic Survey, District of Kenora, Patricia Portion, 1:20,000.
- North, J.W., 1985. Report on Geological Mapping, Geochemical Sampling, Trenching and Prospecting, Randall Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario, for Moss Resources Ltd. Private Company Report.
- North, J.W., 1987. Report on Prospecting, Trenching, Channel Sampling and Geological Mapping, Randall Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario for Power Explorations Inc. Unpublished Company Report.
- Ontario Department of Mines GSC, 1960. Aeromagnetic Map 909G, Weagamow Lake; 1 inch to 1 mile.
- Satterly, J., 1939. Geology of the Windigo-North Caribou Lakes Area; Ontario Department of Mines, Vol. 48, Part 9, pp. 1-32.
- Thurston, P.L., Sage, R.P. and Siraguse, G.M., 1979. Geology of the Winisk Lake Area; District of Kenora, Patricia Portion; OGS Report 193.

CERTIFICATE OF OUALIFICATIONS

THIS IS TO CERTIFY THAT:

I have been a resident of Ontario since 1965.

I am a graduate of the University of Western Ontario, London, Ontario, with an Honours B.Sc. (1984) in geology.

I have been actively involved in the Canadian mining and exploration industry in Ontario as a student from 1981 to 1983, and have been a contracting geologist since May 1984.

I am a member of the Canadian Institute of Mining and Metallurgy and of the Prospectors and Developers Association of Canada.

I have worked in the Pickle Lake area of Northwestern Ontario since May 1984.

This report is based on field observations made by the author, and on a comprehensive study of all the available Ministry of Natural Resources assessment work records, and published geological maps and literature of importance to the area described in this report.

In this report, I have disclosed all relevant material, descriptive and interpretative, which is to the best of my knowledge necessary to gain a complete understanding of the viability of the project and the recommendations.

DATED THIS 24 DAY OF JULE 1988

Jo Wat

Jon W. North, B.Sc. Geologist

		Randall Lako		r			T	1	<u> </u>	HOLE I	NO. <u>RL</u> -	88-1 si	еет NO. ¹	of 1
NAME OF	PROPE DI_0	RTY	t	FOOTAGE	DIP AZ	MUTH	FOOTAGE	DIP AZ	митн	REMA	rks Pa	720073		
HOLE NO	J L20+	00E 6+58N	L	0	50									
LATITUDE		DEPARTURE		200 -	390				ł					
ELEVATIO	ом	AZIMUTH 3320	DIP45 ⁰	400 -	54	∦							lon Non	+ 1
STARTED	1988	-01-17 FINISHED 198	8-02-21	000 -	9	i	L	l		LOGGE	D BY			
FOOT	AGE				1		5 А М Р	LE		1	A	SSAY	′ S	
FROM	то	DES	CRIPTION MMARY LOG		NO.	SULPH	ERON	FOOTAGE	7074		¥	OZY TON	Check _N	
0	12.5	Casing, blocky bedrock				IDES	FROM	10	TOTAL			<u> </u>		
12 0	144 0	Nofio volopnio under inte t	ufference about the bar	-1 107 0										
12.5	144.0	feet. Approximate southern f	ault boundary at 107.0 feet	at 107.0										
		117.3 to 118.2 glas	sy quartz vein, trace pyrite	2	10010	tr	117.3	118.2	0.9			.040		
144.8	181.6	Tuffaceous laminated sediment	, sheared, quartz veinlets a	nd										
		stringers												
		veinlets, 3-5% calc	idant intervals with net text ite, tr5% disseminated nyr	ured quar ite	110022	3-5	168.9	172.4	3.5			014		
101	205 1	Nudekene kisti sudandad	,											
181.0	205.1	181.6 to 182.9 cros	s-cutting quartz veinlets, 5	-7% ovrit	e 10025	7	181.6	182.9	1.3		:	.020		
205 1			· · · · · · · · · · · · · · · · · · ·	· .								ULU I		
205.1	448.0	Greywacke, northern fault bou	ndary at approximately 400 f	eet										Í
448.6	555.5	Interbedded greywacke and chl	oritic mudstone		1									
555.5	697.5	Greywacke			l									
		578.0 to 582.1 shea	red, deformed granular silic	eous	10113	.5	578.0	582.1	4.1			.010		
		sediment												
697 . 9	760.0	Chloritic mudstone												
g 760.0	787.d	Greywacke	PORTABLE GENERAL SURVE	V I										
787.0		END OF HOLF	ASSESSMENT FILES											
			OFFICE.			ļ								
E D						ļ								
0 0			MAR 2 8 1989											Í
102 7														
1			RECEIVED											
	1		را به می از این از این از این از این		U	1	1 1	1		II 1		1 1		1

10603-1

EDNM 1

NAME OF	PROPERTY _	Randall Lake				
HOLE NO.	RL-88-1	LENGTH_	787 feet			
LOCATION	L20+00E	6+58N				
LATITUDE		DEPARTUR	E		·····	
ELEVATION	l	AZIMUTH _	3320	DIP	<u>-45⁰</u>	
STARTED _	1988-01-1	17 FINISHED	1988-01-21			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
Casing	-45 ⁰				
200	-39 ⁰				
400	-34 ⁰				
600	-29 ⁰				

HOLE NO. <u>RL-88-1</u> SHEET NO. <u>1 of 7</u> REMARKS <u>Pa 720073</u>

LOGGED BY JON North

FOOT	AGE				SAMP	L E			A	SSA	Y S	
FROM	то	DESCRIPTION	NO,	SUL PH- IDES	FROM	FOOTAGE TO	TOTAL	"	3°	AU 02/TON	Check oz/TON	
0	12.5	Casing in broken bedrock	1000	.5	21.8	26.6	4.8			tr		
12.	144.8	<u>Mafic Volcanic</u> - typical										
		Foliated, dark green, chloritized basalt flows. Abundant 1/8" to 1" white quartz stringers parallel to foliation. Texture varies from schistose sheared volcanic to massive looking chloritized gabbro. Occasional 1" to 1 ft. thick intervals of biotite (potassium) alteration.										
		Average Modes:										
		chlorite 50-60% biotite 10-15 plagioclase 10-15 quartz 5-7 carbonate 2-3 pyrite tr5 pyrrhotite tr										
		12.5 to 43.6 Typical foliated flows										
		- 37.0 67° to C.A.										
		ASSESSMENT FILES OFFICE MAR 2.8 1989										
	,	RECEIVED	I	1	1	ı ı	I	1 3	1		1	1

NAME OF PROPERTY Randall Lake

OOTAGE				SAMPL	E		ASSAYS	and the second
м 10	DESCRIPTION	140	* SULPH	FROM	FOOTAGE	TOTAL	 AU 07 TON	Check
	43.6 to 107.0 Very highly sheared volcanic. - Abundant biotite rich intervals, and guartz-carbonate	10002	1	43.6	45.3	1.7	 .002 Tr	
	stringers. - 57.0 68° to C.A.	10004	tr	57.0	61.8	4.8	Ťr	
	 - 72.6 to 75.6 blottle alteration, .5 to 1% pyrite/pyrrhotite stringers, 69° to C.A. - 70.8 to 105.2 2% - 270.8 to 105.2 2% 	10005	1	72.0 70.8	75.6	3.0	Ir	
	pyrite blebs, 69° to C.A.	10007	1	84.0 98.6	87.8 103.6	4.2 3.8 5.0	.002	
	107.0 to 144.8 The volcanic is very tuffaceous in this interval, and appears to grade into the sediments to the north. - 112.0 70° to C.A.	10009	3	103.6	105.2	1.0	.008	
	- 117.3 to 118.2 - glassy quartz vein, tr pyrite - 118.2 to 120.9 - sheared volcanic, 1% pyrite, 2-3% calcite	10010 10011	tr .5	117.3 118.2	118.2 120.9	0.9 2.7	.040 .004	
	- 128.0 to 128.1 - magnetite rich tuff horizon, 70° to C.A. - 141.8 to 142.0 - magnetite-chert bed	10013 10014	tr 1	134.2 143.6	138.9 144.8	4.7 1.2	Tr Tr	
.8 181.6	<u>Tuffaceous laminated sediment</u> Gradational from mafic tuff, consists of dark green and brown-green lamina of mafic tuff (chlorite schist) and mudstone (biotite-chlorite schist) with fine interbeds of buff-grey silt and chert. The unit is highly deformed and often completely contorted, and contains abundant quartz-carbonate stringers and crosscutting veinlets.	10015 10016	•5 •5	144.8 148.1	148.1 149.3	3.3 1.2	.002 Tr	
			i					

1.01010-2 1

NAME OF PROPERTY_____Randall Lake

HOLE NO. RL-88-1 SHEET NO. 3 OF 7

£001	AGE				SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION		2 SUL PH	FROM	FOOTAGE	TOTAL	ñ	5	OTTON	Check	
		Average Modes: chlorite 20-30% biotite 10-20 chert 20-25 silt 20-25 pyrite tr5 - 147.0 72° to C.A. - 149.3 to 150.0 - concordant quartz vein, 1.5% pyrite - 157.0 to 181.6 - abundant intervals with net textured quartz veinlets, 3-5% calcite, tr5% disseminated pyrite	10017 10018 10020 10020 10022 10022 10022	1.5 .5 .5 .5 3-5 .5 1	149.3 150.0 157.0 161.4 165.3 168.9 172.4 177.0	150.0 152.1 161.4 165.3 168.9 172.4 177.0 181.6	0.7 2.1 4.4 3.6 3.5 4.6 4.6			Tr .002 Tr Tr .014 .002 .002		
181.6	205.1	MudstoneFinely laminated, fine grained, dark brown to brown-grey biotite-rich sediment with interspersed buff-white 1/8" 1/2" cherty and silty interbeds. Often completely folde and crosscut by quartz veinlets. Abundant pyritic intervals, minor graphite.Average Modes: biotite 40-50% chlorite 5-10 chert 10-15 silt 15-20 calcite 3-5 pyrite 1-2 pyrrhotite tr- 199.7 to 205.1 - finely laminated cherty siltstone, .5 disseminated arsenopyrite, trace pyrite, lost core from 199.7 to 203.0, entire interval is ground and broken.	10025 c10026 10027 10028 10029 10035	5 7 2 .5 1 .5 .5 .5	181.6 182.9 187.6 190.0 193.4 197.0 199.7	182.9 187.6 190.0 193.4 197.0 199.7 205.1	1.3 4.7 2.4 3.4 3.6 2.7 5.4			.020 .008 Tr Tr Tr Tr		

FORM 2

NAME OF PROPERTY. Randall Lake NAME OF PROPERTY HOLE NO RL-88-1 SHEET NO. 4 OF 7

FOOT	IAGE		SAMPLE NO SULPH FOOTAGE UES FROM TO			DESCRIPTION					ASSAYS	
FROM	10	DESCRIPTION	NO SULPH FOOTAGE IDES FROM TO T						AU 07 TON			
205.1	448.6	<u>Greywacke</u> - typical 205.1 to 400 - Highly sheared Intensley deformed, grey, granular, foliated, siliceous metasediment. Highly altered to sercite and chlorite with abundant secondary talc, ankerite, and fuchsite as disseminations and narrow bands. Ubiquitous 1/4 to 1/2" quartz bands parallel to cleavage and minute crosscutting quartz veinlets and hairs throughout. Rock is very schistose, with numerous 1/2" to 2" yellow-green sericite bands, 1/16" to 1/8" blue quartz-eyes throughout, fuchsite occurs as disseminated clots and 1/16" wispy bands throughout. Pink carbonate seams fill late crosscutting fractures Average Modes: quartz 40-50% sericite 20-30 chlorite 5-10 talc 0-5 carbonate (ankerite) 3-5 fuchsite tr5 pyrite tr5	10032 10033 10034 10035 10036 10037 10038 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049		205.1 209 213 217 221 225 229.9 232.7 235.8 238.5 242.5 247 251 255.3 258.6 261.8 264.7 269.2 273.5	209 213 217 225 229.9 232.7 235.8 238.5 242.5 247 251 255.3 258.6 261.8 264.7 269.2 273.5 277.5	3.9 4.0 4.0 4.0 4.9 2.8 3.1 2.7 4.0 4.5 4.0 4.3 3.2 2.9 4.5 4.3 4.0		Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr T			
		 237.0 57° to C.A. 247.0 62° to C.A. 277.5 to 311.4 - highly silicified interval, good core recovery, with quartz vein from 277.5 to 278.4, numerous 1/2" to 2" quartz veins and blebs throughout, 52° to C.A. 325.0 to 328.0 - silicified interval, 15-20% discordant quartz - ankerite veins, 1% disseminated pyrite 333.4 to 337.2 - 30% core loss, very blocky 347.0 to 356.8 - moderate silicification, 69° to C.A. 357.0 - 68° to C.A. 	10051 10052 10053 10054 10055 10056 10057 10058 10059 10061	5.	277.5 278.4 281.7 286 290 294 298 302 306 309 311.4	278.4 281.7 286 290 294 298 302 306 309 311.4 314.3	0.9 3.3 4.0 4.0 4.0 4.0 4.0 3.0 2.9		Tr Tr Tr Tr Tr Tr Tr Tr Tr			

1.0841.2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-1 SHEET NO. 5 OF 7

F OOT AGE SAMPLE ASSAYS	7
FROM 10 DESCRIPTION HO SULPH FOOTAGE AU Check US TON COLOR TO TOTAL COLOR TOTAL COLOR TO TOTAL COLOR TOTA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

1.0104.2 ۱.

- 366-**58

OFNORD.

- SEGC

NAME OF PROPERTY. Randall Lake

HOLE NO RL-88-1 SHEET NO 6 OF 7

ł

FOOT	AGE				SAMPL	.Ε			ASSAYS		
FROM	10	DESCRIPTION		* SULPH IDES	FRUM	FOOTAGE	TOTAL	,	AYUN	Cherck	
448.6	555.5	Interbedded greywacke and chloritic mudstone Gradational from previous unit, consisting of sericitized and sheared chloritic mudstone (green to grey with buff sericite bands) and typical coarse granular quartz pebble greywacke. Each interbed may be as thick as 20 feet, and grade into succeeding units. Sulphide rarely exceeds .5%. Chloritic mudstone average modes: chlorite 20-30% quartz 40-50 biotite 3-5 sericite 10-15 carbonate 1-2 pyrite tr5 - 497.0 - 78° to C.A. - 503.3 to 503.6 - discordant quartz vein, .5% pyrite, 2-3% ankerite - 522.7 to 527.9 - highly sheared section, 3-4% ankerite, sericite alteration, moderate silicification, .5% pyrite	10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110	tr tr tr tr tr tr tr .555.	448.6 456.1 469.4 479 484 488.3 493 497.8 502.4 516.2 522.7 532.8 551.1	453 460.5 474.4 488.3 493 497.8 502.4 507.4 521.2 527.9 538 555.5	4.4 4.4 5.0 5.0 4.3 4.7 4.8 4.6 5.0 5.0 5.2 5.2 4.4		Tr Tr Tr Tr Tr Tr .002 Tr Tr Tr Tr Tr Tr Tr		
555.5	697.5	<pre>Greywacke - typical 555.5 to 622.0 - typical greywacke, very pebbly and fairly massive Occasional .1 ft. to .4 ft. sheared/carbonatized interval - 570.1 to 570.7 - massive ankerite alteration, foliation 69° to C.A. - 579.2 to 580.5 - quartz - ankerite vein, .5% pyrite - 607.0 - 75° to C.A.</pre>	0112 8918 0113 8919 8920 8921 8922	5555555	568.5 573.4 578 582.1 587.1 592.1 597.1	573.4 578.0 582.1 587.1 592.1 597.1 602.1	4.9 4.6 4.1 5.0 5.0 5.0 5.0		Tr Tr .010 Tr Tr Tr Tr Tr		

ғонм 2 І

1 0 MM 2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-1 SHEET NO. 7 OF 7

1.00	1 AGE				SAMPL	E				ASSAYS	in to the second distance of the second	
FROM	то	DESCRIPTION	NO	SUL PH	FROM	FOOTAGE	TUTAL			o Aton	Çþe <u>c</u> k	/ hot days
			8923	.5	602.1	607.0	4.9		[Tr		
}	ł		10114	•2	607.0	611.8	4.8			.002		
]		b22.0 to b97.5 - Biolite - rich greywacke, dark brown, laminated,]			
ſ		stockworks					i					
		- 621.6 to 625.4 - 15-20% quartz-ankerite veinlets.	10115	.5	621.6	625.4	3.8			Tr		
		trace5% pyrite in disseminated grains and							ļ			
		cross-fractures - 627.2 to 632.9 - 20% quartz-ankerite veinlets, .5%	0116	.5	627.2	632.9	5.7			002		
		pyrite, 78° to C.A.		••	027.2	002.0			1	1002		
	l	- 639.6 to 644.3 - 5-10% quartz veins, discordant, trace		tr	639.6	644.3	4.7			Tr		
{		- 677.3 to 687.3 - sheared interval, 10% guartz veins.	0110	tr	649	654.1	4./ 5.1		[l Ir Tr		
		sericitized	10120	tr	654.1	659.1	5.0			Tr		
		·	0121	tr	677.3	682.3	5.0		1	Tr		
697.5	760	<u>Chloritic Mudstone – typical</u>	10122	tr	682.3	687.3	5.0					
	.	697.5 to 724 - Biotite rich, laminated, dark brown mudstone	0123	tr	697.5	702.5	5.0			Tr		
		· · · · · · · · · · · · · · · · · · ·	10124	tr	717	722	5.0			Tr		
	ĺ	- 717.0 - 74° to C.A.]			
		724 to 760.0 - Rock becomes very chloritic, probably 30-40% mafic tuff component, dark green, tuffaceous	10125	tr	744.6	749.4	4.8			Tr		
		- 747.0 - 81° to C.A.	10126	•2	749.4	754.2	4.8			Tr		
760	787	Greywacke - typical					1					
									l	_		
		- /69.1 to /83.8 - silicified and sheared, 20-30% discordant quartz-ankerite voins minor groop mice	10127	tr	769.1	773.2	4.1 5.1		-	Ir Tr		
		alteration, trace pyrite, 75° to C.A.	0129	tr	778.3	783.8	5.5			.004		
/87		END OF HOLE										
									$\langle \rangle$	NA		
								(///	A//D	AL/AXA	Ŋ
		· ·	-	•		, 1			179	<i>ya</i>	, ,	
•	•								/			

NAME OF HOLE NO LOCATION LATITUDE ELEVATIC STARTED	PROPE 	Randall Lake FOOTAGE 88-2 LENGTH 523.7 Ft. 0 -5 0 -55N 0 -5 0 -5 0 -59° 400 -6 01-21 FINISHED 1988-01-24 0 -6	DIP A3	IMUTH	FOOTAGE	DIP A3	PIMUTH	HOLE REMA LOGGE	NO.R <u>L-8</u> .rks d by	<u>8-2</u> si Pa72(Jon No	HEET NO. <u>1</u> 0073 0rth	<u>of 1</u>
FOOT	AGE		Ī		SAMP	LE			A	SSA	y s	
FROM	то	SUMMARY LOG	NO.	SULP	FROM	FOOTAGE TO	TOTAL	26	36	OZ/TON	Check oz/TON	
0	8,6	Casing]								
8.6	113.4	Mafic Volcanic 80.4 to 84.4 - mudstone interbed, 1% fine pyrite stringers	1013	5 1	80.8	84.4	3.6			.024		
113.4	132	Tuffaceous Siltstone										
132	214.4	Grey Siltstone Fault boundary at 142.0 feet 180.5 to 181.6 - quartz-ankerite vein, .5 to 1% pyrite, trace to .5% drusy galena in fractures, few small chlorite clots, 10-15% carbonate 194.3 to 199.0 - fine grained, finely laminated trace to 1% pyrite	1015 1015	2 1.5 7 .5	180.5 194.3	181.6 199.0	1.1 4.7			.088	.094	
214.4	236.4	Cherty Mudstone Breccia, highly brecciated 214.4 to 223.8 - brecciated cherty mudstone, trace to 1% pyrite	1016 1016	3 tr 4 tr	218.0 221.1	221.1 223.8	3.1 2.7			.022 .010		
236.4	429.5	Greywacke 368.3 to 392.0 - highly silicified zone, abundant sulphide- bearing quartz veins	1019	9.5	377.5	381.2	3.7			.020		
429.5	432.7	Lamprophyre Dike	{									
432.7	523.7	Greywacke Northern fault boundary at 451 feet										
523.7		END OF HOLE										

*** *

STARTED 1988-01-21 FINISHED 1988-01-24

NAME	OF	PROPERTY	<u>Randall Lake</u>				 FOOT
ноге	NO.		LENGTH	523.7 Ft.			
LOCAT	ION	1.20+00E	6+55N				
LATIT	UDE		DEPARTURE				 - 20
ELEVA	TION		AZIMUTH	3320	DIP .	-59 ⁰	

FOOTAGE	ÐIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-590				
200	-54				1
400	-48				1
		1			

HOLE NO. RL-88-2 SHEET NO. 1 OF 6

REMARKS Pa/200/3

LOGGED BY Jon North

FOOTAGE				SAMP	LE			A	5 5 A Y	s	
FROM TO		NO.	SUL PH	FROM	FOOTAGE TO	TOTAL.	36	ъ	OZ/TON	hệck oz/10N	
0 8.6	Casing	10130	tr	17.0	22.0	5			Tr		
8.6 113.4	Mafic Volcanic - typical Foliated, dark green, fine grained basalt. Abundant 1/8" to 1" conformable white quartz-carbonate stringers. Texture varies from schistose chloritized volcanic to foliated chloritized gabbro. Occasional 1" to 1 ft. intervals of brown biotite alteration. Light green talcose intervals common. Average Modes chlorite 50-60% biotite 10-15 plagioclase 10-15 quartz 5-7 carbonate 2-3 pyrite tr5 pyrrhotite tr 8.6 to 92.0 - Minor light green talc alteration, in homogeneous flows - 37.0 - 43° to C.A. - 28.4 to 28.7 - quartz vein, .5% tourmaline, concordant - 47.9 to 52.8 - 1% pyrite, as fine to medium grained blebs in S1 and minute crosscuting stringers - 60.0 - 54° to C.A. - 74.4 to 79.1 - few quartz stringers, 0.5% pyrite - 80.8 to 84.4 - mudstone interbed, 1% fine pyrite stringers, 64° to CAA - MAR 2.8 15/89 RECEIVED	10131 10132 10133 8924 8925 10134 8926 10135 8927	tr 1 tr .5 .5 1 1	27.9 47.9 57.0 68.0 74.4 79.1 80.8 84.4	32.9 52.8 62.0 68.0 74.4 79.1 80.8 84.4 86.6	5.0 4.9 5.0 6.4 4.7 1.7 3.6 2.2			Tr Tr Tr Tr .002 Tr .024 Tr		

FORM F

NAME OF PROPERTY. Randall Lake

/ . <i>.</i>		nd drill rever	N H	AME O OLE N	i propei o RL	-88-2		SHE	ET NO	2 01	F 6
F 001 AC	GF 10	DESCRIPTION	но	• 501 Pu	SAMPL FROM	E FOOTAGE	TOTAL	.		AU OZ TUN	Check
		 92.0 to 113.4 - Volcanic becomes tuffaceous and often grey and silty looking. Biotite content increased, shearing steadily increasing but not pervasive - 110.0 - 55° to C.A. 	10136 10137 10138 10139	.5 .5 .5	86.6 92.6 97.6 108.3	92.6 97.6 102.6 113.1	6 5.0 5.0 4.8			.002 Tr Tr .002	
13.4	132.0	Tuffaceous SiltstoneDark grey, fine grained, few brown biotite bands, finely laminated, minor shearingAverage Modes silt 50-60% biotite 5-10 carbonate 1-2 pyrite tr5 chlorite 20-30	10140 10141 10142	1.5 .5 tr	113.4 117.7 127.0	117.7 122.7 132.0	4.3 5.0 5.0			,002 Tr Tr	
32	214.4	Grey SilstoneWeakly to strongly sheared fine grained and finely laminated with only minor mafic tuff component overall. Crosscut by ubiquitous 1/16" to 1" quartz-carbonate veinlets parallel to S1, and a few quartz veinlet networks crosscutting S1. Rock is frequently silicified by fault-related fluids.Average Modes quartz90-60% chloritechlorite15-25 biotitebiotite3-5 pyritetr-1									

1 DRM 2

NAME OF PROPERTY. Randall Lake

HOLENO RL-88-2 SHEET NO 3 OF 6

1001	LAGE		1		SAMPL	E		 	ASSAYS	ى يەر ئەر ئەرى ي د ەرىك بەت يا	
FROM	10	UESCRIPTION	110	· SUL PH	FROM	FOOTAGE	TOTAL	· · ·	-Au	Check	
		132.0 to 142.0 - Weakly sheared - 140.0 - 50° to C.A.									
		 142.0 to 179.0 - Moderately sheared, marbled with 15% quartz-carbonate veins. - 142.8 to 143.7 - concordant quartz vein, tr py - 147.0 to 56° to C.A. - 152.5 to 153.2 - autoclastic breccia 	10143 10144 10145 10146 10147 10148 10149 10150	.5 .5 tr tr tr tr tr	142 147 151.7 156.4 161 166 171 175.2	147 151.7 156.4 161.0 166 171 175.2 178.9	5 4.7 4.6 5 5 4.2 3.7		Tr Tr .002 Tr Tr .002 .002		
		179.5 to 214.4 - Intensely sheared and silicified tuffaceous siltstone, abundant quartz-carbonate veins with 1-2% pyrite, and traces of <u>galena</u> , tr5% pyrite on average.									
		 177.0 - 56° to C.A. 180.5 to 181.6 - quartz-ankerite vein, .5-1% pyrite, trace5% drusy galena in fractures, few small chlorite clots, 10-15% carbonate 189.7 to 192.3 - 70% vein quartz with silicified wall rock from 190.6 to 191.4, 1% pyrrhotite, trace5% pyrite, tr chalcopyrite 204.5 to 205.8 - quartz vein, tr - 5% pyrite 	10151 10152 10153 10154 10155 10156 10157 10158 10158	tr 1.5 tr 1.5 .5 .5 .5	178.9 180.5 181.6 185.5 189.7 192.3 194.3 199 203.7	180.5 181.6 185.5 189.7 192.3 194.3 199 203.7 208.6	1.6 1.1 3.9 4.2 2.6 2 4.7 4.7 4.9		Tr .088 .008 .002 .002 Tr .024 Tr .002	.094	
214.4	236.4	Cherty Mudstone Breccia Totally sheared and/or brecciated sediment, altered variably to talc-chlorite schist, sulphides and chlorite fill fractures, minor magnetite bands present	10160 10161	1	208.6 211.7	211.7 214.4	3.1 2.7		Ir Tr		

токм 2 |

104M 2

NAME OF PROPERTY. Randall Lake HOLE NO. RL-88-2 SHEET NO. 4 OF 6

F 001	AGE		SAMPLE NO SUIPH FOOTAGE		ASSAYS							
FROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE	TOTAL	•		AU DZ TON	Check 02 TON	
		Average Modes chert 50-60% chlorite 20-30 biotite 3-5 carbonate 3-5 pyrite tr-2 (talc 0-50%)										
		214.4 to 223.8 - brecciated cherty mudstone, trace pyrite 223.8 to 225.2 - finely laminated chert, fractured, .5-1% magnetite, 1-1.5% pyrrhotite, 2% pyrite, tr5% chalcopyrite, 56° to C.A.	10163 10163 10164 10169	tr tr tr 4	214.4 218 221.1 223.8	218 221.1 223.8 225.2	3.6 3.1 2.7 1.4			Tr .022 .010 .002		
		225.2 to 231.0 - contorted talc-chlorite schist, 40-50% talc, minor dismembered folded magnetite beds, 30-40% chlorite, 10% carbonate, .5% pyrite	10166	•5	225.2	231	4.8			Tr		ļ
		231.0 to 236.4 - brecciated cherty mudstone, 1% disseminated arsenopyrite blebs, 1% pyrite/pyrrhotite	10167	2	231	236.4	5.4			Tr		
236.4	429.5	<u>Greywacke</u> - typical Grey to bleached white, granular, foliated siliciclastic rock. Frequently pervasively altered to sericite and chlorite with abundant secondary talc, ankerite and minor fuchsite. Ubiquitous 1/4" to 1/2" quartz veins parallel to S 1. Abundant yellow-green bands of sericite alteration, often pervasive, 1/16" to 1/8" blue quartz-eyes common. Pink carbonate seams fill late fractures and some early shear zones. Foliation often wavy and subparallel to C.A., numerous drag-fold closures	10168 10170 10171 10172 10173 10174 10176 10176	tr tr tr tr tr tr tr tr	5 237 5 241.8 5 246.3 5 251.1 5 255.5 5 260.2 5 269.8 5 274.5 5 279.4	241.8 246.3 251.1 255.5 260.2 265 279.8 279.4 283.8	4.8 4.5 4.8 4.7 4.8 4.7 4.9 4.9 4.4			Tr Tr Tr Tr Tr Tr Tr Tr Tr		

- 5	of	6	
		_	

DI/	M	OND DRILL RECORD	И	AME OI	PROPE	RTY	Rai	ndall i	Lake	5.0	ff
magencer et a anti-	var instante autora - d		++ T	01.E. NO) NI	-00-2	101111111111111111	. SHI 1	EET NO.		
FOO	TAGE	DESCRIPTION		• 5UL PH	SAMPL	E FOOTAGE			r	ASSAYS	Checkl
FROM	10		NO	IDE S	FROM	10	TOTAL	`-	···	69" TON	4//
		Average Modes quartz 40-50% sericite 20-30 chlorite 5-10 talc 0-5 carbonate 3-5 fuchsite tr5 pyrite tr5 236.4 to 325.0 - Highly altered, core is banded yellow to grey with pervasive sericite-talc alteration	10178 10179 10180 10181 10182 10183 10184 10185 10186	tr tr tr tr tr tr tr tr	5 283.8 5 288.4 5 293.1 5 297.5 5 302.1 5 307 5 311.6 5 316.5 5 321.2	288.4 293.1 297.5 302.1 307 311.6 316.5 321.2 325	4.6 4.7 4.4 4.6 4.9 4.6 4.9 4.6 4.9 4.7 3.8			Tr Tr Tr Tr Tr Tr Tr .002	
		325 to 340.7 - Decrease in talc alteration, 15-20% sericite core is more grey in colour, but still highly contorted.	10187 10188 10189	tr tr tr	5 325 5 330 5 335	330 335 340.7	5 5 5.7			Tr Tr Tr	
		 340.7 to 357.0 - Core is regularly banded with narrow (1/8"-1/4") sericite lamenae, 50° to C.A. 357.0 to 368.3 - Rock is yellow-green, intensely sericitized, moderate silicification, few discordant quartz-veins, 56° to C.A. 	10190 10191 10192 10193 10194 10195	tr tr tr tr tr	340.7 345.7 349.7 354.6 359.6 364.6	345.7 349.7 354.6 359.6 364.6 368.3	5 4 4.9 5 5 3.7			Tr Tr Tr Tr Tr Tr Tr	
		368.3 to 392.0 Zone of silicification, pervasively silicified and sericitized interval with abundant quartz veins. 30% secondary silica throughout cross-fractured wacke. Fractures may contain chlorite selvages surrounding cherty looking 1/4" to 1" quartz veins which contain up to 15% ankerite, 1% arsenopyrite, trace5% chalcopyrite, 2% pyrite, and 1-2% pyrrhotite.	10196 10197 10198 10199 10200 10201 10202	1.5 1-2 3 .5 .5-1 .5 .5	368.3 371.4 374.3 377.5 381.2 386.2 390.2	371.4 374.3 377.5 381.2 386.2 390.2 392.0	3.1 2.9 3.2 3.7 5 4 1.8			Tr .002 .020 Tr .002 .002	
		- 374.3 to 377.5 - quartz vein, 1% arsenopyrite, 2% pyrite, tr5% pyrrhotite, tr5 <u>chalcopyrite</u> as fine disseminated grains, clots and fracture fillings.									

NAME OF PROPERTY Randall Lake

HOLE NO . RL-88-2 SHELT NO. 6 OF 6

F 00	1 AGE	DETENDED			SAMPL	. F			ASSAY	, 199 - Marina di Basa manang manang mangan di Karangan di Karangan di Karangan di Karangan di Karangan di Kara Mangang mengentakan di Karangan di Karan
FROM	10	UESCRIPTION	110	* SULPH IDES	FROM	FOOTAGE	TOTAL		· AYUN	Среск
		392 to 414.8 - Sericitized greywacke, minor quartz-filled fractures, moderate silicification. - 397.0 - 57° to C.A.	10203 10204 10205 10206 10207 10208 10209	.5 .5 .5 .5 .5 .tr	392 397 402 407 410.5 5 414.8 5 419.9	397 402 407 410.5 414.8 419.9 424.2	5 5 3.5 4.3 5.1 4.3		Tr Tr Tr Tr Tr Tr Tr	
429.5	432.7	Lamprophyre Dike Dark brown, fine-grained, foliated with 20% disseminated 1/4" biotite, laths in a fine-grained, foliated micaceous matrix of biotite and plagioclase. The dike contains a trace of pyrite and a few cross-cutting carbonate-filled fractures.	10211	tr	427 429.5	429.3	3.2		۱۲ ۲r	
		Average Modes biotite 30-40% plagioclase 20-30 amphibole/pyroxene 20-30 carbonate 2-3 pyrite tr								
432.7	523.7	<u>Greywacke</u> - typical	10212	tr	5 432.7	437	4.3		Tr	
		432.7 to 451.4 - Silicified zone - 440.0 - 71° to C.A. - 457.0 - 69° to C.A.	10213 8928 8929	tr tr tr	5 437 441.4 5 446.4	441.4 446.4 451.5	4.4 5.0 5.0		.002 Tr Tr	
		451.4 to 523.7 - Minor shearing, highly foliated, trace pyrite - 477.0 - 67° to C.A.	10214 10215 10216	tr tr tr	5 456.2 5 472 5 492.8	460.9 477 497.8	4.7 5 5		.002 Tr Tr	
523.7		END OF HOLE						At	Ald	e mo

FORM 2

NAME O	F PROP	ERTY Randall Lake	FOOTAGE	DIP	AZIMUT	I FOOTA	GE DI	P AZ	митн	HOLE N	10. <u>NL-</u>	20-2 5H	EET NO Ja	4_01_4
HOLE N	oRL-1	38-3 LENGTH297 ft		400-	<u> </u>					REMAI	RKS	ra/200	/4	• • · · · · · · · · · · · ·
LOCATIO	н <u>120</u>	100E.12+52N		40	<u> </u>									
LATITUD	E	DEPARTURE		-42										
ELEVATI	ON	AZIMUTH 332° DIP -48°				-#				LOGGE	BY	Jon No	rth	
STARTED	<u> </u>	-01-24 FINISHED1988-01-26		··	•									
FOO	TAGE	SUMMARY LOG				5 A	мры	E			A	SSAY	'S '	
FROM	то	DESCRIPTION			10. SUL	PH-	FOO	TAGE	TOTAL	26	36	OTTON	Shegekn	
0	86.5	Casing												
86.5	240.0	Mudstone												
240.0	253.0	Interbedded mudstone and greywacke												
253.0	297.0	Greywacke												
		253 to 271 - shear zone with disseminated sulphi	des					1 - -						
297.0		END OF HOLE												
													1	
				ł										
		P and as reasoning											ł	
		ONTABLE GEOLOGICAL SURVEY	7											
8		AUSESSMENT FILES	1											
6		OFFICE	1	Į(
5 t		MAR 28 1000	1										1	Í
2) 2		1 10 10 1989												
2) 11 22		DE												ļ
		HECEIVED												
2		and the second se												
5														
				Ĩ										
						I	1	1		i I		, I	I	1

DI 00 0

1 . 4 1

NAME OF	PROPERTY	Rai	ndall Lake	2				
HOLE NO.			LENGTH _	297 ft.				
LOCATION	L20E,	12+52N						
LATITUDE			DEPARTUR	E			A	
ELEVATION			AZIMUTH .	332		DIP	-48	
	1000 01	.		1000	01 07			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-48 ⁰				
200	-420				

HOLE NO. <u>RL-88-3</u> SHEET NO. <u>1 of 3</u> REMARKS <u>Pa720074</u>

LOGGED BY ____ Jon North

FOOTAGE SAMPLE ASSAYS DESCRIPTION FOOTAGE AU Check oz/ton oz/ton SULPH FROM то NO, 26 36 FROM TOTAL TO 0 86.9 Casing 10217 tr-.5 96.3 101.2 4.9 Tr 10218 tr-.5 110.4 10219 tr-.5 129.6 115.3 4.9 Tr 86.5 240.¢ Mudstone 134.6 .002 5 1022d tr-.5 148.6 5 153.6 Tr Dark green chloritic mudstone at top of interval, 10221 tr-.5 172.0 177.0 5 Tr gradational to a brown biotite-rich silty mudstone, very 10222 tr-.5 195.3 200,3 5 Tr fine-grained and finely laminated. 10223 tr-.5 229.3 234.3 5 Tr Average Modes: 15-25% 15-25 chlorite biotite quartz 40-50 carbonate 1 tr-.5 pyrite Few 1/16 to 1/4" guartz-carbonate bands. 86.5 to 160.0 - Dark green, very chloritic - 97.0 - 59° to C.A. - 157.0 - 65° to C.A. 160 to 240 - Light grey to brown, laminated, less chloritic, biotite-rich ONTARIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE MAR 28 1989 RECEIVED

NAME OF PROPERTY. Randall Lake HOLE NO RL-88-3 SHEET NO. 2 of 3

FOO	TAGE		SAMPLE					ASSAYS	AL STRUCTURE and A		
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	TOTAL	 •	AU 07 TUN	Check	
240	253	Interbedded Mudstone and Greywacke 70% typical biotite-rich mudstone, 20-30% greywacke. Greywacke is siliceous, grey, and poorly sorted. Average Modes: quartz & feldspar 70-75% biotite 10-15 chlorite 5-10 carbonate 1 pyrite tr5									
		- 250.0 - 67° to C.A.	10224	tr	5 248	253	5		.002		
253	297	Greywacke Unit contains 20-30% interbedded biotite-rich mudstone 253 to 271 - <u>Shear Zone</u> Sediment is highly sheared, and sericitized, 5% quartz stringers with weak to moderate silicification of wall rock. Trace to 1% fuchsite overall, and traces of pyrite, pyrrhotite, chalcopyrite, and <u>arsenopryrite</u> throughout. Sulphides occur mainly as fine grains interstitial to stretched detrital quartz clasts. Sulphides also occur in 1/4" to 1" discordant quartz-ankerite veinlets.	10225	1-2	253	257	4		.002		

F (15: M 2

NAME OF PROPERTY Randall Lake

HOLE NO. RL-88-3 SHELT NO. 3 OF 3

Foo	DIAGE	DESCRIPTION			SAMPL	E				ASSAYS	**********	* 24 24 24 24 24 24 24 24 24 24 24 24 24
FROM	10		NO	DE 5	FROM	FOOTAGE	TOTAL		.,	AU TON	Check	
		- 256.4 to 257.0 - 1-2% <u>chalcopyrite</u> , 2-3% pyrrhotite in greywacke. - 260.0 - 65° to C.A.	10226 10227	1 .5-1	257.0 261.0	261.0 264.7	4.0 3.7			Tr Tr		
297.0	0	 - 261.0 to 264.7 - 5-7% fuchsite in micaceous sericitized interval, .5-1% pyrrhotite and <u>chalcopyrite</u> - 264.7 to 271.0 - talc - chlorite - carbonate alteration - 292.2 to 297.05% <u>arsenopyrite</u> in few small discordant quartz veinlets 	10228 10229 10230 10231 10232 10233 10233	.5 .5 tr tr tr .5	264.7 267.6 5 271.0 5 276.0 5 281.0 5 287.0 292.2	267.6 271.0 276.0 281.0 287.0 292.2 297.0	2.9 3.4 5.0 5.0 6.0 5.2 4.8			Tr Tr Tr Tr Tr Tr Tr Tr		
						-						
								Å	Yhl	ar	nD	
							Û	jë I				

NAME OF	PROPERTY	Rand	dall Lake					
HOLE NO.	<u>_RL-88-4</u>		LENGTH	447	feet			
LOCATION	122+00E	6+81N						
LATITUDE			DEPARTURE					
ELEVATION			AZIMUTH	<u>332</u> °		DIP	-46	
STARTED _	1988-02-0	3	FINISHED	1988-02-	-04			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-46^{0}				
200	-39				
400	-370				

HOLE NO. <u>RL-88-4</u> SHEET NO. 1 OF 1 REMARKS <u>Pa 720073</u>

LOGGED BY Jon North

ſ	F 0 0 1	AGE				SAMP	ι. ε			A	SSA	Y 5	
ſ	FROM	10	SUMMARY LOG	NO.	SULPH	FROM	FOOTAGE TO	TOTAL	2%	35	OZ/TON	Check _N	
	0	8,0	Casing										
	8.0	115.9	Mafic Volcanic 44.1 to 49.1 - Few concordant quartz veins, <u>1%</u> <u>chalcopyrite</u> , <u>5%</u> pyrite 51.8 to 52.1 - autoclastic breccia 62.8 to 63.4 - quartz vein, 1% pyrrhotite, trace chalcopyrite, two inches of alteration on either side of vein	10374 10379 10377 10378	tr 1 .5 .5	44.1 49.1 59.0 64.0	49.1 54.0 64.0 69.0	5.0 4.9 5.0 5.0			.094 .014 .108 .010	.090 .104	
	115.9	135.1	Grey Siltstone										
	135.1	137.3	Ultramafic Schist										
	137.3	146.8	Grey Siltstone 137.3 to 142.0 - 10-15% biotite, trace - 0.5 pyrite	10395	.5	137.3	142.0	4.7			.014		
	146.8	149.d	Lean Iron Formation										
	149.0	314.2	Ultramafic Schist										
а <u>с</u> ,	314.2	447.0	Greywacke										
10 - 365-	447.0		END OF HOLE ASSUSSMENT FILES OFFICE										
ES - "0#01			MAR 2.8 1989										
DOIGDNAL			RECEIVED										

FORM F

NAME OF	PROPERTY	Randall Lake			FOC
HOLE NO		LENGTH	447 feet		
LOCATION	122+00E	6+81N			20
LATITUDE		DEPARTURE			
ELEVATIO	N	AZIMUTH	332	_ DIP	
STARTED	1988-02-	03 FINISHED	1988-02-04		

	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
	0	-460				
	200	-390				
1	400	-37 ⁰				
1						

HOLE NO. RL-88-4_ SHEET NO. 1 OF 4 REMARKS PA 720073

LOGGED BY Jon North

FOOI	AGE	DESCRIPTION			БАМР	LE		ASSAYS				
FROM	10		NO.	SUL PH-	FROM	FOOTAGE	TOTAL	ž	36	AU oz/ton	Check oz/TON	
0 8.0	8.0	Casing <u>Mafic Volcanic</u> - typical Foliated dark green to grey-green tuff. Few 1/8" to 1" quartz stringers parallel to foliation. Very silty at end of interval, minor disseminated magnetite. Average Modes: chlorite 50-60% biotite 10-15 plagioclase 10-15 quartz 5-7 carbonate 2-3 pyrite tr5 pyrnhotite tr - 15.4 to 15.9 - chert bed 2% pyrite	0271	ONTA A R	NIG GEC DSESCI MAR E C I	LOUIDA SENT FICE 2815	surve FILES 89 E D	Y Y				
		 30.0 - 67° to C.A. 41.5 to 42.1 - concordant quartz vein, trace5% pyrite 46.9 to 47.2 - quartz vein, 1% chalcopyrite, 5% pyrite 51.8 to 52.1 - autoclastic breccia 60.0 - 77° to C.A. 62.8 to 63.4 - quartz vein, 1% pyrhotite, trace chlcopyrite, two inches of alteration on either side of vein 90.0 - 69° to C.A. 103.4 to 104.3 - concordant quartz vein, .5% pyrite, 1% pyrite in sheared wall rock 105.0 to 115.9 - rock is very siliceous and silty, possibly a tuffaceous intermediate volcaniclastic, moderate cross-fracturing with quartz-carbonate infillings 	0371 0372 0373 0374 0375 0376 0377 0378 0380 0381 0382 0383 0384 0385 0384 0385 0386 0387 0388 0388	.5 tr tr 1% .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	12.9 17.7 39.1 44.1 54.0 59.0 64.0 69.0 74.0 79.0 84.0 99.0 102.5 104.7 109.7 114.7	17.7 22.6 44.1 49.1 54.0 59.0 64.0 69.0 74.0 79.0 84.0 89.0 99.0 102.5 104.7 109.7 114.7 118.6	4.89 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0			.002 .004 tr .094 .014 Tr .108 .010 Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr	.090	

HOLE NO. RL-88-4 SHEET NO. 2 OF 4

FOOT	AGE		SAMPLE				ASSAYS					
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE	101AL		' i	AU 07 TON	Check-	
115.9	135.1	Grey Siltstone - typical Finely bedded, siliceous, gradational from silty tuff in previous interval, biotite (mudstone) component prominent at end of interval.										
		Average Modes:silt60-70%sericite5-10chlorite5-10biotite5-10carbonatetr-1sulphidestr5										
		<pre>115.9 to 130.0 - Grey, silty, finely bedded 130.0 to 135.1 - Dark brown-grey finely bedded cherty mudstone, 20% brecciated chert, 1-2% disseminated pyrite grains and small stringers - 135.0 - 71° to C.A.</pre>	1039(10391 10392 10393	•5 tr-• tr-• 1-2	118.6 5 123.6 5 127.0 130.0	123.6 127.0 130.0 135.1	5 3.4 3.0 5.1			.002 Tr .002 .002		
135.1 89: '966 - OLNOGOL - SEBOLEONY'	137.3	Ultramafic Schist - typical Dark green talc - carbonate - chlorite schist, very highly contorted and schistose, up to 20% biotite in some sections. Numerous disseminated quartz-ankerite augen Average Modes: talc 20-30% chlorite 40-50 carbonate 5-10 biotite 5-10 sulphides tr5	10394	tr	135.1	137.3	2.2			Γr		

LOIDS 2 ł

NAME OF PROPERTY

HOLE NO _ RL-88-4 SHEET NO. 3 OF 4

Randall Lake

FOOT	AGE.				SAMPI	E	laine an an an an Anna an Anna an A		 ASSAY5	an a	
FROM	10	DESCRIPTION	140	TOL SUL PH	FROM	FOOTAGE	TOTAL	,	 OZ TON	Check	
137.3	146.8	Grey Siltstone - typical More biotite rich than 115.9 to 135.1, more of a mudstone than siltstone, 5% chert	10395 10396	.5 .5	137.3 142.0	142.0 146.8	4.7 4.8		.014 .006		
146.8	149	Lean Iron Formation - typical Yellow - grey, banded chert with 3-5% disseminated magnetite, minor fracturing, trace pyrite and pyrrhotite	10397	tr	146.8	149.0	2.2		Tr		
149	314.2	Ultramafic Schist - typical Very highly sheared and carbonatized - 150.2 to 156.9 - lost core - 160.5 to 162.7 - silty mudstone bed, .5-1% fine grains and stringers of pyrite - 168.6 to 169.4 - chert - magnetite bed, .5% pyrite - 173.0 to 173.5 - quartz-ankerite vein at low angle to core axis - 200.0 - 50° to C.A. - 200.1 to 200.2 - concordant quartz-carbonate vein, 10% pyrite, trace5% chalcopyrite - 250.0 - 60° to C.A. - 257.3 to 258.6 - quartz - carbonate vein, trace pyrite - 270.0 - 60° to C.A. - 285.1 to 286.0 - chert - magnetite bed, 5% magnetite - 295.5 to 296.6 - 3% concordant pyrite stringers in highly sheared section - 298.4 to 298.8 - 5% pyrite/pyrrhotite within intermixed cherty iron formation and schist - 290.0 - 65° to C.A.	10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10413 10414	tr 1 tr tr tr tr tr 5 5 5 5	149.0 160.5 162.7 5 167.5 172.5 198.0 207.0 212.0 5 225.2 5 230.2 5 249.8 5 254.8 5 263.6 285.1 290.0 294.8 309.2	160.5 162.7 167.5 172.5 177.6 203.0 212.0 217.0 230.2 254.8 259.8 259.8 299.8 314.2	11.5 2.2 4.8 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		.006 .002 Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr		

FORM 2

_____ANGPIDGES - TORONTO - 366-1168

1 alim 2

NAME OF PROPERTY. Randall Lake HOLE NO _ RL-88-4 SHEET NO. _ 4 of 4

FOOTAGE	DESCRIPTION			SAMPI	£		ASSAYS		
FROM TO	DESCRIPTION	но	SUL PH	FROM	FOOTAGE	1014		AU 07 TON	
314.2 447.0	Greywacke - typical Foliated grey siliciclastic. Poorly sorted elongate quartz clasts within a finer matrix of sericite and chlorite. May be highly silicified, sericitized, and talcose as a result of fault-related shearing and alteration.	10395 10396	•5 •5	137.3 142.0	142.0 146.8	4.7 4.8		.014 .006	
	Average Modes: quartz 50-60% sericite 20-30 chlorite 5-10 carbonate tr-1 sulphides tr								
447.0	 314.2 to 349.1 - Highly sheared and sericitized, moderate to strong silicification, traces of fuchsite throughout. - 320.0 - 72° to C.A. - 327.5 to 328.4 - concordant quartz vein, trace pyrite, arsenopyrite - 350.0 - 69° to C.A. - 370.0 - 66° to C.A. 349.1 to 447.0 - Weak to moderate shearing and silicification, minor sericite, same talc alteration on cleavage. - 440.0 - 72° to C.A. 	10415 10416 10417 10418 10420 10421 10423 10424 10425 10426 10425 10428	.5 tr tr tr tr tr tr tr tr tr tr tr	314.2 319.2 324.2 329.2 334.2 344.2 349.2 354.2 374.2 387.0 409.5 425.9 430.9	319.2 324.2 329.2 334.2 344.2 349.2 354.2 359.1 378.8 392.0 414.5 430.9 435.9	5.0 5.0 5.0 5.0 5.0 5.0 5.0 4.9 4.6 5.0 5 5 5		Ir Ir Ir Ir Ir Ir Ir Ir Ir Ir	m

NAME	OF	PROPERTY	Randall Lake				FO
HOLE	NO.	RL-88-5	LENGTH	437 ft.			
L OC A 1	ION	_124+00L	7+27N.				20
LATIT	UDE		DEPARTURE				140
EL.EVA	1101	l	AZIMUTH	3320	_ DIP	<u>-46°</u>	40
START	ED	1988-01-31	FINISHED .	1988-02-02			L

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-460				
200	-39				
400	-340				

HOLE NO. <u>RL-88-5</u> SHEET NO. <u>1 OF 1</u> REMARKS <u>PA720073</u>

LOGGED BY Jon North

FOOT	IAGE	SUMMARY LOG			SAMP	LE		ASSAYS				
FROM	10		NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL.	36	z	oz A Hon	Check oz/ton	
F 0 0 1 FROM 0 10.5 42.9 177.4 179.0 252.2 437	10.5 10.5 42.9 177.4 179.0 252.2 437.0	Casing Mafic Volcanic Ultramafic Schist Lamprophyre Dike Ultramafic Schist Greywacke End of Hole ONTABIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE MAD 2.8, 1989	NO.	SUL PIT	S A M P	L E FOOTAGE TO	TOTAL	26	A 36	S S A Y	Check	
		RECEIVED										

FORM 1

ANGRIDGES - TOPONTO -

TORM 1

NAME OF PROPE	RTY Randall Lake
HOLE NOR1=8	8-5 LENGTH 437 ft
LOCATION 1244	<u>00E 7+27N</u>
LATITUDE	DEPARTURE
ELEVATION	AZIMUTH 332 ⁰ DIP46 ⁰
STARTED 1988-	01-31 FINISHED 1988-02-02

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-460				
200	-390				
400	-34 ⁰				

HOLE NO. <u>RL-88-5</u> SHEET NO. <u>1 of 4</u> REMARKS <u>Pa720073</u>

LOGGED BY Jon North

FOOT	IAGE				SAMP	LE		I	A	SSA	15	
FROM	70	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE	TOTAL	25	¥	OZYTON	Sz)96k	
0	10.5	Casing										
0 10.9 42.9	10.5 42.9 177.4	Casing Mafic Volcanic - typical Follated dark green to grey tuff. Few 1/8" to 1" quartz stringers parallel to foliation. Average Modes: chlorite 50-60% biotite 10-15 plagioclase 10-15 quartz 5-7 carbonate 2-3 pyrite tr5 pyrrhotite tr Lighter grey silty, and finely bedded at end of interval - 30.0 - 69° - 19.5 to 20.0 - chert - magnetite bed, 3-5% pyrite Ultramafic Schist - typical Follated, dark green ultramafic flow. Primary textures absent due to pervasive talc-chlorite-carbonate alteration. Traces of pyrite, pyrrhotite, and chalcopyrite in narrow quartz-ankerite veinlets and broken augen. Average Modes: chlorite 50-60%	10331 10332	1.5	18.5 37.9	23.5 42.9	55			.002		
		biotite 5-10 ASSESSMENT FILES										
		quartz 3-5 OFFICE. sulphides tr										
		MAR 2.8 1989										
	١	RECEIVED	1	1		1		1 1	Ì	i 1	I I	:

NAME OF PROPERTY Randall Lake

HOLENO RL-88-5

		11	OLE NO) _ KL-C	0 - 0		SHI	ET NO.		01 4		
GE	DESCRIPTION			SAMPI	E				ASSAYS			
10		ю	* 50LPH 10E5	FROM	FOOTAGE	TOTAL			° An "	<u>Çheç</u> k		
	42.9 to 70.2 - Intensley deformed, contorted, talcose, and carbonatized.	10333 10334	tr tr	5 52.5 5 60.5	57.5 65.5	5 5			.002 Tr			
	62.6 to 63.5 - dark green grunerite-magnetite iron formation bed, trace chalcopyrite, 5-7% magnetite, 1% pyrite/pyrrhotite.											
	70.2 to 115.0 - Less highly altered and dark green. 10-15% carbonate stringers throughout. Possibly mafic flows.	10335 10336	tr tr	67.9 77.5	72.3 82.3	4.4 4.8			Tr Tr			
	 95.0- 59° to C.A. 103.6 to 104.7 - dark green magnetite-grunerite bed, 2% pyrite 109.7 to 110.7 - magnetite-grunerite bed, 2% pyrite, .5% chalcopyrite. 	10337 10338 10339	.5 .5 .5	102 107 117	107 112 121.6	5 5 4.6			Tr Tr Tr			
	115.0 to 177.4 - Highly contorted, carbonatized, and talcose											
	- 127.7 to 129.0 - quartz-carbonate vein running along	10360	tr	126.3	131.0	4.7			Tr			
	- 130.0 - 58° to C.A. - 161.6 to 161.9 - 30% pyrite in chert, amphibolitic iron formation bed. - 164.5 to 166.7 - cherty lean iron formation, 30% ultramafic schist, .5% pyrite	10340 10341 10342	•5 •5 •5	151.0 156.0 161.0	156.0 161.0 167.0	5 5 6			Tr Tr Tr			
179.0	Lamprophyre Dike Dark brown, fine-grained, foliated with 20% disseminated 1/4" biotite phenocrysts in a fine-grained, foliated, micaceous matrix of biotite and plagioclase. The dike contains minor disseminated pyrite.											
	38 10 179.0	 description 42.9 to 70.2 - Intensley deformed, contorted, talcose, and carbonatized. 62.6 to 63.5 - dark green grunerite-magnetite iron formation bed, trace chalcopyrite, 5-7% magnetite, 1% pyrite/pyrrhotite. 70.2 to 115.0 - Less highly altered and dark green. 10-15% carbonate stringers throughout. Possibly mafic flows. 95.0 - 59° to C.A. 103.6 to 104.7 - dark green magnetite-grunerite bed, 2% pyrite 109.7 to 110.7 - magnetite-grunerite bed, 2% pyrite. 115.0 to 177.4 - Highly contorted, carbonatized, and talcose 127.7 to 129.0 - quartz-carbonate vein running along C.A. 130.0 - 58° to C.A. 161.6 to 161.9 - 30% pyrite in chert, amphibolitic iron formation bed. 164.5 to 166.7 - cherty lean iron formation, 30% ultramafic schist, .5% pyrite 179.0 Lamprophyre Dike Dark brown, fine-grained, foliated with 20% disseminated 1/4" biotite phenocrysts in a fine-grained, foliated, micaceous mainor disseminated pyrite. 	10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 1033 1033 10 62.6 to 63.5 - dark green grunerite-magnetite iron formation bed, trace chalcopyrite, 5-7% magnetite, 1% pyrite/pyrhotite. 10.2 to 115.0 - Less highly altered and dark green. 10-15% 10335 103.6 to 104.7 - dark green magnetite-grunerite bed, 2% pyrite. 10336 103.6 to 100.7 - magnetite-grunerite bed, 2% pyrite, .5% chalcopyrite. 10335 115.0 to 177.4 - Highly contorted, carbonatized, and talcose - 127.7 to 129.0 - quartz-carbonate vein running along C.A 115.0 to 177.4 - Highly contorted, carbonatized, and talcose - 130.0 - 58° to C.A. - 161.6 to 161.9 - 30% pyrite in chert, amphibolitic iron formation bed. - 164.5 to 166.7 - cherty lean iron formation, 30% ultramafic schist, .5% pyrite 179.0 Lamprophyre Dike Dark brown, fine-grained, foliated with 20	OESCRIPTION 10	<th 1="" 1<="" colst="" not="" td=""><td>INCLEMENTION SAMPLE Solution of the set o</td><td>Note the section of the</td><td>Alter of the description SAMPLE SAMPLE SAMPLE SAMPLE Constant and the description Constant and the description <td>Intensity of formed, contorted, talcose, and To the site of the site</td><td>10 42.9 to 70.2 - Intensley deformed, contorted, talcose, and carbonatized. 62.6 to 63.5 - dark green grunerite-magnetite fron formation bed, trace chalcopyrite, 5-7% magnetite, 1% pyrite/pyrrhotite. <td co<="" td=""></td></td></td></th>	<td>INCLEMENTION SAMPLE Solution of the set o</td> <td>Note the section of the</td> <td>Alter of the description SAMPLE SAMPLE SAMPLE SAMPLE Constant and the description Constant and the description <td>Intensity of formed, contorted, talcose, and To the site of the site</td><td>10 42.9 to 70.2 - Intensley deformed, contorted, talcose, and carbonatized. 62.6 to 63.5 - dark green grunerite-magnetite fron formation bed, trace chalcopyrite, 5-7% magnetite, 1% pyrite/pyrrhotite. <td co<="" td=""></td></td></td>	INCLEMENTION SAMPLE Solution of the set o	Note the section of the	Alter of the description SAMPLE SAMPLE SAMPLE SAMPLE Constant and the description Constant and the description <td>Intensity of formed, contorted, talcose, and To the site of the site</td> <td>10 42.9 to 70.2 - Intensley deformed, contorted, talcose, and carbonatized. 62.6 to 63.5 - dark green grunerite-magnetite fron formation bed, trace chalcopyrite, 5-7% magnetite, 1% pyrite/pyrrhotite. <td co<="" td=""></td></td>	Intensity of formed, contorted, talcose, and To the site of the site	10 42.9 to 70.2 - Intensley deformed, contorted, talcose, and carbonatized. 62.6 to 63.5 - dark green grunerite-magnetite fron formation bed, trace chalcopyrite, 5-7% magnetite, 1% pyrite/pyrrhotite. <td co<="" td=""></td>	

LORM 2

NAME OF PROPERTY	Randa 11	Lake	
HOLE NO RL-88-5		SHEET NO	3 of 4

1001	TAGE	DESCRIPTION	SAMPLE				ASSAYS				
FROM	10	DESCRIPTION	110	* SUL PH	FROM	FOOTAGE	TOTAL	Ι.,	AU 07 TON	Check 02 TON	
		Average Modes: biotite 30-40% plagioclase 20-30 amphibole/pyroxene 20-30 carbonate 2-3 pyrite tr									
179.0	252.2	Ultramafic Schist - typical Very talcose, and highly carbonatized. - 180.0 - 46° to C.A. - 210.5 to 210.9 - quartz vein, 60% ankerite, 1-2% pyrite - 247.0 to 250.1 - 60-70% chert-magnetite iron formation, 30-40% ultramafic schist, 2-3% pyrite, 62° to C.A.	10343 10344 10345 10346 10347 10348	tr tr tr tr tr	196.8 5 207 5 212 5 217 5 222 5 242	201.4 212 217 222 227 247	4.6 5 5 5 5 5		Tr Tr Tr Tr Tr Tr		
252.2	437	<u>Greywacke</u> - typical Grey, poorly sorted, massively bedded conglomeratic in places. Composed of rounded 1/16" to 1/4" detrital quartz fragments in a finer foliated matrix of quartz, sericite, and chlorite with minor interstitial sulphides. Strongly foliated. Average Modes: quartz 50-60% sericite 20-30 chlorite 5-10 carbonate tr-1 sulphides tr	10345	3	247	252.2	5.2		.002		

1 ORM 2

NAME OF PROPERTY Randall Lake

HOLE NO . RL-88-5 SHEET NO. 4. Df.4

FOOTAGE			a contra tradici	SAMPI	E		ASSAYS			ASSAYS		
FROM TO	UESCRIPTION	NO	* SULPH IDES	FROM	FOOTAGE 10	TOTAL		[.	, AY on	ӶҀ҄ӈ҅ӗҫ҄ҝ		
437.0	 252.2 to 302.0 - Moderate to highly sheared, sericitized, and silicified, trace fuchsite, trace arsenopyrite 270.0 - 57° to C.A. 299.2 to 300.8 - quartz vein, .5% pyrite, trace chalcopyrite 302.0 to 378 - Weak to moderate shearing and silicification 310.0 - 75° to C.A. 316.0 to 319.1 - 1/2" quartz-carbonate stringer parallel to C.A. 330.0 - 76° to C.A. 350.0 - 74° to C.A. 375.0 - 74° to C.A. 375.0 - 74° to C.A. 376.0 to 425.8 - Sheared, sericitized interval, minor silicification. 400.0 - 72° to C.A. 430.0 - 71° to C.A. 430.0 - 71° to C.A. 	10350 10351 10352 10353 10354 10355 10357 10358 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370	tr tr tr tr tr tr tr tr tr tr tr tr tr t	252.2 257 262 267 272 287 292 297 315.5 337 268.8 378 383 388 399.9 407.5 417.2 422	257 262 267 277 282 287 292 302 320.2 342 273.8 383 388 391.6 404.9 411.6 422 425.8	4.8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		M	Ir Ir	M		

FORM 2

NAME OF	F PROPE	RTY Randall Lake	FOOTAGE	DIP	AZ IM	υтн	FOOTAGE	DIP	AZIMUTH	REMA	чо Р якs	a720073	EET NO.	
HOLE NO), <u>KL-0</u> N 126+	0-0LENGTH997_12.	0	-460										
LOCATION	г г		200	-35	<u> </u>									
ELEVATIO	ом ис	AZIMUTH332 ⁰ DIP46 ⁰	400	-27°								lon Non	+ h	
STARTED	19-8	01-27FINISHED1988-01-28					l			LOGGE	D BY			
FOOT	AGE			Ī			SAMP	L E			A	SSA	(5	
FROM	10	DESCRIPTION SUMMARY LOG		N	٥. ٩	UL PH	FROM	FOOTAG		26	36	AU 07/TON	Check oz/TON	
0	15	Casing				1220						1		
15	35.6	Mafic Volcanic												
35.6	60.0	Ultramafic Schist 35.6 to 38.1 - lean iron formation, 20-30% magn chert, 70% schist, 1-2% pyrite, trace pyrrhotit	etite a e	nd 10	238	2	35.6	38.	1 2.5			.014		
60.0	127.3	Mafic Volcanic												
127.3	156	Intermediate Tuff 148.0 to 153.0 - up to 30% fine discordant quar stringers and 1.5% disseminated pyrrhotite, tra	tz ce pyri	te 10	250	1	148.0	153.	0 5.0			.020		
156	173.5	Ultramafic Schist												
173.5	179.7	Lean Iron Formation												
179.7	185.5	Brown Silty Mudstone												
185.5	235.1	Ultramafic Schist												
235.1	252.1	Chert												
252.1	257.8	Cherty Mudstone												
257.8	447.0	Greywacke OFFICE												
447.0		END OF HOLE MAR 28 1989 RECEIVED												

R L 88-6

1 of 1

TORM F

đ

NAME OF	PROPERTY	Ran	<u>lall Lake</u>				
HOLE NO.	_BL-88-6		LENGTH	447	Ft.		
LOCATION	L26+00E	<u>7+01N</u>					
LATITUDE	·····		DEPARTUR	E			
ELEVATION	·		AZIMUTH	_332 ⁰	<u></u>	DIP	<u>-46⁰</u>
STARTED _	1988-01-27		FINISHED _	1988-	-01-28		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-460				
200	-35				
400	-270				
					1

HOLE NO. <u>RL-88-6</u> SHEET NO. <u>1 OF 6</u> REMARKS <u>P</u>a720073

LOGGED BY JON NORTH

FOOTAGE				SAMPLE					ASSAYS				
FROM	то	UESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE	TOTAL	26	35	02/HON	Sel/98k		
0	15	Casing	10235	1.5	23.4	27	3.6			Tr			
15 35.6	35.6 60.0	Mafic Volcanic - typical Dark green, fine grained, tuffaceous, foliated. Contains occasional biotite-rich band and concordant quartz-carbonate veinlet. Disseminated magnetite abundant (2%) near end of interval as well as cherty bands, unit grades into lean iron formation. Average Modes: chlorite 40-50% plagioclase 15-20 biotite 10-15 quartz 10-15 carbonate 1-2 sulphides tr5 - 24.4 to 25.4 concordant quartz vein, 1.5% pyrite, trace chalcopyrite Ultramafic Schist - typical Dark green and white banded talcose schist, consisting of alternating dark green chlorite and white talc-carbonate laminae 1/8" to 1/4" thick. Probably a flow. The banding is often highly contorted. Rare magnetite iron	10236	.5-1	27 32	32 35.6	53.6			.002			
		Average Modes: chlorite 40-50% talc 20-30 biotite 5-10 ASSESSMENT	SUR A FO	VEY									
		carbonate 5-10 OFFICE sulphide tr magnetite tr-1 MAR 2.8 19	89 89										
		RECEIVE	Ð			· ·	·	•••		1	1	·	

10841

DIAMOND DRILL RECORD					NAME OF PROPERTY Randall Lake HOLE NO. RL-88-6 SHEET NO. 2 0F6								
FOR TAGE		SAMPL E					ASSAYS						
ЕНОМ	10	DESCRIPTION	но	- SUL PH	FROM	FOOTAGE	TOTAL			0 AU	<u>Check</u>		
		- 35.6 to 38.1 - lean iron formation, 20-30% magnetite and chert, 70% schist. 1-2% pyrite, trace pyrrhotite, 65° to core axis.	10238 8930 10239	2 1 tr	35.6 38.1 42.9	38.1 42.9 47.9	2.5 4.8 5.0			.014 Tr Tr			
60.0	127.3	 <u>Mafic Volcanic</u> - typical Very tuffaceous, foliated, and chloritized, possible ultramafic affinity. Rock contains 1-2% disseminated magnetite over narrow intervals and grades into intermediate tuff. - 88.1 to 98.6 - grey-brown contorted biotite-talc rich cherty interval, 67° to C.A. - 105.0 - 60° to C.A. - 126.9 to 127.3 - concordant quartz vein, trace pyrite, tourmaline 	10240 10241 10242 10243 10244 10245	tr tr tr tr tr	62.2 77 88.1 5 99.8 5 113.9 5 123.2	67.2 82 93.1 104.8 118.9 128.2	5 5 5 5 5 5			Tr Tr Tr Tr Tr			
127.3	156.0	Intermediate Tuff - typical Grey-green, fine grained, foliated and laminated. Average Modes: quartz 50-60% chlorite 20-30 sericite 3-5 carbonate 3-5 sulphides tr5	10246 10247 10248 10249 10250 10251	tr tr tr tr tr tr	128.2 133 138 143 148 153	133.0 138 143 148 153 156	4.8 5 5 5 5 3			Tr Tr Tr Tr .020 Tr			
		127.3 to 138.0 - typical foliated tuff 138.0 to 153.0 - up to 30% fine discordant quartz stringers and 1.5% disseminated pyrchotite, trace pyrite											
		- 139.0 - 68° to C.A.											

FORM 2

NAME OF PROPERTY Randall Lake HOLE NO. RI-88-6. SHEET NO. 3 OF 6

percentration and the						00-0	into dala Militada ang ang a					
FOOTAGE		DESCRIPTION		SAMPL	E		ASSAYS					
FROM	10	UT SURPTION	NO	SULPH		FOOTAGE			Γ.	AU	Check	
156.0	173.5	Ultramafic Schist - typical Highly sheared, carbonatized and contorted.	-	1015	FROM							
		 - 161.5 to 162.1 - magnetite bed, 20-30% magnetite, 2% pyrite replacing magnetite - 170.0 - 60° to C.A. - 173.5 to 175.2 - 20% magnetite iron formation in schist 	10252 10253 10254	•5 tr •5	161.2 168.5 173.5	166.2 173.5 176.5	5 5 3			Tr .002 Tr		
173.5	179.7	Lean Iron Formation 173.5 to 176.5 - 20% magnetite, 70-80% ultramafic schist, gradational from previous unit. 176.5 to 179.7 - Fractured laminated, and sheared cherty iron	10255	7	176.5	179.7	3.2			Tr		
179.7	185.5	formation. Average Modes: magnetite 10-20% chlorite 5-10 chert 50-60 pyrite 5-7 carbonate 1-2 pyrrhotite .5-1 <u>Brown Silty Mudstone</u> Minor chert sheared, finely laminated.					•					

JORN 2
Randall Lake NAME OF PROPERTY.

HOLE NO RL-88-6 SHEET NO. 4 OF

6			
	-	-	

FOOL	AGE		SAMPL E					ASSAYS				
FROM	10	DESCRIPTION	чо	SULPH IDES	FROM	FOOTAGE	TUTAL	:	•	OZ TUN	Сђеск	
		Average Modes: biotite 30-40% chlorite 20-30 quartz 20-30 carbonate 1 pyrite 1-3 magnetite 1	10252 10253 10254	.5 tr	161.2 168.5 173.5	166.2 173.5 176.5	5 5 3			Tr .002 Tr		
		Few cherty pyritic intervals, pyrite occurs in cross-fractures in chert, 1-3% magnetite in chert beds.										
185.5	235.1	<u> Ultramafic Schist</u> - typical			ľ							
		185.5 to 197.0 - may contain 2-3% disseminated magnetite or rare small magnetite bed, highly contorted and intensely carbonatized. Up to 30% ankerite.	10258	tr	185.5	190.5	5			Tr		
		197 to 212 - Relatively unaltered, dark green ultramafic flow.	10259	tr	197	202	5			.002		
		 212 to 235.1 - Highly talcose, sheared, carbonatized, contorted schist. - 215.0 - 58° to C.A. - 231.6 to 232.0 - chert bed, 30% pyrite stringers 	10260 10261 10262	tr tr 1-2	217 5 226.6 231.6	221.9 231.6 235.1	4.9 5 3.5			Tr Tr Tr		
235.1	252.1	<u>Chert</u> - typical Some fractures with sulphide infillings, minor disseminated magnetite. Finely laminated yellow-buff coloured.	10263 10264 10265 10266	.5-1 .5 1-2 1-2	235.1 240.1 245.1 247.6	240.1 245.1 247.6 252.1	5 2.5 4.5			Tr Tr Tr .004		

NAME OF PROPERTY. Randall Lake

HOLE NO. . RL+88-6 ... SHEET NO. 5 of 6

FOOT	TAGE.	DETERIO	1 I		SAMPI	E			ASSAYS		
FROM	10	ULSURPTION	NO	SULPH	FROM	FOOTAGE	TOTAL	 - · ·	AYON	<u>Check</u>	
		Average Modes: quartz 90-95% chlorite 2-3 magnetite 1 pyrite tr5 <u>arsenopyrite</u> tr5 pyrrhotite tr5 chalcopyrite tr									
252.1	257.8	<u>Cherty Mudstone</u> Grey-brown, sheared, contorted, finely laminated Average Modes: quartz 40-50% biotite 20-30 chlorite 10-20 pyrite tr carbonate tr5	10267	tr	252.1	257.8	5.7		Tr		
257.8	447.0	Greywacke Grey, granular, poorly sorted, siliceous. Consists of rounded 1/8" to 1/4" detrital quartz grains in a fine foliated matrix of sericite with minor chlorite and carbonate.Average Modes: quartz sericite chlorite talc carbonate foliated talc yrite tr5									

NAME OF PROPERTY__ Randall Lake

HOLE NO . RL-88-6 SHEET NO. 6 of 6

F DO 1	1 AGE.		1		SAMPI	E		ASSAYS					
FROM	10		NO	SULPH IDES	FROM	FOOTAGE	TOTAL			_о Ац.,	Çheçk		
		Often pervasively altered to sericite with abundant secondary talc, ankerite and fuchsite.											
		257.8 to 290.0 - Intensely sheared and sericitized, moderate to strong silicification, trace sulphides	10268 10269 10270	tr tr tr	257.8 262.8 267.8	262.8 267.8 272.8	5 5 5			Tr Tr Tr			
		- 260.0 - 67° to C.A.	10271 10272 10273 10274	tr tr tr tr	272.8 277.8 282.8 286.6	277.8 282.8 286.6 290.0	5 5 3.8 3.4			Tr .002 Tr Tr			
		290.0 to 391.5 - Weak to moderate shearing, core is grey and barren looking.											
		 290.0 - 63° to C.A. 312 to 312.5 - concordant quartz vein, trace pyrite 331 to 331.4 - discordant quartz vein, .5% pyrite 360.0 - 69° to C.A. 367.4 to 374.0 - talc-chlorite alteration, trace pyrite, pyrrhotite 391.5 to 416.6 - Moderate shearing and silicification, trace pyrite, pyrrhotite, chalcopyrite 	10283 10275 10276 10277 10278 10279 10280 10281 10282	tr tr tr tr tr tr tr	299 310 330 347 367 391.5 407 412 440.6	304.1 315 335 352 372 396.5 412 417 445.3	5.1 5 5 5 5 5 5 5 5 4.7			Tr Tr Tr Tr Tr Tr Tr Tr Tr			
447.0		END OF HOLE							vA	hda	mB	,	
							•	J	FIIO	IJU U	///0*		

......

NAME OF PROPERTY	FOOTAGE	
HOLE NO. <u>RL-88-7</u> LENGTH <u>597 ft</u>	0	-
LOCATION LZOTUUE 0115N	200	-
LATITUDE DEPARTURE	400	
ELEVATION AZIMUTH _332 DIP _=64 DIP	597	-
STARTED		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-640				
200	-61				
400	-58^{0}				
597	-550				

HOLE NO. RL-88-7 SHEET NO. 1 of 1

REMARKS Pa720073

LOGGED BY ____ JON NORTH

FOOT	AGE		SAMPLE					ASSAYS						
FROM	то		NO.	SUL PH	FROM	FOOTAGE	TOTAL	26	36	AUL/TON	S\$P\$Fok	Γ		
0	80	Casing												
8.0	140.7	Mafic Volcanic												
140.7	158.9	Ultramafic Schist												
158.9	182,2	Intermediate Tuff												
182.2	280.0	Mafic Volcanic										1		
280.0	283.9	Lamprophrye Dike												
283.9	307.4	Mafic Volcanic												
307.4	325.7	Intermediate Tuff												
325.7	427.3	Ultramafic Schist												
427.3	597.0	Greywacke							1					
597.0		END OF HOLE												
		ASSESSMENT FILES OFFICE MAR 28 1989 RECEIVED							n					

MINIMUM WHILL REVERS							RI_88_7 lof5
NAME OF PROPERTY Randall Lake	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE NO
HOLE NO RL=88=7 LENGTH597 ft		·64 ⁰					REMARKS Pa/20073
LOCATION	200 -	610					
ELEVATION AZIMUTH DIP	400 -	-58°			···-		
STARTED FINISHED FINISHED			l	I		LJ	LOGGED BY JON North
EDOTAGE		1		5 A M I	2 I F		ASSAYS

FROM TO	3 02/40N 82/96K
0 8.0 Casing 10 10.8 10 10.8 8.0 140.7 Mafic Volcanic - typical Dark green, fine grained, tuffaceous, with occasional 1/8 - 1/4* biotite band, minor disseminated magnetite over narrow intervals. 10 10.8 10 10.8 Average Modes: chlorite 40.50% plagioclase 15-25 biotite 10-15 carbonate 1-2 10.15 carbonate 1-2 - 40.0 - 58° to C.A. - 46.8 to 47.3 cherty bed 20:30% synite stningers avery veinlets, tr57 yotices, tr57, yotice 10284 tr 41.0 46.0 5.0 - 75.0 - 59.3 to 59.3 - slifeling, 70% conformable units veinlets, tr58 pyrite 00285 2 46.0 49.7 3.7 10284 tr 11.0 46.0 5.0 10286 tr 57.0 62.0 3.0 - 75.0 - 53° to C.A. - 90.0 - 33° to C.A. - 125.0 0.7 Hick 0.7 S.0 10284 tr 10.0 5.8 140.7 158.5 Ultramafic Schist - typical Dark green and white banded taiose Schist, Kohsifts of alternating dark green chlorite or serpentine; and white taic-carbonate aminae 1/8 - 1/4* thick. This unit is probably a flow. The banding is often highly contorted, early carbonate and quartz veins are offer beds and earling if of discontinuous 1/8 - 14.0 153.9 158.9 5.0<	Tr Tr Tr Tr Tr Tr Tr .002 .002

FORM 2

NAME OF PROPERTY. Randall Lake

	1001	AGE	OF (CRIPTION	SAMPLE						ASSAYS		
-	ROM	10	Description	но	· SUL PH	FROM	FOOTAGE	TOTAL		AU TON	Check	
			Average Modes: chlorite 40-50% talc 20-30 biotite 5-10 carbonate 5-10 sulphides tr magnetite tr-1 - 158.5 to 158.9 - magnetite bed, 50-60% magnetite, 1% pyrite									
	158.9	182.2	Intermediate Tuff - typical Grey, laminated, silty tuff Average Modes: quartz 50-60% chlorite 20-30 sericite 3-5 carbonate 3-5 sulphides tr5 - 170.0 - 44° to C.A.	10293	•5	167.0	172.0	5.0		Tr		
_ANGRIDGES - 10PONTO - 265-1158	182.2	280.0	<u>Mafic Volcanic</u> - typical 229.4 to 247.3 - This interval consists of a lighter grey volcanic possibly of intermediate composition, or silicified mafic volcanic. The rock is crosscut by 10-15% fine quartz-carbonate stringers, and is highly carbonatized, 5-7% carbonate, tr5% fine grained pyrite, 60° to C.A. at 240 feet.	10294 10295 10297 10297 10298 10299 10300 10302	.5 .5 tr.5 .5 .5 .5	187.0 192.0 197.0 207.0 229.4 233.0 237.6 242.7 276.0	192.0 197.0 199.4 212.0 233.0 237.6 242.7 247.3 280.0	5.0 5.0 2.4 5.0 3.6 4.6 5.1 4.6 4.0		Tr Tr Tr Tr Tr Tr Tr Tr		

NAME OF PROPERTY. Randall Lake

FO	01 AGE		SAMPLE						ASSAYS	C. T. Concern P. Chapter and A.	A SECTION OF A S
EROM	10	DESCRIPTION	NO	501 PH	FROM	FOOTAGE	TOTAL	Ţ.,	AU DZ TUN	Check	
280	.0 283.9	Lamprophyre Dike - typical Dark brown, fine-grained, foliated, with 20% 1/4" biotite phenocrysts in a fine-grained foliated micaceous matrix of biotite and plagioclase.									
		Average Modes: biotite 30-40% plagioclase 20-30 amphibole/pyroxene 20-30 carbonate 2-3 pyrite tr									
		- 50° to C.A.									
283	.9 307.4	<u>Mafic Volcanic</u> - typical Abundant quartz-carbonate stringers, crenulated and schistose in places, carbonatized, numerous broken quartz pods, trace chalcopyrite. Looks like an ultramafic flow.	10304	tr	302.4	307.4	5		Tr		
307	.4 325.7	Intermediate Tuff - typical Silicified, sheared, trace5% intergrown pyrrhotite and chalcopyrite, cross-cut by abundant quartz-carbonate veinlets, possibly altered mafic volcanic.	10305 10306 10307 10308	tr tr .5 .5	307.4 312.4 317.4 322.0	312.4 317.4 322.0 325.7	5.0 5.0 4.6 3.7		Tr Tr Tr .002		
325	.7 427.3	<u>Ultramafic Schist</u> - typical intensely sheared and altered to contorted talc-chlorite-carbonate schist. The rock is often augen textured with 1/8 - 1/2" rounded quartz and ankerite eyes in a talc-chlorite matrix.									

CHM 2

HOLE NO. RL-88-7 SHEET NO. 4 OF 5

	FOOT	AGE		SAMPL E					ASSAYS			
FR	ом	10	DESCRIPTION	NO	". SULPH IDES	FROM	FOOTAGE TO	TOTAL	•	AH TON	<u> </u>	
4;	РООТ ОМ 27.3	AGE 10 597.0	Greywacke - typical Greywacke - typical Chartey at the typical Chartey at the typical Chartey a quartz-pebble conglomerate, Chartey a chartey a quartz-pebble conglomerate, Chartey a chartey were noted.	Image: state stat	- SULPH HDES 1 3 tr .5 tr tr tr tr tr 1	342.5 352.5 352.5 374.0 386.5 393.9 398.9 418.3 423.3	E 7007AGE 70 329.9 333.6 338.7 347.5 357.3 377.0 391.3 398.9 403.9 403.9 423.3 427.3	101AL 4.2 3.7 5.1 5.0 4.8 3.0 4.8 5.0 5.0 4.8 5.0 4.8 5.0 4.8 5.0 4.8 5.0 5.0 4.0	•	ASSAYS AUTON Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr	ÇDes.	

FOOTAGE.

FOOTAGE	DESCRIPTION	1		370071	. .				N22412		
FROM TO		NO	SUL PH		FOOTAGE	·			AU	Çheçk	
FROM TO	Average Modes: quartz 50-60% sericite 20-30 chlorite 5-10 carbonate tr-2 sulphides tr 427.3 to 462.7 - Very minor shearing and sericitization. - 433.7 to 433.8 - quartz-tourmaline vein - 440.0 - 54° to C.A. - 461.0 - 1/8" quartz-arsenopyrite stringer, discordant - 470.0 - 55° to C.A. 462.7 to 507.0 - Moderate to strong shearing and silicification, trace fuchsite. 507.0 to 597.0 - Weakly sheared, grey, minor sericitization - 530.0 - 62° to C.A. - 570.0 - 65° to C.A. END OF HOLE	10320 10321 10323 10324 10325 10326 10327 10328	tr tr tr tr tr tr tr	427.3 432.3 451.3 457.7 477.0 482.0 502.2 554 587	432.3 437.0 456.3 462.7 482.0 487.0 507.0 559 592	5.0 4.7 5.0 5.0 5.0 4.8 5 5			Ir Ir Ir Ir Ir Ir Ir Ir Ir Ir	ር ,ክፍ <u>ር</u> , k	
							C	M		1 1 1 1	Ŋ

1 0RM 2

NAME OF PROPERTY Randa]] Lake	FOOTAGE	DIP	AZIMUTH	FOOTAGE
HOLE NO. <u>RL-88-8</u> LENGTH <u>567 feet</u>	0	-450		
LOCATION LETUNE DIUN	200	-39		
ELEVATION	400	-36 ⁰		
STARTED 1988-02-5 FINISHED 1988-02-07	567	-35 ⁰		

HOLE NO. <u>RL-88-8</u> SHEET NO. 1 OF 2 REMARKS Pa 720074

DIP AZIMUTH

Summary Log

LOGGED BY _____ J. Drew

F 0 0 1	AGE	DESCRIPTION			SAMP	ĻΕ			A	SSA	YS	
FROM	то	SUMMARY LOG	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL.	8	36	OZ/TON	Check oz/ion	
0	5.0	Casing										
5.0	113.6	Mafic Volcanics 50.0 to 52.4 - highly fractured with cross-cutting quartz-calcite veinlets	10440	3	50.0	52.4	2.4		, ,	.116	.112	
113.6	116.3	Ultramafic Schist										
116.3	234.0	Mafic Volcanics										
234.0	237.0	Sulphide Zone - sheared and silicified sediments with 5-7% pyrrhotite and 1-2% pyrite										
237.0	257.7	Mafic Volcanics										
257.7	260.7	Sulphide Zone - as per 234.0 to 237.0 with 7-10% pyrrhotite										
260.7	335.5	Mafic Volcanics - becoming tuffaceous as unit grades into underlying sediments 287.0 to 292.0 - silicified; narrow chert-magnetite bands, pyrite 0.5 to 1.0% and pyrrhotite trace to 0.5% ONTAREC BEOLOGICAL SURVEY ASSESSMENT FILES OFFICE MAR 2.8 1989	10472	2	287.0	292.0	5.0			.070	.078	
		RECEIVED					1					

NAME OF PROPERTY Randall Lake HOLE NO, RL-88-8 LENGTH 567 feet LOCATION L8100E 6107N 6107N LATITUDE	FOOTAGE 0 0 -4 200 -3 400 -3 567 -3	DIP AZ 50 90 60 50	IMUTH	FOOTAGE	DIP	AZIMUTH	HOLE I REMA LOGGE	NO. <u>RL-</u> 8 RKS_ <u>F</u>	<u>8-8</u> sH a 72007 J. Drev	IEET NO.	l_of 8
FOOTAGE DESCRIPTION FROM 10		NO.	SUL PI	S A M	PLE FOOTA		26	, %	SSA	r s Ghegginn	
0 5.0 Casing and Overburden 5.0 113.6 Mafic Volcanics - typical Light to dark green, fine-grained, quartz.chlon schist, texture varies from a foliated dufface volcanic to a more coarse-grained flow. ASSI Average Modes: Chlorite 60-70% plagioclase 5-10 Main quartz 5-7 5-10 biotite 1-5 FE Numerous quartz-calcite veinlets (1/8" to 1") stringers, parallel to the S1 foliation, pyrith occurs as fine disseminated grains parallel to 5.0 to 19.2 - moderately foliated, slightly tuffaceous	rite oversion off ESSMENT OFFICE IAR 2.8 (S C E I V and e S1.	A SUP FILES (369) D	//EV								

10430 tr

10431 0.5

10432 2

10433 tr

10434 tr

10435 tr

10436 tr

10437 tr

6.9

12.8

22.3

25.2

27.3

29.2

33.1

35.1

8.2

15.9

25.2

27.3

29.2

33.1

35.1

39.1

1.3

3.1

2.9

2.1

1.9

3.9

2.0

4.0

Tr

Tr

Tr

Tr

Tr

Tr

Tr

.002

- 7.4 - foliation at 57° to core axis
- 12.8 to 15.9 - number of small quartz-tourmaline veins parallel to S1, pyrite occurs in small blebs

- 22.3 to 29.2 - 1-2% epidote alteration with pyrite

- 33.1 to 35.1 - 5" wide <u>quartz-calcite-tourmaline</u> vein, tourmaline occurs in small blebs

19.2 to 71.8 - moderately silicified, strong foliation

stringers

358 - TOPONTO - 366-1168

NAME OF	PROPERTY Randall Lake	
HOLE NO.	RL-88-8 LENGTH 567 feet	
LOCATION	18+00E 6+07N	
LATITUDE	DEPARTURE	
ELEVATION	AZIMUTH 332 DIP -45	_
STARTED _	1988-02-05 FINISHED 1988-02-07	

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-450				
200	-39 ⁰				
400	-360				
567	-350				

HOLE NO. RL-88-8 SHEET NO. 2 OF 2 REMARKS Pa 720074

LOGGED BY J. Drew

Summary Log

FOO	DTAGE				SAMP	LE			A	SSAN	/ S	
FROM	0 T O	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE	TOTAL	36	z	OZ/TON	Check oz/10N	
335	.5 408.2	Siltstone - 355.0 to 365.0 - carbonatized, fine-grained trace - 1% pyrite - 370.0 to 375.0 - numerous wide (5"-10") quartz-carbonate veins, pyrite is disseminated along contact of veins - 375.0 to 408.2 - carbonatized, fine-grained trace - 1.0% pyrite	10484 10485 10487 10487 10488	tr 1 1. 0.5 1	355.0 360.0 370.0 375.0 389.9	360.0 365.0 375.0 380.0 394.9	5.0 5.0 5.0 5.0 5.0			.014 .024 .026 .018 .026		
408	.2 409.4	Ultramafic Schist										
409	.4 412.4	Siltstone		[i						
412	.4 415.5	Ultramafic Schist										
415	.5 418.2	Lean Iron Formation - 10 to 15% pyrrhotite, 1 to 5% pyrite in cherty iron formation										
418	.2 567.0	Greywacke										
567	.d	END OF HOLE										
LANGPIDES - TOPONTO - 366.168												

LOUNT 1

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-8 SHEET NO. 2 OF 8

FO	OTAGE				SAMPI	E			A	SSAYS		
FROM	10	DESCRIPTION	40	SULPH IDES	FROM	FOOTAGE	10141	•	•	AU 02 TUN	UTIECK	
		- 39.1 to 41.6 - 10" wide quartz vein with minor tourmaline - 48.0 to 55.0 - highly fractured with cross-cutting	10438 10439	tr tr	39.1 48.0	41.6	2.5			Tr Tr	112	
		quartz-calcite vernets, pyrite occurs in blebs along edge of veinlets - 50.0 - fractures at 20° to core axis - 55.0 to 62.9 - 1-2% epidote alteration with pyrite in quartz-calcite veinlets	10440 10441 10442 10443	3 1 1 tr	52.4 55.0 59.7	55.0 59.7 62.9	2.4 2.6 4.7 3.2			.110	.002 .002	
		71.8 to 113.6 - mafic volcanics - typical - 83.0 to 87.9 - 4" wide quartz-calcite vein, barren - 85.0 - foliation 50° to core axis	10444 1044	tr tr	71.8 83.0	76.8 81.9	5.0 4.9			Tr Tr		
		- 99.0 to 102.0 - 3" wide zone with 2-3% pyrite in stringers	10446 10447	0.5 tr	99.0 102.0	102.0 107.0	3.0 5.0			Tr Tr		
113.	0 110.3	Fine-grained, talc-calcite-chlorite schist consisting of alternating bands of chlorite rich dark green bands and white calcite-talc bands.										
φ		Average Modes: chlorite 60-70% calcite 10-15 . talc 7-10 quartz 5-7 pyrite trace										
PDGES040470 - 366-1		Weak shearing present, pyrite occurs as finely disseminated grains parallel to foliation - 116.0 - Foliation 50° to C.A.	10448	tr	113.6	116.3	2.7			Tr		
CANG												

LORN 2

NAME OF PROPERTY Randall Lake HOLE NO. RL-88-8 SHEET NO. 3 OF 8

	0	t	8	
•		••	 	

	FOOT	AGE				SAMPL	.E		ASSAYS		
	FROM	10	DESCRIPTION	110	SULPH.	FROM	FOOTAGE	10141	 AU 07 TON	Check	
	116.3	234.0	<u>Mafic Volcanics</u> - typical				· · · · · · · · · · · · · · · · ·		 		
			- 131.0 to 137.0 - 3" wide quartz-carbonate vein with pyrite occurring as blebs within vein	10449	1	131.0	137.0	6.0	Tr		
			- 132.0 - foliation at 55° to core axis - 153.0 to 156.0 - moderately sheared with numerous quartz-carbonate veinlets, pyrite occurs as blebs	10451 10452	tr 1	142.0 153.0	147.0 156.0	5.0 3.0	Tr Tr		
			along fractures - 162.8 to 167.8 - 2" wide carbonate vein (possibly siderite) contact at 55° to core avis	10453	tr	162.8	167.8	5.0	Tr		
			- 172.5 to 177.5 - moderately sheared with numerous quartz-carbonate veinlets	10454	0.5	172.5	177.5	5.0	Tr		
			 177.5 to 183.5 - 10" wide quartz-carbonate vein 200.2 to 203.2 - sheared with numerous quartz-carbonate stringers, massive pyrite occurring as stringers up to 1/8" wide and as distinct 	10455 10456 10457	0.5 tr tr	177.5 187.0 200.2	182.5 192.0 203.2	5.0 5.0 3.0	Tr Tr Tr		
			crystals, narrow chert-magnetite bands present - 208.0 to 212.0 - fractured, discordant quartz-carbonate veinlets with concordant quartz-tourmaline veinlets - 229.0 to 234.0 - moderately sheared with numerous quartz-carbonate stringers - 232.0 - foliation at 70° to core axis	10463 10458	tr 0.5	208.0 229.0	212.0 234.0	4.0 5.0	Tr .004		
58	234.0	237.0	<u>Sulphide Zone</u> - typical Dark brown, fine grained sediment; moderate shearing and silicification, carbonate alteration throughout	10459	10	234.0	237.0	3.0	.002		
DNTO - 366											
DGES - "OR					i						
LANGP!											

Randall Lake NAME OF PROPERTY Randall Lake HOLE NO RL-88-8 SHEET NO. 4 of 8

FOO	1AGE				SAMPL	E		**************************************	 ASSAYS	a	
FROM	10	DESCRIPTION	но	SULPH IDES	FROM	FOOTAGE	TOTAL		· Ay	Check	
		Average Modes: chlorite 50-60% quartz 10-15 carbonate 10-15 pyrrhotite 5-7 pyrite 1-2									
		Sulphides occur in stringers along bedding/foliation planes and as disseminated grains									
		- 235.0 - foliation at 70° to core axis									
237.0	257.7	<u>Mafic Volcanics</u> - typical	10464 10465 10466 10467	tr tr tr tr	237.0 242.0 247.5 252.8	242.0 247.5 252.8 257.7	5.0 5.5 5.3 4.9		Tr Tr Tr Tr Tr		
257.7	260.7	Sulphide Zone - typical Cherty with 7-10% pyrrhotite	10460	12	257.7	260.7	3.0		Tr		
260.7	335.5	 Mafic Volcanics - typical Moderately sheared, highly contorted in some sections, discordant quartz-carbonate veinlets present throughout. - 272.0 to 277.0 - 1/4" wide quartz-tourmaline veinlet with pyrite along contacts - 278.0 - foliation at 60° to core axis - 278.0 - 101 midd of the section with p 	10461 10468 10462 10469	tr tr 2 0.5 tr	260.7 264.4 267.0 272.0 277.0	264.4 267.0 272.0 277.0 282.0	3.7 2.6 5.0 5.0		Tr .002 Tr Tr Tr		
		- 282.0 to 287.0 - 10" wide gabbroic section with a 1" wide quartz-carbonate veinlet within, carbonate is possibly siderite, 0.5% to 1.0% pyrite with trace to 0.5% pyrrhotite.	10471	2	282.0	287.0	5.0		Tr		

NAME OF PROPERTY

Randall Lake

	OND DRILL RECORD	N H	IAME O	10	R1Y {L-88-8		Randa shi	EET NO.	5 of	8
FOOTAGE		1	K 473⁰ (⁶⁷⁷⁷)	SAMPL	E	ander and a state of the second			ASSAY5	and Fill bridges while when
ROM TO	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE TO	10 741	•	[.	DZ YUN	Check
335.5 408.2	 - 287.0 to 292.0 - silicified, narrow chert-magnetite band, pyrite 0.5 to 1.0% and pyrrhotite trace to 0.5% - 292.0 to 312.0 - numerous discordant carbonate veinlets, highly contorted in sections - 295.0 - foliation at 60° to core axis - 322.0 to 335.5 - slightly tuffaceous as mafics grade into siltstone unit below, minor concordant quartz-tourmaline veinlets <u>Siltstone</u> - typical Light grey to light green, fine-grained carbonatized, chlorite-rich sections Average Modes: chlorite 40-50% quartz 10-15 calcite 15-20 biotite 5-10 	10472 10473 10474 10476 10476 10477 10478 10479	tr tr tr tr 0.5 tr tr	287.0 292.0 297.0 302.0 307.0 322.0 327.0 332.0	292.0 297.0 302.0 307.0 312.0 327.0 332.0 335.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 3.5			.070 Tr Tr Tr Tr Tr Tr Tr	.078
	pyrite trace-0.5 Calcite veinlets are highly contorted, pyrite is disseminated along foliation planes and within calcite veinlets - 337.0 - foliation at 65° to core axis - 334.0 to 355.0 - silicified with a number of concordant quartz-tourmaline veinlets - 360.0 - foliation at 75° to core axis	10480 10481 10482 10483 10484 10485 10486	1 0.5 0.5 tr 1 tr	335.5 340.0 345.0 350.0 355.0 360.0 365.0	340.0 345.0 350.0 355.0 360.0 365.0 370.0	4.5 5.0 5.0 5.0 5.0 5.0 5.0			Tr Tr Tr .014 .024 Tr	

1.08M-2

-ANGRIDGES - TORONTO - 366-168

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-8 SHEET NO. 6 OF 8

FOO	1 AGE		1		SAMPL	E		ASSAYS					
FROM	10	DESCRIPTION	но	501 PH	FROM	FOOTAGE TO	10741	•	· •	O AYUN	Ҁ҄҉ӯҽ҇ҫ҄ҝ		
		- 370.0 to 375.0 - numerous wide (5-10") quartz-carbonate veins, pyrite is disseminated along contact of veins	10487	1	370.0	375.0	5.0			.026			
		- 370.0 foliation at 65° to core axis	10488 8931 8932 10489 8933 8934	0.5 0.5 1 1 0.5 tr	375.0 380.0 385.0 389.9 394.9 401.0	380.0 385.0 389.9 394.9 401.0 408.2	5.0 5.0 4.9 5.0 6.1 7.2			.018 Tr .002 .026 .002 .002			
408.2	409.4	<u>Ultramafic Schist</u> - typical - contact at 60° to core axis	8935	tr	408.2	412.4	4.2			Tr			
409.4	412.4	<u>Siltstone</u> - typical											
412.4	415.5	<u>Ultramafic Schist</u> - typical	10490	0.5	412.4	415.5	3.1			Tr			
415.5	418.2	Lean Iron Formation - typical Light green to light yellow, fine-grained cherty Iron Formation, sericitization has probably given rock the yellow color											
		Modal Percent: chert 40-50% chlorite 10-15 calcite 1-5 pyrrhotite 10-15 pyrite 1-5 magnetite 1-5 sericite 1-5											
		Sulphides occur as irregular patches up to 1/2" in diameter and along foliation planes as stringers,											

104M 2

NAME OF PROPERTY. Randall Lake HOLE NO RL-88-8 SHEET NO. 7 OF 8

100	TAGE				SAMPI	E			a la transmissionen ander Republik en and	
FROM	10		110	SUL PH	FROM	FOOTAGE	TOTAL	Ι,	AU 07 TUN	Check
		magnetite is disseminated throughout the section, lower contact at 65° to core axis	10491	15	415.5	418.5	3.0		.002	
418.2	567.0	<u>Greywacke</u> – typical Light to dark grey silicified sediment with 1-2mm subangular to subrounded quartz fragments, strong foliation.								
		Average Modes: quartz 40-50% chlorite 15-20 sericite 10-15 calcite 5-10 fuchsite 1-5 pyrite trace								
		Numerous quartz-carbonate veinlets crosscut foliation, pervasive sericitization and carbonatization is present in some sections.								
		 418.5 to 427.0 - sericite alteration up to 20% 450.0 - foliation at 65° to core axix 450.0 to 455.7 - fracture, narrow (1/8") fuschsite bands 455.7 to 460.4 - 1/2" wide fuchsite band 460.4 to 463.4 - narrow fractures filled with 	10492 10493 10494 10495 10495 10496 10497	tr tr tr tr 1	418.5 423.5 445.7 450.7 455.7 460.4	423.5 427.0 450.7 455.7 460.4 463.4	5.0 3.5 5.0 5.0 5.0 3.0		Tr Tr Tr Tr Tr .004	
m		and calcite, 1/4" while fracture filled with arsenopyrite and calcite, 1/4" sericite alteration surrounding	10498	0.5	474.0	479.0	5.0		Tr	
		rracture - 480.0 - Foliation at 65° to core axis	10499	0.5	479.0	484.0	5.0		Tr	
SBOCHDNE,										

LORN 2

NAME OF PROPERTY ... RL-88-8 HOLE NO

Randall Lake

NAME OF	PROPERTY	Randall Lake	6		
HOLE NO.	RL-88-15	LENGTH	622 feet		
LOCATION	L00_4+381	l			
LATITUDE	•	DEPARTURI	E		
ELEVATION	I	AZIMUTH	332 ⁰	DIP	
STARTED_	1988-02-07 m	FINISHED _	1988-02-10		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-45 ⁰				
200	-36 ⁰				
400	-30 ⁰				
660	-29 ⁰				

HOLE NO.R		<u>NO, <u>1 of 1</u></u>
REMARKS	Pa 720004	

LOGGED BY Jon North

ASSAYS FOOTAGE SAMPLE DESCRIPTION FOOTAGE AU Check FROM то SUMMARY LOG NO. SULPH 3 36 FROM TO TOTAL 0 15.7 Casing 15.7 Brown Argillaceous Wacke 43.3 Ultramafic Schist 43.3 80.8 63.4 to 68.4 - massive talc, light green schist, 9510.5 63.4 68.4 5.0 .016 40-50% ankerite, very brittle Brown Argillaceous Wacke 80.8 109.4 9513 tr 80.8 84.2 3.4 .014 80.8 to 84.2 - cherty-chloritic sediment, finely banded chert and chlorite schist, contorted 5% pyrite stringers, trace to 5% pyrrhotite 109.4 163.5 Mafic Volcanic Brown Argillaceous Wacke Mafic Volcanic 163.5 176.6 176.6 311.7 224.1 to 228.7 - chloritic, trace to 0.5% pyrite 9525 tr-0.5 224.1 228.7 9528 tr-0.5 247.0 252.0 .022 4.6 247.0 to 252.0 as per 9525 5.0 .152 150 311.7 342.0 Brown-Green Siltstone 342.0 463.0 Greywacke Brown Argillaceous Wacke 463.0 578.3 578.3 598.9 Iron Formation Ultramafic Schist 598.9 613.9 613.9 619.2 Massive Sulphides Ultramafic Schist 619.2 662.0 ONTABLO GEOLOGICAL SURVEY 662.0 End of Hole ASSESSMENT FILES OFFICE MAR 28 1989 RECEIVED

366--158

OF/ORO

DGES

FORM 1

NAME OF	PROPERTY	Randall Lake				FOOTAGE	DIP	AZIMUT
HOLE NO.	RL-88-15	LENGTH	662 feet					
LOCATION	L00 4+38N					0	-45	
		DEPARTURE				200	-36	
ELEVATION		AZIMUTH	332 ⁰	DIP -45)	400	-300	
	1000 00 07		1009 02 10			660	-290	

HOLE NO. <u>RL-88-15</u> SHEET NO. <u>1 OF 8</u> REMARKS <u>Pa 720004</u>

Jon North

LOGGED BY

STARTEDFINISHEDFINISHED											
FOOTAGE				SAMP	LΕ		ASSAYS				
FROM TO		NO.	SUL PH	FROM	FOOTAGE	TOTAL	76	¥	AU 02/10N	Check oz/ton	
0 15.	7 <u>Casing</u>										
15.7 43.	 Brown Argillaceous Wacke typical, fine grained, foliated, regular finely bedded brown to grey biotite-rich beds, and subordinate green laminae. Poorly sorted with abundant subangular 1/8" detrital quartz clasts Average Modes:	9505	tr	15.7	19.4	3.7			Tr		
	19.4 to 28.7 - dark grey-brown, finely bedded, 62° to core axis 28.7 to 39.3 - grey, silty siliceous interval ONTARIO GEOLOGICAL SURVE ASSESSMENT FILES OFFICE. MAR % 8 1989 RECEIVED	9506 Y	tr	23.7	28.7	5.0			Tr		

NAME OF PROPERTY Randall Lake

HOLENO RL-88-15 SHEET NO. 2 OF 8

FOOT	AGE.				SAMPL	E				ASSAYS		a al carage - FD in 7d
FROM	10	DESCRIPTION	но	SUL PH	FROM	TO	TUTAL	,	` •	AU 02 TON	OP TON	
		39.3 to 40.5 - cherty and chloritic, finely bedded, 5% fine pyrite stringers parallel to bedding, 71° to core axis	9508	tr	39.3	43.3	4.0			.002		
		40.5 to 43.3 - light green, chloritic										
43.3	80.8	<u>Ultramafic Schist</u> - typical - dark green chloritic schist with 1/16" to 1/4" talc-carbonate bands, and disseminated elongate quartz-carbonate augen, sheared and often complexly contorted										
		Average Modes Chlorite 50-60% Talc 10-15% Carbonate 10-15% Quartz 3-5% Biotite 3-5% Sulphides trace										
		43.3 to 64.2 - very soft, talcose - 63.9 to 64.2 - massive talc	9509 9510	tr .5	43.3 63.4	48.8 68.4	5.5 5.0			Tr .016		
		64.2 to 80.8 - light green schist, 40-50% ankerite, very brittle - 64.9 to 66.0 - brecciated iron formation, 20% talc, 3-5% magnetite, 50-60% chert, 10% chlorite, 2-3% pyrite, .5% <u>chalcopyrite</u> - 70.0 - 69° to core axis	9511 9512	tr tr	68.4 77.9	73.4 80.8	5.0 2.9			Tr Tr		

ä

NAME OF PROPERTY Randall Lake

HOLE NO RL-88-15 SHEET NO. 3 OF 8

FOOT	LAGE				SAMPL	E		ASSAYS					
EROM	10	DESCRIPTION	110	SUL PH	EBOM .	FOOTAGE	10141	,		AU 07 TON	Check		
80.8	109.4	Brown Argillaceous Wacke - typical		1015	TROM								
		80.8 to 91.0 - grey, poorly sorted, minor biotite - 80.8 to 82.0 - cherty-chloritic sediment, finely banded chert and chlorite schist, contorted, 5% pyrite stringers, trace to .5% pyrrhotite	9513	tr	80.8	84.2	3.4			.014			
		91.0 to 109.4 - brown, biotite-rich, silty, 64° to core axis - 94.0 to 94.4 - quartz vein	9514 9515	tr tr	92.3 101.7	97.0 106.6	4.7 4.9			Tr Tr			
109.4	163.5	<u>Mafic Volcanic</u> - typical - dark green, fine-grained, granular, frequently plagioclase-phyric, foliated to massive							-				
		Average Modes:Chlorite40-50%Plagioclase20-30%Quartz5-10%Biotite5-10%Carbonate1%Sulphidestrace											
		109.4 to 118.0 - foliated, tuffaceous, biotite-rich at top of interval, 59° to core axis	ł										
		118.0 to 157.0 - gabbroic interval, trace to .5% immiscible pyrite blebs	9516 9517	.5 tr	116.2 138.8	121.0 144.5	4.8 5.7			Tr Tr			
		157.0 to 163.5 - typical mafic flows, 52° to core axis	9518	tr	157.0	162.0	5.0			Tr			
163.5	176.6	Brown Argillaceous Wacke - typical - 166.2 to 166.5 - discordant quartz vein	9519	tr	165.5	170.5	5.0			Tr			
								I	ļ	4			

NAME OF PROPERTY. Randall Lake

HOLE NO RL-88-15 SHEET NO. 4 OF 8

FOOTAGE		DECONDUCAL			SAMPI	E	ASSAYS				
FROM	10	DE SURIF HUN	110.	SUL PH	FROM	FOOTAGE	TOTAL			AU 07 TON	Check
176.6	311.7	Mafic Volcanic - typical	9520 9521 9522	tr tr5	177.8 195.4 208.9	182.8 200.4 213.9	5.0 5.0			Tr .002 Tr	
		carbonate, minor talc on cleavages, 67° to core axis	9523 9524	.5	213.9	218.9	5.0			Tr Tr	
		- 220.2 to 221.0 - quartz-tourmaline vein, 3-5% tourmaline - 221.2 to 222.3 - quartz vein, .5% pyrite	9525 9526 9527 9528	tr5 .5-1 .5-1 tr9	228.7 233.7 247.0	233.7 238.7 252.0	4.0 5.0 5.0 5.0			.022 Tr Tr .152	.150
		- 240.0 - 73° to core axis 264.1 to 278.2 - moderate cross-fracturing with quartz- carbonate infillings5% fine grained pyrite	9529 9530 9531	.5 1 .5	264.1 269.5 274.5	269.5 274.5 278.2	5.4 5 3.7			Tr Tr Tr	
		278.2 to 297.0 - typical mafic volcanic, minor gabbro and tuff - 278.2 to 283.2 - gabbro, few siderite coatings in fractures, minor disseminated chalcopyrite	9532 9533	.5 tr	278.2 289.0	283.2 294.0	5 5			Tr Tr	
		297.0 to 311.7 - volcanic is moderately sheared, 5-15% wispy quartz-carbonate stringers, and carbonate blebs as disseminations and pervasive carbonate alteration	9534 9535 9536	tr tr tr	297.0 302.0 307.0	302.0 307.0 311.7	5 5 4.7			Tr Tr Tr	
311.7	342.0	Brown to Green Siltstone - typical - fine-grained, poorly sorted, and granular impure siltstone. Some 1-2" banding or bedding between green chloritic and brown biotite-rich layers	9537 9538 9539 9540	.5 .5 .5 .5-1	311.7 327.0 332.0 337.0	316.7 332.0 337.0 342.0	5.0 5.0 5.0 5.0			Tr .002 Tr .002	
		Average Modes Quartz/feldspar silt 30-40% Biotite 20-30% Chlorite 20-30% Carbonate 5-10%									
		- this rock is very highly carbonatized - 340.0 - 67° to core axis									

1 OHM 2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-15 SHEET NO 5 OF 8

f OO	LAGE			tere: inc. it.	SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	110	SULPH IDES	FRUM	FOOTAGE	TOTAL	· ·	· AYUN	<u> ር</u> ክዳ <u></u> ዩጵ	
342.0	463.0	<u>Greywacke</u> - typical - fine grained, occasionally finely laminated, very siliceous, overall well sorted, few subround 1/16 to 1/8" detrital quartz fragments, occasional yellow sericitic bands	9541	tr	347	352	5.0		Tr		
		Average Modes Quartz 50-60% Sericite 10-20% Chlorite 5-10% Biotite 5-10% Carbonate 1% Sulphide trace	0542	1	271 5	276 5	E		Ţ.		
		- 371.5 to 381.5 - 1-2% pyrite/pyrrhotite as fine	9542 9543	1	371.5	376.5	5 5		ir Tr		
		grains and stringers in S2 - 390.0 - 54° to core axis - 402.0 to 402.2 - concordant quartz vein, trace pyrite - 404.9 to 406.1 - quartz vein, .5% pyrite - 410.0 - 45° to core axis - 439.0 to 465.0 - bedding and S1 parallel to core axis	9544 9545 9546 9547 9549 9549	tr tr tr5 tr tr tr	387.0 398.2 403.1 427.0 444.0 455.6	392.0 403.1 407.7 431.9 449.0 460.5	5 4.9 4.6 4.9 5 4.9		Tr Tr Tr Tr Tr		
463.0	578.3	 <u>Brown Argillaceous Wacke</u> - typical gradational from previous unit, highly contorted, few narrow sericitized bands, bedding frequently runs parallel to core axis, few cross-fractures, highly carbonatized 463 to 528 - as above 528 to 578.3 - silicified, numerous quartz veins and networks of veinlets 	9550 9552 9553 9554 9555 9556 9557 9558 9559	.5 .5 .5 tr5 tr5 tr5 tr5 tr5	484.8 495.9 507.0 511.9 517.0 522.0 527.0 532.0 537.0 542.0	489.8 500.9 511.9 517.0 522.0 527.0 537.0 537.0 542.0 545.1	5 5.1 5 5 5 5 5 3.1		Tr Tr Tr .008 Tr Tr Tr Tr Tr		

_ANGRIDGES _ TORONTO - 366-168

.

NAME OF PROPERTY_____Randall Lake

HOLE NO RL-88-15 SHEET NO. 6 OF 8

FOOTAGE					SAMPI	£			ASSAYS		
FROM 1	0	DESCRIPTION	NO	SUL PH	FROM	FOOTAGE	TOTAL		AU 07 TON	Check	
		 - 545.1 to 545.3 - concordant quartz-tourmaline vein, 1% arsenopyrite, .5% pyrite, wall rock silicified - 546.2 to 546.6 - quartz vein, 1% pyrite/pyrrhotite, wall rock silicified - 547 to 548.8 - quartz vein, .5 to 1% arsenopyrite, .5 to 1% pyrite, .5% pyrrhotite, 3-5% ankerite, silicified wall rock contains .5 to 1% disseminated arsenopyrite - 562.6 to 563.8 - quartz vein 	9560 9561 9562 9563 9564 9565 9566 9566	.5-1 tr tr tr tr tr .5-1 tr5	545.1 549.1 554.1 558.0 561.5 564.4 569.4 574.4	549.1 554.1 558.0 561.5 564.4 569.4 574.4 578.3	4 5 3.9 3.5 2.9 5 5 3.9		.002 Tr Tr Tr Tr Tr Tr Tr Tr Tr		
578.3 598	8.9	Iron Formation- finely bedded, grey cherty gruneritic iron formation with less than 10% magnetite, magnetite occurs as disseminated fine grains in chert-grunerite beds. The unit is intensely deformed and thickened by folding, a few in-folded carbonatized ultramafic rock enclaves are present. The unit is highly mineralized with sulphides and contains on average 5-10% pyrrhotite and pyrite, and minor chalcopyrite and arsenopyrite which occur as irregularly disseminated stringers, blebs, and fracture fillings, and bedding - parallel laminaeAverage Modes Chert Grunerite Pyrhotite D-15% Pyrrhotite Pyrite Pyrite Chlorite Pyrite Chalcopyrite trace5% Carbonate 2-3%					5.5				

FORM 2

1

.

NAME OF PROPERTY_____Randall Lake HOLE NO_____RL-88-15_____SHEET NO___7 OF 8

F 00 1	AGE				SAMPI	. E		I		ASSAYS	
FROM	10	DESCRIPTION	NO	SULPH	FROM	FOOTAGE	TOTAL		I .	AU 02 TON	Check
		578.3 to 582.3 - moderate to highly contorted, chloritic microfractures with pyrite, 1-2% pyrrhotite, trace <u>chalcopyrite</u> overall, 64° to core axis - 581.5 to 582.0 - chlorite-carbonate schist									
		582.3 to 597 - cherty, with grunerite and chlorite interbeds, highly contorted, few quartz-carbonate stringers, overall 5% pyrrhotite, 2-3% pyrite, .5 to 1% chalcopyrite, trace to .5% <u>arsenopyrite</u>	9569 9570 9571 9572 9573	3 5.7 5.7 7-10 tr	582.3 585.0 589.1 593.1 597.0	585.0 589.1 593.1 597.0 598.9	2.7 4.1 4 3.9 1.9			.002 Tr Tr .006 Tr	
		597.0 to 598.9 - magnetite-chert bed running parallel to core axis							1		
598.9	613.9	Ultramafic Schist - typical - highly carbonatized talc-chlorite-ankerite schist, contorted, few quartz-carbonate stringers and veinlets	9574 9575 9576 9577	tr tr 2 tr5	598.9 603.9 608.5 611.8	603.9 608.5 611.8 613.9	5.0 4.6 3.3 2.1			Tr Tr Tr Tr	
		Average Modes Talc 20-30% Carbonate 10-50% Chlorite 20-50% Pyrite trace to .5% Pyrnhotite trace to .5% Chalcopyrite trace to .5%					:				
		598.9 to 608.5 - brittle chlorite-carbonate schist, 50-60% carbonate									
		608.5 to 613.5 - talc-chlorite-carbonate schist - 608.5 to 609.4 - quartz vein, 1-2% pyrrhotite, 1% <u>chalcopyrite</u> , 1-2% pyrite, 3-5% ankerite							2		

1011M 2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-15 SHEET NO. 8 OF 8

FOOT	IAGE		SAMPLE TO SHIPHI E COTTACE			et in the owner of the second			ASSAYS			
FROM	10	DESCRIPTION	но	÷ SUL P∦ IDE S	FROM	FOOTAGE	TUTAL			AU 07 YUN	<u>Check</u>	
613.9	619.2	Massive SulphidesAverage ModesPyrite40-50%Pyrrhotite20-30%Chalcopyrite2-3%Arsenopyrite.5 to 1%Chert10-15%Chlorite1-3%Carbonatetrace to .5%										
		- this unit might be a sulphidized iron-rich sediment as minor magnetite was noted in chert. Predominantly a massive yellow +1-cherty unit, few crosscutting quartz veinlets and minor remnant bedding visible between massive sulphide and chlorite laminae										
619.2	662.0	Ultramafic Schist - typical 619.2 to 626.6 - soft, talcose, abundant ankerite blebs disseminated throughout, 44° to core axis 626.6 to 662.0 - very brittle carbonate-rich rock, 10-15% quartz-carbonate stringers, trace to .5% pyrite/ pyrrhotite - 650.0 - 50° to core axis	9580 9581 9582 9583 9584 9585 9586 9587 9588	tr .5 .5 .5 .5 .5 .5	619.2 624.0 627.9 632.0 637.0 642.0 647.0 652.0 657.0	624.0 627.9 632.0 637.0 642.0 647.0 652.0 657.0 662.0	4.8 3.9 4.1 5.0 5.0 5.0 5.0 5.0 5.0			Tr Tr Tr Tr Tr Tr Tr Tr		
662.0		<u>End of Hole</u>						() //	J.M.	Walk	M)

нонм

											RL-	88-16-	EET NO	of 1
NAME O	F PROP	ERTY Randall Lake	FOOTAGE	DIP	AZ IMU'	THE	OOTAGE	DIP AZ	имитн	NOLE	10,	Pa 720	1091	
HOLE NO	o <u>RL-</u>	38-16 LENGTH 358.7'	0	440						REMA	łks	10 720	0.51	
LOCATIO	<u>н L00</u>	<u>11+70N</u>	200	-49	5									
LATITUD	E	DEPARTURE		-10.5										
ELEVATI	ON	AZIMUTH 152 DIP -44								1.0005		P. Tayl	or	
STARTED	>198	8-02-02 FINISHED 1988-02-04												
FOOT	TAGE					;	5 A M P	LE			A	5 5 A Y	' S	
FROM	10	DESCRIPTION SUMMARY LOG		N	0. SU	L PH-		FOOTAGE		2	×.	AU N	Check	
						DES .	FROM	10	TOTAL.					
0	8.5	Casing and Overburden				- 1					ļ			}
8.5	47.0	Mafic Flow												
47.0	129.0	Ultramafic Volcanic									1			
129.0	175.5	Mafic Flow		l							I			
175.5	303.0	Ultramafic Volcanic 241.4 to 259.7 - highly silicified volcanic sheared at 20° to core axis, trace to 0.5% pyrite with		108	38 tr		243.0	246.0	3.0		-	.010		
		numerous quarez-carbonate verifiets									ſ			
303.0	307.6	Greywacke									I			}
307.6	317.3	Banded Iron Formation - with trace to 10% pyrrhotite, trace to 2% pyrite and trace chalcopyrite												
317.3	358.7	Alternating Chert and Silcified Greywacke												
358.7		End of Hole									I			
5		DNTAITO GEOLOGICAL GUE ASSESSMENT FILLES OFFICE MAR 38 1989 RECEIVED	IVEY S											

1 ORM 1

							DI 00 16 1 of 7
NAME OF PROPERTY Randall Lake	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	Pa 720091
HOLE NOK_2Q-10 LENGTH320.7	n	-110					
LOCATION 100 11170N	200	40 5	þ	11		}{	
	200	-40.5					
ELEVATION AZIMUTH 152° DIP -44°							D. Taulan
STARTED 1988-02-02 FINISHED 1988-02-04	Li			I		L	LOGGED BY P. IdyIOT

FOC	TAGE		SAMPLE						A	SSAY	YS	
FROM	то	UL SON IF I I ON	NO.	SUL PH	FROM	FOOTAGE TO	TOTAL	36	rs S	AU 02/TON	Check oz/TON	
0	8.5	Casing and Overburden										
0 8.	8.5	Casing and OverburdenMafic Flow - green, fine grained, highly distorted and folded quartz-carbonate-chlorite schist; strong foliation; carbonate alteration throughoutAverage Modes Chlorite Quartz Quartz D-20% Biotite Pyrite Pyrite trace to 2% Pyrnotite trace to 2%- very faint argillaceous (biotite) contamination in certain intervals; carbonate alteration as bands, pods or stringers parallel to the foliation, sulphide 	0793 0794	8	8.0 10.0	10.0 11.5	2.0 1.5			1r 1r		
LANGPIDGES - TOPONTO - 36		contacts at 60° to core axis - 13.0 to 14.5; 8.0" quartz-calcite vein; contacts broken; 7% pyrite, 1% chalcopyrite as very fine grained aggregates of as fracture fillings ASSESSMENT FILES OFFICE MAR 2.8 1989 RE C. E. L.M. G. D.	0795 0796	8	11.5 13.0	13.0 14.5	1.5			Tr .002		

and the fight data tags and an over the start and an an an an address of starting of

1 0 1 1 2

NAME OF PROPERTY_ Randall Lake HOLE NO RL-88-16 SHEET NO. 2 of 7

FOU	TAGE.				SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	но	* SULPH IDES	FROM	FOOTAGE TO	TOTAL		AUTON	çşeçk	
		 - 14.5 to 17.0; loss core 0.5'; 2% pyrrhotite, trace pyrite, trace chalcopyrite - 14.5 - foliation at 54° to core axis - 19.0 to 25.5; loss core 5.5' - 25.5 to 28.0; 6.0" quartz-calcite vein at 50° to core axis; trace pyrite on vein margins 	10797 10798 10799 10800 10801	2 tr tr	14.5 17.0 19.0 25.5 28.0	17.0 19.0 25.5 28.0 33.0	2.5 2.0 6.5 2.5 5.0		.002 Tr Tr Tr Tr		
47.0	120.0	- 45.0'; foliation at 47° to core axis	10802 10803 10804		33.0 38.0 43.0	38.0 43.0 47.0	5.0 5.0 4.0		Tr Tr Tr Tr		
47.0	129.0	- dark grey-green, fine grained, talc-carbonate- chlorite schist, highly distorted and folded, gradational contacts					1				
		Average Modes Talc 40-55% Carbonate 20-30% Chlorite 10-20% Quartz 1-15% Pyrite trace to 1.0% Pyrrhotite trace to 1.0% Magnetite trace									
		- magnetite as fine disseminated grains, rare, occasional mafic volcanic interlayers									
		- 47.0 to 52.0; irregular quartz-calcite veining with deformation in a ductile sense; inclusions of host material throughout; 1 to 5% pyrite, trace to 1% pyrrhotite, trace to 0.5% chalcopyrite	10805 10806 10807	7 3 1	47.0 48.5 50.0	48.5 50.0 52.0	1.5 1.5 2.0		Tr Tr Tr		

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-16 SHEET NO. 3 OF 7

FOOTAC	SE		1		SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	40	501 PH IDES	FROM	FOOTAGE TO	10141	[.	OPYON	Cherk	
		- 52.0 to 57.0; 4.0' loss core	10808 10809		52.0 57.0	57.0 60.8	5 3.8		Tr Tr		
		- 60.8; foliation at 50° to core axis - 60.8 to 63.0; 4.0" quartz-calcite vein at 47° to core axis	10810	tr	60.8	63.0	2.2		Tr		
		- 79.3 to 81.2; 1% pyrite with irregular thin (<0.5") quartz veinlets	10811 10812 10813	tr tr 1	63.0 72.2 79.3	67.0 74.5 81.2	4.0 2.3 1.9		Tr Tr Tr		
		- 90.5; foliation at 60° to core axis - 92.3 to 96.3; 10.0" weakly silicified bleached interval with several irregular quartz stringers and trace pyrite; several other quartz veinlets <1.0" with trace 0.5 pyrite/chalcopyrite	10814 10815	tr 0.5	90.4 92.3	92.3 96.3	1.9 4.0		Tr Tr		
		- 96.3 to 99.5 - numerous irregular quartz-calcite veinlets <0.5" with trace pyrite	10816	tr	96.3	94.5	3.2		Tr		
		- 109.5 to 112.0; weakly silicified with several thin quartz stringers, trace pyrite	10817 10818 10819	tr tr tr	99.5 102.0 109.5	102.0 104.5 112.0	2.5 2.5 2.5		Tr Tr Tr		
		- 112.0 to 114.3; 1.0" quartz-calcite veinlet with a 0.5% pyrrhotite/pyrite; numerous other irregular quartz stringers with trace sulphide	10820	0.5	112.0	114.3	2.3		Tr		
		- 114.3 to 117.0; 5.0" quartz-calcite vein with irregular contacts; 1 to 2% pyrite in vein; several other thin quartz-calcite veinlets with 1% pyrite	10821	2	114.3	117.0	2.7	i.	Tr		
84		- 118.0; foliation at 47° to core axis	10822	tr	117.0	122.0	5.0		Tr		
								ļ	ļ		

1.0881.2 1

NAME OF PROPERTY Randall Lake

HOLE NO RL-88-16 SHEET NO. 4 OF 7

1001	AGE		SAMPLE SULPH FOOTAGE						ASSAYS		
FROM	10	DESCRIPTION	NO	501 PH	FROM	FOOTAGE	10 TAL	. 	0 AU	Çheçk	
129.0	175.5	Mafic Flow - similar to interval 8.5 to 47.0; contact gradational									
		- 141.0 to 144.0; 1.0"; irregular quartz-calcite veinlet with 1 to 2% pyrrhotite/pyrite - 146.0; foliation at 48° to core axis - 147.0 to 149.0; 1.5" quartz-calcite veinlet at 55° to core axis - 173.2; foliation at 59° to core axis	.0823 .0824 .0825 .0826	2 1 tr	141.0 144.0 147.0 161.8	144.0 147.0 149.0 165.0	3.0 3.0 2.0 3.2		Tr Tr Tr Tr		
175.5	303.0	Ultramafic Volcanic - similar to interval 47.0 to 129.0; talc-carbonate- chlorite schist; upper contact at 55° to core axis; magnetite not evident in this interval									
		- 182.0 to 187.0; broken - 188.9 to 197.0; 3.8' core loss - 197.0 to 207.0; 7.5' core loss - 209.3 to 211.5; several irregular quartz-calcite veinlets: highly distorted, all \$1.5"; no visible	10827 10828	tr	207.0 209.3	209.3 211.5	2.3 2.2		Tr Tr		
		sulphides	0829		211.5	213.5	2,0		Tr		
		- 218.0 to 220.0; irregular quartz-calcite pod;	0830	Ì	218.0	220.0	2.0		Tr		
		- 227.0 to 229.9; highly silicified with trace pyrite - 229.9; foliation at 40° to core axis	10831 10832 10833	tr tr	220.0 225.0 227.0	225.0 227.0 224.9	5.0 2.0 2.9		Tr Tr Tr		
		- 229.9 to 237.0; loss core 3.7', very broken	0834		229.9	237.0	/.1		lr		

1000 2

NAME OF PROPERTY____Randall Lake HOLE NO____RL-88-16_____SHEET NO.__5 of 7

FOOT	I A GE		1	CALCULATION CONTINUES	SAMPL	. E		 	ASSAYS	2 3-67 (2 4- 19-19-19-19-19 -19-19-19-19-19-19-19-19-19-19-19-19-19-	CRAMMENT OF MORE
EROM	10	DESCRIPTION	но	- SUL PH	FROM	FOOTAGE	TOTAL		AU 02 TON	OZ TON	
		- 238.2 to 241.4; highly silicified with 1-3% very fine grained pyrrhotite, trace chalcopyrite	10835 10836	3	237.0 238.2	238.2 241.4	1.2 3.2		Tr .002		
		- 241.4 to 259.7; highly silicified protolith, difficult to distinguish, likely a volcanic, highly sheared at 20° to core; trace to 0.5% pyrite, relatively common; numerous quartz-calcite veinlets, overprinted by silification	10837 10838 10839 10840 10841 10842 10843	tr tr tr tr	241.4 243.0 246.0 248.0 251.0 253.5 256.0	243.0 246.0 248.0 251.0 253.5 256.0 258.0	1.6 3.0 2.0 3.0 2.5 2.5 2.0		Tr .010 Tr Tr Tr Tr Tr Tr		
		- 262.0; foliation at 52° to core axis	10844 10845 10846	tr tr tr	258.0 270.0 278.5	259.7 274.0 282.5	4.0 4.0		Ir Tr Tr		
303.0	307.6	<u>Greywacke</u>	10847		300.0	303.0	3.0		Tr		
		 cark grey, the grained, highly stillented sediment; weak banding, strong foliation, small (1/16" to 1/8") rounded, equant quartz fragments common throughout, upper contact at 50° to core axis 									
		Average Mode Quartz 70-85% Biotite 5-20% Chlorite 5-10% Calcite trace to 2% Pyrite trace									
		- trace very fine grained, disseminated pyrite throughout	10848 10849	tr tr	303.0 305.5	305.5 307.6	2.5 2.1		Tr Tr		

1 ORM 2 Ł

a a

104112 1

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-38-16 SHEET NO. 6 of 7

1001	AGE		l		SAMPL	E	in an			ASSAYS		
FROM	10	DESCRIPTION	но	* SULPH IDES	FROM	FOOTAGE	TOTAL	•	••	AU 07 TON	Check	
307.6	317.3	Banded Iron Formation - yellowish grey to grey to dark green, fine grained, alternating chert, recrystallized chert, magnetite and grunerite magnetite bands on a scale of $\leq 1/2$ "; highly distorted in a ductile sense; contacts at 45° to core axis	10850 10851 10852 10853 10854	5-15 0.5 1 0.5 1	307.6 309.0 311.0 313.0 315.0	309.0 311.0 313.0 315.0 317.3	1.4 2.0 2.0 2.0 2.3			.002 Tr Tr Tr Tr Tr		
		Average Mode Chert 40-55% Magnetite 10-35% Grunerite 5-10% Pyrrhotite trace to 10% Pyrite trace to 2% Chalcopyrite trace										
		- sulphide as fine grained patches, numerous parallel crosscutting quartz stringers (< $1/16$ " wide) at $30-50^{\circ}$ to core axis, common but generally barren										
317.3	358.7	Alternating Chert and Silicified Greywacke - greenish-grey, fine grained, alternating chert and silicified greywacke beds (on scale of 1-2 ft.); carbonate alteration throughout										
66. · · 68		Average Mode Quartz) 60-70% Chert) Biotite 10-20% Chlorite 5-10% Calcite 5-10% Pyrite trace										
0 - OLVDAD + SHORAD		- fine, rounded detrital quartz fragments common throughout greywacke intervals; fragments on scale of 1/16" to 1/8"										

NAME OF PROPERTY______Randall Lake HOLE NO______RL-88-16______SHEET NO___7 OF 7

FOOT	IAGE				SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	но	5. SUL PH	FROM	FOOTAGE	TOTAL		·.	oAyun	Check	
		- 317.3 to 319.0; 1.5" quartz-calcite pod - 323.0; foliation at 52° to core axis	10855		317.3	319.0	1.7			Tr		
		- 327.5 to 329.5; 1% pyrrhotite/pyrite; also 1/2" quartz-calcite veinlet with trace pyrite	10856 10857	tr 1	324.6 327.5	327.5 329.5	2.9 2.0			Tr Tr		
		- 343.3 to 345.5; 10.0" irregular quartz-calcite vein with inclusions of host material; contacts broken; with 0.5 to 1% pyrite	10858 10859	tr 1	340.0 343.3	343.3 345.5	3.3 2.2			.002 Tr		
		- 347.0 to 349.5; 5.0" glossy quartz vein at 50° to core axis, 0.5% pyrrhotite/pyrite wall rock	10860 10861	tr 0.5	345.5 347.0	347.0 349.5	1.5 2.5			Tr Tr		
		- 352.0; foliation at 50° to core axis	10000		240 5	25.0.0	0 F			T		
		- 355.5 to 356.5; 1-2% pyrite/pyrrhotite in a 1/2" quartz-calcite veinlet	10862	tr 2	349.5 355.5	352.0	2.5			.002		
358.7		END OF HOLE										
								(A.		lu m	Ŋ
								Ũ				
NAME OF	PROPERTY Randall Lake	FOOTAGE										
-----------	--------------------------------	---------										
HOLE NO.	RL-88-17 LENGTH 677'	0										
LOCATION	<u>LOU 11+54N</u>	200										
LATITUDE		400										
ELEVATION	AZIMUTH 332 DIP -44	600										
STARTED _	1988-01-30 FINISHED 1988-02-02	000										

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-44		1		
200	-370				
400	-320				
600	-29.5	0			

.

HOLE NO. <u>RL-88-17</u> SHEET NO. <u>1 of 1</u> REMARKS <u>Pa 720091</u>

LOGGED BY P. Taylor

FOOT	AGE				SAMP	LE		I	A	SSA	Y S	
FROM	TO	SUMMARY LOG	NO.	SULPH	FROM	TO	TOTAL	20	ч	AU oz/ton	Check oz/TON	
F 0 0 FROM 0 4.8 84.9 113.2 179.4 197.7 204.7 278.0 309.7 370.3 401.2 415.2 453.0 499.0 641.7 677.0	A G E TO 4.8 84.9 113.2 179.4 197.7 204.7 278.0 309.7 370.3 401.2 415.2 415.2 453.0 499.0 641.7 677.0	Casing and Overburden Mafic Flow Banded Iron Formation - numerous quartz veinlets, trace to 10% pyrnhotite, trace to 2% pyrite, trace to 2% arsenopyrite, trace chalcopyrite Mafic to Ultramafic Flow Greywacke Mafic to Ultramafic Flow 373.0 to 380.0 moderately silicified with 1-3% pyrite/pyrnhotite; numerous irregular quartz- calcite pods Greywacke Mafic to Ultramafic Flow Ultramafic Flow Mafic Volcanics (flows) Greywacke End of Hole Cirric: Cirric:	NO.	3	5 A M P FROM	380.0	4.0		25 26	Au oz/TON	.060	
		RECEIVED										

FORM

FORM F

NAME OF PROP HOLE NO. <u>RL-</u> LOCATION <u>LOO</u>	евтуRandall Lake 88-17 LENGTH677' 11+54N	F00TAGE 0 200	DIP AZ -44 ⁰ -37 ⁰	імитн	FOOTAGE	DIP /	AZ IMUTH	HOLE N	10. <u>RL-8</u> 7K5	<u>8-17</u> sн а 72009	еет но. 1)]	of 12
ELEVATION STARTED	azimuth <u>332⁰ dip -44⁰</u> 8-01-30 Finished <u>1988-02-02</u>	400 600	-32 ⁰ -29.5					LOGGEC) BY	P. Ta	ylor	
FOOTAGE	DESCRIPTION			1 %	5 A M I				A	SSAN	rs	
FROM 10 0 4.8 4.8 84.9	Casing and Overburden Mafic Flow - green, fine grained, highly distorted and quartz-carbonate-chlorite schist, strong foll carbonate alteration throughout Average Modes: Chlorite 40-60% Carbonate 10-30% Quartz 5-15% Biotite 5-10% Pyrite trace to 1% - very faint argillaceous (biotite) contamine throughout; carbonate alteration as bands or stringers parallel to the foliation; limonities on factors and the stronger and strongers are stronger and strongers are strongers.	folded, iation, ation	NO.	Subest	FROM		TOTAL	26	3	<u>059710N</u>	59943.	
90	or thin stringers parallel to the foliation - 4.8 to 7.0; 2 quartz veins from 5.0' to 5.4 5.9' to 6.5'; quartz-carbonate veins with pyr pyrhotite as fracture fillings within the version of the strong limonitic staining; 1-5% pyrite, 1% pyrhotite; trace chalcopyrite, trace to 1.00 arsenopyrite; trace tourmaline, trace fuchsite contacts at 47° to core axis ONTARIO GLOLA AGSESSING OFF	1' and rite, ein k te; vein 2010AL SURV ENT FILES ICE	10678 /E.V	5	4.8	7.0	2.2			Tr		
	MAR 8 Rece	8 1989 I V E D		ļ	l							

HOLE NO ... RL-88-17 SHEET NO 2 of 12

FOOTAGE				SAMPL	E		ASSAYS				
ROM TO		NO	SUL PH	FROM	TO	TOTAL	;	5	AUTON	'nęck	
	- 7.0 to 12.0; core loss (approx. 2.0') from 8.0' to 9.0', very blocky, broken; 4.0" quartz-calcite vein (9.0 to 9.3') with 1-5% pyrite, 1% pyrrhotite, trace chalcopyrite, trace to 0.5 arsenopyrite, strong limonitic staining - 7.0 to foliation at 40° to core axis	10679	5	7.0	12.0	5.0			Tr	·	
	- 22.0 to 27.0; 2 to 1.0" quartz-calcite veinlets	0680 0681 0682	tr tr tr	12.0 17.0 22.0	17.0 22.0 27.0	5.0 5.0 5.0			Tr Tr Tr		
	- 22.0; foliation at 47° to core axis - 27.0 to 32.0; highly crenulated, trace pyrite	10683 10684 10685	tr tr tr	27.0 32.0 37.0	32.0 37.0 42.0	5.0 5.0			Tr Tr Tr		
	- 46.0; foliation at 46° to core axis - 56.0 to 84.9; highly distorted, pervasive carbonatization			57.0	61 0	5.0			Te		
	- 66.0 to 71.0; minor talc-alteration	10686 10687 10688 10689	tr tr tr	61.0 66.0 71.0	66.0 71.0 76.0	5.0 5.0 5.0 5.0			Tr Tr Tr Tr		
	- 69.5; foliation at 46° to core axis	10690 10691	tr 2	76.0 81.0	81.0 84.9	5.0 3.9			Tr Tr		
84.9 113.2 <u>Ba</u>	anded Iron Formation - yellowish grey to grey to dark green, fine grained, alternating chert and recrystallized chert, magnetite and grunerite-magnetite bands on a $\leq 1/2^{"}$ scale; numerous quartz \pm tourmaline veinlets $\leq 1.0^{"}$ parallel to the bedding; quartz stringers $\leq 1/4^{"}$ crosscutting										
	at 30-80° to core axis common; contacts at 52° to core axis										

1 GRM 2 1

NAME OF PROPERTY. Randall Lake HOLE NO RL-88-17 SHEET NO. 3 OF 12

FOOTAGE				SAMPI	E			 ASSAYS	
FROM TO		но	SULPH	FROM	TO	TOTAL	ļ ,	OZ TON	
	Average Modes: Chert) 30-40% Quartz) Grunerite 5-30% Magnetite 5-30% Pyrrhotite trace to 10% Pyrite trace to 2% Arsenopyrite trace to 2% Chalcopyrite trace - grunerite as partial to entire replacement of magnetite bands; sulphides as fine disseminated grains, fine grained aggregates, fracture fillings, in quartz veinlets and stringers parallel to the bedding plane - 84.9 to 92.0; trace to 10% pyrrhotite, 1 to 3% pyrite, trace to 1% arsenopyrite - 92.0 to 94.0; 2.0" very blocky and broken quartz- calcite vein with 5% pyrite, 1% pyrrhotite, 0.5% chalcopyrite; strong limonitic staining - 94.0 to 106.3; highly silicified with numerous quartz veinlets and stringers; trace to 3% pyrrhotite; trace to 2%, trace chalcopyrite, trace to 0.5% arsenopyrite - 106.3 to 109.0; trace to 1% pyrrhotite/pyrite - 107.0; foliation at 50° to core axis 109.0 to 113.2; moderately silicified with trace to 3% pyrrhotite, 1% pyrite, trace chalcopyrite	10692 10693 10694 10695 10696 10697 10698 10699 10700	5 3 5 5 5 1 4	84.9 86.7 89.2 92.0 94.0 97.0 100.0 103.0 106.3 109.0	86.7 89.2 92.0 94.0 100.0 103.0 106.3 109.0 113.2	1.8 2.5 2.8 2.0 3.0 3.0 3.0 3.3 2.7 4.2		.002 Ir .002 Ir Tr Ir Ir Ir Tr Tr	

1088.2

Randall Lake NAME OF PROPERTY

	-		the second second second	and the second se	L Martin Sciences	SHEET NO. 4 01 12				
DE CODISTION			SAMPL	E				ASSAYS		
DESCRIPTION	10	* SULPH IDES	FROM	FOOTAGE	10 TAL		·.	· AYUN	Chęck,	
4 Mafic to Ultramafic Flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritettalc schist; carbonatization ranging from weak to pervasive; strong foliation										
Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Talc 5-20% Pyrite trace to 1% Pyrrhotite trace to 1%										
 carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 										
- 117.0 to 122.0; intense deformation and	10702 10703	tr tr	113.2 117.0	117.0 122.0	3.8 5.0			Tr Tr		
- 122.0 to 127.0; strong silicification and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1%	10704	4	122.0	127.0	5.0			Tr		
pyrite - 129.2 to 132.5; 10.0" of silicified-intensively carbonatized material with 2% pyrchotite/pyrite, 1%	10705 10706	tr 2	127.0 129.2	129.2 132.5	2.2 3.3			Tr Tr		
carbonatized material with 2% pyrrhotite/pyrite, 1% magnetite - 137.0 to 140.0; 2-2.0" quartz-carbonate veins crosscutting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrrhotite/pyrite - 144.0; foliation at 40° to core axis	10707 10708	tr 2	132.5 137.0	137.0 140.0	4.5 3.0			Tr Tr		
	10709 10710 10711	tr tr tr	140.0 145.0 150.0	145.0 150.0 154.0	5.0 5.0 4.0			Tr Tr Tr		
- 161.0; foliation at 48° to core axis	10712	tr	154.0	156.6	2.6			Tr		
	 4 <u>Mafic to Ultramafic Flow</u> greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritettalc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Talc 5-20% Pyrite trace to 1% Pyrrhotite trace to 1% Pyrrhotite trace to 1% carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 117.0 to 122.0; intense deformation and fragmentation of carbonate pods, trace pyrite 122.0 to 127.0; strong silicification and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1% magnetite 137.0 to 140.0; 2-2.0" quartz-carbonate veins crosscutting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrrhotite/pyrite 144.0; foliation at 40° to core axis 161.0; foliation at 48° to core axis 	 Mafic to Ultramafic Flow greyish green to green, fine grained, highly distorted, quartz-carbonate-chlorite+talc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Talc 5-20% Pyrite trace to 1% Pyrrhotite trace to 1% Pyrrhotite trace to 1% - carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 117.0 to 122.0; intense deformation and 10703 fragmentation of carbonate pods, trace pyrite - 129.2 to 132.5; 10.0" of silicified-intensively carbonatized material with 2% pyrrhotite/pyrite, 1% magnetite - 137.0 to 140.0; 2-2.0" quartz-carbonate veins crosscutting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrrhotite/pyrite - 144.0; foliation at 48° to core axis 	 4 <u>Mafic to Ultramafic Flow</u> greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritetalc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Pyrite trace to 1% Pyrrhotite trace to 1% - carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 10702 tr - 117.0 to 122.0; intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 to 127.0; strong silicification and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1% magnetite - 137.0 to 140.0; 2-2.0" quartz-carbonate veins crosscutting at 10-20" to core axis; carbonate concentrated around contact of vein with host 2% pyrrhotite/pyrite - 144.0; foliation at 48° to core axis 	4 Mafic to Ultramafic Flow 1015 1005 4 - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritettalc schist; carbonatization ranging from weak to pervasive; strong foliation 1016 1015 Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 10702 101 Purite 5-20% Talc 5-20% Pyrite 10702 113.2 - carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 10702 tr 113.2 - 117.0 to 122.0; intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 to 122.0; strong silicification and folding IX to 2% fuchsite, bleaching, 3% pyrnhotite, 1% pyrite 10704 122.0 - 129.2 to 132.5; 10.0" of silicified-intensively carbonatized material with 2% pyrnhotite/pyrite, 1% magnetite 10709 tr 132.5 - 137.0 to 140.0; 2-2.0" quart2-carbonate veins crosscuting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrrhotite/pyrite 10709 tr 132.5 - 144.0; foliation at 48° to core axis 10711 tr 150.0 - 161.0; foliation at 48° to core axis 10712 tr 154.0	4 Mafic to Ultramafic Flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritettalc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Pyrite trace to 1% - carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows - 117.0 to 122.0; intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 to 127.0; strong silicification and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1% magnetite - 129.2 to 132.5; 10.0" of silicified-intensively carbonatized material with 2% pyrrhotite/pyrite, 1% magnetite - 137.0 to 140.0; 2-2.0" quartz-carbonate veins crosscutting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrrhotite/pyrite - 144.0; foliation at 40° to core axis lof10 tr 145.0 lof10 tr 150.0 154.0 lof10 tr 150.0 154.0 lof12 tr 154.0 156.6 lof1.0; foliation at 48° to core axis lof12 tr 154.0 156.6 lof1.0; foliation at 48° to core axis lof12 tr 154.0 156.6 lof1.0; foliation at 48° to core axis lof12 tr 154.0 156.6 lof12 tr 154.0 156.6	4 Mafic to Ultramafic Flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritetalc schist; carbonatization ranging from weak to pervasive; strong foliation 1000 1000 1000 Average Modes Chiorite Carbonatization zanging from weak to pervasive; strong foliation 1000 1000 1000 Average Modes Chiorite Carbonatization anging from weak to pervasive; Strong foliation 1000 1000 1000 Average Modes Chiorite Carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 10702 tr 113.2 117.0 3.8 - 117.0 to 122.0; intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 10702 tr 113.2 117.0 3.8 - 117.0 to 122.0; strong silicification and fragmentized material with 2% pyrrhotite, 1% 10703 tr 113.2 122.0 127.0 5.0 pyrite - 129.2 to 140.0; 2-2.0" quartz-carbonate veins croscuting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrrhotite/pyrite - 144.0; foliation at 40° to core axis 10701 tr 145.0 <td< td=""><td>4 Mafic to Ultramafic Flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritettalc schist; carbonatization ranging from weak to pervasive; strong foliation 101.5 100.4 10 101.4 10 Average Modes Chlorite Strong foliation 30-50% Carbonate S-20% Pyrine Taic - carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 10702 tr 113.2 117.0 3.8 - 117.0 122.0 intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 to 122.0; intense deformation and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1% pyrite - 129.2 to 132.5; 10.0° of silicified-intensively carbonatized material with 2% pyrrhotite/pyrite, 1% magnetite - 133.0 to 140.0; 2-2.0° quartz-carbonate veins crosccuting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrthotite/pyrite - 144.0; foliation at 40° to core axis - 161.0; foliation at 48° to core axis 10712 tr 154.0 140.0 145.0 5.0</td><td>4 Mafic to Ultramafic flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloriteitalc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Talc 5-20% Pyrrhoite trace to 1% Pyrrhoite trace to 1% Pyrhoite trace to 1%</td><td>4 Mafic to Ultramafic Flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritetialc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Taic 5-20% Taic 5-20% Pyrite trace to 1% Pyrrhotite in dimense deformation make ft difficult to identify the protolith; likely alternating ultramafic and mafic flows - 117.0 to 122.0; intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 to 127.0; strong silicification and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1% magnetite - 137.0 to 130.0; 2-2.0" quartz-carbonate veins crosscutting at 10-20° to core axis; carbonate concentrate around contact of vein with host 2% pyrrhotite/pyrite - 144.0; foliation at 40° to core axis - 161.0; foliation at 48° to core axis Auguartice around count of vein axis alternation at 48° to core axis alternation</td></td<>	4 Mafic to Ultramafic Flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritettalc schist; carbonatization ranging from weak to pervasive; strong foliation 101.5 100.4 10 101.4 10 Average Modes Chlorite Strong foliation 30-50% Carbonate S-20% Pyrine Taic - carbonatization and intense deformation make it difficult to identify the protolith; likely alternating ultramafic and mafic flows 10702 tr 113.2 117.0 3.8 - 117.0 122.0 intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 to 122.0; intense deformation and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1% pyrite - 129.2 to 132.5; 10.0° of silicified-intensively carbonatized material with 2% pyrrhotite/pyrite, 1% magnetite - 133.0 to 140.0; 2-2.0° quartz-carbonate veins crosccuting at 10-20° to core axis; carbonate concentrated around contact of vein with host 2% pyrthotite/pyrite - 144.0; foliation at 40° to core axis - 161.0; foliation at 48° to core axis 10712 tr 154.0 140.0 145.0 5.0	4 Mafic to Ultramafic flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloriteitalc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Talc 5-20% Pyrrhoite trace to 1% Pyrrhoite trace to 1% Pyrhoite trace to 1%	4 Mafic to Ultramafic Flow - greyish green to green, fine grained, highly distorted, quartz-carbonate-chloritetialc schist; carbonatization ranging from weak to pervasive; strong foliation Average Modes Chlorite 30-50% Carbonate 5-30% Quartz 5-20% Taic 5-20% Taic 5-20% Pyrite trace to 1% Pyrrhotite in dimense deformation make ft difficult to identify the protolith; likely alternating ultramafic and mafic flows - 117.0 to 122.0; intense deformation and fragmentation of carbonate pods, trace pyrite - 122.0 to 127.0; strong silicification and folding 1% to 2% fuchsite, bleaching, 3% pyrrhotite, 1% magnetite - 137.0 to 130.0; 2-2.0" quartz-carbonate veins crosscutting at 10-20° to core axis; carbonate concentrate around contact of vein with host 2% pyrrhotite/pyrite - 144.0; foliation at 40° to core axis - 161.0; foliation at 48° to core axis Auguartice around count of vein axis alternation at 48° to core axis alternation	

FORM 2

; F

NAME OF PROPERTY Randall Lake

HOLE NO RL-88-17 SHEET NO. 5 of 12

1001	AGE		SAMPLE			Third and the Transmission of	r saafiik tärkke võidunga det	, ,	SSAY5			
FROM	10		NO	" SUL PH	FROM	FOOTAGE TO	10741			OZ TUN	Çheçk	
		- 165.3 to 179.4; highly carbonatized with a strong crenulation cleavage, trace pyrite	10713 10714 10715	tr tr tr	165.3 170.0 175.0	170.0 175.0 179.4	4.7 5.0 4.4			Tr Tr Tr		
179.4	197.7	<u>Greywacke</u> - light to dark grey, fine to medium grained, silicified sediments with fine (1/16 to 1/8") rounded, equant quartz fragments throughout (5-15%); strong foliation, in distinct banding on 1/2" scale, upper contact at 58° to core axis										
		Average Modes: Quartz 50-70% Biotite 5-15% Chlorite 5-10% Sericite 5-10% Carbonate 1-15% Pyrrhotite trace to 2% Pyrite trace to 1% Fuchsite trace to 1% - minor sericite-carbonate alteration, sulphides as fine disseminated grains or thin stringers parallel to the foliation; numerous carbonate-quartz bands (<1.0") parallel to the foliation, fuchsite occurring as flattened, stretched clots; - 182.0; foliation at 53° to core axis - 181.0 to 191.0; trace pyrite, trace to 0.5% arsenopyrite	10716 10717 10718	5 0.5 tr 0.5	179.4 181.0 186.0 191.0	181.0 186.0 191.0 196.0	1.6 5.0 5.0			Tr .006 Tr Tr		
		- 196.0 to 197.7; 8.0" quartz-calcite vein with trace to 1% pyrite/pyrrhotite, and 1/2" crosscutting quartz-calcite-tourmaline vein with 1% pyrite/ pyrrhotite, trace chalcopyrite, contact at 60° to core axis	10720	1	196.0	197.7	1.7			Tr		

1084.2 1

-99

NAME OF PROPERTY______ Randall Lake

HOLE NO. RL-88-17 SHEET NO. 6.01.12

FOOT	AGE			فاعر الشعارية بالتشاكين	SAMPL	E	und auf die Martena an a		 ASSAYS		
FROM	10		но	N SUL PH	FROM	FOOTAGE TO	TOTAL	•	AU 02 TUN	Check 62 TON	
197.7	204.7	<u>Siltstone</u> - dark grey, fine grained siltstone with a strong foliation; contacts at 60° to core axis									
		Average Modes Biotite 60-80% Quartz 5-15% Calcite 5-10% Pyrite trace	-								
		 fine calcite stringers (<0.25") with angular quartz fragments parallel to the foliation; common; 									
		- 202.0; foliation at 58° to core axis									
204.7	278.0	<u>Greywacke</u> - similar to interval 179.4 to 197.7									
		- 204.7 to 208.0; 1.0% pyrite with minor fuchsite alteration - 208.0 to 213.0; highly distorted with carbonate alteration, trace pyrite	10721 10722	1 tr	204.7 208.0	208.0 213.0	3.3 5.0		Tr Tr		
		- 223.0 to 231.0; 0.5% arsenopyrite, 0.5% pyrite - 231.0 to 232.8; 8.0" of highly silicified material with trace tourmaline, patchy carbonate and trace to 0.5% arsenopyrite	10723 10724 10725 10726 10727	tr 1 0.5 0.5 0.5	213.0 218.0 223.0 228.0 231.0	218.0 223.0 228.0 231.0 232.8	5.0 5.0 5.0 3.0 1.8		Tr Tr Tr Tr Tr		
		 232.0; foliation at 50° to core axis 237.6 to 242.5; 1% arsenopyrite, trace pyrite 242.5 to 247.5; 0.5 to 1% arsenopyrite, 0.5% pyrite in an irregular quartz-calcite veinlet 	10728 10729 10730 10731	tr 1 1.5 tr	232.8 237.6 242.5 247.5	237.6 242.5 247.5 248.7	4.8 4.9 5.0 1.2		Tr Tr Tr Tr		
		,									

FORM 2

+онм 2 1

NAME OF PROPERTY_____Randall Lake

HOLE NO . RL-88-17 SHELT NO. 7 OF 12

- . - . .

FOOTAGE SAMPLE ASSAYS	
FROM TO DESCRIPTION AU OF TO TAGE AU OF TO TAGE AU OF TO	Check
278.0 309.7 - 248.7 to 256.4; frregular, distorted quartz veining with inclusions of highly sheared host, trace to 2% 10733 3 248.7 to 250.0 3.3. trace inclusions of highly sheared host, trace to 2% 10733 3 252.0 253.0 2.0 3.3. trace inclusions of highly sheared host, trace to 2% 10733 3 252.0 256.4 2.0 2.4 Tr - 256.4 to 261.0; minor fuchsite alteration as irregular colds, trace pyrite - 266.1 to 266.0, to 266.0, to 271.0; numerous irregular quartz-calcite veinites 1.0* 10735 tr 256.4 2.1 Tr - 266.4 to 271.0; numerous irregular quartz-calcite veinites 1.0* 10736 261.0 266.0, to 271.0; numerous irregular quartz-calcite veinites 1.0* 10736 271.0 5.0 Tr - 266.4 to 271.0; numerous irregular quartz-calcite - 266.5; foliation at 45° to core axis 10736 271.0 275.0 3.0 Tr - 266.4 to 271.0; numerous irregular quartz-calcite - 275.0 3.0 Tr Tr Tr - 266.5; foliation at 45° to core axis 10736 271.0 275.0 3.0 Tr 278.0 309.7 4.6 Tr Tr Tr Tr - 278.0 3.0 - 275.0 275.0 3.0 Tr - 278.0 3.0 - 275.0 3.0 - 76.0 - 76	

Randall Lake

HOLE NO. RL-88-17 SHEET NO. 8 OF 12

100	LAGE				SAMPL	.E		[ASSAYS		
FROM	10	DESCRIPTION	NO	SULPH	FROM	FOOTAGE	10141		<u> </u>	AUTON	<u>ር</u> ክዳ <u>ር</u> k	
309.7	370.3	Alternating Greywacke and Siltstone										
370.3 370.3	401.2	 interval consists of alternating greywacke beds (similar to interval 179.4 to 197.7) and siltstone beds (similar to interval 197.7 to 204.7), on a scale of 2-5'; strong foliation throughout; fuchsite alteration as pods or bands + quartz, roughly parallel to the foliation; minor Silicification in this interval; contacts indistinct 321.0 to 325.5; fuchsite alteration with trace to 0.5% pyrite 325.5 to 333.0; highly distorted and silicified with trace pyrite 327.0; foliation at 55° to core axis 333.0 to 340.0; strong fuchsite alteration and minor silicification with trace to 1% pyrite/pyrhotite 340.0; foliation at 61° to core axis 352.2 to 362.7; fuchsite alteration throughout with several irregular quartz-calcite pods; trace to 0.5% pyrite parallel to the foliation surfaces or as fracture filling 362.7 to 370.3; strong carbonate alteration, highly distorted in a ductile sense 	10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752	tr tr tr tr tr tr	312.0 321.5 324.0 325.5 328.5 331.5 333.0 336.2 338.0 352.2 357.0 361.0 362.7 367.0	317.0 324.0 325.5 331.5 333.0 336.2 338.0 340.0 357.0 361.0 362.7 367.0 370.3	5.0 2.5 1.5 3.0 1.5 3.2 1.8 2.0 4.8 4.0 1.7 4.3 3.3			Ir Tr Tr Tr Tr Tr Tr Tr Tr Tr T		

1084 2

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-17 SHEET NO. 9 OF 12

FOO	TAGE				SAMPL	E			ASSAY5		
1 ROM	10	DESCRIPTION	но	SULPH	68014	FOOTAGE	10141		AU 07 TON	Check	
		- 370.3 to 373.0; highly silicified, 2 to 5% pyrite	10755	5	370.3	373.0	2.7	 	Tr		
		- 373.0 to 380.0; moderately silicified with 1 to 3% pyrite/pyrrhotite, numerous irregular quartz-calcite	10756 10757	3 3	373.0 376.0	376.0 380.0	3.0 4.0		.002 .052	.060	
		pods - 380.0; foliation at 35° to core axis	0.750			000 5					
		- 383.5 to 387.0; silicified with 1% pyrite, trace	10758 10759	1	380.0 383.5	383.5 387.0	3.5 3.5		.002 Tr		
		- 387.0 to 397.9; strong carbonate-talc alteration, highly distorted, 1 to 3% magnetite	10760 10761	tr tr	387.0 392.0	392.0 395.0	5.0 3.0		Tr Tr		
		- 397.7 to 401.2; 1 to 3% magnetite	10762 10763	tr	395.0 397.9	397.9 401.2	2.9 3.3		.002 .002		
401.2	415.2	Greywacke - similar to interval 179.4 to 197.7; contacts at 48°									
		to core axis	0764	• -	401 2	402 5	0.0		T.,		
		- 401.2 to 403.5; highly silicitied with trace pyrite	10765	tr	401.2	403.5	2.3				
		- 413.5 to 415.2; 4.0" quartz-calcite vein at 56° to core axis	10766	L	413.5	415.2	1.7		Tr		
415.2	453.0	Mafic to Ultramafic Flow - similar to interval 113.2 to 179.4, consists of									
		alternating intervals of highly distorted, strongly carbonatized talc-carbonate-chlorite schist and									
20		carbonatization, trace to 2% magnetite as disseminated grains or thin stringers, common									
-000 -		- 419.3 to 425.0; pervasive talc-carbonate	10767	tr	415.2	419.3 423.0	4.1 3.7		Tr Tr		
		- 432.0; foliation at 60° to core axis - 434.0 to 436.5; 1% pyrite/pyrrhotite in calcite	10770	1	434.0	436.5	2.5		Tr		
-		filled fractures - 439.5 to 444.0; as per 10770	10771	1	439.5	444.0	4.5		Tr		
											,
										1 1	

FORM 2

NAME OF PROPERTY Randall Lake

HOLE NO. RL-88-17 SHEET NO. 10 OF 12

FOOT	I AGE				SAMPI	. E			ASSAYS		and Reconstructions and appropri-
+ ROM	10	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE	TOTAL	14	AU DZ TUN	Ċ'nęçk	
Е оо 1 + ном 453.0	1 AGE 10 499.0	DESCRIPTION Ultramafic Flow - dark grey-green, fine grained, talc-carbonate-chlorite schist, highly distorted in a ductile sense, gradational contacts Average Modes: lalc 40-60% Carbonate 20-30% Chlorite 10-20% Quartz 1-10% Magnetite trace to 2% Pyrrhotite trace to 0.5% Pyrite trace - magnetite as fine disseminated grains, relatively common, throughout - 458.0 to 463.0; 1% pyrrhotite/pyrite rimming an ovoid quartz-calcite pod - 467.0; foliation at 46° to core axis	10772 10772 10773 10774 10775 10776	tr 1 tr 1	453.0 458.0 458.0 463.0 468.0 473.0	E FOOTAGE TO 458.0 463.0 463.0 468.0 473.0 473.0 478.0	5.0 5.0 5.0 5.0 5.0 5.0		ASSAYS AU 02 TUN Tr Tr Tr Tr Tr	Check	
499.0	641.7	<u>Mafic Volcanics (Flow)</u> - green, fine grained, quartz-chlorite schist with minor carbonate alteration; good foliation; upper contact irregular	10777	tr	493.0	497.0	4.0		Tr		

1000.2

1 CRM 2

NAME OF PROPERTY.... Randall Lake

HOLE NO RL-88-17 SHEET NO. 11 OF 12

FOOTAGE		1		SAMPI	. F		AS	SAYS		
FROM TO	DESCRIPTION	но	SULPH	FROM	FOOTAGE	TOTAL	. 0	AYUN	Ghersk	
	Average Modes:Chlorite70-80%Quartz5-20%Calcite1-10%Biotite1-5%Pyritetrace to 0.5%Pyrrhotitetrace to 0.5%Magnetitetrace to 3%									
	- magnetite as fine disseminated grains or irregular patches, common; sulphides as fine disseminated grains or irregular stringers roughly parallel to the foliation					L				
	- 499.0 to 504.0; 0.5% pyrite in a highly carbonatized and fractured interval - 505.0; foliation at 52° to core axis	10778	0.5	499.0	504.0	5.0	1	r		
	- 521.5 to 527.0; trace pyrite/pyrrhotite; trace to 2% magnetite	0779 0780 0781 0782	tr tr tr 0.5	508.5 521.5 523.0 532.6	511.5 523.0 527.0 536.5	3.0 1.5 4.0 3.9	T T T	r r r		
	- 542.0; foliation at 65° to core axis - 562.0 to 566.0; trace to 0.5% pyrite/pyrrhotite in a zone of argillaceous contamination	10783	0.5	562.0	566.0	4.0	T	r		
	-587 (), foliation at 65° to core axis	0784 0785	0.5 tr	578.1 581.0	581.0 584.0	2.9 3.0	T	r r		
	- 609.0 to 612.0; trace pyrite in an interval of argillaceous contamination - 619.0; foliation at 61° to core axis	10786	tr	609.0	612.0	3.0	T	r		
		10787		639.0	641.7	2.7	T	r		

NAME OF PROPERTY Randall Lake RL-88-17 12 of 12 HOLE NO - SHEET NO.

.

F OO	TAGE				SAMPI	E	an 1997 (1996) and 1997 (1997)	- Second Second		ASSAYS		a an
FROM	10	DESCRIPTION	но	501 PH 1DE S	FROM	FOOTAGE	TOTAL		· •	OZ TON	Check	
641.7	677.0	Greywacke - light grey to green, fine grained, poorly banded, highly silicified sediments; fine (≤ 1/16") rounded, equant quartz fragments throughout, upper contact broken Average Modes: Quartz 30-60% Biotite 5-25% Chlorite 10-15% Sericite 5% Calcite 1-5% Pyrite trace Fuchsite 1-2% - fuchsite alteration as thin wisps or clots throughout - 641.7 to 643.0; 5 to 10% pyrite over 6.0" in a slightly carbonatized, blocky interval - 660.0 to 662.0; 3" quartz calcite vein at 56° to core axis, barren - 662.0; foliation at 60° to core axis	10788 10789 10790 10791 10792	10 tr	641.7 643.0 646.0 650.0 660.0	643.0 646.0 650.0 654.0 662.0	1.3 3.0 4.0 2.0	Å	M	Ir Ir Ir Ir	m	

1000 2

ι.

NAME OF PRO HOLE NO LOCATION LATITUDE ELEVATION STARTED	Randall Lake -88-18 LENGTH 357' 0 16+44N DEPARTURE AZIMUTH 332 B8-01-28 FINISHED 1988-01-30	FOOTAGE 0 200 357	DIP -45 ⁰ -40 ⁰ -38 ⁰	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE NO. ^H REMARKS LOGGED B	<u>RL-88-18</u> si s <u>Pa 7200</u> y <u>P. Tay</u>	1667 NO.1 191 1100	of]
F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E F 0 0 T A G E 22.5 42.7 60.5 274.0 357.0	DESCRIPTION SUMMARY LOG Casing and Overburden Mafic Volcanic (Flow) Quartz-Biotite-Chlorite Schist (Greywacke) Mafic Volcanic (Flow) Siltstone to Silty Mafic Tuff Mafic Volcanic (Flow) End of Hole Continue associated Survey Association Filles OFFICE MAR % 8 1889 FIECEIVED		N	O. SUPPORT	S A M			26		Y S Check oz/ToN	

FORM 1

		(anda)] Laka							HOLE	NORL-88	-18 ын	EET NO. 1	of 6
NAME O	F PROP	RTY Kallual Lake Foot	AGE		ZIMUTH	FOOTAGE		MOTH	REMA	rks <u>Pa</u>	720091		
LOCATIO	N	.00 16+44N	}	150 100									
LATITUD	E	DEPARTURE 357		380									
ELEVATI	ON	AZIMUTH <u>332</u> DIP <u>45</u>			·····				LOGGE	D 8Y	P. Tay	lor	
				R.					R			(6	
F 0 0	TAGE	DESCRIPTION Slimmady Loc				5 A M	FOOTAGE		 	, ,	T AU	Chēckī	
FROM	10				· SULP IDES	FROM	то	TOTAL	26	8	OZ/TON	02/100	
0	10.0	Casing and Overburden											
10.0	22.5	<u>Mafic Volcanic (Flow (?))</u> - green to greyish green, fine grained highly distorted flow: strong foliation, population						84					
		carbonatization throughout											
		Average Mode:											
		Calcite 5-40%			l								
		Quartz 5-15% Pyrite trace to 0.5%			1								
		Pyrrhotite trace to 0.5%		1									
		- minor secondary silicification occurring as irregular pods; pyrite/pyrrhotite as very fine disseminated grains, common throughout											
		- 10.0 to 12.0; highly sheared with strong fuchsite- carbonate alteration, shearing at 65° to core axis; trace to 1% pyrite/pyrrhotite		063	0 1	10.0	12.0	2.0			Tr		
				063	1 1	12.0	17.0	5.0			Tr		
Å.		1		1063	2 tr	17.0	22.5	5.5			Ir		
§ 22.5	42.7	Quartz-Biotite-Chlorite Schist (Greywacke (?))											
SI S		strong foliation, pervasive carbonate alteration and											
5		tollation make it difficult to determine a protolith upper and lower contacts gradational	;										
20		-	5093 1908										
2		I ASSESSMENT F	ILES										
		OFFICE											
	•	MAR 2.8 13	89		I	I				I	ι I	I	ſ

RECEIVED

FORM I

+ 0001 2

NAME OF PROPERTY. Randall Lake

HOLE NO . RL-88-18 SHEET NO. 2 OF 6

DESCRIPTIONTOO DESCRIPTIONDESCRIPTIONDESCRIPTIONDESCRIPTIONNOSUIPHFOOTAGEChlorite20-40%Biotite10-30%OutsFOOTAGEChlorite20-40%BiotiteBiotite10-30%QuartzQuartz10-30%QuartzQuartz10-30%PyritePyritetrace to 1%Pyrite/pyrrhotitePyrite/pyrrhotitetrace to 0.5%IDESCRIPTION 22.5 to 27.5; trace pyrite/pyrrhotite with several irregular quartz-calcite veinlets - 27.0; foliation at 55° to core axisIDESCRIPTION-10634 tr27.532.5 to 37.5; trace pyrite in an irregular quartz- calcite pod	741 .	HO SUIPH FOOTAGE IDES FROM TO TOTAL	Au Check
Average Mode: Chlorite20-40% Biotite10-30% Calcite10-30% 			
42.7 60.5 Mafic Volcanic (Flow (?)) - similar to interval 10.0 to 22.5; contact indistinct, numerous irregular quartz-calcite pods, clots or bands commonly stretched parallel to foliation, common throughout interval; trace to 2% magnetite as fine disseminated grains, abundant throughout 10636 10637 2 10637 2 10638 tr 42.7 52.7 57.7 60.5 2 magnetite as fine disseminated grains, abundant throughout	5.0 5.0 5.2 5.0 5.0 5.0 5.0 2.8	10633 tr 22.5 27.5 5.0 10634 tr 27.5 32.5 5.0 10635 tr 32.5 37.5 5.0 10636 0.5 37.5 42.7 5.2 10637 2 42.7 47.7 5.0 10638 tr 47.7 52.7 5.0 10638 tr 47.7 52.7 5.0 10639 tr 52.7 57.7 5.0 10640 tr 57.7 60.5 2.8	Tr Tr .004 Tr Tr Tr Tr Tr Tr Tr

DIAMUNA UKILL RECORD

NAME OF PROPERTY

Randall Lake

HOLE NO RL-88-18

Kandali Lake SHELT NO. 3 OF 6

100	LAGE				SAMPI	E.			ASSAYS		AMERICAN ZOOL ALIAN
FROM	10	UESCRIPTION	140	SULPH IDES	FROM	FOOTAGE	TOTAL	 	0 AYUN	Check	
60.5	274.0	Siltstone to Silty Mafic Tuff - grey to greenish grey, fine grained, strong foliation; alternating siltstone to silty tuff, gradational; strong carbonatization makes it difficult to identify the protolith									
		Average Mode:Quartz20-40%Biotite10-30%Calcite10-30%Fuchsitetrace to 30%Chlorite1-10%Magnetitetrace to 2%Pyritetrace to 2%Pyrnhotitetrace to 2%- magnetite as fine disseminated grains, dispersedrandomly throughout, pyrite/pyrrhotite as finedisseminated grains or irregular grain aggregates									
		60.5 to 76.3; strong foliation; relatively unaltered - 60.5 to 70.5; trace to 2% pyrite - 62.0; foliation at 57° to core axis	10641 10642	2 2	60.5 65.5	65.5 70.5	5.0 5.0		Tr Tr		
		- 75.0 to 76.3; trace to 5% pyrite/pyrrhotite	10643 10644	tr 5	70.5 75.0	75.0 76.3	4.5 1.3		Tr Tr		
55		76.3 to 121.4; strong carbonate-fuchsite alteration with minor silicification; strong foliation; fuchsite alteration occurs as a green bleaching	10645 10646	0.5 0.5	76.3 81.3	81.3 86.3	5.0 5.0		Tr Tr		
- ANGPIDGES - TORONTC - 365-1		,	10647 10648 10649	tr tr tr	86.3 91.3 96.3	91.3 96.3 101.3	5.0 5.0 5.0		Tr Tr Tr		

0 M M 2

366.158

1

OFVOR0

1 ORM 2 ÷

Randall Lake NAME OF PROPERTY

RL-88-18 4 of 6 HOLE NO . SHEET NO. FOOTAGE SAMPLE ASSAYS DESCRIPTION SULP FOOTAGE AUON Check ΝΟ 10 FROM 4 · 5 TOTAL 1065 FROM 10 - 120.0; foliation at 55° to core axis 10654 tr 121.4 to 274.0; very strongly carbonatized 121.4 126.4 5.0 Tr - 126.4 to 130.5; trace to 2% pyrite/pyrrhotite, 10655 2 126.4 130.5 4.1 Tr 3% magnetite - 135.8 to 140.5; trace pyrite/pyrrhotite with numerous quartz-calcite veinlets at 50° to core axis 10656 tr 135.8 140.5 4.7 Tr - 139.0; foliation at 57° to core axis - 140.5 to 142.2; trace to 0.5% pyrite/pyrrhotite; 10657 0.5 140.5 142.2 1.7 Tr 1% magnetite 10658 0.5 149.9 154.9 5.0 Tr - 158.5; foliation at 57° to core axis 10659 0.5 160.0 165.0 5.0 Tr - 182.0 to 183.0; interval of relatively unaltered silty mafic tuff 10660 0.5 187.0 192.0 5.0 Tr - 189.0; foliation at 68° to core axis 10661 0.5 192.0 197.d 5.0 Tr - 210.0 to 215.0; trace to 3% pyrite/pyrrhotite 10662 5.0 210.0 215.0 5.0 Tr - 216.0; foliation at 60° to core axis - 215.0 to 231.0; trace to 5% very fine grained 10663 5 215.0 220.0 5.0 Tr disseminated pyrrhotite/pyrite in a slightly sheared interval; shearing at 53° to core axis - 240.0; foliation at 48° to core axis - 245.0 to 250.0; trace 10664 3 220.0 225.0 5.0 Ir 10665 tr 225.0 230.0 5.0 Tr 10666 tr 231.0 230.0 1.0 Tr to 5% pyrite/pyrrhotite in a highly distorted 10667 5 245.0 250.0 5.0 Τr interval; sulphide as stringers parallel to D2 crenulation cleavage - 250.0 to 264.0; strong talc-carbonate alteration 250.0 10668 tr 255.0 5.0 Tr with trace pyrite 10669 tr 255.0 260.Q 5.0 Tr 1067d tr 260.0 264.0 4.0 Tr - 262.0; foliation at 64° to core axis - 264.0 to 274.0; talc-carbonate alteration with 10671 10 269.0 264.0 5.0 Tr trace to 10% pyrrhotite, trace to 7% pyrite; trace to 10672 10 269.0 274.0 5.0 Tr 0.5% chalcopyrite

1 D D AL 2

NAME OF PROPERTY Randall Lake RL-88-18 HOLE NO RL-88-18 SHEET NO.

5 of 6

FOOTAGE				SAMPI	E	ing to the second s		 ASSAYS		
FROM TO	DESCRIPTION	110	- SUL PH	FROM	FOOTAGE	TOTAL	,	 AU 02 TON	Check 67 TON	·
274.0 357	 Mafic Volcanic (Flow) green to mottled greenish-grey, fine grained, strong foliation, highly carbonatized and distorted in localized intervals making it difficult to distinguish a protolith Average Mode: Chlorite S0-85% Calcite S-35% Quartz S-15% Fuchsite trace to 5% Pyrite trace to 1% Pyrrhotite trace to 1% Pyrrhotite trace to 1% Pyrrhotite trace to 1% Pyrite as fine disseminated grains or grain aggregates, magnetite as fine disseminated grains, rare 274.0 to 325.4; very fine grained, massive to moderately foliated, minor carbonatization 277.0; foliation at 62° to core axis 306.0; foliation at 70° to core axis 325.4 to 357.0; highly carbonatized, distorted, difficult to determine a protolith, likely a mafic or ultramafic volcanic 	10673 10674 10675	tr tr tr	274.0 297.0 321.2	277.0 301.0 325.4	3.0 4.0 4.2		Tr Tr Tr		

NAME OF PROPERTY. Randall Lake HOLE NO RL-88-18 SHEET NO. 6 OF 6

100	1 AGE				SAMPI	E				ASSAY5	1973) - 1995) - 1995) - 1997) - 1997) - 1997) - 1997) - 1997) - 1997) - 1997) - 1997) - 1997) - 1997) - 1997) -	
FROM	10	UESCRIPTION	10	1. SULPH IDES	FROM	FOOTAGE	TOTAL		1	AU TON	Check	
		- 337.0 to 347.0; highly distorted, minor fuchsite bleaching from 337.0 to 342.0; several 1" ovoid quartz-calcite pods; trace to 3% pyrrhotite; trace to 1% pyrite as fine grained aggregates	10676 10677	3 3	337.0 342.0	342.0 347.0	5.0 5.0			Tr Tr		
		- 347.5; foliation at 62° to core axis										
357.0		END OF HOLE										
								Ð.		llan	M	

FOOTAGE A SEAYS FROM TO SAMPLE A SEAYS FROM TO SAMPLE A SEAYS O 16.0 Casing ONYARYO GEOLOCIDAL SURVEY 16.0 153.3 Mafic Volcanics ONYARYO GEOLOCIDAL SURVEY 153.3 164.0 Ultramafic Schist ONYARYO GEOLOCIDAL SURVEY 164.0 210.0 Mafic Volcanics MAR 28 1989	of 1
FROMTOSUMMARY LOGNO.SUPPLFROMTOTOTAL%%oz??TONOZ?TONOZ?TON016.0Casing16.0153.3Mafic VolcanicsONYARYO GEOLOCIDAL SURVEY ASSESSIMENT FILES Or FICE00000164.0210.0Mafic VolcanicsMAR 2819890000	
016.0Casing16.0153.3Mafic Volcanics153.3164.0Ultramafic Schist164.0210.0Mafic Volcanics210.0588.4Ultramafic Schist	
16.0 153.3 Mafic Volcanics ONYARYO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE 164.0 210.0 Mafic Volcanics OFFICE 210.0 588.4 Ultramafic Schist MAR 2.8	
153.3 164.0 Ultramafic Schist ASSESSMENT FILES 164.0 210.0 Mafic Volcanics OFFICE 210.0 588.4 Ultramafic Schist MAR 2.8	
164.0 210.0 Mafic Volcanics 210.0 588.4 Ultramafic Schist	Ì
210.0 588.4 <u>Ultramafic Schist</u>	
588.4 700.6 Quartz-Sericite Schist RECEIVED	
700.6 709.5 Ultramafic Schist	
709.5 733.0 Quartz-Sericite Schist	2
733.0 744.4 <u>Mafic Volcanic (Quartz-Carbonate-Chlorite Schist)</u>	
744.4 865.6 <u>Quartz-Sericite Schist</u>	
865.6 870.6 <u>Mafic Volcanic (Quartz-Carbonate-Chlorite Schist)</u>	
870.6 997.0 Quartz-Sericite Schist	
997.0 End of Hole	

FORM 1

NAME OF HOLE NO LOCATIO LATITUDE ELEVATIO STARTED	PROP <u>RL-</u> <u>98+</u> <u>-</u> <u>-</u> <u>198</u>	BB-19 03W 4+62N 8-02-17	anda]] Lake Length <u>997'</u> _ departure <u>332</u> _ azimuth <u>332</u> _ Finished <u>1988-02</u> -	21 DIP	-45 ⁰	FOOTAGE 0 200 400 600	DIP - 45 ⁰ - 41 ⁰ - 38 ⁰ - 25	AZIMUTH	FOOTAGE 800 997	DIP A2 -210 -180	IMUTH	HOLE N REMA LOGGE	ю. <u>RL-</u> RKS <u>Pa</u> D BY <u>Ja</u>	88-19 720024 y Drew	εετ ΝΟ.	ot 11
FOOT	AGE		DES	CRIPTION			-	0 0.3	SAMP	L E			A	SSA AU	rs Check T	
F R OM 0 16.0	то 16.0 153.3	<u>Casing</u> <u>Mafic Volc</u>	anics - typical - light to dark gre schist, strongly fo slightly tuffaceous of minor silicifica Average Modes: Chlorite Plagioclase Quartz Carbonate Biotite Pyrite Magnetite - numerous cross-cu (1/16 to 1/4"), pyr and stringers paral magnetite occasiona sections - 27.0; foliation a - 28.3 to 34.0; 3/4 veinlet - 37.0 to 42.0; 3/4	en, fine-grain liated, textur to massive, of tion 50-60% 10-15% 5-10% 5-10% 5-10% trace trace tting quartz- ite occurs as lel to S1, dis ly present in t 66° to core " concordant of	ned quartz-chlo re varies from occasional inte ONTARIG GEOL ASSESSIE OFI MAR 2 R E C E arbonate-veinti disseminated g sseminated n tuffaceous axis quartz-carbonate	rite rvals OCIOAL C CUT FIL HOE V 8 1980 I V E rains	D 810 0 0 0 0 85 85 85	0. site y y i01 tr i02 tr	22.8 28.3	28.3 34.0	5.5 5.7	36	2	ο ² /τον Tr Tr Tr	<u>67</u> 9681	
2010 1 000 1 0000 1 000 1 0000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000			veinlet, trace <u>tour</u> - 37.0: foliation a	maline t 55° to core	axis	ť	85		37.0	42.0	5.0			ir		

FORM)

NAME OF PROPERTY Randall Lake HOLE NO. RL-80-19 SHEET NO. 2 of 11

1001	AGE.		a contrary and		SAMPL	E				ASSAYS		
FROM	10		но	SULPH IDES	FROM	FOOTAGE	TOTAL	•	· ·	0A40N	Check	
		- 42.0 to 47.0; 1/2" concordant carbonate veinlet with trace <u>tourmaline</u> , occasional highly contorted quartz-carbonate veinlets	8504	tr	42.0	47.0	5.0			Tr		
		- 47.0 to 52.4; 1" concordant quartz-carbonate veinlet in tuffaceous horizon	8505	tr	47.0	52.4	5.4			Tr		
		- 52.4 to 54.4; 1" wide quartz veinlet - 57.0; foliation at 60° to core axis	8506	tr	52.4	54.4	2.0			Tr		
		- 59.1 to 64.1; minor silicification, cross-cutting quartz-carbonate veinlets	8507	tr	59.1	64.1	5.0			Tr		
		- 64.1 to 69.1; 3" quartz-carbonate vein, minor silicification	8508	tr	64.1	69.1	5.0			Tr		
		- 69.1 to 74.1; 1 1/2" quartz-carbonate veinlet, trace <u>tourmaline</u>	8509	tr	69.1	74.1	5.0			Tr		
		- 74.1 to 77.0; highly fractured with moderate silicification	8510	tr	74.1	77.0	2.9			Tr		
		- 77.0 to 79.0; tuffaceous interval with cross- cutting quartz-carbonate veinlets (1/2" to 1 1/2" wide), trace to 0.5% magnetite	8511	tr	77.0	79.0	2.0			.002		
	Í	- 83.4 to 88.4; 1/2" to 1" wide concordant quartz-	8512	tr	83.4	88.4	5.0			Tr		
		carbonate veinlets, trace tourmaline	8513	tr	94.1	99.3	5.2			Tr		
	Ì	- 103.0; foliation at 58° to core axis	8514	tr	103.1	108.1	5.0			Tr	1 1]
Ì		- 100.1 to 113.1; 1 1/2 quartz-carbonate verniet with trace tourmaline	8010	tr	108.1	113.1	5.0					
	1	- 113.1 to 122.0; tuffaceous interval with	8516	tr	113.1	117.d	3.9			Tr	{ }	1
		argillaceous contamination, trace to 0.5% pyrrhotite, 0.5 to 1.0% pyrite and trace chalcopyrite	8517	2	117.0	122.0	5.0			Tr		
		- 122.0 to 127.0; moderately silicified with trace to 0.5% chalcopyrite, trace pyrrhotite, trace to 0.5% overite	8518	1	122.0	127.0	5.0			Tr		
		- 137.0; foliation at 70° to core axis - 147.0 to 150.3; highly fractured with cross- cutting quarta-carbonato voluets 0.5 to 1.0%	8519 8520 8521	tr 0.5 2 0	137.0 142.0	142.0 147.0	5.0 5.0			Tr Tr		
		pyrite, 0.5 to 1.0% <u>chalcopyrite</u>	8522	2.0	150.3	153.3	3.0			Tr		
										1		

LORM 2

*NGPIDGES - TOPONTO - 366-1168

10000 2 1

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-19 SHEET NO. 3 of 11

1 001	AGE				SAMPL	E	in a state of the second		 ASSAYS	2 2 2 2 10 10 10 10 10 10 10 10 10 10 10 10 10	
FROM	10	DESCRIPTION	110	SUL PH	FROM	FOOTAGE	TOTAL	•	0.AUN	Chack	
153.3	164.0	Ultramafic Schist - typical - fine grained talc-carbonate-chlorite schist consisting of alternating dark green chlorite-rich bands and white talc-carbonate bands (1/8 to 1/4"), occasional talc-rich intervals, weak banding in talc rich sections									
		Average Modes:Chlorite50-60%Carbonate10-15%Talc10-15%Quartz3-5%Biotite3-5%Magnetite1-2%Pyritetrace									
		 occasional 1/2" to 1" talc-carbonate bands with minor quartz concordant to foliation 162.0; foliation at 55° to core axis 	8523 8524 8525	1 0.5 1	153.3 157.0 162.0	157.0 162.0 164.0	3.7 5.0 2.0		Tr Tr Tr		
164.0	210.0	<u>Mafic Volcanics</u> - typical - pervasive carbonatization (15-20%) - 167.0 to 172.0; 1-2% pyrite, 0.5 to 1% chalcopyrite, occurs in blebs and stringers parallel to S1 - 173.0; foliation at 55° to core axis	8526 8527 8528 8529 8530	2 3 0.5 0.5 0.5	164.0 167.0 172.0 192.0 204.3	167.0 172.0 177.0 197.0 210.0	3.0 5.0 5.0 5.0 5.7		Tr .002 Tr Tr Tr Tr		
210.0	588.4	<u>Ultramafic Schist</u> - typical - occasional intervals of biotite contamination, occasional intervals are unaltered or carbonatized, few sections are coarse-grained, weakly banded	8531 8532 8533	tr 0.5 0.5	212.0 232.0 248.7	217.0 237.0 253.7	5.0 5.0 5.0		Tr Tr Tr		

NAME OF PROPERTY. Randall Lake

HOLE NO RI-88-19 SHEET NO. 4 OF 11

+001/	AGE				SAMPL	.E			ASSAYS	Charl	
FROM	10	UESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE	TOTAL	'1	OZ TON	02 TON	
		 - 259.0; foliation at 60° to core axis - 262.0 to 267.0; trace to 0.5% pyrite, trace to 0.5% chalcopyrite - 267.0; foliation at 60° to core axis 	8534	1	262.0	267.0	5.0		Tr		
		- 267.0 to 272.0; highly contorted talc-carbonate bands	8535	tr	267.0	272.0	5.0		Tr		
		- 282.0 to 287.0; 1/2" carbonate veinlet, concordant, trace <u>chalcopyrite</u> , trace pyrite - 312.0 to 317.0; highly contorted talc-carbonate bands	8536 8537 8538	tr tr tr	282.0 297.0 312.0	287.0 302.0 317.0	5.0 5.0 5.0		Tr Tr Tr		
		- 317.0; foliation at 60° to core axis - 327.0 to 332.0 ~ 4.0 feet of unaltered ultramafics with 1-2% pyrite, trace to 0.5% chalcopyrite	8539	2	327.0	332.0	5.0		Tr		
		- 348.0; foliation at 65° to core axis - 364.1 to 367.4; 1 foot wide iron formation, 80% magnetite 10.15% chort 1.5% quartz voinc	8540 8541 8542	0.5 tr tr	337.0 356.0 364.1	342.0 361.0 367.4	5.0 5.0 3.3		Tr Tr Tr		
		- 380.0: foliation at 65° to core axis	8543	tr	377.0	382.0	5.0		Tr		
		 427.0 to 430.0; 2" concordant quartz-carbonate veinlet with 15-20% massive chalcopyrite, 1 to 5% pyrite, trace pyrrhotite and trace magnetite 430.0; foliation at 65° to core axis 442.0; foliation at 55° to core axis 	8544 8545	tr 10	402.0 427.0	407.0 430.0	5.0 3.0		Tr Tr		
		~ 467.0 ; foliation at 60° to core axis	8546 8547	0.5 tr	446.3 459.2	452.0 474.2	5.7 5.0		Tr Tr		
		- 484.0; foliation at 50° to core axis	8548	0.5	478.5	483.5	5.0		Tr		
		- 505.7 to 512.7; highly contorted talc-carbonate bands	8549 8550	tr tr	492.7 505.7	497.7 512.7	5.0 5.0		Tr Tr		
		- 507.0; foliation at 60° to core axis	8551	tr	512.7	518.4	5.7		Tr		
	ļ										

FORM 2

366- 168

ANGRIDGES

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-19 SHEET NO. 5 OF 11

1001	AGE.				SAMPL	. E				ASSAYS	and the second second second	
FROM	10	DESCRIPTION	но	% SULPH IDES	FROM	FOOTAGE To	TOTAL	;	·.	OZ TON	07 TON	
		- 535.0 to 540.0; highly contorted talc-carbonate bands	8552	0.5	535.0	540.0	5.0			Tr		
		 540.0 to 543.0; silty interbed with 2" of chert magnetite bands; contorted cross-cutting quartz- carbonate veinlets (approx. 1/8"), pyrite occurs as blebs along foliation and fractures, 1 to 2% pyrite, trace pyrrhotite 540.0: foliation at 60° to core axis 	8553	2	540.0	543.0	3.0			Tr		
		 547.0 to 552.0; highly contorted talc-carbonate bands, 2.0 foot silty interval with trace to 0.5% pyrite 562.0 to 567.0; siltstone with few 1/2" quartz-carbonate veinlets 567.0 to 572.0; 3 feet of siltstone with few 1" 		0.5	547.0	552.0	5.0			Tr		
		- 502.0 to 507.0; Stitstone with few 172 quartz- carbonate veinlets - 567.0 to 572.0; 3 feet of siltstone with few 1" wide quartz carbonate veinlets - 2 to 3% chalconvunite	8556	3	567.0	572.0	5.0 5.0			Tr		
	 - 567.0 to 572.0; 3 feet of siltstone with few 1" wide quartz-carbonate veinlets, 2 to 3% chalcopyrite, trace to 0.5% pyrite - 577.0; foliation at 55° to core axis - 584.1 to 588.4; numerous narrow (1/8" to 1/4") quartz-carbonate veinlets parallel to S1, increase in number near contact with underlying sediments 		8557	tr	584.1	588.4	4.3			Tr		
588.4	700.6	<u>Quartz-Sericite Schist</u> – typical – yellow-grey to light grey, fine-medium grained granular sediment, strongly foliated with occasional laminated intervals										
		Average Modes: Quartz 50-60% Sericite 30-35% Chlorite 1-5% Calcite 1-5% Pyrite trace to 2%										
		- pyrite occurs as finely disseminated grains or in thin stringers parallel to foliation, sediment has been silicified and sericitized										

1 GRM 2

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-19 SHEET NO. 6 of 11

FOOTAC	GE	DECODIDATION			SAMPL	E			ASSAYS	
ROM	10	DESCRIPTION	NO	SUL PH		FOOTAGE	10.111	 · ·	AU 07 TUN	Check
		588.4 to 598.7; heavily silicified with up to 80% quartz, 2-5% pyrite, occasional 1/8" to 1/4" stringers of pyrite - 590.0; foliation at 70° to core axis	8558 8559	5 2	588.4 593.4	593.4 598.7	5.0 5.3		Tr Tr	
		598.7 to 638.1; weak to moderate silicification and sericitization, 1 to 2% pyrite, occasional concordant quartz veinlets up to 2" - 598.7 to 603.7; 2' ultramafic unit, 3" concordant quartz-carbonate vein with small patches of fuchsite and sericite within 1 to 2% pyrite	8560 8561	2	598.7 603.7	603.7 608.7	5.0 5.0		Tr Tr	
		- 617.0; foliation at 75° to core axis	8563	1	613.7	613.7	5.0		Tr	
		- 623.7 to 628.7; 1.5' of carbonatized ultramafics, 1 to 2% pyrite	8564 8565 8566 8567	1 2 1	618.7 623.7 628.7 633.7	623.7 628.7 633.7 638 1	5.0 5.0 5.0		Tr Tr Tr Tr	
		 - 637.0; foliation at 75° to core axis 638.1 to 678.5; finely laminated, occasional chlorite band, moderately sericitized, weakly silicified, 3 to 5% 								
		- 638.1 to 643.1; poorly laminated - 643.1 to 653.1; prominent laminations - 653.0; foliation at 75° to core axis	8568 8569 8570	1 1 1	638.1 643.1 648.1	643.1 648.1 653.1	5.0 5.0 5.0		Tr Tr Tr Tr	
		 - 653.1 to 663.1; moderately laminated, moderate to strong sericitization - 663.1 to 678.5; poorly laminated with weak to moderate sericitization - 667.0; foliation at 70° to core axis 	8571 8572 8573 8574 8575	1 1 2 2 2	653.1 658.1 663.1 668.1 673.1	658.1 663.1 668.1 673.1 678.5	5.0 5.0 5.0 5.0 5.4		Tr Tr Tr Tr Tr Tr	

±юнм **2**

) ORM 2

NAME OF PROPERTY_____Randall Lake HOLE NO_____RL-88-19_____SHEET NO.___7 of 11

FOOTAGE	DECONDUAN			SAMPI	E			ASSAYS		
FROM TO	DESCRIPTION	110	- SUL PH	FROM	FOOTAGE TO	TOTAL	.	0A40N	Check	
	678.5 to 700.6; weak to moderate sericitization and silicification, granular with up to 40-50% quartz fragments, 1/16" to 1/8" in diameter, 1 to 2% pyrite - 678.5 to 683.5; occasional quartz veinlet (< 1/8" wide) cross-cutting foliation, few 1/8" pyrite stringers, 2 to 3% pyrite - 687.0; foliation at 70° to core axis	8576 8577 8578 8579	3 1 1 3	678.5 683.5 688.5 693.5	683.5 688.5 693.5 697.5	5.0 5.0 5.0 4.0		Tr Tr Tr Tr		
700.6 709.5	Ultramafic Schist - typical - occasional highly contorted talc-carbonate bands, few 3" quartz-carbonate veins, concordant	8581 8582	tr tr	700.6 704.6	704.6 709.5	4.0 4.9		Tr Tr		
709.5 733.0	Quartz-Sericite Schist - typical - moderate to strong silicification, moderate sericitization, granular with 30-40% quartz fragments, occasional 1/2" concordant quartz-carbonate veinlets - 714.0; foliation at 60° to core axis Mafic Volcanic (Quartz-Carbonate-Chlorite Schist) - fine grained consisting of dark green chlorite-rich bands and white carbonate bands, strongly sheared and carbonatized, possibly a mafic flow	8583 8584 8585 8586 8586 8587	1 2 1 2 2	709.5 714.5 719.5 724.5 729.5	714.5 719.5 724.5 729.5 733.0	5.0 5.0 5.0 5.0 3.5		Tr Tr Tr Tr Tr		
	Average Modes: Chlorite 50-60% Carbonate 20-25% Quartz 1-5% Plagioclase 5-10% Pyrite trace - typical bands range from 1/8" to 1/4" wide	8588 8589 8590	tr tr tr	733.0 738.0 741.0	738.0 741.0 744.4	5.0 3.0 3.4		Tr Tr Tr		

108M 2

NAME OF PROPERTY, Randall Lake

HOLE NO . RL-88-19 SHEET NO. 8 01 11

FC	OTAGE	DE CEDIERTION			SAMPL	E				ASSAYS		
FROM	10	DESCRIPTION	110	* SULPH	FROM	FOOTAGE	10 141	;	1		Check	
744	4 865.6	Quartz-Sericite Schist - typical	1									
		 744.4 to 780.6; pyrite in 1/8" to 1/4" blebs, strong silicification (70-80%) weak sericitization, 1-2% pyrite, few concordant quartz-carboante veinlets 746.0; foliation at 78° to core axis 774.0; foliation at 70° to core axis 774.5 to 777.0; up to 90% quartz flooding 780.6 to 808.5; moderate to weak sericitization and 	8591 8592 8593 8594 8595 8596 8597 8598	2 1 2 3 1 1 1	744.4 749.5 754.5 759.5 764.5 769.5 774.5 777.0	749.5 754.5 759.5 764.5 769.5 774.5 777.0 780.6	5.1 5.0 5.0 5.0 5.0 2.5 3.6			Tr Tr Tr Tr Tr Tr Tr Tr		
		silicification, 1 to 2% pyrite, occasional strong sericitization	8599 8600	2	780.6	785.6	5.0			Tr		
		 780.0; foliation at 65° to core axis 793.2 to 795.2; 1.5' of strong sericitization, 60 to 70% sericite, trace pyrite 790.0; foliation at 60° to core axis 	8600 8601 8602	l tr	790.6 793.2	793.2 795.2	2.6 2.0			Tr Tr		
		- 790.0; forfation at 60° to core axis - 800.2 to 805.2; 2 to 3% massive pyrite within narrow carbonate veinlets	8603 8604 8605	2 3 1	795.2 800.2 805.2	800.2 805.2 808.5	5.0 5.0 3.3			Tr Tr Tr		
αj		808.5 to 825.8; weak to moderate sericitization, weak silicification, 40-50% irregular 1/8" to 1/4" quartz fragments, few narrow pyrite stringers - 813.5 to 818.5; 1/4" wide pyrite band and 1/8" wide pyrite band - 817.0; foliation at 70° to core axis	8606 8607 8608	3 3 1	808.5 813.5 818.5	813.5 818.5 821.5	5.0 5.0 3.0			Tr Tr Tr		
4396 - 396 - 4		825.8 to 865.6; heavily silicified (60-70%), weak to moderate sericitization, minor chlorite	8609	1	821.5	825.8	4.3			Tr		
0												

NAME OF PROPERTY. Randall Lake HOLE NO. RL-88-19 SHEET NO. 9 of 11

A 100 I	GF	at a sure that the mark that a second for the fight increasing the second s		والمحك والشارة المراكبين	SAMPI	E				ASSAYS		
FROM	10	DESCRIPTION	но	* SULPH IDES	FROM	FOOTAGE	TOTAL	•	·.	0A40N	Check	
		 - 825.8 to 840.8; weak sericitization, strong silicification, trace to 1% pyrite - 837.0; foliation at 65° to core axis - 850.8 to 855.8; moderate sericitization, 3 to 5% carbonate, 3" quartz-carbonate vein, concordant; 1/4" cross-cutting quartz-carbonate veinlet with trace to 0.5% pyrite 	8610 8611 8612 8613 8614 8615	1 1 0.5 1 1 2	825.8 830.8 835.8 840.8 845.8 845.8 850.8	830.8 835.8 840.8 845.8 850.8 855.8	5.0 5.0 5.0 5.0 5.0 5.0			Tr Tr Tr Tr Tr Tr		
		- 860.8 to 865.6; heavily silicified becoming more sericitized towards the contact with underlying mafic interval; 1 to 5% chlorite	8616 8617	1 1	855.8 860.8	860.8 865.6	5.0 4.8			Tr Tr		
865.6	870.6	Mafic Volcanic (Quartz-Carbonate-Chlorite Schist) - less carbonatized and moderately sheared, 1 to 5% fuchsite in bands in quartz-carbonate veinlets	8618	tr	865.6	870.6	5.0			Tr		
870.6	997.0	fuchsite in bands in quartz-carbonate veinlets										
		870.6 to 886.6; heavy silicification (70–80%), weak sericitization, 1 to 5% carbonate - 871.0; foliation at 60° to core axis	8619 8620 8621	0.5 1 1	870.6 875.6 881.1	875.6 881.1 886.6	5.0 5.5 5.5			Tr Tr Tr		
		886.6 to 907.6; moderate sericitization, weak to moderate silicification	8622 8623 8624	Î	886.6 891.5 896.5	891.5 896.5 902.0	4.9 5.0 5.5			Tr Tr Tr		
	ſ	- 907.0; foliation at 70° to core axis	0023	1	302.0	307.0	5.0					
		907.6 to 916.8; moderate to strong silicification, moderate sericitization, trace to 0.5% pyrite	8626 8627	0.5 0.5	907.6 912.6	912.6 916.8	5.0 4.2			Tr Tr		

LOBM 2

_ANG#'DGES - TOPONTO - 366-1168

Randall Lake NAME OF PROPERTY RL-88-19 SHEET NO. 10 of 11

1001	LAGE.				SAMPL	E				ASSAYS	
		DESCRIPTION	110	SUL PH		FOOTAGE			T .	1 AU	Check
	10			IDES	FROM	TO	TOTAL	·	ļ	07 104	
		916.8 to 934.2; moderate to strong sericitization, weak to									
		- 916.8 to 921.8; moderate silicification, moderate	8628	0.5	916.8	921.8	5.0			Tr	
		- 921.8 to 934.2; strong sericitization, granular;	8629	0.5	921.8	927.0	5.2			Tr	
		weak silicitication, minor chiorite along fractures	8630	0.5	931.0	931.0	4.0 3.2			Tr	
		- 927.0; foliation at 75° to core axis									
		934.2 to 949.2; strong silicification, weak to moderate	8632	0.5	934.2	939.2	5.0			Tr	
		fractures, minor potassic alteration within quartz, few cross-cutting quartz-carbonate veinlets	8634	0.5	944.2	949.2	5.0			Tr	
		- 946.0; foliation at 80° to core axis									
		949.2 to 972.8; strong granular sericitization, weak to	8635	tr	949.2	954.2	5.0			Tr	
		moderate silicification, 1 to 5% chlorite, narrow quartz-carbonate veinlets along fractures	8636	tr	954.2	959.2	5.0			Tr	
		- 956.0; foliation at 75° to core axis	8637	tr	959.2	964.2	5.0			Tr	
			8639	tr	968.2	972.8	4.0				
		972.8 to 997.0; moderate to strong silicification, weak to moderate sericitization, potassic alteration within quartz, occasional laminated intervals with chlorite laminae, narrow quartz-carbonate veinlets along									
		fractures - 973.0: foliation at 70° to core axis									
			8640	0.5	972.8	977.0	4.2			Tr	
		- 977.0 to 982.0; narrow interval strongly sericitized and laminated	8641	0.5	977.0	982.0	5.0			^T r	
		- 982.0 to 987.0; moderately laminated with strongly silicified intervals, potassic alteration intense in 1/4" wide bands	8642	tr	982.0	987.0	5.0			Tr	
		- 987.0 to 992.0; trace to 3% chlorite in bands	8643	0.5	987.0	992.0	5.0			Tr	
									}		
Í											

LANGRIDGES - TOPONTO - 366-1168

FORM 2 T

NAME OF PROPERTY._____Randall Lake HOLE NO.____RL-88-19_____SHEET NO.__11 of 11

	1001	1 AGE				SAMPI	.E				ASSAYS		
F	ROM	10	DESCRIPTION	но	* SULPH TOES	FROM	FOOTAGE	TOTAL			64 TON	Ҁ҄҉ӈ҄ӗҫ҄ҟ	
			- 992.0 to 997.0; heavily silicified with potassic alteration, trace to 0.5% pyrite, trace arsenopyrite	8644	0.5	992.0	997.0	5.0			Tr		
	997.0		END OF HOLE	ĺ									
													I
										л Л			
2								(Δd	<i>HUD</i>	an	nD	
								Û	17	(/ ¥			
							1						

FOOTAGE DESCRIPTION FROM 10 SUMMARY LOG 0 34.0 67.0 Assard Index FROM 10 Summary Log 11 Summary Log 12 Total 134.0 Grantic 10 Mafic Volcanic 10 Find of Hole 10 Summary Log 11 Indiana 12 Indiana 134.0 Grant 134.0 134.0	NAME OF HOLE NO LOCATION LATITUDE ELEVATIO STARTED	PROP <u>RL</u> <u>L2</u> <u>L2</u> <u>RL</u> <u>L2</u>	ERTYRa -88-20)+00W4128N 88-02-16	nda]]_Lake LENGTH DEPARTURE AZIMUTH FINISHED	67.0' 332 ⁰ 1988-02-16	DIP <u>-45</u>	0	FOOTAGE 0	01P -45 ⁰		I FOOTAGE	DIP	AZIMUTH	HOLE REMA	NO. <u>RL-8</u> RKS_ <u></u> р by <u>Р</u>	<u>8-20</u> _{sH} a 72000 . Jaylo	EET NO. 5	<u>1 of 1</u>
FROM TO SUMMARY LOG NO. Riggen FROM TO TOTAL X X Address 0 34.0 Casing and Overburden 34.0 67.0 Mafte Volcante Image: Summary LOG Image: Summary L	FOOT	AGE			DESCRII	PIION					SAM	PLE			······································	SSA	Y S	
0 34.0 Casing and Overburden 34.0 67.0 Mafic Volcanic 67.0 End of Hole ONTABIC POOP OCIDAL BUBVEY ASSUSSIMENT FILES OFFICE MAR 28 1989 R E C E I V F. D	FROM	10			SUMMARY	LOG			!	io. suí IDE	S FROM	F00TA	GE TOTAL	26	36	AU OZ/TON	Check oz/Ton	
34.0 67.0 End of Hole 67.0 End of Hole 00NTARIC ACCOLOGINAL SURVEY ASSULSTATEDT FRES 00 FRCE MAR 2.8 1989 R F C E I V F. D	0	34.0	Casing and	<u>Overburden</u>														
67.0 End of Hole	34.0	67.0	Mafic Volca	nic														
ONTARIG PEOP OCIDAL SUBVEY ASSUSSIMENT FILES OFFICE MOR 2.8 1989 RECEIVED	67.0		End of Hole															
ONYARG MONORICAL SURVEY ASSULSSMENT FILES OFFICE MAR 2.8 1989 RECEIVED		i																
ONVARIO RECHODICAL SUBVEY ASOLISSIMENT FILLIS OFFICE MOR 28 1989 RECEIVED																		
ONTARIO MOO OCIDAL SURVEY ASDESSMENT FREIS OFFICE MAR 28 1989 RECEIVED																		
					ON	TANIO ACOLO ASSUSSIME OFF MAR 2 R E C E	DCICAL SUBY 1917 FILES ICE 8 1989 I V F. D	/EV										

FORM 1

		r			nr			HOLE	NO. RL-8	8-20 si	EET NO.	<u>l of 1</u>
NAME OF PROPERTY	Y <u>Randall Lake</u>	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	REMA	вке Ра	72000	5	
HOLE NO	20LENGTH b/.()'	0	-450					A E M A	NN 3 <u>- 1 4</u>			
LOCATION LOUIUN	4128N											
CTARTER 1000 0	AZIMUTH <u>552</u> DIP <u>-45</u>							LOGGE	D BY	P. Ta	ylor	
214KIED	2=10											
FOOTAGE					SAMF	P L E			A	SSA	rs	
FROM TO	0.500000		И	0. SULP	FROM	FOOTAC	TOTAL	- 26	26	OZ/TON	oz/ton	
0 34.0 <u>Ca</u>	asing and Overburden					1						
34.0 67.0 M	afic Volcanic											
1 04.0 07.0 <u>Ha</u>	- light to dark green, very fine wrained, guart	-										
	chlorite schist; strongly foliated	DONOAL	SUTTE	v]]								
	AUSUSSM	近月17年11	LES									
	Average modes: OF	FICE		11								
	Plagioclase 10-15%	the second										
	Quartz 5-15% MAR 2	8 1989	9	[]		Î						
	Biotite 1-5%											
	Calcite 1-5%				1			1				
	Pyrite trace File CE	IVE	D									
	- thin quartz-calcite veinlets (< 1/2") roughly			4								
	parallel to the foliation, common; 1 to 2% quar	tz-										
	calcite filled microfractures, cross-cutting on	an										
	ninggalai pattern, common											ĺ
	- 34.0 to 37.0; 1.0" quartz-calcite vein with		92	66 tr	34.0	37.	0 3.0			Tr		
	inclusions of wallrock and trace pyrite,											
	arsenopryrite; contacts broken; numerous other											
	• 37.0 to 43.2; broken 3.5; loss core											
	- 43.2 to 44.3; 1.0" guartz-calcite veinlet		92	67	43.2	44.	3 1.1			Tr		
	- 46.5; foliation at 50° to core axis											
	- 57.0 to 62.0; numerous quartz-calcite veinlet	S	92	68	57.0	62.	0 5.0			Tr		1
	(SI+U) and augen - 63.0: foliation at 47° to core avis				1							
			·		1					\wedge		
67.0 EN	VD OF HOLE				1				/ X	ta/n	And	
					1			l)	CA	IX/////	(IM) ^A	~~
					1				// #	/YV	ur I	
			1	1	I	1		1	///↓	· ·		

тоюм т

NAME OF	PROPERTY Ra	ndall Lake				
HOLENO	RL-88-20A	LENGTH	797'			
LOCATION	20+05W 4+28	N			······	
LATITUDE		DEPARTUR	E		<u></u>	
ELEVATION	۱ <u> </u>	AZIMUTH .	332	DIP _	-45	
STARTED .	1988-02-16	FINISHED.	1988-02-20			

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-450		797	-400	
200	-44 ⁰				
400	-44				
600	-41		I		

LOGGED BY Jon North

FOO	TAGE	DESCRIPTION SUMMARY LOG		SAMPLE					ASSAYS					
FROM	10			SULPH	FROM	FOOTAGE	TOTAL	20	36	огДон	Shefdh			
0 34.5 127.3 134.6 157.1 197.6 214.2 225.0 229.6 597.1 616.0 635.1 677.1 724.8 797.0	34.5 127.3 134.6 157.1 197.6 214.2 225.0 229.6 597.1 616.0 635.1 677.1 724.8 797.0	Casing Mafic Volcanic Banded Iron Formation Green Chloritic Mudstone Ultramafic Schist Banded Iron Formation Ultramafic Schist - 386.0 to 545.1 - highly magnetic massive, granular pyroxenite Gabbro Ultramafic Schist Silicified Shear Zone Ultramafic Schist Quartz-eye Rhyolite End of Hole ONNAMED GENERODIAL SURVEY ASSESSMENT FILLS OFFICE MAR 2.8 1989 R E C E I V E D		IDES	FROM	10	TOTAL							

FORM I

NAME OF PROF HOLE NORL LOCATION20 LATITUDE ELEVATION STARTED198	Randall Lake F -88-20A LENGTH 797' 0405W 4428N F 05W 4458N	0 -4 200 -4 400 -4 600 -4	DIP AZ 15 ⁰ 14 ⁰ 10	IMUTH	FOOTAGE 797	DIP A		HOLE REMA	NO. BL-8 RKS D BY	<u>38-20</u> Азн Ра 7200С Jon Nort	іеет NO. I)5 .h	of 6
FOOTAGE FROM TO	DESCRIPTION		NO.	SUL PH	SAMP FROM	L E FOOTAGE TO	TOTAL	- 26	j; 0	ASSA AU oz/ton	(5 Check oz/10N	
0 34.5 34.5 127.3	Casing Mafic Volcanic - typical - dark green, fine grained, foliated flows and tut Minor cross-fracturing and occasional concordant 1 2" quartz veinlet Average Modes: Chlorite 30-40% Quartz 5-10% MAR 2.8 Carbonate 1-2% Biotite 5-7% Sulphides trace to .5% R E C E I N 34.5 to 90.7 - massive, fine grained flows - 34.8 to 35.1; quartz vein, .5% chalcopyrite, .5% pyrrhotite - 40.0; 63° to core axis - 70.0; 72° to core axis 90.7 to 127.3 - finely banded, tuffaceous, 10 to 15% biotite (pelite), few narrow chert blebs - 100.0; 63° to core axis - 100.0; 63° to core axis	ff. 1 to 1 to 1 FILES E 1989 V E. D	9958 9959 9960 9961 9962	tr tr 5 5 75	34.5 57.3 99.2 117.3 122.3	39.5 62.0 104.2 122.3 127.3	5.0 4.7 5.0 5.0 5.0			002 r 002 r		

FORM 1
NAME OF PROPERTY. Randall Lake

.

HOLE NO _ RL-88-20A SHEET NO. 2 OF 6

1001	I AGE	DESCRIPTION SAMPLE 10 SULPH FOOTAGE 10 SULPH FOOTAGE 10 TO TO				ASSAYS					
FROM	10	DESCRIPTION	10	SULPH IDES	FROM	FOOTAGE	TOTAL		OZ TON	Check	
127.3	134.6	Banded Iron Formation (BIF) - typical - dark grey-green to black, finely bedded on a 1/8 to 1/4" scale. Black magnetite, dark green chlorite schist, yellow-green grunerite, grey chert. Grunerite occurs at the contact of chert and magnetite beds. Bedding is very regular and undeformed at 69° to core axis	9963 9964	.5 .5	127.3 132.0	132.0 134.6	4.7 2.6		.002 .002		
		Average Modes:Chert30-40%Magnetite20-30%Grunerite5-10%Chlorite10-20%Pyrite.5-1%Chalcopyrite.5%- pyrite occurs as fine grains in a few tiny cross- fractures, and small boudinaged quartz-carbonate veinlets parallel to bedding.Chalcopyriteobedding.GrainsGrains									
134.6	157.1	Green Chloritic Mudstone - typical - light green finely bedded chert and chlorite bands. Occasionally massively bedded, minor biotite, very silty looking Average Modes: Chlorite 20-30% Quartz 40-50% Biotite 3-5% Feldspar 5-10% Pyrite trace - 140.0; 73° to core axis	9965	tr	134.6	139.6	5		Tr		

FORM 2

NAME OF PROPERTY....Randall Lake

HOLE NO. RL-88-20A SHEET NO. 3 OF 6

	FOOT	AGE				SAMPI	.E			ASSAYS		
	FROM	10	DESCRIPTION	110	SULPH		FOOTAGE	1 1011		AU 02 TON	Check	
	157.1	197.6	Ultramafic Schist - typical - dark green chloritic and very talcose, mottled with white talc alteration and ubiquitous 1/8 to 1/2" talc-carbonate bands and augen parallel to foliation	9966 9967 9968 9969	tr 2 2 2	157.1 177.0 182.0 192.6	162.1 182.0 187.0 197.6	5 5 5 5 5		Tr Tr Tr Tr Tr		
			Average Modes: Talc 10-15% Carbonate 10-15% Chlorite 50-60% Biotite 3-5% Quartz 3-5% Sulphides trace									·
			- traces of fine-grained pyrite, pyrrhotite and chalcopyrite throughout - 170.0; 65° to core axis - 179.0 to 179.5; 50% pyrite in cherty iron formation with 0.2 ft. quartz vein									
	197.6	214.2	Banded Iron Formation - typical - minor folding and cross-fracturing, .5% disseminated chalcopyrite mainly at top of interval, minor ultramafic schist infolded, 69° to core axis - 198.7; 1/8" massive chalcopyrite stringer - 202.1 to 203.5; quartz vein or chert bed, .5% pyrite	9970 9971 9972 9973	tr tr tr tr	197.6 202.1 207.0 210.0	202.1 207.0 210.0 214.2	4.5 4.9 3 4.2		Tr Tr Tr Tr		
0-0NTC - 366-1168	214.2	225.0	<u>Ultramafic Schist</u> - typical - 217.6 to 219.2; lean silicate banded iron formation (BIF) horizon	9974 9975	.5-1 1-2	214.2 219.2	219.2 225.0	5.0 5.8		Tr Tr		
- ANGRIDGES												

FORM 2

NAME OF PROPERTY_____Randall Lake

HOLE NO. RL-88-20A SHEET NO. 4 OF 6

FOOTAGE				SAMPL	E				ASSAYS		
FROM T	DESCRIPTION	NO	* SULPH	FROM	FOOTAGE	TOTAL	·	[··	O AU	Ҫ҉҄ҏ҅ҽ҇ҫҟ	
225.0 22	.6 <u>Banded Iron Formation</u> - typical - trace <u>chalcopyrite</u> , .5 to 1% pyrrhotite, 72° to core axis	9976	1	225.0	229.6	4.6			Tr		
229.6 59	 1 Ultramafic Schist - typical 229.6 to 386.0 - weakly to strongly magnetic, rare dark green beds of amphibolitic iron formation 250.0; 53° to core axis 290.0; 54° to core axis 330.0; 59° to core axis 348.6 to 350.2; banded iron formation (BIF) bed, 2% disseminated pyrite and pyrrhotite 360.0; 56° to core axis 	9977 9978 9979 9980 9981 9982 9983 9984 9985	tr .5-1 .5 tr tr tr 1-2 tr	229.6 245.4 260.7 277.0 286.3 309.5 332.9 345.9 374.3	234.6 250.4 265.8 282.0 291.3 314.5 337.9 350.9 378.9	5.0 5.1 5.0 5.0 5.0 5.0 5.0 4.6			Tr Tr Tr Tr Tr Tr Tr Tr		
	 386.0 to 545.1 - core becomes massive fine to medium grained, equigranular dark green to black and is highly magnetic due to 5 to 7% magnetite. This appears to be a pyroxenite body, which is crosscut by 3 to 5% fibrous talc-serpentine stringers 545.1 to 597.1 - dark green, banded typical ultramafic schist - 550.0; 65° to core axis 	9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996	nil nil nil nil nil nil nil nil .5 tr4	388.3 407.0 427.0 442.0 457.0 474.9 503.5 517.0 540.1 561.0 584.7	393.2 412.0 432.0 447.0 462.0 479.9 508.3 522.0 545.1 566.0 589.7	4.9 5.0 5.0 5.0 5.0 4.8 5.0 5.0 5.0 5.0			Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr		
597.1 61	- 580.0; 60° to core axis - 580.0; 61° to core axis 0 <u>Gabbro</u> - typical - granular, fine to medium grained, massive, dark green, crosscut by a few small quartz-carbonate stringers	9997 9998 9999	.5 .5-1 .5-1	597.0 606.0 611.0	602.0 611.0 616.0	5.0 5.0 5.0			.002 Tr .002		

4 O H M 2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-20A SHEET NO. 5 OF 6

FOOTAGE		SAMPLE NO SULPH FOOTAGE					ASSAYS		1999-1994 - 160-20 M	
FROM T		но	SULPH IDES	FROM	FOOTAGE TO	TOTAL	۰,	07 ANIN	Cbeçk,	
	Average Modes: Plagioclase 20% Amphibole + Pyroxene 60-70% Biotite 3-5% Opaques 3-5% Carbonate 1% Sulphides trace to .5%									
	 this rock is crosscut by a few talc stringers which increase towards the end of the interval as the unit becomes highly sheared and grades into the underlying ultramafic schist 									
616.0 63	.1 <u>Ultramafic Schist</u> - typical - 620.0; 56° to core axis	10000 8901	tr 1-2	5 625.1 630.1	630.1 635.1	5.0 5.0		Tr Tr		
635.1 67	 <u>Silicified Shear Zone</u> muddy brown, fine grained, micaceous and silty looking, possibly an altered sediment but the protolith is unclear due to pervasive carbonate-quartz alteration Average Modes:									

FORM 2

FORM 2

NAME OF PROPERTY Randall Lake NAME OF PROPERTY Randall Lake HOLE NO RL-88-20A SHEET NO. 6 OF 6

FOO	TAGE				SAMPI	E			ASSAYS	na in an
FROM	10	DESCRIPTION	40	SULPH IDES	FROM	FOOTAGE	TOTAL		AU DZ TON	
		 635.1 to 659.5 - 1 to 3% pyrrhotite intergrained with .5 to 1% chalcopyrite and trace to .5% pyrite, very highly carbonatized 659.5 to 677.1 - muddy brown to green, possibly altered basalt, 1 to 2% pyrrhotite, .5% chalcopyrite, trace to .5% pyrite, 56° to core axis 	8902 8903 8904 8905 8906 8907 8908 8907 8908 8909 8910 8911	3 3 3 3 3 3 1-2 1-2 1-2 1-2	635.1 639.0 643.0 647.0 651.0 655.5 659.5 664.9 669.9 673.3	639.0 643.0 651.0 655.5 659.5 664.9 669.9 673.3 677.1	3.9 4.0 4.0 4.5 4.0 5.4 5.0 3.4 3.8		.002 .002 .002 Tr Tr Tr Tr Tr Tr Tr	
677.1	724.8	Ultramafic Schist – typical – 721.5 to 724.8 – massive talc, .5% pyrite	8912 8913	.5 tr	677.1 719.8	682.0 724.8	4.9 5.0		Tr Tr	
724.8	797.0	Quartz-Eye Rhyolite - typical- buff to white porphyroblastic quartz-sericite schist with distinctive 1/16 to 1/4" disseminated quartz eyes in a buff to yellow-green sericite groundmass. Minor talc on cleavage planes, may contain biotite and tourmaline stringers where highly shearedÅverage Modes Sericite60-70% 1000000000000000000000000000000000000	8914 8915	tr tr	734.6 750.4	739.6 755.4	5.0 5.0		Tr Tr	
• 5R		Quartz 15-20% Chlorite 0-5% Biotite 3-5% Carbonate .5-1% Tourmaline trace Sulphides trace to .5%								
0NTO - 366-		- 768.0 to 797.0; porphyry becomes very highly sheared, and altered to chlorite and biotite with 2 to 3% quartz-carbonate veinlets	8916 8917	.5-1 .5-1	768.0 773.0	773.0 778.0	5.0 5.0		Tr Tr	
T97.0		End of liole						AA	Ada	711/

NAME OF PROHIDE NO HOLE NO LOCATION LATITUDE ELEVATION STARTED 198	PERTY Randall Lake FOOTAGE D L-88-21 LENGTH 772' 0 -46 20+00W, 10+00N 0 -46 200 -37	DIP AZIMUTH FOOTAGE DIP AZIMUTH 16° 770 -25° 37°
FOOTAG FROM TO	- DESCRIPTION SUMMARY LOG	SAMPLE SAMPLE ASSAYS Au Check OZ/TON OZ/TON AU Check OZ/TON OZ/TON
0 37. 37.7 47. 47.0 86. 86.5 107. 107.0 123. 123.0 157. 157.0 170. 170.2 190. 190.2 252. 252.2 262. 262.8 528. 528.2 654. 528.2 654. 772.0	7 Casing 0 Green Siltstone 5 Dark Green Gabbro 0 Green Siltstone 0 Chlorite - Talc - Carbonate Schist 0 Quartz-eye Rhyolite 2 Chlorite - Talc - Carbonate Schist 2 Quartz-eye Rhyolite 3 Grey-black Cherty Argillite 4 Guartz-eye Rhyolite 5 Grey-black Cherty Argillite 6 Grey-black Cherty Argillite 7 Fault Zone 10 Mafic Volcanic 11 Mafic Volcanic 12 Mafic Volcanic 13 Gr E C E I V E D	

1000 1

NAME OF F	ROPERTY	Randall Lake		
HOLE NO	RL-88-21	LENGTH		
LOCATION	L20+00W.	10+00N		
LATITUDE _		DEPARTURE		
ELEVATION		AZIMUTH _3320	_ DIP	<u>-46⁰</u>
STARTED	1988-02-08	FINISHED 1988-02-15		

FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
0	-46^{0}		770	-25 ⁰	
200	-37 ⁰				
400	-31 ⁰				
600	-280				

HOLE NO. <u>RL-88-21</u> SHEET NO. <u>1 OF 8</u> REMARKS <u>Pa 720005</u>

LOGGED BY Jon North

FOO	TAGE				SAMP	LE			A	SSAY	15	
FROM	10	DESCRIPTION	NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	26	20	OPTION	£2)96k	
0	37.7	<u>Casing</u>										
3/./	4/.0	Green Silstone - typical - dirty green, fine-grained, foliated, brecciated. The rock is marbled with pyrite-pyrrhotite fracture fillings around breccia fragments. Quartz-carbonate augen and discontinuous veinlets also fill fragment interstices. Primary bedding is observed as rare fine laminations in silty and chloritic layers. 1/4" to 1/2" pyrite blebs occur as disseminations	9589 9590	5 5	37.7 42.8	42.8 47.0	5.1 4.2			Tr Tr		
85 61.70=0 5390.e0x+	86.5	Average Modes:Quartz40-50%Chlorite10-20%Biotite3-5%Feldspar5-10%Carbonate2-3%Sericite5-10%Pyrite2-3%Pyrhotite2-3%Chalcopyritetrace to .5%RECEIVEDark Green Gabbro - typical- dark green, fine to medium grained, granular, with 5 to 10% phyric amphibole. Pyrite occurs as 1/32" to 1/16" amorphous disseminated blebs. The rock is frequently altered to talc-chlorite-carbonate schist by shearing.	URVE ES									

FORM 1

товм 2

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-21 SHEET NO.2 OF 8

100	TAGE	DESCRIPTION			SAMPL	. E		ASSAYS					
FROM	10	DESCRIPTION	40	SULPH	FROM	FOOTAGE	10141			AUON	<u>ር</u> ክ <u></u> ፍፍ		
		Average Modes: Chloritized Amphibole 30-40% Plagioclase 20-30% Biotite 3-5% Pyroxene (?) 10-15% Quartz 5-10% Pyrite .5 to 1% Chalcopyrite trace Carbonate 1-2%											
		47 to 48.7 - highly sheared, talcose, 10-20% carbonate	9591	1	47.0	48.7	1.7			.002			
		48.7 to 58.7 - lost core, too talcose to recover	9592	•5-1	58.7	63.2	4.5		-	Tr			
		 58.7 to 80.0 - massive gabbro 79.4 to 80.0; silicified, 5% pyrite stringers 80.0 to 86.5; talc-carbonate schist 81.6 to 82.6; xenolith of sheared sediment, 1-2% pyrite 	9593 9594 9595 9596 9597	.5-1 .5-1 .5-1 1-2 tr	63.2 68.2 73.2 78.2 81.2	68.2 73.2 78.2 81.2 86.5	5.0 5.0 5.0 3.0 5.3			Tr Tr Tr Tr Tr Tr			
86.5	107.0	<u>Green Siltstone</u> - typical - contorted, silty, finely bedded, abundant coarse pyrite blebs - 100.0; 57° to core axis	9598 9599 9600 9601	2-3 1 .5 .5-1	86.5 91.5 96.5 101.5	91.5 96.5 101.5 107.0	5.0 5.0 5.0 5.5			Tr .002 .002 Tr			
107.0	123.0	Chlorite-Talc-Carbonate Schist - typical - 40-50% core lost from this soft, talc-rich rock. Possibly sheared gabbro.	9602	tr	107.0	112.4	5.4			Tr			

1 000 2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-21 SHEET NO 3 OF 8

FOO	I AGE	OESCRIPTION			SAMPL	E		ASSAYS				
EROM	10	DESCRIPTION	NO	- 511L PH	FROM	FOOTAGE	20141			OZ TON	Check-	
		Average Modes: Talc 40-50% Carbonate 30-40% Chlorite 5-10% Biotite 5-10% Sulphides trace		1013								
123.0	157.0	 - 112.4 to 115.2; lost core - 115.2 to 117.7; biotite granite sill, highly sheared Quartz-eye Rhyolite - typical 	9603 9604	tr tr	115.2 117.7	117.7 123.0	2.5 5.3			Tr Tr		
		- buff-white porphyroblastic quartz-sericite schist with very distinctive 1/16 to 1/4" disseminated quartz porphyroblasts in a buff to yellow-green sericite groundmass. Minor talc on cleavage, frequent minute tourmaline stringers along cleavage planes.										į
		Average Modes: Sericite 60-70% Quartz 20-25% Chlorite 0-5% Carbonate trace Tourmaline trace to .5%										
		123 to 128.8 - intense shearing, minor silicification, 10–15% talc - 128.2 to 128.8 - xenolith of green siltstone	9605 9606	tr tr	123.0 126.6	126.6 128.8	3.6 2.2			Tr Tr		
-AVGPIDGES - 0-004 0 - 495-105		128.8 to 157.0 - highly sheared, homogeneous, minor talc - 142.3 to 144.0; lost core - 152.8 to 156.0; lost core	9607 9608 9609 9610 9611	tr5 tr5 tr tr tr	128.8 133.8 138.8 144.0 149.0	133.8 138.8 142.3 149.0 157.0	5.0 5.0 3.5 5.0 8.0			Ir Ir Ir Ir Tr		

FORM 5

NAME OF PROPERTY. Randall Lake

HOLE NO. RL-88-21 SHEET NO. 4 01 8

+ 00 1	IAGE		SAMPLE NO SULPH FOOTAGE				*******	ASSAYS	ni a contra contra de deservaria		
FROM	10	DESCRIPTION	NO	" SUL PH	FROM	FOOTAGE	TOTAL		AUTON	Check.	
157.0	170.2	<u>Chlorite-talc-carbonate Schist</u> - typical - appears to be gradational from quartz-eye rhyolite, 55° to core axis	9612 9613 9614	tr tr tr	157.0 162.0 167.0	162.0 167.0 170.2	5.0 5.0 3.2		Tr Tr Tr		
170.2	190.2	<u>Mafic Tuff</u> - typical - dark green chloritic schist, finely laminated, with 3-5% disseminated magnetite. Contains a few concordant quartz-carbonate veinlets and stringers, 61° to core axis	9615 9616 9617 9618	tr tr tr tr	170.2 175.2 180.2 185.2	175.2 180.2 185.2 190.2	5.0 5.0 5.0 5.0		Tr Tr Tr Tr		
		Average Modes: Chlorite 60-70% Quartz 3-5% Carbonate 2-3% Sericite 10-20% Magnetite 3-5%									
190.2	252.2	<u>Quartz-eye Rhyolite</u> - typical						:			
		 190.2 to 201.0 - typical, moderate shearing, highly sheared at end of interval, 60° to core axis 201.0 to 221.0 - highly silicified, 30-50% vein quartz, 3-5% ankerite, minor tourmaline in quartz stringers 205 to 208.6; quartz vein, roughly conformable, 0.5% pyrite 211.2 to 212.2; 5-7% pyrite stringers in quartz vein 217.6 to 218.4; quartz vein, 1% pyrite 	9619 9620 9621 9622 9623 9624 9625 9626	tr tr! .5 .5-1 1-2 tr!	190.2 195.2 197.2 201.0 205.0 208.6 212.2 216.6	195.2 197.2 201.0 205.0 208.6 212.2 216.6 221.0	5.0 2.0 3.8 4.0 3.6 3.6 4.4 4.4		Tr Tr Tr Tr Tr Tr Tr Tr		
191-1965 - 10000 365-191		221.0 to 252.2 - moderate to strong shearing, weakly silicified, 66° to core axis - 246.0 to 252.2; trace arsenopyrite	9627 9628 9629 9630 9631 9632	tr tr tr tr tr	221.0 226.0 231.0 236.0 241.0 246.0	226.0 231.0 236.0 241.0 246.0 252.2	5.0 5.0 5.0 5.0 5.0 6.2		Tr Tr Tr Tr Tr Tr		

NAME OF PROPERTY. Randall Lake HOLE NO RL-88-21 SHEET NO. 5 of 8

FOO	TAGE	DESCRIPTION			SAMPL	E			ASSAYS	- CL 1	
FROM	10		110	· SULPH IDES	FROM	FOOTAGE	TOTAL	 ,	OZ TON	UZ TON	
252.2	262.8	Grey-black Cherty Argillite - typical - interbedded silty grey-black argillite (60%) and chert (40%). The sediments are pyritic (1-2%) and contain 1% arsenopyrite overall. The interval contains 20% quartz-eye rhyolite sills.	9633 9634 9635	2 2 1	252.2 257.2 260.3	257.2 260.3 262.8	5.0 3.1 2.5		Tr Tr Tr		
262.8	528.2	<u>Quartz-eye Rhyolite</u> - typical - sheared but not highly silicified, .5% <u>arsenopyrite</u> as regularly distributed but widely spaced 1/8 to 1/4" massive stringers, trace to .5% pyrite, .5 to 1% concordant to discordant tourmaline stringers - 270.0; 73° to core axis - 320.0; 66° to core axis - 360.0: 69° to core axis	9636 9637 9684 9685 9686 9687 9688 9689 9690 9691	tr tr tr tr tr tr	262.8 277.0 296.1 302.0 314.0 319.0 332.8 337.8 342.8 352.4 357.4	267.8 282.0 302.0 307.0 319.0 324.0 337.8 342.8 347.8 357.4 362.4	5.0 5.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0		Tr Tr Jr Ir Ir Tr Tr Tr Tr Tr		
		-300.0; 09 to core axis -410.0; 73° to core axis -430.0; 69° to core axis -450.0; 76° to core axis	9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704	tr tr	357.4 362.4 377.0 382.0 412.5 426.5 431.5 441.5 451.2 456.2 465.7 470.7 470.7	362.4 366.9 382.0 387.0 417.5 431.5 436.5 436.5 446.5 456.2 461.2 470.7 475.7 480.7	5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5				
- AVG-DGES - 10-001 0 - 366.158		- 510.0; 81° to core axis	9757 9758 9759 9760 9761 9762 9763	tr5 tr5 tr5 tr5 tr5 tr5	480.7 492.0 499.8 504.8 509.8 518.9 523.7	485.7 497.0 504.8 509.8 514.8 523.7 528.2	5.0 5.0 5.0 5.0 4.8 4.5		Ir Tr Tr Tr Tr Tr Tr		

FORM 2 I.

FORM 2

NAME OF PROPERTY_____Randall Lake HOLE NO_____RL-88-21_____SHEET NO____6 of 8

F OO T	AGE				SAMPL	E	in the second	, yeştirik Bilix teriş		ASSAYS		
FROM	10	DESCRIPTION	но	SUL PH	FROM	FOOTAGE	TUTAL		•	AU oz tun	Check	
528.2	654.7	 Fault Zone: Protolith Unrecognizable this rock is fine-grained, schistose to massive, dark grey to buff, and banded with the 1/4 to 1/2" carbonate-quartz shear bands which may be highly contorted. The rock is composed of sericite, carbonate and quartz in varying quantities with minor amounts of chlorite and <u>fuchsite</u> throughout. No primary textures were observed. The schistose fabric is often deformed into tight to open crenulations and tight isoclinal folds with truncated limbs. Sulphide mineralization occurs throughout the rock as minor disseminated fine-grained <u>arsenopyrite</u> and pyrite. Average Modes: Sericite 40-50% Carbonate 15-25% Quartz 10-20% Chlorite 7-10% Fuchsite 1-2% Pyrite trace to .5% 528.2 to 536.7 - dark grey-green, 15-20% ankerite, 40-50% secondary quartz, 1% <u>arsenopyrite</u>, 1% pyrite, trace pyrrhotite, 57° to core axis - 528.8 to 533.1; quartz vein smokey; 2% disseminated arsenopyrite, .5 to 1% pyrite 536.7 to 549.7 - banded grey to sericite green, 30-40% ankerite, trace to cre axis - 528.7 to 561.2 - 60-80% massive ankerite with 10-20% wispy sericite-fuchsite schist, .5% pyrite, trace <u>arsenopyrite</u> 	9764 9765 9766 9767 9768 9769 9770 9771	3 1 tr tr .5 .5	528.2 533.1 536.7 541.7 546.7 549.7 553.9 557.6	533.1 536.7 541.7 546.7 549.7 553.9 557.6 561.2	4.9 3.6 5.0 5.0 3.0 4.2 3.7 3.6			Ir Ir Ir Ir Ir Ir Ir Ir Ir		
	ĺ											

FORM 2

NAME OF PROPERTY____Randall Lake HOLE NO ____RL-88-21 _____SHEET NO. 7 Of 8

FOOTAG	E	SAMP1.E	ASSAYS
FROM	10 DESCRIPTION	NO SULPH FOOTAGE	Au Check
	 561.2 to 588.8 - dark grey to muddy green, banded, 10-15% ankerite, 50-55% sericite, 10-20% quartz, 10% chlorite, 2-3% <u>fuchsite</u> - 580.0; 60° to core axis 588.8 to 654.7 - 20-30% white carbonate bands throughout, dark grey-green to buff sericitic schist - 595.8 to 600.9; core is bright chromium green with 20-30% fuchsite, 20-30% sericite, 30-40% quartz, 2% pyrite, 69° to core axis - 620.0; 66° to core axis 	9772 tr5 561.2 566.2 5.0 9773 tr5 566.2 571.2 5.0 9774 tr5 576.2 576.2 5.0 9775 tr5 576.2 581.2 5.0 9776 tr5 576.2 581.2 5.0 9776 tr5 581.2 586.2 5.0 9777 tr5 586.2 588.8 2.6 9778 tr5 588.8 592.0 3.2 9779 tr5 592.0 595.8 3.8 9780 2 595.8 600.9 5.1 9781 tr5 600.9 605.9 5.0 9782 tr5 605.9 610.9 5.0 9783 tr5 615.9 620.9 5.0 9784 tr5 615.9 620.9 5.0 9785 tr5 620.9 625.9 5.0 9786 tr5 620.9 635.9 5.0 9787 tr5 630.9 635.9 5.0 9788 tr5 635.9 640.9 5.0 9788 tr5 635.9 640.9 5.0	Ir Ir
654.7 77	22.0 <u>Mafic Volcanic</u> - typical - foliated dark green, chloritized, highly sheared and fractured, may be sericitized giving a banded appearance. Quartz occurs as anneboid patches interstitial to breccia fragments. This unit is gradational from the fault zone. Average Modes: Chlorite 50-60% Biotite 3-5% Plagioclase 10-15% Quartz 7-10% Carbonate 2-3% Sericite 5-7% Pyrite trace to .5%	9790 tr\$ 645.9 650.9 5.0 9791 tr\$ 650.9 654.7 3.8 9792 tr\$ 659.7 669.7 5.0 9793 tr\$ 659.7 664.7 5.0 9794 tr\$ 664.7 669.7 5.0 9795 tr\$ 669.7 674.5 4.8 9796 tr\$ 674.5 679.5 5.0 9797 tr\$ 674.5 679.5 5.0 9796 tr\$ 674.5 679.5 5.0 9797 tr\$ 674.5 679.5 5.0 9797 tr\$ 672.7 697.2 5.0 9798 tr\$ 704.7 709.7 5.0 9798 tr\$ 974.7 709.7 5.0	Ir .002 Ir

F 007	LAGE				SAMPI	E	nic ottokanin gryt			ASSAYS	
FROM	10		NO.	SULPH IDES	FROM	FOOTAGE	TOTAL		·.	0 AHIN	Check
		654.7 to 712.0 - as per above description, abundant elongate sericite porphyroblasts and massive quartz-sericite alteration									
		 712.0 to 737.7 - core is grey-green and sheared, with abundant elongate 1/16" sericite porphyroblasts, and quartz-ankerite filled fractures 720.0; 64° to core axis 724.6 to 727.0; lost core 727.4 to 728.3; shear zone, sericite-fuchsite-quartz schist, 1-2% pyrite 	9799 9800 9801 9802 9803	tr tr tr tr tr	709.7 714.7 719.7 727.0 732.0	714.7 719.7 724.6 732.0 737.0	5.0 5.0 4.9 5.0 5.0				Tr Tr Tr Tr Tr Tr
		737.7 to 772 - dark green to grey, highly fractured, 5–10% wispy quartz stringers with trace tourmaline	9804 9805 9806 9807 9808	tr tr tr tr tr	737.0 742.0 747.0 752.0 767.0	742.0 747.0 752.0 757.0 772.0	5.0 5.0 5.0 5.0 5.0				Tr Tr Tr Tr Tr
772.0		END OF HOLE									
							(L	Ĥ	A M	da	AN)

FORM 2

NAME OF PROPERTY Randall Lake HOLE NO.	FOOTAGE DIP 0 -450° 200 -40° 400 -38° 600 -31°	AZIMUTH FOOTAGE		HOLE NO. KL-E	<u>38-23</u> SHEET NO. <u>1 Of 1</u> Pa 720010 Jon North
FOOTAGE		SAM	PLE	1	ASSAYS
FROM TO SUMMARY LOG		NO. SULPH	FOOTAGE TO TOTAL	26 26	AU CHECK OZ/TON OZ/TON
0 18.4 Casing 18.4 137.8 Mafic Volcanic 137.8 152.4 Ultramafic Schist 152.4 161.3 Iron Formation 161.3 177.1 Ultramafic Schist 177.1 182.2 Mafic Volcanic 182.2 208.0 Sheared Siltstone 208.0 214.6 Ultramafic Schist 214.6 222.0 Iron Formation 223.8 308.5 Ultramafic Schist 308.5 321.0 Silcified Greywacke 321.0 343.1 Mafic Volcanic 343.1 532.0 Silcified Greywacke 532.0 564.1 608.0 Ereywacke 608.0 Frequencies State Stat	Y				

.

.

FORM 1

NAME OF PROPERTY Randall Lake	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH
HOLE NO. <u>RL-88-23</u> LENGTH <u>608 ft.</u>		0				
LOCATION 148+00W. 5+56N	200	-450			<u> </u>	
LATITUDE DEPARTURE	200	~40 20 ⁰				· · · · · · · · · · · · · · · · · · ·
ELEVATION AZIMUTH DIP450	600	- <u>30</u>				
STARTED 1988-02-10 FINISHED 1988-02-13	<u> </u>		II	I	i	l

HOLE NO. <u>BL-88-23</u> SHEET NO. <u>L. O.F. 8</u> REMARKS <u>Pa. 720010</u>

LOGGED BY Jon North

FOOT	TAGE			i star populati	SAMP	LE			A	SSAY	(5	
FROM	то		NO.	SUL PH-	FROM	FOOTAGE TO	TOTAL	"	36	OZ/TON	oz/fon	
0	18.4	Casing										
18.4	137.8	Mafic Volcanic - typical- light to dark green, fine-grained, quartz-chlorite schist, highly foliated, texture varies from foliated chloritized volcanic to tuffaceous volcanic with minor argillaceous (biotite-rich) componentAverage Modes: 					•					
		18.4 to 33.4 - abundant argillaceous beds, 64° to core axis OWYARIC GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE	9041	tr	27.0	32.0	5.0			Tr		
		MAR 28 1989 RECEIVED										

I ORM 1

NAME OF PROPERTY Randall Lake

HOLE NO RL-88-23 SHEET NO. 2 0F 8

FOOT	AGE		-	140 pi se Min Zin	SAMPL	E		 Ha tak dagi di Uk Balan ta	ASSAYS		
FROM	10	DESCRIPTION	110	SUL PH	FROM	FOOTAGE	TOTAL		· AYUN	Check.	
		 33.4 to 109.5 - highly foliated, chloritized 44.0; foliation at 65° to core axis 54.0 to 57.0; numerous irregular quartz-carbonate veinlets and pods with .5% pyrite/pyrrhotite 67.0 to 72.0; minor patchy epidote alteration 72.0 to 77.0; wispy 1/4" to 1" biotite bands, trace pyrite, 60° to core axis 87.0 to 109.5; irregular quartz-carbonate veinlets and pods, highly distorted with epidote alteration of wall rock, trace to .5% pyrite 	9042 9043 9044 9045 9046 9047 9638 9639 9639 9640	tr .5 tr tr .5 tr tr tr	48.9 54.0 67.0 72.0 91.0 94.6 99.6 5 104.5	54.0 57.0 72.0 91.0 94.6 99.6 104.5 109.5	5.1 3.0 5.0 4.0 3.6 5.0 4.9 5.0		Tr Tr Tr Tr Tr Tr Tr Tr Tr		
		109.5 to 137.8 - 7 to 10% quartz-carbonate stringers and networks, .5 to 1% pyrite	9641 9642 9643 9644	1 1 1 1	109.5 114.5 119.5 124.5	114.5 119.5 124.5 129.5	5.0 5.0 5.0 5.0		Tr Tr Tr Tr		
137.8	152.4	Ultramafic Schist - typical - dark green to white chloritic schist with 1/16 to 1/4" talc-carbonate bands, and disseminated elongate quartz-carbonate augen. Sheared and often complexly contorted. May contain 5-10% biotite and 40-50% carbonate in some intervals	9646 9647 9648	Î tr tr	134.5 137.8 147.0	137.8 137.8 144.0 152.4	3.3 6.2 5.4		Tr Tr Tr Tr		
200		Average Modes: Chlorite 50-60% Talc 10-15% Carbonate 10-15% Quartz 3-5% Biotite 3-5% Sulphides trace									
		- 144.0 LO 147.0; IOSL COPE									

1 ORM 2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-23 SHEET NO 3 OF 8

FOOT	AGE				SAMPL	E	na di Ciga Banan Kata		ASSAYS		
FROM	10	DESCRIPTION	NO.	SUL PH	FROM	FOOTAGE	TOTAL	·.		OZ TON	
152.4	161.3	Iron Formation - black, fine grained, massive, brecciated, with few quartz-carbonate veinlets in cross-fractures, and interbedded buff-white chert beds	9649 9650	tr tr	152.4 157.7	157.7 161.3	5.3 3.6		Tr Tr		
		Average Modes: Magnetite 30-40% Chert 40-50% Chlorite 5-10% Carbonate 3-5% Sulphies trace to .5% - the rock is highly magnetic and contains a few punitie freetunes									
161.3	177.1	Ultramafic Schist - typical - 162.3 to 164.2; lost core	9651 9652 9653	tr tr	161.3 167.0	167.0 172.0	5.7 5.0	1	Tr Tr 002		
177.1	182.2	Mafic Volcanic - typical - highly sheared, weak to moderate silicification, 5 to 7% quartz-carbonate stringers, .5 to 1% pyrite	9654	1	177.1	182.2	5.1		Tr		
182.2	208.0	<u>Sheared Siltstone</u> - typical - light green with buff-yellow alteration bands, occasionally finely bedded. The rock is composed of impure chloritic, siliceous silt which has undergone intense shearing and pervasive carbonate +/- silica/ sulphide metasomatism. A few (< .5 ft.) barren talc-carbonate beds occur in this interval									
55 - 1070N10 - 355-198										-	
- ANGROOM											

FORM 2

1

NAME OF PROPERTY Randall Lake HOLE NO RL-88-23 SHEET NO. 4 OF 8

FOC	DTAGE		T		SAMPI	.E	an in finishing a		ASSAYS		
FROM	10	DESCRIPTION	ND	". SULPH IDES	FROM	FOOTAGE	TUTAL		OZ YUN	Check	
		Average Modes: Quartz 40-50% Sericite 10-20% Chlorite 10-20% Carbonate 3-5% Biotite 0-5% Fuchsite trace to .5% Sulphides .5 to 1% - pyrite and pyrrhotite occur as trains of fine grains parallel to S2, and irregular stringers 182.2 to 187.0 - 1 to 2% pyrrhotite, trace to .5% chalcopyrite, few disseminated grains of fuchsite, .5 to 1% pyrite - 186.5 to 187.0; 30% pyrite and pyrrhotite	9655	2	182.2	187.0	4.8		Īr		
208.0	214.6	to 208.0 - very massive, grey-buff coloured, and calcareous, 62° to core axis	9658 9658 9659	tr5 tr5 tr	192.0 197.0 202.0	197.0 202.0 208.0	5.0 5.0 6.0		Tr Tr Tr		
214.6	222.0	Iron Formation - typical - striped black and white interbedded massive magnetite and chert. Complexly folded but not highly fractured.	9660 9661	tr tr	208.0 214.6	214.6 222.0	6.6 7.4		Tr .002		
-4409-D055 - 7090470 - 366-148											

+ 0KM 2

NAME OF PROPERTY. Randall Lake

HOLE NO RL-88-23 SHEET NO. 5 OF 8

FOO!	IAGE				SAMPI	.E			ASSAYS	
FROM	10	DESCRIPTION	740	- SULPH	FROM	FOOTAGE	10 141	 ·,	AU D7 TUN	Check
		Average Modes: Magnetite 40-50% Chert 20-30% Grunerite 10-20% Carbonate trace Pyrite/Chalcopyrite trace - 218.2 to 219.7; lost core								
222.0	237.1	<u>Ultramafic Schist</u> - typical - variably carbonatized and talcose	9662 9663	tr tr	222.0 227.0 232 0	227.0 232.0 237.1	5.0 5.0		Ir Tr Tr	
237.1	238.8	Iron Formation - typical	9665	tr	237.1	238.8	1.7		Tr Tr	
238.8	308.5	Ultramafic Schist - typical - 245.4 to 245.9; iron formation - 247.7 to 248.1; 5% pyrite stringers - 250.0; 59° to core axis - 294.6 to 298.1; <u>quartz vein</u> , roughly concordant, strong looking bull quartz, 3 to 5% ankerite, trace to .5% disseminated pyrite, trace <u>galena</u> , 20-30% carbonatized wall rock	9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677	tr tr tr tr tr tr tr tr tr tr	238.8 243.8 248.8 258.8 268.8 278.8 283.8 283.8 298.8 294.6 298.1 301.8	243.8 248.8 253.8 263.8 273.8 283.8 283.8 292.0 294.6 298.1 301.8 306.1	5.0 5.0 5.0 5.0 5.0 5.0 3.2 3.5 3.7 4.3		Ir Tr Tr Tr Tr Tr Tr Tr Tr Tr	
308.5	321.0	Silicified Greywacke - typical - sericite yellow, fine-grained, foliated and flooded with secondary quartz. 10-20% conformable quartz veins throughout, 1 to 2% fine-grained disseminated pyrite, 58° to core axis	9678 9679 9680 9681	tr 1-2 1-2 1-2	306.1 308.5 312.0 316.1	308.5 312.0 316.1 321.0	2.4 3.5 4.1 4.9		Tr Tr Tr Tr	
1977										

LORM 2

NAME OF PROPERTY Randall Lake HOLE NO RL-88-23 SHEET NO 6 OF 8

1001	LAGE				SAMPI	E				ASSAYS		
FROM	10	DESCRIPTION	110	· SUL PH	FROM	FOOTAGE	TOTAL	•	<i>"</i>	AU 07 TON	Check	
		Average ModesQuartz50-60%Sericite30-35%Carbonatetrace to .5%Pyrite1-2%Pyrrhotite.5 to 1%Chloritetrace to 1%- 318.6 to 319.5; fine chlorite interbeds										
321.0	343.1	<u>Mafic Volcanic</u> - typical - silicified, bleached, few quartz stringers, tuffaceous and pyritic, 2-3% carbonate. This unit may actually be a chloritic siltstone which is gradational from the greywacke. - 340.0; 57° to core axis	9682 9683 9705 9706 9707	1-2 1-2 1-2 1-2 1-2	321.0 326.0 331.0 336.0 341.0	326.0 331.0 336.0 341.0 343.1	5.0 5.0 5.0 5.0 2.1			Tr Tr Tr Tr Tr Tr		
343.1	532.0	<u>Silicified Greywacke</u> - typical 343.1 to 363.2 - as per 308.5 to 321.0 but slightly less siliceous, 1 to 3% disseminated pyrite and minor pyrrhotite	9708 9709 9710 9711	1-2 1-2 1-2 1-2	343.1 348.1 353.1 358.1	348.1 353.1 358.1 363.2	5.0 5.0 5.1			Tr Tr Tr Tr Tr		
		<pre>363.2 to 383.1 - moderate to strong silicification, 2% pyrite, 1 to 2% pyrrhotite as very fine stringers and disseminated grains, trace to .5% <u>fuchsite</u> - 373.0 to 373.6; quartz vein - 380.0; 60° to core axis</pre>	9712 9713 9714 9715	2-3 .5-1 .5-1 .5-1	363.2 368.2 372.9 377.8	368.2 372.9 377.8 383.1	5.0 4.7 4.9 5.3			Tr Tr Tr Tr		

FORM 2

NAME OF PROPERTY Randall Lake HOLE NO. RL-88-23 SHEET NO. 7 OF 8

FOOTAGE			ومتجلفة تلي يهدي	SAMPI	. E	nin: Chinggelerglikket:		ASSAYS	a di seconda di second	Access of the local data
FROM T	DESCRIPTION	NO	SULPH IDES	FROM	FOOTAGE	TOTAL	~ ~	OZ TUN	Check	
FROM	 383.1 to 463.5 - very sericitic, weak to moderate silicification, 1 to 2% pyrite/pyrrhotite - 400.0; 61° to core axis - 420.0; 60° to core axis - 440.0; 52° to core axis - 440.0; 52° to core axis - 452.2 to 452.4; quartz vein, 3 to 4% pyrite 463.5 to 513.9 - moderate to highly silicified, 1 to 3% pyrite, trace to .5%, pyrrhotite, few concordant smokey quartz veins. Sulphides are uniformly distributed as disseminated fine grains but may occur as 1/16 to 1/8" concordant stringers - 470.0; 56° to core axis - 486.2 to 488.6; <u>quartz vein</u>, 1 to 2% pyrite/ chalcopyrite, trace to .5% pyrrhotite, trace <u>galena</u> - 510.0; 68° to core axis 513.9 to 532.0 - weak silicification, moderate sericitization, 1 to 2% fine-grained pyrite, trace pyrrhotite 	9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9726 9727 9728 9730 9731 9730 9731 9733 9734 9735 9736 9736 9737 9738 9738 9738 9739 9740 9741 9742 9743 9744 9745 9746	$\begin{array}{c} 1 \text{ or } s \\ 1 \text{ - 2} \\ 1 \text{ - 3} \\ 1 \text{ - 2} \\ 1 \text{ - 2}$	FROM 383.1 393.1 398.1 403.1 408.1 413.1 418.1 423.1 428.1 433.1 438.1 438.1 443.1 453.1 458.1 453.1 458.5 468.5 473.5 468.5 473.5 488.6 503.6 508.7 513.9 518.9 523.3 528.1	10 388.1 393.1 398.1 403.1 408.1 413.1 423.1 428.1 433.1 438.1 438.1 438.1 433.1 438.1 453.1 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 463.5 483.6 93.6 503.6 503.6 508.7 513.9 528.1 532.0	$\begin{array}{c} 10141 \\ 5.0$		0/ Tim Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr		

_ANGRIDGES _ TORONTO _ 366-1168

Корм 2 |

NAME OF PROPERTY Randall Lake HOLE NO RL-88-23 SHEET NO 8 OF 8

f	8		

100	LAGE.				SAMPL	. E				ASSAYS	17. Sakok menerakan diperangan	ranciana - tana ing
FROM	10	DESCRIPTION	но	" SULPH IDES	FROM	FOOTAGE	TOTAL		•;	oz Yon	Check 62 10	
532.0	564.1	Sheared Siltstone - typical - as per 182.2 to 208.0 - this unit is gradational from the greywacke, and is very highly altered by carbonate-silica metasomatism, 1 to 3% disseminated fine-grained pyrite grains and stringers - 540.0; 64° to core axis - 560.0; 70° to core axis	9747 9748 9749 9750 9751 9752 9753	tr 1-2 2-3 2-3 2-3 2-3 2-3 .5-1	532.0 537.0 540.0 545.0 550.0 555.0 560.0	537.0 540.0 545.0 550.0 555.0 560.0 564.1	5.0 3.0 5.0 5.0 5.0 5.0 4.1			Tr Tr Tr Tr Tr Tr Tr		
564.1	608.0	Greywacke - grey, foliated, poorly sorted sediment. Composed of subround 1/8" to 1/4" detrital quartz grains in a fine foliated matrix of sericite with minor chlorite and carbonateAverage Modes: Quartz50-60% Sericite 20-30% Chlorite Carbonate trace to 1% Pyrite- 580.0; 76° to core axis	9754 9755 9756	•5 •5 tr-•	564.1 569.1 5595.6	569.1 574.1 600.2	5.0 5.0 4.6			Tr Tr Tr		
608.0		<u>End of Hole</u>						À	H lo	dar	2D	

NAME OF PROPERTY Rendall late Image: Addition of the second of the												. RL-8	8-24		of 1
NOLE NO	NAME OF	F PROPI	ERTY Randall Lake	FOOTAGE	DIP	AZIMUT	TH FO	DOTAGE	DIP AZ	імитн	HOLE P	40. <u> </u>	SH	EET NU.	
Licology 4124 Circology 4124	HOLE NO	<u>RL-</u>	88-24 LENGTH <u>817 ft</u> ,		160		-	00	270		REMA	RKS	a 72001	0	
Littlide OFFATURE OFFATURE <thoffature< th=""> OFFATURE <tho< td=""><td>LOCATIO</td><td>n <u>164</u></td><td>+00W, 4+74N</td><td>200</td><td>-430-</td><td></td><td>_<mark>∦</mark>°</td><td></td><td>- 21</td><td></td><td></td><td></td><td></td><td></td><td></td></tho<></thoffature<>	LOCATIO	n <u>164</u>	+00W, 4+74N	200	-430-		_ <mark>∦</mark> °		- 21						
LEVATION AZIMUTH 332° DEP 100 -33° DESCRIPTION COOLD -33° LOCOLD LOCOLD	LATITUD	E	DEPARTURE	400	-400		-#-								
STATED	ELEVATIO	л	AZIMUTH 332 DIP -46	600	220								lon Nor	th	
SAMPLEASSAYSFROM TOSAMPLEASSAYSFROM TOTOTALXSAMPLENO. $\frac{1000}{1000}$ TOTOTO70.2114.0Mafic Volcanic 97.4 to 102.4; fine grained, trace magnetite, trace to .5% pyrite9811tr97.4102.45.0.030.030114.0145.2Casing LassayInterbedded Iron formation and Ultramafic Schist9811tr97.4102.45.0.030114.0145.2Casing LassayInterbedded Iron formation and Ultramafic SchistInterbedded Iron formation.030.030.030125.5Interbedded Iron formationSilicified/PyriticInterbedded Iron formation.030.030.030126.1Rot SchistSilicified/PyriticInterbedded Iron formation.030.030.030.030126.1Rot SchistSilicified/Pyritic.030.030.030.030.030 <td>STARTED</td> <td>1988</td> <td>-02-13FINISHED1980-02-17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>J</td> <td></td> <td>LOGGE</td> <td>) BY</td> <td></td> <td></td> <td></td>	STARTED	1988	-02-13FINISHED1980-02-17						J		LOGGE) BY			
PROM TO POOTAGE X S OP// Contents 0 70.2 Casing 101.01 X S OP// Contents S <td< td=""><td>FOOT</td><td>AGE</td><td></td><td></td><td></td><td></td><td></td><td>SAMP</td><td>LE</td><td></td><td></td><td>A</td><td>SSAY</td><td>′ S</td><td></td></td<>	FOOT	AGE						SAMP	LE			A	SSAY	′ S	
10 SUMARY LOG 10			DESCRIPTION		-				FOOTAGE				Au	Check I	
0 70.2 Casing 70.2 114.0 Mafic Volcanic 97.4 to 102.4; fine grained, trace magnetite, trace to .5% pyrite 9811 tr 97.4 102.4 5.0 114.0 145.2 Casing .030 .030 145.2 219.5 Interbedded Iron formation and Ultramafic Schist 9811 tr 97.4 102.4 5.0 145.2 219.5 Interbedded Iron formation and Ultramafic Schist 60.5% 100.4 5.0 .030 145.2 219.5 Interbedded Iron formation and Ultramafic Schist 9811 tr 97.4 102.4 5.0 257.0 Grey-green siltstome 257.0 Grey-green siltstome 100.4 100.4 100.4 100.4 257.0 620.8 Quartz-Sericite Schist - Sillciffed/Pyritic 100.4 100.4 100.4 100.4 262.1 R0.5 Quartz-Sericite Schist - Sillciffed/Pyritic 100.4 100.4 100.4 100.4 278.5 817.0 Silty Mafic Tuff 100.4 100.4 100.4 100.4 100.4 140.7 Silty Mafic Tuff 100.4 100	FROM	10	SUMMARY LUG				ES	FROM	TO	TOTAL	26	<i>¥</i>	OZ/TON	OZ/TON	
Tot. Joing 70.2 114.0 Mafic Volcanic 97.4 to 102.4; fine grained, trace magnetite, trace to .5% pyrite 9811 tr\$ 97.4 102.4 5.0 .030 114.0 145.2 Casing 102.4 5.0 .030 145.2 219.5 Interbedded Iron formation and Ultramafic Schist 9811 tr\$ 97.4 102.4 5.0 .030 145.2 219.5 Interbedded Iron formation and Ultramafic Schist 9811 tr\$ 97.4 102.4 5.0 219.5 257.0 Grey-green siltstone 9811 tr\$ 97.4 102.4 5.0 257.0 620.8 Quartz-Sericite Schist - Silicified/Pyritic 9811 tr\$ 97.4 102.4 5.0 620.8 625.1 Quartz-Chlorite Schist - Silicified/Pyritic 102.4 102.4 102.4 102.4 783.5 817.0 Silty Mafic luff 111.4 114.5 114.5 114.5 114.5 817.0 End of Hole Ind of Hole		70.2	Casing												
70.2114.0Mafic Volcanic 97.4 to 102.4; fine grained, trace magnetite, trace to .5% pyrite9811tr597.4102.45.0.030114.0145.2Casing114.0145.2Casing145.2219.5Interbedded Iron Formation and Ultramafic Schist219.5257.0Grey-green siltstone257.0620.8Quartz-Sericite Schist - Silicified/Pyritic620.8625.1Quartz-Chlorite Schist621.7783.5Quartz-Sericite Schist - Silicified/Pyritic783.5817.0Silty Mafic Turf817.0End of Hole		,	<u>dusing</u>												
97.4 to 102.4; fine grained, trace magnetite, trace 9811 tr5 97.4 102.4 5.0 .030 114.0 145.2 Casing Interbedded Iron Formation and Ultramafic Schist 9811 tr5 97.4 102.4 5.0 .030 145.2 219.5 Interbedded Iron Formation and Ultramafic Schist 9811 tr5 97.4 102.4 5.0 .030 145.2 219.5 Interbedded Iron Formation and Ultramafic Schist 9811 tr5 97.4 102.4 5.0 .030 145.2 219.5 Interbedded Iron Formation and Ultramafic Schist .030 .030 .030 .030 257.0 Grey-green siltstone .031 transfer Schist - Silicified/Pyritic .030 .030 .030 620.8 Quartz-Sericite Schist - Silicified/Pyritic .030 .030 .030 .030 625.1 Quartz-Sericite Schist - Silicified/Pyritic .030 .030 .030 .030 783.5 817.0 Silty Mafic Tuff .030 .030 .030 .030 817.0 End of Hole .030 .030 .030 .030 .030 .030	70.2	114.0	Mafic Volcanic												
114.0 145.2 Casing 114.0 145.2 Casing 114.2 219.5 Interbedded Iron Formation and Ultramafic Schist 219.5 257.0 Grey-green siltstone 257.0 620.8 Quartz-Sericite Schist - Silicified/Pyritic 620.8 625.1 Quartz-Sericite Schist - Silicified/Pyritic 625.1 783.5 Quartz-Sericite Schist - Silicified/Pyritic 783.5 817.0 Sility Mafic Tuff 817.0 End of Hole			97.4 to 102.4; fine grained, trace magnetite, t	race	98	311 tr	·\$	97.4	102.4	5.0			.030		
114.0145.2Casing145.2219.5Interbedded Iron Formation and Ultramafic Schist219.5257.0Grey-green siltstone257.0620.8Quartz-Sericite Schist - Silicified/Pyritic620.8625.1Quartz-Sericite Schist - Silicified/Pyritic625.1783.5Quartz-Sericite Schist - Silicified/Pyritic783.5817.0Sility Mafic Tuff817.0End of Hole			to .5% pyrite												
145.2219.5Interbedded Iron Formation and Ultramafic Schist219.5257.0Grey-green siltstone257.0620.8Quartz-Sericite Schist - Silicified/Pyritic620.8625.1Quartz-Chlorite Schist625.1783.5Quartz-Sericite Schist - Silicified/Pyritic783.5817.0Silty Mafic Tuff817.0End of Hole	114.0	145.2	Casing												
145.2 219.5 Interbedded Iron formation and Ultramafic Schist 219.5 257.0 Grey-green siltstone 257.0 620.8 Quartz-Sericite Schist - Silicified/Pyritic 620.8 625.1 Quartz-Chlorite Schist - Silicified/Pyritic 625.1 783.5 Quartz-Sericite Schist - Silicified/Pyritic 783.5 817.0 Silty Mafic Tuff 817.0 End of Hole	145 0				1									1	
219.5257.0Grey-green siltstone257.0620.8Quartz-Sericite Schist - Silicified/Pyritic620.8625.1Quartz-Chlorite Schist625.1783.5Quartz-Sericite Schist - Silicified/Pyritic783.5817.0Silty Mafic Tuff817.0End of Hole	145.2	219.5	Interbedded Iron Formation and Ultramafic Schist												
257.0 620.8 Quartz-Sericite Schist - Silicified/Pyritic 620.8 625.1 Quartz-Chlorite Schist 625.1 783.5 Quartz-Sericite Schist - Silicified/Pyritic 783.5 817.0 Sility Mafic Tuff 817.0 End of Hole	219.5	257.0	Grev-green siltstone												
257.0 620.8 Quartz-Sericite Schist - Silicified/Pyritic 620.8 625.1 Quartz-Chlorite Schist 625.1 783.5 Quartz-Sericite Schist - Silicified/Pyritic 783.5 817.0 Silty Mafic Tuff 817.0 End of Hole															
620.8 625.1 Quartz-Chlorite Schist 625.1 783.5 Quartz-Sericite Schist - Silicified/Pyritic 783.5 817.0 Silty Mafic Tuff 817.0 End of Hole	257.0	620.8	Quartz-Sericite Schist - Silicified/Pyritic												
625.1 783.5 Quartz-Sericite Schist - Silicified/Pyritic 783.5 817.0 Silty Mafic Tuff 817.0 End of Hole	620.8	625.1	Quartz-Chlorite Schist												
625.1 783.5 Quartz-Sericite Schist - Silicified/Pyritic 783.5 817.0 Silty Mafic Tuff 817.0 End of Hole		01011													
783.5 817.0 Silty Mafic Tuff 817.0 End of Hole	625.1	783.5	Quartz-Sericite Schist - Silicified/Pyritic												1
817.0 End of Hole	783 5	817 0	Silty Mafin Tuff												
817.0 End of Hole	105.5	017.0	Sirey Marie Juli												}
	817.0		End of Hole												
															1
) 														
					ļ		1								
							1								
							1							ļ	1
	S.														
	τ i														ļ

TORM 1

NAME O HOLE N LOCATIO LATITUD ELEVATI STARTED	F PROP 0. <u>RL-</u> 0N <u>164</u> 0N <u>-</u> 0N <u>-</u> 1988	Randall Lake FOOTAG 38-24 LENGTH 817 ft. 100W, 4+74N OEPARTURE 'AZIMUTH 332 ⁰ DIP46 ⁰ -02-13 FINISHED 1988-02-17	GE D) -4() -4;) -4;) -3;	1P AZ 0 0 0 0 0 0 0 0	MUTH	footage 800	DIP A:	ZIMUTH	HOLE REMA LOGGE	NO. <u>RL-</u> { .rks .d by	<u>38-24</u> ян ⁹ а 72001 Jon Nor	еет но. <u>1</u> б	_of_9
FOO		DESCRIPTION			26	S A M F	L E			T	ASSAN	/s ICheck I	
	70.2	Casing		NO,	SUL PH- IDES	FROM	10	TOTAL		8	OZ/TON	OZ/TON	{
70.2		Mafic Volcanic - typical - dark green, fine-grained, foliated, and often banded and tuffaceous Average Modes: Chlorite 60-70% Plagioclase 10-15% Quartz 5-10% Calcite 1-2% Biotite 3-5% Magnetite trace to 1% Sulphides trace to .5%		9809 9810 9811 9812	tr5 tr5 tr5 tr5	77.0 87.0 97.4 107.4	82.0 92.0 102.4 112.4	5.0 5.0 5.0 5.0			.002 Tr 030 Tr		
114.0	145.2 219.5	 75.0; 73° to core axis 102.4 to 107.4; granular fine-grained gabbro sill Casing 				RE	CEI	Donal IENT F NICE V E C	SURV LES	1 million			

FORM I

FORM 2

FROM TO		SAMPL	. E				ASSAYS		
	40 · 501	S FROM	FOUTAGE	TOTAL	1 .	· 1	_o Au _{on}	Check	
Average Modes:Iron FormationUltramafic SchistMagnetite20-30%Talc10-15%Hematite5-10%Carbonate10-15%Chert30-40%Biotite3-5%Chlorite5-10%Quartz3-5%Chlorite5-10%QuartzCarbonate3-5%Chlorite500%Carbonate3-5%Amphibole3-5%Sulphidescarbonate3-5%Sulphidessulphidestraceto .5%- the iron formations are dark grey to blood red, well bedded, and highly magnetic. The ultramafic rock is dark green with abundant white talc- carbonate alteration laminae.145.2 to 147.4 - cherty iron formation, brecciated, 20% quartz-carbonate veins, 3% pyrite in fractures147.4 to 160.5 - ultramafic schist, contorted, variably carbonatized, four small quartz-carbonate veins160.5 to 163.4 - iron formation, hematite-rich, 1% pyrite163.4 to 186.5 - ultramafic schist - 175.8 to 177.0 - lost core186.5 to 187.7 - iron formation187.7 to 189.7 - ultramafic schist189.7 to 192.6 - iron formation, 1-2% pyrite, hematitic, few quartz-carbonate filled fractures	wo sur 9813 3 9814 tr 9815 tr 9816 tr 9817 1 9818 tr- 9820 tr 9821 tr 9823 tr 9824 tr	145.2 145.2 147.4 152.4 157.4 160.5 5 163.4 5 163.4 5 168.4 5 172.7 5 177.0 5 182.0 5 186.5 5 189.7	t FOOTAGE TO 10 147.4 152.4 157.4 157.4 157.4 168.4 172.7 175.8 182.0 186.5 189.7 192.6	2.2 5.0 5.0 3.1 2.9 4.0 4.3 3.1 5.0 4.5 3.2 2.9			ASSAYS OAU Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr	Chesk	

DIAMOND D DECODD

	OND DRILL RECORD	N		E BROPE	DTV	Randa	all Lal	ke		
/ # # ~ # # W R \		н	OLE N	o. <u>R</u>	L-88-24		_ SHE	ET NO.	3 0	f 9
FOOTAGE				SAMPL	. C.				ASSAYS	
10 TO	DESCRIPTION	мо	 SULTH IDES 	1104	FOOTAGE	10141	•	•.	_ه ڳų	Check
	 192.6 to 219.5 - Ultramafic Schist 193.0 to 194.8; 50% carbonate-quartz veins in cross-fractures 194.8 to 195.2; iron formation bed at 68° to core axis, 1% pyrite 198.1 to 198.5; iron formation, 2% pyrite 213.5 to 215.0; 50% quartz-carbonate veining 	9825 9826 9827 9828 9829 9830	•5 tr tr-• •5-1 •5 •5	192.6 197.5 202.5 207.5 212.5 217.5	197.5 202.5 207.5 212.5 217.5 219.5	5.0 5.0 5.0 5.0 5.0 2.0			Tr Tr Tr Tr Tr Tr	
19.5 257.0	Grey-green siltstone - typical - highly sheared and chloritized/sericitized with prominent banding developed between buff sericitic and green-grey silty chloritic laminae. Talc- carbonate beds scattered throughout, few quartz- carbonate veins, 1-2% fine grained disseminated pyrite throughout									
	Average Modes: Quartz 40-50% Sericite 10-20% Chlorite 20-30% Carbonate 1-2% Pyrite 1-2%	9831	1-2	219.5	224.5	5.0			Tr	
	- 225.2 to 225.4; talc-carbonate-chlorite schist - 225.4 to 226.3; concordant quartz vein, trace pyrite	9832 9833	.5-1 .5-1	224.5 229.4	229.4 234.4	5.0 5.0			Tr Tr	
	- 229.4 to 230.2; as per 225.2 to 225.4 - 234.4 to 235.2; as per 225.2 to 225.4 - 242.8 to 244.1; as per 225.2 to 225.4 - 254.9 to 256.0; 2 to 3% <u>fuchsite</u> alteration, very sericitic - 256.0 to 256.5; as per 225.2 to 225.4	9834 9835 9836 9837 9838	•5-1 1-2 •5 •5 •5	234.4 239.4 244.4 249.4 254.4	239.4 244.4 249.4 254.4 257.0	5.0 5.0 5.0 5.0 2.6			Tr Tr Tr Tr Tr	

10P10655 - T0P0NT0 - 355-1158

NAME OF PROPERTY_____Randall Lake

HOLE NO. RL-88-24

SHEET NO. 4 OF 9

F 001	AGE				SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	+10	* SUL PH	FROM	FOOTAGE	TOTAL	~	AU 07 TON	Uneck	
257.0	620.8	Quartz-Sericite Schist - typical - sericite yellow, fine grained, foliated, and flooded with secondary quartz. 10-20% conformable quartz veins throughout, 1-4% fine grained disseminated pyrite in sericite bands and secondary quartz bands									
		Average Modes: Quartz 50-60% Sericite 30-35% Chlorite trace to 1% Carbonate trace to .5% Pyrite 1-4% Pyrrhotite trace to .5%	9839 9840 9841 9842 9843	1-2 1-2 1-2 1-2 1-2	257.0 262.0 267.0 272.0 275.8	262.0 267.0 272.0 275.8 278.6	5.0 5.0 3.8 2.8		Tr Tr Tr Tr Tr		
		 this unit is gradational from previous interval 257.0 to 278.6 - moderate to weak silicification, 1-2% pyrite, very fissile and sericitic, 62° to core axis 						I			
		 278.6 to 306.8 - moderately to highly silicified, 2-5% disseminated fine-grained pyrite, core is sericite yellow to silica grey and intensely altered with 70-80% quartz - 300.0; 56° to core axis 306.8 to 338.4 - moderate silicification, 1 to 3% pyrite, occasional 1/8" to 1/4" massive pyrite stringer, 3 to 4% pyrite overall - 320.0; 59° to core axis 	9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856	2-3 2-3 2-3 2-3 2-3 2-3 2-3 3-4 3-4 3-4 3-4	278.6 282.0 285.2 288.0 292.0 296.0 300.0 304.0 306.8 311.8 316.8 321.8 326.8	282.0 285.2 288.0 292.0 300.0 304.0 306.8 311.8 316.8 321.8 321.8 321.8 321.8	$\begin{array}{c} 3.4\\ 3.2\\ 2.8\\ 4.0\\ 4.0\\ 4.0\\ 2.8\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\end{array}$		Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr		
	L.		9857 9858	3-4 3-4	331.8 336.0	336.0 338.4	4.2 2.4		Tr Tr		

LANGRIDGES - TORONTO - 366-1168

JORM 2

NAME OF PROPERTY

Randall Lake

FOOTAGE	DE(CDUD2/OU			SAMPL	- F				ASSAYS		
FROM TO		110	• SULPH 401.5	FFOM	1001AGE	10141	÷,	· ·	oAu	Check	
	338.4 to 346.4 - highly silicified, 3 to 5% pyrite, 60° to core axis	9859 9860	3-5 3-5	338.4 342.4	342.4 346.4	4.0 4.0			Tr Tr		
	346.4 to 357.0 - moderate silicification, 3 to 5% pyrite, 56° to core axis	9861 9862	3-5 3-5	346.4 350.0	350.0	3.6 3.9			Tr Tr		
	357.0 to 362.2 - highly silicified, 70 to 80% quartz, 3 to 5% pyrite	9863 9864	3-5 3-5	353.9 357.0	362.2	3.1 5.2			Tr		
	362.2 to 372.0 - highly silicified, .5 to 1% <u>tourmaline</u> stringers, 3 to 4% pyrite, 60° to core axis, few carbonate bands and 1 to 2% chlorite	9865 9866	3-4 3-4	362.2 367.0	367.0 372.0	4.8 5.0			Tr Tr		
	 372.0 to 430.4 - moderate silicification, very pyritic, 3 to 5% pyrite overall 391.4 to 391.7; 60% pyrite 410.0; 56° to core axis 430.4 to 453.3 - highly silicified, 5-7% pyrite, few 1/2" to 2" 	9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9876 9877 9878 9879	3-5 3-5 3-5 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9 7-9	372.0 377.0 382.0 387.0 390.1 395.5 400.5 405.5 410.5 415.5 420.5 425.5 430.4	377.0 382.0 387.0 390.1 395.5 400.5 405.5 410.5 415.5 420.5 425.5 430.4 433.2	5.0 5.0 3.1 5.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0			Tr Tr Tr Tr Tr Tr Tr Tr Tr		
	- 431.6 to 433.2; quartz vein - 444.7 to 445.0; 50% pyrite	9880 9881 9882 9883	5-7 5-7 5-7 5-7	433.2 438.2 443.2 448.2	438.2 443.2 448.2 453.3	5.0 5.0 5.1			Ir Tr Tr Tr		
	453.3 to 456.4 - mafic volcanic, 67° to core axis, fractured, 5 to 10% quartz-carbonate stringers, trace to .5% pyrite	9884	tr	453.3	456.4	3.1			Πr		

NAME OF PROPERTY Randall Lake HOLE NO. RL-88-24

MAN	OND DRILL RECORD	NAME OF PROPERTYRandall Lake HOLE NORL-88-24SHEET NO6 of 9
FOOTAGE	DESCRIPTION	SAMPLE ASSAYS
ROM TO	456 4 to 482 7 - moderate silicification 3 to 49 nurite few	10 1015 FROM TO TOTAL
	 482.7 to 490.4 - yellow sericite schist, 20% quartz, minor disseminated chlorite, trace tourmaline - 489.3 to 489.4; quartz vein, 1% tourmaline, 2% carbonate, trace to .5% pyrite 	9886 $3-4$ 461.4 466.4 5.0 $1r$ 9886 $3-4$ 466.4 471.4 5.0 $1r$ 9887 $3-4$ 466.4 471.4 5.0 $1r$ 9888 $3-4$ 471.4 476.4 5.0 $1r$ 9889 $3-4$ 476.4 479.9 3.5 $1r$ 9890 $3-4$ 476.4 479.9 3.5 $1r$ 9890 $3-4$ 479.9 482.7 2.8 $1r$ 9891 $tr5$ 482.7 487.0 4.3 $1r$ 9892 $tr5$ 487.0 490.4 3.4 $1r$
	490.4 to 548.4 - 1-2% pyrite in moderate to weakly silicified quartz-sericite schist, few massive pyrite bands, granular - 510.0; 59° to core axis - 539.5 to 540.4; chlorite-quartz schist, 61° to core axis, with 1/16" <u>fuchsite</u> stringer and 1/4" massive pyrite	9893 $2-3$ 490.4495.4 5.0 Tr9894 $1-2$ 495.4 500.4 5.0 Tr9895 $1-2$ 500.4 505.4 5.0 Tr9896 $1-2$ 505.4 510.4 5.0 Tr9896 $1-2$ 505.4 510.4 5.0 Tr9897 $1-2$ 510.4 515.4 5.0 Tr9898 $1-2$ 515.4 520.4 5.0 Tr9899 $1-2$ 520.4 525.4 5.0 Tr9900 $1-2$ 525.4 530.4 5.0 Tr9901 $1-2$ 535.4 540.4 5.0 Tr9903 $1-2$ 545.4 5.0 Tr9903 $1-2$ 545.4 5.0 Tr
	<pre>548.4 to 609.5 - granular, white, 40-50% quartz phenocrysts/ grains/porphyroblasts (1/32" to 1/8") in white sericitic groundmass, trace to 1% pyrite - 560.0; 69° to core axis - 600.0; 71° to core axis</pre>	9904 $1-2$ 543.4 550.4 550.4 550 $1r.$ 9905 1 555.4 560.4 5.0 $1r.$ 9906 1 555.4 560.4 5.0 $1r.$ 9907 1 560.4 550.4 5.0 $1r.$ 9908 1 565.4 570.4 5.0 $1r.$ 9909 1 570.4 570.4 5.0 $1r.$ 9909 1 575.4 580.4 5.0 $1r.$ 9910 1 575.4 580.4 5.0 $1r.$ 9911 1 580.4 585.4 5.0 $1r.$ 9912 1 585.4 590.4 5.0 $1r.$ 9913 1 590.4 595.4 5.0 $1r.$ 9914 $1-2$ 595.4 600.4 5.0 $1r.$ 9915 $1-2$ 606.4 605.4 5.0 $1r.$

TORM 2

.

			но	LE N	5 <u>R</u>	L-88-24		SHEET	NO7 01	9
F 001	TAGE	DESCRIPTION	T		SAMPL	. F			ASSAYS	
FROM	10	DESCRIPTION	но	501 PH 101 S	FROM	F001AGL	10141	·.	. " <u>А</u> ц."	Check
		609.5 to 620.8 - highly silicified, trace <u>tourmaline</u> , 1 to 2% pyrite, 1 to 2% carbonate, trace to .5% chlorite	9917 1 9918 1 9919 1	-2 -2 -2	609.5 613.0 617.0	613.0 617.0 620.8	3.5 4.0 3.8		Tr Tr Tr	
620.8	625.1	Quartz-Chlorite Schist - typical - foliated with 40% 1/32" to 1/16" white porphyroblasts of quartz and plagioclase. Dark green, possibly sheared mafic volcanic, gradational contacts with host rock, 59° to core axis								
		Average Modes: Chlorite 50-60% Plagioclase 20-30% Quartz 5-10% Carbonate trace to .5% Sulphides trace								
625.1	783.5	Quartz-Sericite Schist - typical	9921 .	5-1	625.1	630.0	4.9		Tr	
		625.1 to 630.0 - typical schist, 70-80% sericite at end of interval, very fine grained, .5% <u>tourmaline</u> , .5 to 1% pyrite								
		630.0 to 637.8 - quartz-chlorite schist, typical, very gritty, trace pyrite, 63° to core axis	9922 t 9923 t	r r	630.0 635.0	635.0 637.8	5.0 2.8		Tr Tr	
		637.8 to 661.4 - moderate silicification, 0.5% pyrite - 647.4; 1/4" massive pyrite stringer - 648.6; 1/4" to 1/2" massive galena stringer with 1% intergrown pyrite	9924 . 9925 . 9926 2 9927 1 9928 1 9929 1	5 5 -2 -2 -2 -2	637.8 642.7 647.0 649.8 654.8 659.0	642.7 647.0 649.8 654.8 659.0 661.4	4.9 4.3 2.8 5.0 4.2 2.4		Tr Tr Tr Tr Tr	
					1					

Randall Lake

NAME OF PROPERTY_____

355-DGES - TOPONTO

1150

8

NOLE NO		ond drill record	NAME C	OF PROPE	RTY	Nonu				
LOOLACE DESCRIPTION SAMPLE ASSAYS now 10 00 LSCRIPTION 10			HOLE N	10. <u> </u>	RL-88-24		SHI	EET NO.	8 01	9
now to Discriminant read	AGE			SAMPI	L.E				ASSAYS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	OESCRIPTION	140 * SULP 101 S	FROM	FOUTAGE 10	10141	·,	·	074 ON	Cheçk
679.5 to 707.8 - moderately silicified, .5 to 1% pyrite, 1 to 9933 1-3 679.5 687.5 5.0 17 2% chlorite, trace to .5% tourmaline 9935, 15-1 684.5 689.5 5.0 17 9935, 15-1 684.5 689.5 5.0 17 9937, 15-1 684.5 689.5 5.0 17 9938, 15-1 694.5 699.5 5.0 17 9938, 15-1 694.5 699.5 5.0 17 9939, 15-1 704.4 4.9 17 9939, 15-1 704.4 707.8 3.4 17 707.8 to 711.8 - 1ight to dark green, banded, chloritic 9940 1 707.8 711.8 4.0 17 711.8 to 742.6 - typical quartz-sericite schist, 1% pyrite 9941 711.8 711.8 5.0 17 742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite 9941 718.8 726.8 5.0 17 749.5 to 759.3 - sericite yellow to light green, fissile, .5% 9947 15 742.6 747.0 4.4 17 749.5 to 759.3 - sericite yellow to light green, fissile, .5% 9949.5 749.5		661.4 to 679.5 - highly silicified, 1 to 3% pyrite, 63° to the core axis	9930 1-3 9931 1-3 9932 1-3	661.4 666.4 671.4	666.4 671.4 675.6	5.0 5.0 4.2			Tr Tr Tr	
707.8 to 711.8 - light to dark green, banded, chloritic interval - 711.4 to 711.8; magnetic iron formation bed, 60% magnetite, 20% chert, 20% chlorite and amphibole 9940 1 707.8 711.8 4.0 1 711.8 to 742.6 - typical quartz-sericite schist, 1% pyrite - 720.0; 58° to core axis - 750.0; 66° to core axis 9941 1 711.8 711.8 5.0 Tr 742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite 9945 1 736.8 742.6 5.8 Tr 749.5 to 759.3 - sericite yellow to light green, fissile, .5% 1 749.5 759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis 9953 5 769.5 773.6 4.1		679.5 to 707.8 - moderately silicified, .5 to 1% pyrite, 1 to 2% chlorite, trace to .5% <u>tourmaline</u>	9933 1-3 9934 .5-1 9935 .5-1 9936 .5-1 9937 .5-1 9938 .5-1 9938 .5-1	675.6 679.5 684.5 689.5 694.5 699.5 704.4	679.5 684.5 689.5 694.5 699.5 704.4 707.8	5.0 5.0 5.0 5.0 4.9 3.4			Tr Tr Tr Tr Tr Tr Tr	
711.8 to 742.6 - typical quartz-sericite schist, 1% pyrite 9941 1 711.8 716.8 5.0 Ir - 720.0; 58° to core axis - 750.0; 66° to core axis 9942 1 716.8 721.8 5.0 Ir - 750.0; 66° to core axis - 750.0; 66° to core axis 9941 721.8 726.8 5.0 Ir 742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite 9946 1 736.8 742.6 5.0 Ir 742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite 9947 .5 742.6 747.0 4.4 Ir 749.5 to 759.3 - sericite yellow to light green, fissile, .5% 9949.5 749.5 754.5 5.0 Ir 759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis 951 5 764.6 769.5 74.1 Ir		707.8 to 711.8 - light to dark green, banded, chloritic interval - 711.4 to 711.8; magnetic iron formation bed, 60% magnetite, 20% chert, 20% chlorite and amphibole	9940 1	707.8	711.8	4.0			Tr	
742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite 9947 .5 742.6 747.0 4.4 Tr 749.5 to 759.3 - sericite yellow to light green, fissile, .5% 9949 .5 749.5 759.3 5.0 Tr 749.5 to 759.3 - sericite yellow to light green, fissile, .5% 9950 .5 754.5 759.3 4.8 Tr 759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis 9953 .5 769.5 773.6 4.1 Tr		711.8 to 742.6 - typical quartz-sericite schist, 1% pyrite - 720.0; 58° to core axis - 750.0; 66° to core axis	9941 1 9942 1 9943 1 9944 1 9945 1 9945 1	711.8 716.8 721.8 726.8 731.8 736.8	716.8 721.8 726.8 731.8 736.8 742.6	5.0 5.0 5.0 5.0 5.0 5.0			Tr Tr Tr Tr Tr Tr	
749.5 to 759.3 - sericite yellow to light green, fissile, $.5\%$ 9950.5754.5759.34.8 $tourmaline, .5\%$ pyrite, minor pink-orange carbonate9951.5759.3764.65.3 $alteration$ 9952.5764.6769.54.9759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis9951.5759.3764.6769.54.9		742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite	9947.5 9948.5	742.6	747.0	4.4 2.5			Tr Tr	
759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis		749.5 to 759.3 - sericite yellow to light green, fissile, .5% <u>tourmaline</u> , .5% pyrite, minor pink-orange carbonate alteration	9949.5 9950.5 9951.5 9952.5	754.5 759.3 764.6	759.3 764.6 769.5	5.0 4.8 5.3 4.9			Tr Tr Tr Tr	
		759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis	3303 . 5	703.5	//3.0	4.1				
		AGE 10	AGE 10 661.4 to 679.5 - highly silicified, 1 to 3% pyrite, 63° to the core axis 679.5 to 707.8 - moderately silicified, .5 to 1% pyrite, 1 to 2% chlorite, trace to .5% tourmaline 707.8 to 711.8 - light to dark green, banded, chloritic interval - 711.4 to 711.8; magnetic iron formation bed, 60% magnetite, 20% chert, 20% chlorite and amphibole 711.8 to 742.6 - typical quartz-sericite schist, 1% pyrite - 720.0; 58° to core axis - 750.0; 66° to core axis 742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite 749.5 to 759.3 - sericite yellow to light green, fissile, .5% tourmaline, .5% pyrite, minor pink-orange carbonate alteration 759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis	ACC OESCRIPTION IN CONTROL AND AND A CONTROL	AGEDESCHIPTIONSAME1005661.4 to 679.5 - highly silicified, 1 to 3% pyrite, 63° to the core axis9930 1-3661.4 to 679.5 - highly silicified, .5 to 1% pyrite, 1 to 2% chlorite, trace to .5% tournaline9930 1-36679.5 to 707.8 - moderately silicified, .5 to 1% pyrite, 1 to 2% chlorite, trace to .5% tournaline9933 1-3679.5 to 707.8 - moderately silicified, .5 to 1% pyrite, 1 to 2% chlorite, trace to .5% tournaline9933 .5-1679.5 to 707.8 - moderately silicified, .5 to 1% pyrite, 1 to 2% chlorite, trace to .5% tournaline9933 .5-1707.8 to 711.8 - light to dark green, banded, chloritic interval - 711.4 to 711.8; magnetic iron formation bed, 60% magnetite, 20% chert, 20% chlorite and amphibole9941 1711.8 to 742.6 - typical quartz-sericite schist, 1% pyrite - 720.0; 58° to core axis9941 1711.8 to 742.6 - typical quartz-sericite schist, 1% pyrite - 720.0; 66° to core axis9941 1742.6 to 749.5 - very chloritic, finely banded, 0.5% pyrite dilteration9947 .5749.5 to 759.3 - sericite yellow to light green, fissile, .5% uornaline, .5% pyrite, innor pink-orange carbonate dilteration9952 .5759.3 to 773.6 - light to dark green, chloritic but still very sericitic, .5 to 1% pyrite, 1 to 2% carbonate, trace disseminated magnetite, 65° to core axis9953 .5	MOND DRILL RECORD NAKE OF PROPERTY_ HOLE NO NAKE OF PROPERTY_ HOLE NO 10 DESCRIPTION INF INF <td>MARE OF PROPERTY</td> <td>MAKE OF PROPERTY. NAME OF PROPERTY. NAME OF PROPERTY. SAME OF PROPERTY. 10 NOLE NO. RL-88-74 SU SAME OF PROPERTY. SU SU</td> <td>MARE OF PROPERTY NAME OF PROPERTY AGE DESCRUPTION NOLE NO NOLE NO<td>MAKE OF PROPERTY. MAKE OF PROPERTY. NAME OF PROPERTY. SHELT NO. 8.02 Note OLSCRUPTION IN IN ASANS ASANS 10 IN OLSCRUPTION IN IN ASANS 10 IN IN IN IN IN 11 IN IN IN IN IN IN 11 IN IN IN IN IN IN IN 11 IN IN IN IN</td></td>	MARE OF PROPERTY	MAKE OF PROPERTY. NAME OF PROPERTY. NAME OF PROPERTY. SAME OF PROPERTY. 10 NOLE NO. RL-88-74 SU SAME OF PROPERTY. SU SU	MARE OF PROPERTY NAME OF PROPERTY AGE DESCRUPTION NOLE NO NOLE NO <td>MAKE OF PROPERTY. MAKE OF PROPERTY. NAME OF PROPERTY. SHELT NO. 8.02 Note OLSCRUPTION IN IN ASANS ASANS 10 IN OLSCRUPTION IN IN ASANS 10 IN IN IN IN IN 11 IN IN IN IN IN IN 11 IN IN IN IN IN IN IN 11 IN IN IN IN</td>	MAKE OF PROPERTY. MAKE OF PROPERTY. NAME OF PROPERTY. SHELT NO. 8.02 Note OLSCRUPTION IN IN ASANS ASANS 10 IN OLSCRUPTION IN IN ASANS 10 IN IN IN IN IN 11 IN IN IN IN IN IN 11 IN IN IN IN IN IN IN 11 IN IN IN IN

Randall Lake

NGPIDGES - TOPONTO - 365-1168

DIAMOND DRILL RECORD			NAME OF PROPERTY												
FOOTAGE				HOLE NO RL-88-24 SHEET NO 9 (
FOOTAGE DESCRIPTION				SAMPLE						ASSAYS					
ROM	10	DESCRIPTION	но	5. 501 PH 101 5	PH FOOTAGE				- · ·	,Au	Check				
		773.6 to 783.5 - sericite schist, trace to .5% pyrite, 1 to 2% conformable <u>tourmaline</u> stringers, 1 to 2% carbonate	9954 9955	tr5 tr5	773.6 778.6	778.6 783.5	5.0 4.9			Tr Tr					
783.5	817.0	Silty Mafic Tuff - greenish-yellow granular fine-grained volcaniclastic, poorly sorted, sericitized, mottled with irregular sericite patches, 3 to 5% chlorite, trace pyrite, very tuffaceous and chloritic													
		Average Modes Chlorite 40-50% Quartz 20-30% Biotite 5-10% Sericite 5-10% Carbonate 2-3% Pyrite trace													
		- 790.0; 69° to core axis - 810.0; 61° to core axis			1										
317.0		END OF HOLE													
								G	M	ada	mo				

Randall Lake

NAME OF	PROPERTY	Randa	11 Lake					
HOLE NO.	RL-88-25		LENGTH	897	feet			
LOCATION	L80+00W	4+53N						
LATITUDE			DEPARTUR	ε				
ELEVATION	<u></u>		AZIMUTH.	332 ⁰		DIP	<u>-45⁰</u>	
STARTED _	1988-02-15		FINISHED	1988	-02-19			

 FOOTAGE	DIP	AZIMUTH	FOOTAGE	ØIP	AZIMUTH
0	-450		800	-28 ⁰	
200	-430				
400	-40 ⁰				
600	-36.5	p			

HOLE NO. <u>RL-88-25</u> SHEET NO. <u>1 OF 1</u> REMARKS <u>Pa 720018</u>

LOGGED BY P. Taylor

FOOTAGE			SAMPLE					A S S A Y S				
FROM	то	SUMMARY LOG	NO.	SUL PH	FROM	FOOTAGE	TOTAL	20	75	AU oz/ton	Check oz/ToN	
0	8.1	Casing and Overburden	1									
8.1	168.4	Mafic Volcanic										
371.2	371.2	Mafic Volcanic										
374.4	393.5	Interbedded Ultramafic Volcanic and Banded Iron Formation	Į						-			
		384.4 to 387.3 - BIF; 80 to 90% magnetite with										
393.5	398.8	Mafic Volcanic									Í	
398.8	523.6	Interbedded Ultramafic Volcanic and Banded Iron Formation										
		398.8 to 403.7; BIF, trace to 1% pyrite 467.5 to 470.2: BIF, lean 0.5% pyrite										
523.6	557.6	Chloritized Siltstone										
557.6	642.2	Quartz-Sericite Schist	1									
642.2	661.9	Siltstone										
661.9	728.4	Quartz-Sericite Schist										
728.4	735.1	: trace to 5% pyrite, trace pyrrhotite throughout Mafic Volcanic									1	
735.1	897.0	Quartz-Sericite Schist		1								
897.0		: trace to 5% pyrite throughout										
057.0										-		
8			1									
-000			ĺ									
Í.												
202												
51 L												
0 11 25												
2 2												
77,												
							ł					

										- RI - 8	8-25	1	of 14
NAME OF	PROP	Randall Lake	FOOTAGE	DIP	AZIMUTH	FOOTAGE	DIP	AZIMUTH	HOLE N	0.1 <u>11-0</u> P	a 72001	EET NO R	
HOLE NO	. <u></u>	<u>-88-25</u> LENGTH <u>897 ft.</u>		450		000			REMAR	IKS	<u>a 720010</u>		
LOCATIO	N <u>18</u>)+00W 4+53N	200	-420		800	-28						
LATITUDE	E	DEPARTURE	-100	-43									
ELEVATIO	он <u></u>	AZIMUTH332 DIP45	400	26 6							D Tav	lor	
STARTED	1988	02-15 FINISHED 1988-02-19	000	-30.5		II			LOGGED	BY	r. tay		
FOOT	AGE			1		SAM	PLE		[A	SSAY	5]
	10	DESCRIPTION					FOOTAG	E			AU	heck	
FROM					TIDES	FROM	TO	TOTAL	· •	°0	02/10N	OZ/TON	
0	8.1	Casing and Overburden											
8.1 89	168.4	Mafic Volcanic - light to dark green, fine to medium grained, quartz-chlorite schist; textural variations fr strongly foliated chloritized volcanic to a ma chloritized looking amphibolitic texture Average Modes: Chlorite 55-80% Plagioclase 10-15% Quartz 5-15% Biotite 1-10% Amphibole 1-5% Calcite 1-5% Pyrite trace - thin irregular quartz-calcite veinlets (< 1.	om a ssive 2") on 1]el to c filled	91	73 tr	F 1 20.0	мисс SSIE МДР 25.0	NO: 200 8 (186 17 IOE 78 188 V Ε 5.0	L SUM TLE 3	EV	Ir		
										-			

FORM 1

NAME OF PROPERTY______Randall Lake HOLE NO. RL-88-25 SHEET NO. 2 of 14

FOOTAGE.					SAMPL	. C .		ASSAYS			kI
FROM	10		40	5 SULPH IDES	TROM	FOOTAGE	TO 1A1		oAYow	Chefik	
		28.6 to 67.6 - massive to poorly foliated, chloritized amphibolitic texture - 31.0; foliation at 60° to core axis - 37.0 to 42.0; numerous quartz-calcite veinlets <1/2" + trace pyrite	9174	tr	37.0	42.0	5.0		Tr		
		- 56.0; foliation at 57° to core axis	9175	tr	48.0	53.0	5.0		Tr		
		67.6 to 77.0 - foliated chloritized volcanic - 69.0 to 72.0; pervasive carbonatization from 69.2 to 70.2	9176	tr	69.0	72.0	3.0		.002		
		 77.0 to 89.5 - massive to poorly foliated, medium grained chloritized, amphibolitic texture 74.5; foliation at 81° to core axis 77.0 to 79.5; 1.0' glassy quartz-calcite vein at 50° to core axis 	9177		77.0	79.5	2.5		Tr		
		 89.5 to 128.0 - foliated, chloritized volcanic with minor argillaceous contamination as wispy biotite rich laminae; 10 to 30% calcite stringers throughout - 92.0 to 94.0; 4.0" quartz-calcite vein at 55° to core axis; inclusions of wallrock throughout - 102.0; foliation at 78° to core axis 	9178	tr	92.0	94.0	2.0		Tr		
		 - 113.5 to 117.5; 1.0' of bleached material - 122.5 to 127.5; glassy quartz-calcite vein from 123.9 to 126.7; upper contact at 40° to core axis; irregular inclusions of host throughout; trace pyrite on fractured surfaces 	9179 9180 9181 9182	tr tr tr	97.0 113.5 117.5 122.5	102.0 117.5 122.5 127.5	5.0 4.0 5.0 5.0		Tr •002 Tr		

FORM 2

. ANGPOGES - TOPONTO - 365-1158
AM	OND DRILL RECORD	٢	IAME C	OF PROPE	RTY	Randa 1	1 Lake		3 0	F 1A
		+	IOLE N	10. <u></u>	88-25		5H (CET NO.		/1 14
DOT AGE	DECONDIAN			SAMP	. E				ASSAYS	
10	UL SCHIPTION	140	5. 501 Pr 104 S	FHOM	TODTAGE	10141		·.	AYON	Check
.4 371.2	 128.0 to 168.4 - argillaceous contamination as thin biotite rich stringers (≤ 1/8") or wisps 132.0; foliation at 42° to core axis 137.0 to 142.0; irregular calcite filled fracture pattern 154.5 to 163.8; wispy carbonatization throughout 163.8 to 168.4; finely laminated silty material throughout; from 167.0 to 168.4, 5 to 20% biotite Ultramafic Volcanic dark greenish-grey, fine grained sheared, contorted and pervasively carbonatized talc-carbonate-chlorite schist, with disseminated elongate quartz-carbonate augen throughout, upper contact at 62° to core axis, strong foliation Average Modes: Chlorite 20-40% Carbonate 20-30% Quartz 5-10% Magnetite trace to 2% Pyrite trace pyrite as fine disseminated grains or irregular patches; magnetite as thin stringers or patches randomly distributed throughout 172.0; foliation at 70° to core axis 196.5 to 199.5; trace pyrite as fillings in microfractures 	9183 9184 9185 9186 9187 9187 9187	tr tr tr tr tr	127.5 137.0 142.0 159.0 163.8 187.0 196.5	130,5 142.0 147.0 163.8 168.4	3.0 5.0 5.0 4.8 4.6			Tr Tr .002 .002	

.

ANGPIDGES - TOPONTO - 366-1168

FROM

168.4

NAME OF PROPERTY____Randall Lake HOLE NO.____RL-88-25_____SHEET NO.____OF 14

F001	AGE				SAMPI	. E	•	 	ASSAYS		
FROM	10	DESCRIPTION	140	". SILL PH	5804	FOOTAGE	10141	~	AU 07 TON	Check	
		- 200.4 to 205.5; 2.2 ft. core loss - 208.0; foliation at 60° to core axis	9190	tr	207.0	212.0	5.0	 	Tr		
		 220.7 to 230.7; abundant quartz-calcite veinlets (< 1/2") and elongate augen + trace pyrite 236.5; foliation at 45° to core axis 	9191 9192	tr tr	220.7 225.7	225.7 230.7	5.0 5.0		Tr Tr		
		- 252.3 to 254.5; 4.0" quartz-calcite vein with minor fuchsite clots in wallrock inclusions, at 55% to core	9193 9194	tr	247.5 252.3	252.3 254.5	5.0 2.2		Tr Tr		
ĺ		- 258.0 to 260.0; 5.0" quartz-calcite vein at 50° to core axis	9195		258.0	260.0	2.0		Tr		
		- 267.0; foliation at 55° to core axis - 287.5 to 288.5; fine grained, chloritized volcanic	9196	tr	269.5	279.5	5.0		Tr		
		- 297.0; foliation at 50% to core axis	9197	tr	291.0	295.8	4.8		Īr		
		- 311.5 to 316.5; abundant quartz-calcite veinlets	9198 9199	tr tr	297.0 311.5	302.0 316.5	5.0 5.0		Tr Tr		
		- 319.5 to 337.0; irregular fracture pattern with a quartz-carbonate fracture filling; trace pyrite in host rock	9200 9201 9202 9203	tr tr tr	319.5 324.0 329.0	324.0 329.0 334.0	4.5 5.0 5.0		Tr TR Tr, Tr,		
		- 337.0; foliation at 47° to core axis - 365.5 to 367.0; ground and broken; 2.0' core loss	9203 9204	tr	367.0	371.2	4.2		Tr		
371.2	374.4	Mafic Volcanic - similar to 8.1 to 168.4; contacts at 60° to core axis	9205	tr	371.2	374.4	3.2		.002		

FORM 2

355-158

LANGRIDGES - TORONTO

NAME OF PROPERTY______Randall Lake

1001	TAGE				SAMPI	E		1	ASSAYS		
FROM	10	DESCRIPTION	110	5 SHLPH	1.8014	TOOTAGE	10141		AYON	Check	
374.4	393.5	Interbedded Ultramafic Volcanic and Iron Formation - similar to interval 168.4 to 371.2, consists of interbedded talc-carbonate-chlorite schist and finely laminated magnetite-chert									
		374.4 to 379.7 - talc-carbonate-chlorite schist with elongate quartz-calcite augen, trace pyrite	9206	tr	374.4	379.7	5.3		Tr		
		379.7 to 381.8 - chloritized, silty unit with trace pyrite - 380.0; foliation at 65° to core axis	9207	tr	379.7	381.8	2.1		Tr		
		381.8 to 384.4 - similar to interval 374.4 to 379.7	9208	tr	381.8	384.4	2.6		Tr		
		384.4 to 387.3 - 80-90% massive magnetite with very thin chert laminae (< 1/16"); slightly folded on a microscale but no fracturing; trace pyrite; contacts at 67° to core axis	9209 9210	tr tr	384.4 385.9	385.9 387.3	1.5 1.4		Tr Tr		
		387.3 to 393.5 - talc-carbonate-chlorite schist with elongate quartz-calcite augen throughout; with trace pyrite - 390.5 to 391.5; 5 bands (≤ 1.0") of 80 to 90% magnetite with thin chert laminae, trace pyrite	9211 9212 9213	tr tr	387.3 390.5 391.5	390.5 391.5 393.5	3.2 1.0 2.0		Tr Tr Tr		
393.5	398.8	Mafic Volcanic - similar to interval 8.1 to 168.4; upper contact at 62° to core axis, lower contact at 60° to core axis	9214 9215	tr tr	393.5 397.0	397.0 398.8	3.5 1.8		Tr Tr		
398.8	523.6	<u>Interbedded Ultramafic Volcanic and Banded Iron Formation</u> - consists of alternating talc-carbonate-chlorite schist; quartz-carbonate-chlorite schist (similar to 168.4 to 371.2) and banded iron formation, iron formation consists of finely laminated (< 1/2") alternating magnetite-chert-amphibole, folded and deformed but without brittle failure									

HOLE NO. ______ RL-88-25_______ SHEET NO.____

6 of 14

F001	AGE.				5AMPI	. C		[ASSAYS		
FROM	10	DESCRIPTION	110	SHEPH HULS	T R DHA	TOUTAGE	10141		·.	AU	Chete	
		Average Modes of Iron Formation: Magnetite 20-40% Chert 20-35% Amphibole 15-25% Calcite trace to 2% Pyrite trace to 1% culphide in icon formation ecount as fine										
		disseminated grains or thin stringers and patches parallel to the laminae										
		398.8 to 403.7 - banded iron formation with trace to 1% pyrite throughout; contacts at 60° to the core axis 403.7 to 419.2 - talc-carbonate-chlorite schist with numerous	9216 9217 9218	1 1 0.5	398.8 400.0 402.0	400.0 402.0 403.7	1.2 2.0 1.7			Tr .008 .002		
		elongate quartz-calcite augen parallel to S1 - 403.7 to 407.3; 5% (1/16") magnetite laminations; trace pyrite	9219	tr	403.7	407.3	3.6			Tr		
		- 409.0; foliation at 70° to core axis - 412.4 to 416.0; 3.0" quartz-calcite vein with inclusions of wallrock and trace pyrite - 416.0 to 419.2; trace pyrite; slightly less talcose	9220 9221 9222	tr tr	407.3	412.4	3.6 3.2			Tr Tr		
		419.2 to 423.7 - highly foliated quartz-carbonate-chlorite schist with 0.5% coarse grained subhedral pyrite	9223	0.5	419.2	423.7	4.5			Tr		
		 423.7 to 453.1 - talc-carbonate-chlorite schist with disseminated elongate quartz-carbonate augen throughout 423.7 to 433.7; trace to 0.5% fine to medium grained subhedral pyrite throughout 433.0; foliation at 72° to core axis 	9224 9225 9226 9227	0.5 tr5 tr	423.7 428.7 433.7 438.7	428.7 433.7 438.7 438.7	5.0 5.0 5.0 5.0			Tr Tr .002		

ANGRIDGES - TOPONTO - 355-1158

HOLE NO. RL-88-25 SHEET NO.

7 of 14

F Q O T	AGE				SAMPL	.Ľ		AS	SAYS		
FHOM	10	DESCRIPTION	140	5 501 PH 101 5	FR0M	F001AGE	TUTAL	 ·. 0	Ачон Сле	r.k	
		453.1 to 461.0 - quartz-carbonate-chlorite schist; strongly foliated - 461.0; foliation at 50° to core axis									
		461.0 to 467.5; strongly foliated talc-carbonate-chlorite schist with numerous elongate quartz-calcite augen parallel to S1	9228	tr	461.0	465.0	4.0	T	r		
		467.5 to 470.2 - finely laminated, lean iron formation folded and deformed, 5 to 20% magnetite, 30 to 50% amphibole, 25 to 30% chert	9229 9230 9231	tr 0.5 tr	465.0 467.5 468.9	467.5 468.9 470.2	2.5 1.4 1.2	T1 T1 •(r r 208		
		470.2 to 499.7 - talc-carbonate-chlorite schist with disseminated elongate quartz-calcite augen stretched parallel to S1; fine to coarse grained subhedral disseminated pyrite throughout					•				
		- 473.0; foliation at 50° to core axis									
		499.7 to 501.8 - talc-carbonate-chlorite schist with finely	9233 9234 9235	0.5 0.5 tr	478.5 483.5 495.0	483.5 488.5 499.7	5.0 5.0 4.7	TI TI TI	r r r		
		laminated silty and cherty bands - 499.7 to 501.8; 0.5 pyrite, trace arsenopyrite, as fine disseminated grains or thin stringers parallel to S1 - 501.5; foliation at 60° to core axis	9236	0.5	499.7	501.8	2.1	Tı	r		
		501.8 to 508.5 - talc-carbonate-chlorite schist with disseminated elongate quartz-calcite augen stretched parallel to S1; fine to medium grained disseminated pyrite throughout	9237 9238	0.5 tr	501.8 506.8	506.8 508.5	5.0 1.7	T I	r r		
		508.5 to 510.6 - finely laminated, silty-cherty interval	9239	0.5	508.5	510.6	2.1	T I	r		

LANGPIDGES - "OPON"O - 356-1169

			ł	IOLE N	io <u>RL</u>	-88-25		SHI	EET NO	8	of 14
F001	AGE				SAMP	LE		Ι		ASSAYS	
TROM	10	DESCRIPTION	10	5.504 Pa 101 S	THOM	FOOTAGE	TOTAL		·.	0A40N	Cherk
		510.6 to 523.6 - talc-carbonate-chlorite schist with disseminated elongate quartz-calcite augen parallel to S1 - 520.6 to 523.6; trace pyrite; from 523.2 to 523.6;	9240 9241 9242	tr tr tr	510.6 515.6 520.6	515.6 520.6	5.0 5.0 3.0			Tr Tr Tr	
523.6	557.6	 - 520.6 to 523.6; trace pyrite; from 523.2 to 523.6; chloritized mafic volcanic <u>Chloritized Siltstone</u> light to dark green, finely laminated, sheared chloritized siltstone; fine grained, slightly granular texture; upper contact at 65° to core axis Average Modes: Chlorite 50-60% Quartz 30-40% Sericite 1-10% Biotite 1-5% Calcite 1-5% Magnetite trace tol% Pyrite trace sericite as very thin (<1/16") stringers parallel to \$1 towards end of interval; thin wisps of calcite throughout; magnetite as fine disseminated grains; pyrite as fine to medium disseminated grains, slightly stretched parallel to \$1 - 523.6 to 525.0; 1.0" quartz-calcite-tourmaline veinlet at 40° to core axis with 2% pyrite - 530.0; foliation at 55° to core axis - 540.0 to 542.0; strong carbonatization as thin irregular wisps 	9242 9243 9244 9245 9246 9247 9248	tr 2 tr tr tr tr	520.6 523.6 525.0 530.0 540.0 542.0	523.6 525.0 530.0 535.0 542.0 542.0 547.0	3.0 1.4 5.0 5.0 2.0 5.0			Tr Tr Tr Tr Tr Tr	

NAME OF PROPERTY______Randa]] Lake

i.

NAME OF PROPERTY_____ Randall Lake

HOLE NO. RL-88-25 SHEET NO. 9 OF 14

1.00.	TAGE.	DE CEREMON	Τ		SAMPL	C			ASSAYS		
I ROM	10	DESCRIPTION	140	5 SUEPH AUTS	TROM	FOOTAGE	10141	÷	oAyun	ርኯዸ፞፟ዸ	
		547.0 to 552.0 - 0.5% pyrite; slightly silicififed from 549.0 to 549.4	9249	0.5	547.0	552.0	5.0	 	Tr		
557.6	642.2	547.0 to 552.0 - 0.5% pyrite; slightly silicififed from 549.0 to 549.4 Quartz-Sericite Schist - yellowish grey to light grey, fine to medium grained, sericitized-silicified granular sediment; very strong foliation has appearance of quartz flooding; upper contact at 50° to core axis Average Modes: Quartz 50-60% Sericite 30-35% Chlorite 1-5% Calcite trace to 2% Pyrite trace to 2% Pyrite trace to 1% - pyrite/pyrrhotite as very fine disseminated grains or occasional thin stringers parallel to S1 throughout; 10 to 40% fine grained 1/16" to 1/8" quartz porphyroblasts throughout; tourmaline as thin stringers or wisps, common but widely distributed throughout	9250	0.5 tr	547.0 552.0	552.0	5.6		Tr		
		 557.6 to 596.5 - alternating quartz-sericite schist and slightly chloritized quarz-sericite schist, intensively silicified; transition zone from chloritized siltstone - 572.0; foliation at 45° to core axis 	9251 9252 9253 9254	1 1 0.5 1	557.6 563.0 568.0 573.0	563.0 568.0 573.0 577.0	5.4 5.0 5.0 4.0		Tr Tr Tr Tr		

IGPIDGES - TOPONTO - 265.1168

NAME OF PROPERTY_____Randall Lake

HOLE NO. RL-88-25 SHEET NO. 10

10 of 14

F OO'	TAGE		T		SAMPL	.t			ASSAYS		
FROM	10	DESCRIPTION	ND	5, 501 PH 104 S	FROM	TOOTAGE	TOTAL	·.	0440N	Cherk	
		- 577.0 to 581.0; 10 to 15% secondary quartz veinlets $(\leq 1/2")$ parallel to S1; 1 to 2% pyrite	9255	2	577.0	581.0	4.0		Tr		
		- 581.0 to 583.0; intensively silicified and contorted laminae	9256		581.0	583.0	2.0		Tr		
		- 594.3 to 596.5 - chloritized interval	9258 9259	1 0.5	588.0 594.3	593.0 596.5	5.0 2.2		Tr Tr		
		596.5 to 631.0 - strong silicification, moderate to strong sericitization; 0.5 to 2% pyrite throughout - 611.0; foliation at 65° to core axis	9260 9261 9262 9263	1 1 1 2	596.5 601.5 606.5	601.5 606.5 611.5	5.0 5.0 5.0		Tr Tr Tr		
		(<1.0") parallel to S1; 1 to 2% pyrite	9263 9264 9265	1	616.5 621.5	621.5 626.0	5.0 4.5		Tr Tr		
		631.0 to 642.2 - 1 to 10% chlorite, 1 to 5% biotite contamination in a quartz-sericite schist, producing a mottled dark grey appearance; fine 1/16" to 1/8" dark grey porphyroblasts, stretched parallel to S ₁ throughout; trace to 2% pyrite	9401	2	626.0	031.0	5.0		ir		
		 631.0 to 632.5; dark grey, finely laminated 632.5 to 634.5; abundant dark grey porphyroblasts throughout 638.3 to 642.2; guartz-calcite-tourmaline flooding 	9402 9403 9269 9270	l tr tr tr	631.0 632.5 634.5 638.3	632.5 634.5 638.3 640.0	1.5 2.0 3.8 1.7		Tr Tr Tr Tr Tr		1
		with 1 to 5% fuchsite alteration	9271	0.5	640.0	642.2	2.2		Tr		
642.2	661.9	<u>Siltstone</u> - grey to yellowish grey, fine grained, finely laminated weakly sericitized-chloritized sediment; strong foliation; upper contact at 70° to core axis									
			I								

NAME OF PROPERTY_____Randall Lake

11 of 14 HOLE NO. RL+88-25 SHEET NO.

FOOT	AGE.				SAMP	LE			ASSAYS		
1 ROM	10	DESCRIPTION	140	- 501 PH	FR0M	FOOTAGE	10141		"AY	ርካኖሮያ	
		Average Modes: Chlorite 30-40% Quartz 30-40% Sericite 5-20% Biotite 1-10% Calcite trace to 2% Pyrite trace to 1%									
		 pyrite as fine disseminated grains or thin stringers parallel to S1 642.2 to 647.0; 80 to 90% sericite from 645.8 to 646.4 652.0: foliation at 66° to core axis 	9272 9273 9274	1 0.5 0.5	642.2 647.0 652.0	647.0 652.0 657.0	4.8 5.0 5.0		Tr Tr Tr		
		- 657.0 to 661.9; several 1/16" to 1/8" stringers of pyrite	9275	2	657.0	661.9	4.9		Tr		
661.9	728.4	Quartz-Sericite Schist - similar to interval 557.6 to 642.2; upper contact at 70° to core axis									
		661.9 to 680.6 - strong silicification, weak to moderate sericitization - 672.0 to 677.0; (2 to 3%) 1/8" to 1/4" pyrite stringers throughout	9276 9277 9278	1 1 3	661.9 667.0 672.0	667.0 672.0 677.0	5.1 5.0 5.0		Tr Tr Tr		
		- 679.0; foliation at 60° to core axis	9279		6//.0	680.6	3.6	{			
		680.6 to 684.6 - quartz-carbonate-chlorite schist interbed; strongly foliated; contacts at 74° to core axis; minor fuchsite alteration with 1% pyrite at end of interval	9280	1	680.6	684.6	4.0		Tr		

NAME OF PROPERTY. Randall Lake

HOLE NO. _______ RL-88-25__________ SHEET NO. _____ 12 of 14

FOO	TAGE	DECORDION			SAMPI	. E			ASSAYS		
FROM	10	ULSUMP HON	но	5, 501 PH 104 S	LEDM	TOOTAGE	101AL	·,	0A40m	Cherk	
		 684.6 to 699.0 - strong silicification; weak to moderate sericitization; trace to 2% pyrite throughout - 689.0 to 694.0; 1/16" pyrite stringers throughout - 695.0; foliation at 66° to core axis 	9281 9282 9283	1 1 1	684.6 689.0 694.0	689.0 694.0 699.0	4.4 5.0 5.0		Tr Tr Tr		
		699.0 to 704.7 - very intense sericitization, 80 to 90% with 1 to 10% chlorite; 1 to 2% tourmaline as thin stringers parallel to S1; trace to 1% pyrite	9284 9285	1 0.5	699.0 702.0	702.0 704.7	3.0 2.7		Tr Tr		
		704.7 to 721.5 - strong silicification; weak sericitization; 1 to 3% pyrite throughout	9286 9287 9288	3 3 3	704.7 709.0 714.0	709.0 714.0 718.0	4.3 5.0 4.0		Tr Tr Tr		
		- 718.0 to 719.5; 1/2" band of 50% pyrite with minor carbonate - 718.0; foliation at 70° to core axis	9289	3	718.0	719.5	1.5		Tr		
		721.5 to 728.4 - very intensively silicified with moderate sericitization; 10 to 40% secondary quartz-veining with 1 to 5% pyrite	9291 9292	5 3	721.5	724.0	2.5 4.4		Tr Tr		
728.4	735.1	Mafic Volcanic - dark green, fine grained, strongly foliated quartz-carbonate-chlorite schist; wispy carbonat- ization throughout; stretched parallel to S1; upper contact at 74° to core axis									
		Average Modes: Chlorite 55-60% Plagioclase 10-15% Quartz 5-15% Calcite 5-10% Biotite 1-5% Pyrite trace to 1%									

NAME OF PROPERTY. Randall Lake HOLE NO. RL-88-25 SHEET NO. 13 of 14

1001	AGE		Ī	a dan ya aray ya Pa	SAMPL	.E	F 2007 Maging # Bortaero	- <u>7 1</u> 4 03 04 04		ASSAYS	Ch 1	
FROM	10	DESCRIPTION	110	SULPH IDES	FROM	FOOTAGE	TOTAL		[AU 07 TON	OZ TON	
		- pyrite as fine disseminated grains throughout										
735.1	897.0	Quartz Sericite Schist - similar to interval 557.6 to 642.2; upper contact at 70° to core axis										
		 735.1 to 774.0 - very strong sericitization with 10 to 40% secondary quartz veining and 1 to 3% carbonate; 1 to 5% pyrite throughout - 745.0; foliation at 68° to core axis 	9295 9296 9297 9298 9298 9299 9300 9301	3 3 5 5 3 3 3 3	735.1 739.0 743.0 747.0 751.0 755.0 759.0	739.0 743.0 747.0 751.0 755.0 759.0 763.0	3.9 4.0 4.0 4.0 4.0 4.0 4.0			Tr Tr Tr Tr Tr Tr Tr Tr		
		- 773.5; foliation at 68° to core axis	9302 9303 9304	2 2 3	763.0 767.0 771.0	767.0 771.0 774.0	4.0 4.0 3.0			Tr Tr Tr		
		 774.0 to 781.2 - moderate silicification with weak sericitization; trace to 2% pyrite throughout 781.2 to 800.0 - strong silicification with weak sericitization; 1 to 2% pyrite throughout - 784.0; foliation at 65° to core axis 800.0 to 810.5 - very strong sericitization with up to 10% 	9305 9306 9307 9308 9309 9310 9311	2 2 2 2 2 3	774.0 779.0 781.2 786.0 791.0 796.0 800.0	779.0 781.2 786.0 791.0 796.0 800.0 805.2	5.0 2.2 4.8 5.0 5.0 4.0 5.2			Tr Tr Tr Tr Tr Tr Tr		
LANGRIOGES - TOPONTO - 365-148		secondary quartz veining and trace to 3% pyrite	9312		805.2	810.5	5.3					

NAME OF PROPERTY______Randall Lake

FOOTAGE	DESCRIPTION			SAMPI	C		l	AS	SAYS	
ROM 10		10	5, 501 PH 101 S	THOM	FOOTAGE	10141		·. 05	14 Che	fr.k
	810.5 to 837.0 - very strong silicification with 10 to 40% secondary quartz veining and 1 to 5% carbonate; moderate sericitization, 1 to 3% pyrite; trace galena from 814.0 to 816.0	9313 9314 9315 9316 9317	3 3 3 3 3 3	810.5 814.0 816.0 818.0 822.0	814.0 816.0 818.0 822.0 826.0	3.5 2.0 2.0 4.0 4.0		Tı Tı Tı Tı Tı		
	 - 823.0; foliation at 56° to core axis 837.0 to 849.0 - moderate silicification and sericitization with up to 10% secondary quartz verning and 1 to 3% carbonate; numerous 1/16" stringers of pyrite; 1 to 3% pyrite in remainder 	9318 9319 9320 9321 9322 9323	2 3 1 1 1	826.0 830.0 834.0 837.0 842.0 847.0	830.0 834.0 837.0 842.0 847.0 849.0	4.0 4.0 3.0 5.0 2.0		Tr Tr Tr Tr Tr		
	 849.0 to 889.9 - very weak sericitization and moderate silicification with trace to 1% pyrite; up to 10% secondary quartz-veining; 1 to 3% carbonate - 865.0; foliation at 70° to core axis 871.2 to 873.0; several finely laminated silty fuchsite bands, up to 5" wide; trace pyrite 	9324 9325 9326 9327 9328 9329	1 1 1 1 tr	849.0 854.0 859.0 864.0 869.0 871.2	854.0 859.0 864.0 869.0 871.2 873.0	5.0 5.0 5.0 2.2 1.8		Tr Tr Tr Tr Tr Tr		
	889.9 to 897.0 - weak silicification and very weak sericitization with trace pyrite - 891.0; foliation at 68° to core axis	9330 9331 9332 9333 9334	2 1 0.5 0.5 tr	873.0 878.0 883.0 888.0 888.0 889.9	878.0 883.0 888.0 889.9 895.0	5.0 5.0 5.0 1.9 5.1		Tr Tr Tr Tr		
97.0	END OF HOLE							A	ada	na ^{r.}

NAME OF PROHOLE NO LOCATION LATITUDE ELEVATION STARTED	PERTY Randall Lake L-88-26 LENGTH 997 ft. 112+00W 4+34N DEPARTURE AZIMUTH332 ⁰ DIP44 ⁰ 8-02-19 FINISHED1988-02-23	FOOTAGE 0 200 400 600	DIP -44 ⁰ -37 ⁰ -30 ⁰ -24 ⁰	AZIMUTH	FOOTAGE 800 - 997 -	DIP AZ 21 ⁰ 19,5 ¹	ШМИТН	HOLE F	NO. <u>RL-8</u> RKS	<u>8-26</u> ын а 72002 Р. Тау	9 10	of 1
FOOTAGE	DESCRIPTION			1 35	S А М Р	L E			^	SSAY Au ji	s Check (
FROM TO 0 22. 22.0 98. 98.8 464. 464.0 499. 499.5 592. 592.5 600. 600.3 617. 617.3 677. 676.0 896. 912.9 942. 942.5 965. 965.6 980. 980.1 997.0	SUMMARY LOG Casing and Overburden Mafic Volcanic Ultramafic Volcanic Mafic Intrusive (Gabbro) Ultramafic Volcanic Quartz-Sericite Schist Siltstone (Chloritized) Greywacke (Sericitized) Siltstone (Chloritized) Mafic Volcanic Siltstone (Chloritized) Quartz-Sericite Schist trace to 5% disseminated pyrite throughout Ultramafic Volcanic Quartz-Sericite Schist Siltstone (Chloritized) Quartz-Sericite Schist Siltstone (Chloritized) Quartz-Sericite Schist Siltstone (Chloritized) Quartz-Sericite Schist Siltstone (Chloritized) Greywacke (Sericitized) Ind of Hole			D. SUP	PII FROM	DNTAB	TOTAL DEPENDENCE DESSIVE OFTE DR 2 C E	Constant Both Fi OE V E	SUPTE LLS			

FORM 1

NAME OF PROPER HOLE NO, RL-86 LOCATION L112 LATITUDE ELEVATION STARTED 1988-02	TYRandall Lake B-26997 ft. HOOW 4+34N 	FOOTAGE 0 200 400 600	DIP -44 ⁰ -37 ⁰ -30 ⁰ -24 ⁰	AZIMUT	H FOOTAGE 800 997	DIP A -21 ⁰ -19.5	ZIMUTH	HOLE NO REMAR LOGGED	<u>, RL-88-26</u> кs <u>Pa 72</u> ву <u>Р.</u> Та	знеет но. 0029 ylor	1 of 13
FOOTAGE FROM TO	DESCRIPTION		N	0. sự	SAM P	FOOTAGE	1 1014	1 25	ASS AU V OZ/T	Check	
0 22.0 22.0 98.8	Casing and Overburden Mafic Volcanic - light to dark green, fine grained, strongly foliated quartz-chlorite schist; weak or modera wispy carbonatization throughout, often associa with trace pyrite Average Modes: Chlorite 60-75% Plagioclase 10-15% Calcite 5-15% Biotite 1-5% Pyrite trace - pyrite as fine disseminated grains, throughout - 31.0; foliation at 66° to core axis - 35.5 to 40.5; several thin quartz-calcite vel with trace pyrite - 40.5 to 44.0; 4.0" quartz-calcite vein at 45° core axis - 44.0 to 50.5; wispy calcite stringers absent this interval; broken	ite ited inlets in in	9. 9. 9. 9. 9.	335 tr 336 tr 337 tr 338 tr 339 tr 339 tr	PEC 25.5 30.5 35.5 40.5 51.5 56.5	30.6 35.5 40.5 56.5 61.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		Tr Tr Tr Tr Tr Tr		

NAME OF PROPERTY	Randall Lake
HOLE NO RL-88-26	SHEET NO.

				2	of	13	
E E I	T	NO.	_				

1.00	1 AGE	DESCRIPTION		SAMPLE				ASSAYS				
FROM	10	DESCRIPTION	NO	1 SUL P	FROM	FOOTAGE	10141		<u>.</u>	AU 07 TOM	Check	
F 00 F HOM 98.8	464.0	Description - 61.5 to 82.0; numerous quartz-calcite veinlets (<1.0") + trace pyrite, roughly parallel to S1 common but widespread throughout; trace pyrite in wallrock	9341 9342 9343 9344 9345 9346 9347 9348	tr tr tr tr tr 1	61.5 66.5 71.5 76.5 82.0 87.0 92.0 97.0	66.5 71.5 76.5 82.0 87.0 92.0 97.0 98.8	5.0 5.0 5.0 5.5 5.0 5.0 5.0 1.8			ASSAYS Au or Tom Tr Tr Tr Tr Tr Tr Tr	Check or tow	
		Talc 30-40% Talc 30-40% Chlorite 20-30% Quartz 5-10% Serpentine 1-3% Magnetite trace to 2% Pyrite trace Pyrrhotite trace										

FORM 2

NAME OF PROPERTY_____Randall Lake DI -88-26 SHEET NO.____3 OF 13

FOOTAGE	DECORDINA			SAMPL	E		ASSAYS				
0M 10	DESCRIPTION	но	* SUL PH	E8014	FOOTAGE	1014	l	1.	AU 07 TON	Check	
	 magnetite as fine disseminated grains throughout pyrite/pyrrhotite as fine to medium disseminated grains 										
	- 110.0; foliation at 55° to core axis	9349	0.5	98.8	103.8	5.0			Tr		
	- 129.0 to 131.0; very fine (<< 1/32") magnetite	9350 9351	tr tr	117.0 129.0	122.0 131.0	5.0 2.0			Tr Tr		
X	- 149.0: foliation at 60° to core axis	9352	tr	131.0	136.0	5.0			Tr		
		9353 9354	tr	152.0 176.0	157.0 181.0	5.0 5.0			Tr Tr		
	- 179.5; TOTTALION AL SU' LO CORE AXIS	9355 9356	tr tr	186.0 201.5	191.0 206.5	5.0 5.0			Tr Tr		
	- 220.0; foliation at 60° to core axis	9357	tr	223.0	228.0	5.0			Tr		
	 - 228.0 to 241.0; coarse grained pyroxenite, totally altered to talc-carbonate+serpentine - 264.0 to 269.0; numerous quartz-calcite+talc augen 	9358 9359	tr tr	255.0 264.0	260.0 269.0	5.0 5.0			Tr Tr		
	 - 268.0; foliation at 55° to core axis - 291.7 to 295.0; coarse grained pyroxenite 	9360	tr	277.0	282.0	5.0			Tr		
	- 297.0 to 310.4; abundant contorted and irregular quartz-carbonate <u>+</u> talc augen and veinlets (< 1/2") <u>+</u> trace pyrite/pyrrhotite	9361 9362 9363	tr tr tr	297.0 302.0 307.0	302.0 307.0 310.4	5.0 5.0 3.4			Tr Tr Tr		
	- 310.4 to 313.0; highly chloritized ultramafic; several bands, up to 4", of massive chlorite, at 311.3 1/2" quartz-calcite-tourmaline veinlet with trace pyrite	9364	tr	310.4	313.0	2.6			Tr		

108H 2 1

FROM ----

T

NAME OF PROPERTY.	andall Lake
HOLE NO	4 of 13
SAMPLE	ASSAYS
SULPH FOOTAGE	Au Theckt

I FOOTAGE	DESCRIPTION	SAMPLE			- •-			,	-35/(13		
CHON 10		ND.	5, SUL PH		FOOTAGE			. 1	AU	Check	
			<u>. 191 5 .</u>	1404	10	TOTAL				01 104	
	- 316.0; foliation at 50° to core axis	0365	tr	317 6	321 5	10			Tn		
	- 337.0; foliation at 56° to core axis	0,000		317.5	254.0	4.0 F 0					
		9366	0.5	349.2	354.2	5.0			Ir		
	- 367.0 to 372.0; numerous thin (< 1/2") and contorted quartz-calcite veinlets + trace pyrite - 370.0; foliation at 65° to core axis	9367	tr	367.0	372.0	5.0			Tr		
		9368	tr	390.2	395 2	5.0		\ <u>\</u>	Tr	} }	
	- 398.5 to 403.5; 2 - 1.0" carbonate-quartz-talc augen with trace pyrite	9369	tr	398.5	403.5	5.0			Tr		
	- 403.5 to 422.5; 10 to 30% quartz-carbonate <u>+</u> talc veinlets and disseminated elongate augen, parallel to	9370 9371	tr tr	403.5	408.5	5.0 5.5			Tr Tr		
	S ₁ + trace pyrite	1	1				1	1			
	- 406.0; foliation at 60° to core axis	9372	ltr	414.0	419.0	5.0			Tr		
	- 439.5; foliation at 65° to core axis	9373	tr 👘	419.0	422.5	3.5		ļ	Tr		
		9374	tr	447.0	452.0	5.0			Tr		
	- 458.5 to 461.0; 1 to 5% fine disseminated magnetite in 6" and 2" laminated silty and cherty bands	9375	tr	458.0	461.0	2.5			Tr		
464.0 499.5	Mafic Intrusive (Gabbro)										
1	- dark green, medium to coarse grained, massive	1		1]]]]	
	looking, chloritized gabbro, poor to no foliation.				1						
	weak to moderate carbonatization throughout, contacts			1			1	{ {		{ }	
	at 70° to core axis										
	Average Modes:]				
	Chlorite 50-70% Carbonate 20-30%		ł								
	Amphibole 5-10%						1				
R,	Plagioclase 5-15%			ł	l		l				
	Uuartz 5%				ſ						
ŝ	anonatita 1.2%	0276	1	460.0	474 0				T		
0	$= \operatorname{maynetille} 1 = \mathcal{L}_{b}$	193/0	ł	409.0	4/4.0	5.0	1		1F T		
200	disseminated magnetite throughout	93/7		4321	499.5	4.4			11,		
1											
bi l		1		1	1						
â U					ļ						
	6	1	1				1				
		3	1	1	1	3	1	۰ I		۱ I	

108M 2

NAME OF PROPERTY Randall Lake HOLE NO. RL-88-26 SHEET NO. 5 OF 13

F001/	AGE		SAMPLE				ASSAYS					
FROM	10	DESCRIPTION	HO.	SUL PH	FROM	FOOTAGE TO	TUTAL		-,	OZ TON	Check	
499.5	592.5	<u>Ultra Mafic Volcanic</u> - similar to interval 98.8 to 464.0	0070		400 F	F04 F	5.0		1	-		
		- 510.0; foliation at 62° to core axis	9378	tr tr	499.5 622 6	504.5	5.0					
		- 540.0; foliation at 75° to core axis - 543.0 to 547.5; trace pyrite and 1 to 2% magnetite	9380	tr	543.0	527.5 547.5	5.U 4.5			Tr		
		throughout - 582.0 to 587.0; from 585.0 to 586.0, 2 - 1.0" bands of massive magnetite with quartz-carbonate micro fractures crosscutting on an irregular pattern; trace pyrite - 587.0; foliation at 70° to core axis	9381 9382	tr tr	551.0 582.0	556.0 587.0	5.0 5.0			Tr Tr		
592.5	600.3	<u>Mafic Intrusive (Gabbro)</u> - similar to interval 464.0 to 499.5; medium grained, massive to poorly foliated, chloritized gabbro, contacts at 65° to core axis, numerous carbonate filled irregular veinlets and micro fractures throughout	9383	tr	592.5	597.5	5.0			Tr		
600.3	617.3	Ultramafic Volcanic - similar to interval 98.8 to 464.0; lower contact at 68° to core axis - 607.0 to 612.0; several quartz-carbonate + talc veinlets (up to 2.0") + trace pyrite at 70° to core axis	9384	tr	607.0	612.0	5.0			Tr		

NAME	~ E	00000001	~	Ranud
11 MMC	Ur.	PROFERI	·	

HOLE NO ______ RL-88-26

Randall Lake

SHEET NO. 6 OF 13

F OO-	LAGE	DESCRIPTION			5AMP1	. E		ASSAYS					
FHOM	10	DESCRIPTION	NO.	SULPH IDES	1.014	FOOTAGE	10741		·	OFYON	Check		
617.3	677.0	Quartz-Sericite Schist - yellowish grey to light grey, fine grained sericitized-silicified weakly granular sediment; strong foliation; has the appearance of intense quartz flooding, upper contact at 68° to core axis											
		Average Modes:Quartz50-60%Sericite25-35%Chlorite1-10%Calcitetrace to 1%Amphibole (?)trace to 2%PyritetraceArsenopyritetracePyrrhotitetraceChalcopyritetrace											
		- pyrite as very fine disseminated grains on occasional thin stringers parallel to S ₁ ; 10 to 40% fine grained 1/16 to 1/8" quartz grains throughout; occasional black fragments (amphibole) scattered throughout											
		617.3 to 671.7 - very strongly silicified; weak to moderate sericitization - 617.3 to 619.0; 1% pyrite, 0.5% arsenopyrite	9385 9386 9387	1.5 tr 1	617.3 619.0 624.0	619.0 624.0 629.0	1.7 5.0 5.0			Tr Tr Tr			
		 - 628.0; foliation at 64° to core axis - 629.0 to 634.0; irregular micro fracture pattern with pyrite filling - 634.0 to 639.0; 2% pyrite; at 637.0; 1" discordant quartz-carbonate veinlet with tourmaline selvage and trace pyrite 	9388 9389	1 2	629.0 634.0	634.0 639.0	5.0 5.0			Tr Tr			
2													

NAME OF PROPERTY_____Randall Lake

HOLE NO. RL-88-26 SHEET NO. 7 of 13

F001	AGE		SAMPLE						ASSAY5		
FROM	10	DESCRIPTION	110	5. 501 PH	FRUM	FOOTAGE	10141	·,	AU 07 TUN	Check	
677.0	696.3	 - 655.0; foliation at 70° to core axis - 671.7 to 677.0; finely laminated on a ≤ 1/4" scale with chlorite (10-20%) contamination; moderately silicified Chloritized Silistone greyish green, fine grained, highly contorted quartz-carbonate-chlorite schist; pervasive carbonatization throughout, strong foliation; upper contact at 68° to core axis; Average Modes: Chlorite 25-30% Quartz 20-25% Talc - 10% Byrite trace minor argillaceous contamination as thin biotite rich laminae common throughout; pyrite as fine disseminated grains on S1 cleavage surfaces - 690.0; foliation at 75° to core axis 	9390 9391 9392 9393 9394 9395 9396 9397 9397 9397 9398 9399 9400 9404	100 s 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	639.0 644.0 649.0 654.0 659.0 664.0 669.0 671.7 671.7 677.0 682.0 687.0 692.0	644.0 649.0 659.0 664.0 669.0 671.7 677.0 682.0 682.0 687.0 692.0 696.3	5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.7 5.3 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0		Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr		
, ,			•	•		r 1		 •	•		

FOHM 2

NAME OF PROPERTY____Randall Lake -88-26 SHEET NO. 8 of 13

FOOTAGE		DESCRIPTION	T		SAMPL	.E		ASSAYS				
FROM	10	DESCRIPTION	140.	SULPH IDES	FROM	FOOTAGE	TOTAL	,	'.	02 TON	Uneck	
696.3	735.6	<u>Greywacke (Sericitized)</u> - yellowish grey, fine to medium grained strongly foliated, sericitized and weakly silicified granular sediment; this interval is similar to 617.3 to 677.0; but with less intense silicification and sericitization										
		Average Modes: Sericite 40-50% Quartz 30-40% Carbonate 1-2% Pyrite trace - Arsenopyrite trace Pyrrhotite trace Chalcopyrite trace										
		- up to 10% secondary quartz-carbonate veining $(\leq 1/2")$ + trace pyrite, roughly parallel to S1, common but widespread throughout, pyrite as fine disseminated grains parallel to S1 cleavage surfaces	0405		606.2	701.0	4 7			Ta		
		- 706.0 to 709.9; 1% arsenopyrite in a 1/2" quartz- carbonate stringer - 708.0; foliation at 66° to core axis	9405 9406 9407	tr 1	701.0 706.0	701.0 706.0 709.9	4.7 5.0 3.9			Tr Tr Tr,		
		- 709.9 to 711.0; talc-carbonate-chlorite schist interbed	9408	tr	709.9	711.0	1.1			Tr		
		- 711.0 to 713.0; 4.0" quartz-carbonate vein with an irregular 1/4" crosscutting tourmaline stringer and trace pyrite/arsenopyrite	9409	tr	711.0	713.0	2.0			Tr		
		- 718.0 to 723.0; 5.0" quartz-carbonate-tourmaline vein at 70° to core axis with trace pyrite, arsenopyrite	9410 9411	1 tr	713.0 718.0	718.0 723.0	5.0 5.0			Tr Tr		
l I]							1				

FORM 2

NAME OF PROPERTY. Randall Lake HOLE NO. RL-88-26 SHEET NO. 9 of 13

+ 00	T AGE	DESCRIPTION			SAMPL	E		ASSAYS				
FROM	10	DESCRIPTION	NO	SUL PH	FROM	FOOTAGE	10141	~	5	AU 07 TON		
		- 733.5; foliation at 77° to core axis	9412 9413 9414	1 2 0.5	723.0 728.0 733.0	728.0 733.0 735.6	5.0 5.0 2.6			Tr Tr Tr		
735.6	741.3	<u>Chloritized Siltstone</u> - similar to interval 677.0 to 696.3; upper contact at 70° to core axis; trace to 1% pyrite throughout	9415 9416	1 tr	735.6 739.6	739.6 741.5	4.0 1.9			Tr Tr		
741.3	781.2	Greywacke (Sericitized) - similar to interval 696.5 to 735.6; upper contact at 72° to core axis; dirtier, unsorted sediment with 10 to 25% chlorite; 0.5 to 2% pyrite, 0.5% pyrrhotite, 0.5% arsenopyrite as fine to medium disseminated grains on S1 cleavage surfaces or thin stringers < 1/16" parallel to S1; strong foliation										
		741.3 to 769.0 - weak to moderate sericitization with trace to 2% pyrrhotite/pyrite, trace to 0.5% arsenopyrite	1									
		- 741.3 to 747.0; 0.9' core loss, blocky, 0.5% arsenopryite, 0.5% pyrite in a 2.0" guartz-carbonate	9417	1.0	741.5	747.0	5.5			Tr		
		- 747.0 to 752.0; 2.4' core loss, broken, blocky;	9418	tr	747.0	752.0	5.0			Tr		
		- 752.0 to 757.0; 20% secondary quartz-carbonate veining with trace arsenopyrite, 1% pyrite	9419	1	752.0	757.0	5.0			Tr		
		- /5/.0; follation at /5° to core axis - 757.0 to 759.0; 1.0" band of 90% massive pyrrhotite at 758.6'	9420	90	757.0	759.0	2.0			Tr		
			9421 9422	2 1	759.0 764.0	764.0 769.0	5.0 5.0			Tr Tr		

1084 2

DIAMON

DIAMOND DRILL RECORD				NAME OF PROPERTYRandall Lake								
			н	IOLE N	io. <u>RL</u>	-88-26		SHEET NO. 10 OF 13				
F 001	AGE		1		SAMPI	E				ASSAYS		
TROM	10	DESCRIPTION	NO	•. 501 PH	F RUM	1001AGE	TUTAL		•	ofYon	င့်မှင်္ငန	
	:	769.0 to 781.2 - very weak sericitization	9423 9424	0.5	769.0 774.0	774.0 779.0	5.0 5.0			Tr Tr		
781.2	786.0	Mafic Volcanic - similar to interval 22.0 to 98.8; very strongly foliated with wispy carbonatization throughout; contacts at 70° to core axis	9425 9426	tr tr	779.0	781.2	2.2 4.8			Tr Tr		
786.0	811.7	Siltstone (Chloritized) - similar to interval 677.0 to 696.3; up to 10%, 1/16" to 1/8" subrounded quartz fragments throughout; finely laminated, strong foliation										
		786.0 to 803.2 - weak to moderate chloritization	9427 9428	0.5	786.0	791.0 796.0	5.0 5.0			Tr Tr		
		- 801.0 to 803.2; 1.0% pyrite as thin < $1/32$ " stringers parallel to S ₁	9429 9430	1	796.0 801.0	801.0 803.2	5.0 2.2			Tr Tr		
		803.2 to 811.7 - weak to moderate sericitization as thin wispy	9431	1	803.2	808.0	4.8			Tr		
		- 808.0 to 811.7; 10 to 20% sericite from 811.0 to 811.7	9432	0.5	808.0	811.7	3.7			Tr		
811.7	912.9	Quartz-Sericite Schist - similar to interval 617.3 to 677.0; upper contact at 70° to core axis										
		811.7 to 827.8 - weak to moderate sericitization; moderate silicification; 30 to 40% 1/32" to 1/16" subrounded to subangular quartz fragments throughout										
	:											

VGP/DGES - 1040N10 - 345-1168

NAME OF PROPERTY Randall Lake

		HOLE NORL-88-26SHEET NO11 OF 13								
FOOTAGE	DE CORIENTION			SAMPI	ι. Ε			ţ	SSAYS	
FROM TO		NO	501 PH 101 5	FROM	1001461	TOTAL	· ·	•	. AYon	Check
	- 811.7 to 817.0; several 1/8" pyrite stringers parallel to Si	9433 2	2	811.7	817.0	5.3	•		Tr	
	- 817.0 to 822.0; 5.0" quartz-carbonate vein at 76° to core axis with trace pyrite, arsenopyrite	9434 t	r	817.0	822.0	5.0		1	Tr	
	827.8 to 912.9 - weak sericitization, weak to moderate silicification; finely laminated; 5 to 20% chlorite contamination throughout; trace to 5% pyrite as fine disseminated grains or thin (< 1/4") stringers parallel to S1	9435 2	2	822.0	827.8	5.8		1	Tr	
	- 830.0: foliation at 73° to core axis	9436 1	ł	827.8	833.0	5.2			Tr	
	- 880.0; foliation at 71° to core axis - 887.0 to 888.5; 1.5" band of 80% massive pyrite	9437 2 9438 2 9439 5 9440 2 9441 2 9442 3 9443 2 9443 2 9444 3 9445 3 9446 3 9446 3 9446 3		833.0 838.0 843.0 848.0 853.0 858.0 863.0 863.0 873.0 878.0 883.0 883.0	838.0 843.0 848.0 853.0 858.0 863.0 863.0 873.0 878.0 883.0 883.0 887.0 888.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0			Ir Tr Tr Tr Tr Tr Tr Tr Tr	
		9449 2 9450 2 9451 1 9452 1 9453 0). 5	888.5 894.0 899.0 904.0 909.0	894.0 899.0 904.0 909.0 912.9	5.5 5.0 5.0 5.0 3.4			Tr Tr Tr Tr	

•

NAME OF PROPERTYRandall La	ike
RL-88-26	12 of 13
HOLE NO.	SHEET NO.

FOOT	AGE				SAMPL	E			ASSAYS		
FROM	10	DESCRIPTION	110	SULPH IDF 5	FROM	TO	TOTAL	 ·.	AU 07 TON	Check	
912.9	942.5	Ultramafic Volcanic - similar to interval 98.8 to 464.0; highly contorted and sheared, pervasively carbonatized talc- carbonate-chlorite schist; 1/8" to 1/2" disseminated elongate, quartz-carbonate augen, parallel to S1 throughout; upper contact at 72° to core axis; trace pyrite/pyrrhotite throughout									
		912.9 to 922.2 - strongly foliated talc-carbonate-chlorite schist - 922.0; foliation at 70° to core axis	9454 9455	tr tr	912.9 918.0	918.0 922.2	5.1 4.2		Tr Tr		
		922.2 to 929.9 - highly contorted, silicified and weakly sericitized interval, with numerous thin quartz- carbonate veinlets roughly parallel to Si	9456 9457	tr tr	922.2 923.8	923.8 926.5	1.6 2.7		Tr Tr		l
			9458	tr	926.5	929,9	3.4		Tr		I
		929.9 to 942.5 - strongly foliated talc-carbonate-chlorite schist	9459 9460 9461	tr	929.9 935.0 940.0	935.0 940.0 942.5	5.1 5.0 2.5		Tr Tr Tr		
942.5	965.6	<u>Quartz-Sericite Schite</u> - similar to interval 617.3 to 677.0; upper contact at 70° to core axis; very intensively silicified, weak sericitization, 1 to 5% carbonate throughout; poor foliation developed due to intense silicification; trace to 0.5% pyrite, pyrrhotite, trace arsenopyrite as fine disseminated grains or thin (< 1/16") strongers parallel to S ₁	9462 9463 9464 9465 9466	tr 0.5 0.5 tr tr	942.5 947.0 952.0 962.0	947.0 952.0 957.0 962.0 965.6	4.5 5.0 5.0 3.6		Tr Tr Tr Tr Tr		

108M 2

Randall Lake

HOLE NO. RL-88-26 SHEET NO. 13 OF 13

......

F QQ.	LAGE.	DECEDIDION			SAMPL	. E				ASSAYS		
FROM	10	DESCRIPTION	110	5 SUL PH 101 S	FRUM	TOTAGE	TOTAL		5	AU 07 TON	Check	
980.1 997.0	980.1 997.0	Siltstone (Chloritized) - similar to interval 677.0 to 696.3; quartz-carbonate-chlorite schist; pervasively carbonatized, very strong foliation; upper contact at 65° to core axis; disseminated elongate, quartz-carbonate augen parallel to S1 common throughout, - 972.0; foliation at 62° to core axis - 972.0; foliation at 62° to core axis - 972.0; foliation at 62° to core axis - 973.7 to 980.1; very intense fuchsite alteration occurring as a total bleaching; several thin quartz-carbonate veinlets (≤ 1/2") parallel to S1 Greywacke (Sericitized) - similar to interval 696.3 to 735.6; quartz-sericite schist; very fine grained granular sediment, strong foliation; upper contact at 65° to core axis - 990.0; foliation at 65° to core axis - 990.0; foliation at 65° to core axis	9467 9468 9469 9470 9471 9472	tr tr tr tr tr tr	965.6 970.5 973.7 976.9 980.1 985.0	970.5 973.7 976.9 980.1 985.0 990.0	4.9 3.2 3.2 3.2 4.9 5.0			Au or tow Tr Tr Tr Tr Tr	Check of the	
								4	Øh	da	mo	

ANGPIDGES - TOPONTO - 366-1168

	3_{ELL} . White analytical L	ABORATO	RIES LTD.							
F	P.O. BOX 187. HAILEYBURY, ONTA	RIO TEL	: 672-3107							
Certificate of Analysis										
NO. 0281		DATE:	January 28, 1988							
SAMPLE(S) OF:	Core (96)	RECEIVED:	January 1988							
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.									
		PROJECT:	Randall Lake							

Sample No.	Oz. Gold	Sample No.	Oz. Gold	Sample No.	Oz. Gold
10001	Trace	10035	Trace	10067	Trace
2	0.002*	6	Trace	8	Trace
3	Trace	7	Trace	9	Trace
4	Trace	8	0.004	10070	Trace
5	Trace	9	Trace	1	Trace
6	Trace	10040	Trace	2	Trace
7	0.002*	1	Trace	3	Trace
8	0.002	2	Trace	4	Trace
9	0.008	3	Trace	5	Trace
10010	0.040	4	Trace	6	Trace
3	0.004	5	Trace	7	Trace
10013	Trace	6	Trace	8	Trace
4	Trace	7	Trace	9	Trace
5	0.002*	8	Trace	10080	Trace
6	Trace	9	Trace	1	Trace
7	Trace	10050	Trace	2	Trace
8	0.002*	1	Trace	3	Trace
9	Trace	2	Trace	4	Trace
10020	Trace	3	Trace	5	Trace
1	Trace	4	Trace	6	Trace
2	0.014	5	Trace	7	Trace
3	0.002*	6	Trace	8	Trace
4	0.002*	7	Trace	9	Trace
5	0.020	8	Trace	10090	Trace
6	0.008	9	Trace	1	Trace
10028	Trace	10060	Trace	2	Trace
9	Trace	1	Trace	3	Trace
10030	Trace	2	Trace	4	Trace
1	Trace	3	Trace	5	Trace
2	Trace	4	Trace	6	Trace
3	Trace	5	Trace	7	0.002*
4	Trace	6	Trace	9	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED DTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Bell - White analytical laboratories LTD.

P.O. BOX 187.

HAILEYBURY. ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 2

NO.0322 (Corrected)DATE:February 3, 1988SAMPLE(S) OF:Core (210)RECEIVED:February 1988

SAMPLE(S) FROM: Mr. J. North, Geocanex Ltd.

			PROJE	CT: Randell	Lake
Sample No.	Oz. Gold	Sample No.	Oz. Gold	Sample No.	Oz. Gold
10100	Trace	10135	0.024	10170	Trace
1	Trace	6	0.002*	1	Trace
2	Trace	7	Trace	2	Trace
3	Trace	8	Trace	3	Trace
4	Trace	9	0.002*	4	Trace
5	0.002*	10140	0.002*	5	Trace
6	Trace	1	Trace	6	Trace
7	Trace	2	Trace	7	Trace
8	Trace	3	Trace	8	Trace
9	Trace	4	Trace	9	Trace
10110	Trace	5	Trace	10180	Trace
1	Trace	6	0.002*]	Trace
2	Trace	7	Trace	2	Trace
3	0.010	8	Trace	3	Trace
4	0.002*	9	0.002*	4	Trace
5	Trace	10150	0.002*	5	Trace
6	0.002*	I	Trace	6	0.002*
7	Trace	2	0.088 - 0.094	7	Trace
8	Trace	3	0.008	8	Trace
9	Trace	4	0.002	9	Trace
10120	Trace	5	0.002*	10190	Trace
1	Trace	6	Trace	1	Trace
2	Trace	7	0.024	2	Trace
3	Trace	8	Trace	3	Trace
4	Trace	9	0.002	4	Trace
5	Trace	10160	Trace	5	Trace
6	Trace	1	Trace	6	Trace
7	Trace	2	Trace	7	0.002*
8	Trace	3	0.022	8	0.002*
9	0.004	4	0.010	9	0.020
10130	Trace	5	0.002*	10200	Trace
1	Trace	6	Trace	1	0.002*
2	Trace	7	Trace	2	0.002*
3	Trace	8	Trace	3	Trace
4	0.002*	9	Trace	4	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER

NO.

Bell - White analytical laboratories LTD.

HAILEYBURY, ONTARIO P.O. BOX 187,

DATE:

TEL: 672-3107

Certificate of Analysis

0322

Page 2 of 2

February 3, 1988

SAMPLE(S) OF: Core (210) RECEIVED: February 1988

PROJECT: Randell Lake

Mr. J. North, Geocanex Ltd. SAMPLE(S) FROM:

Sample No.	Oz. Gold	Sample No.	Oz. Gold	Sample No.	Oz. Gold
10205	Trace	10506	Trace	10541	Trace
6	Trace	7	Trace	2	Trace
7	Trace	8	0.002*	3	Trace
8	Trace	9	Trace	4	Trace
9	Trace	10510	0.002*	5	Trace
10210	Trace	1	0.002*	Ğ	Trace
1	Trace	2	0.002*	7	Trace
2	Trace	3	Trace	8	Trace
3	0.002*	4	Trace	Ğ	Trace
4	0.002*	5	Trace	10550	Trace
5	Trace	6	Trace	10000	Trace
6	Trace	7	0.004	2	Trace
7	Trace	8	Trace	3	Trace
8	Trace	9	Trace	ž	Trace
9	0.002*	10520	Trace	5	Trace
10220	Trace	l	0.002*	ő	Trace
1	Trace	2	0.012	7	Trace
2	Trace	3	Trace	8	Trace
3	Trace	4	Trace	ğ	Trace
4	0.002*	5	Trace	10560	Trace
5	0.002*	6	Trace	1	Trace
6	Trace	7	Trace	2	Trace
7	Trace	8	Trace	3	Trace
8	Trace	9	Trace	4	Trace
9	Trace	10530	Trace	5	Trace
10230	Trace	1	Trace	6	Trace
1	Trace	2	Trace	7	Trace
2	Trace	3	Trace	8	Trace
3	Trace	4	Trace	9	Irace
4	Trace	5	Trace	10570	Trace
10501	Trace	6	Trace	1	Trace
2	Trace	7	Trace	2	Trace
3	Trace	8	Trace	- 3	Trace
4	Trace	9	Trace	ž	Trace
5	Trace	10540	Trace	5	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

7 -----_____ PER_

		Bell - White	ANALYTICAL LA	ABORATOR	RIES LTD.						
		P.O. BOX 187,	HAILEYBURY, ONTA	RIO TEL:	672-3107						
Certificate of Analysis											
NO.	0362			DATE:	February 10, 1988						
SAMPLE(S)	OF:	Core (43)		RECEIVED:	February 1988						
SAMPLE(S)	FROM:	Mr. J. North,	Geocanex Ltd.								
 	. <u></u>			PROJECT:	Randall Lake						

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10576	Trace	10598	Trace
7	Trace	9	Trace
8	Trace	10600	Trace
9	Trace	١	Trace
10580	Trace	2	Trace
1	Trace	3	Trace
2	Trace	4	Trace
3	Trace	5	Trace
4	Trace	6	Trace
5	Trace	7	Trace
6	Trace	8	Trace
7	Trace	9	Trace
8	Trace	10610	0.004
9	Trace	l	Trace
10590	Trace	2	Trace
1	Trace	3	Trace
2	Trace	4	Trace
3	Trace	5	Trace
4	Trace	6	Trace
5	Trace	7	Trace
6	Trace	8	Trace
7	Trace		

IN ACCORDANCE WITH LONG ESTABLISHED NORTH AMERICAN CUSTOM. UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Pen

B	ell - White analytical i	ABORATO	RIES LTD.	
P.0	O. BOX 187. HAILEYBURY, ONT	ARIO TEL	: 672-3107	
Certificate of Analysis				
NO . 0363		DATE:	February 10, 1988	
SAMPLE(S) OF:	Core (44)	RECEIVED:	February 1988	
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.			
		PROJECT:	Randall Lake	

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10249	Trace	10271	Trace
10250	0.020	2	0.002*
1	Trace	3	Trace
2	Trace	4	Trace
3	0.002*	5	Trace
4	Trace	6	Trace
5	Trace	7	Trace
6	0.002*	8	Trace
7	Trace	9	Trace
8	Trace	10280	Trace
9	0.002*	1	Trace
10260	Trace	2	Trace
1	Trace	3	Trace
2	Trace	10619	Trace
3	Trace	10620	Trace
4	Trace	1	Trace
5	Trace	2	Trace
6	0.004	3	Trace
7	Trace	4	Trace
8	Trace	5	Trace
9	Trace	6	Trace
10270	Trace	7	Irace

*Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD. Pen

Bell-White analytical laboratories LTD.

P.O. BOX 187. HAILEYBURY. ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0364		DATE:	February 10, 1988
SAMPLE(S) OF:	Core (46)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		•
		PROJECT:	Randell Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10235	Trace	10637	Trace
6	0.002*	8	Trace
7	0.002*	9	Trace
8	0.014	10640	Trace
9	Trace	1	Trace
10240	Trace	2	Trace
1	Trace	3	Trace
2	Trace	4	Trace
3	Trace	5	Trace
4	Trace	6	Trace
5	Trace	7	Trace
6	Trace	8	Trace
7	Trace	9	Trace
8	Trace	10650	Trace
10628	Trace	1	Trace
9	Trace	2	Trace
10630	Trace	3	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	6	Trace
4	Trace	7	Trace
5	0.004	8	Trace
6	Trace	9	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD. A

	Bell - WHITE ANALYTICA P.O. BOX 187. HAILEYBURY.	AL LABORATO	RIES LTD.
Certificate of Analysis			
NO . 0375		DATE:	February 10, 1988
SAMPLE(S) OF:	Core (45)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd		
		PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10284	Trace	10307	Trace
5	Irace	8	0.002*
6	Trace	9	Trace
7	Trace	10310	Trace
8	Trace	1	Trace
9	Trace	2	Trace
10290	Trace	3	Trace
J	0.002*	10316	Trace
2	0.002*	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	10320	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	Trace	3	0.002*
9	Trace	4	Trace
10300	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	10330	Trace
6	Trace		

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Per

Bell - White analytical laboratories LTD.

P.O. BOX 187. HAILEYE

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0377

DATE: February 11, 1988

SAMPLE(S) OF: 44(core)

RECEIVED: February 1988

SAMPLE(S) FROM: H.J. Hodge, Geocanex Ltd.

<u>^ -</u>

0.14

Project: Randall Lake

Oz. Gold

Trace

Trace

Trace

Trace

Trace

Trace

Trace Trace

Trace

Trace

Trace

0.002*

Trace

Trace

Trace

Trace

Trace

Trace

Trace

Trace

Trace

0.002*

Sample No.

10682

3

4

5

6

7

8

9 10690

1

2

3

4

5

6

7

8

9

1

2

3

10700

Sample No.	<u>UZ. GOTA</u>	
10660	Trace	
1 1	Trace	
2	Trace	
2	Trace	
л	Thace	
4 5	There	
5	Trace	
D Z	Trace	
/	irace	
8	Irace	
9	Trace	
10670	Trace	
1	Trace	
2	Trace	
3	Trace	
4	Trace	
5	Trace	
6	Trace	
7	Trace	
8	Trace	
9	Irace	
10680	Trace	
1	Trace	

*Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

-8- -1 PER

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Bell - White ANALYTICAL LABORATORIES LTD.

P.O. BOX 187. HAILEY

HAILEYBURY, ONTARIO

TEL: 672-3107

BELL-WHITE ANALYTICAL LABORATORIES LTD.

<u>'</u>

PER

Certificate of Analysis

NO. 0393		DATE:	February 15, 1988
SAMPLE(S) OF:	Core (40)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10331	0.002*	10351	Trace
2	0.002	2	Trace
3	0.002*	3	Trace
4	Trace	. 4	Trace
5	Trace	5	Trace
6	Trace	6	Trace
7	Trace	7	0.002*
8	Trace	8	Trace
9	Trace	9	Trace
10340	Trace	10360	Trace
1	Trace	l	Trace
2	Trace	2	Trace
3	Trace	3	Trace
4	Trace	4	Trace
5	Trace	5	Trace
6	Trace	6	Trace
7	Trace	7	Trace
8	Trace	8	Trace
9	0.002*	9	Trace
10350	Trace	10370	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Bell - White analytical laboratories LTD.

P.O. BOX 187. HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0396		DATE:	February 15, 1988
SAMPLE(S) OF:	Core (46)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
10704	Trace	10727	Trace
5	Trace	8	Trace
6	Trace	9	Trace
7	Trace	10730	Trace
8	Trace	1	Trace
9	Trace	2	Trace
10710	Trace	3	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	6	Trace
4	Trace	7	Trace
5	Trace	8	Trace
6	Trace	9	Trace
7	0.006	10740	Trace
8	Trace	1	Trace
9	Trace	2	Trace
10720	Trace	3	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	6	0.002*
4	Trace	7	Trace
5	Trace	8	Trace
6	Trace	9	Trace

* Estimated

IN ACCORDANCE WITH LONG ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER
Bell - White ANALYTICAL LABORATORIES LTD.

P.O. BOX 187. HAILEYBURY. ONTARIO TE

TEL: 672-3107

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Par

Certificate of Analysis

Page 1 of 4

NO . 0418		DATE:	February 17, 1988
SAMPLE(S) OF:	Core (284)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North. Geocanex Ltd.		

		PROJECT:	Randall Lake
Comple No.	0- 0-14	Comple No.	
Sample No.		Sample NO.	
10371	0.002*	10407	Trace
2	0.004	8	Trace
3	Trace	9	Trace
4	0.094 - 0.090	10410	Trace
5	0.014	1	0.002*
6	Trace	2	Trace
7	0.108 - 0.104	3	Trace
8	0.010	4	Trace
9	Trace	5	Trace
10380	Trace	6	Trace
]	Trace	7	Trace
2	Trace	8	Trace
3	Trace	10420	Trace
4	Trace	1	Trace
5	Trace	2	Trace
6	Irace	3	Trace
7	Trace	4	Trace
8	Trace	5	Trace
9	Trace	6	Trace
10390	0.002*	/	Trace
	Irace	8	Trace
2	0.002*	9	Irace
3	0.002*	10430	Irace
4			Irace
5	0.014	2	Irace
0 7		3	0.002*
/		4	Irace
0	0.000	5	Irace
10400	0.002 [~]	0 7	Trace
10400	Theop	/	Trace
2	Trace	0	
2	Trace	30440	
5 Д	Trace	10440	$\frac{1}{1}$
+ 5	Trace	1 2	
5	Trace	2	0.002*
0	i i u u u	5	0.002

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Bell - White ANALYTICAL LABORATORIES LTD.

P.O. BOX 187. HAILEYBURY, ONTARIO TEL:

TEL: 672-3107

Certificate of Analysis

Page 2 of 4

NO. 0418		DATE:	February 17, 1988
SAMPLE(S) OF:	Core (284)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		

Sample No. Oz. Gold Sample No. Oz. Gold 10444 Trace 10488 0.018 5 Trace 9 0.026 6 Trace 1 0.002* 8 Trace 2 Trace 9 Trace 3 Trace 9 Trace 3 Trace 9 Trace 4 Trace 9 Trace 5 Trace 9 Trace 5 Trace 2 Trace 5 Trace 3 Trace 6 Trace 4 Trace 7 0.004 5 Trace 1 Trace 6 Trace 2 Trace 7 Trace 2 Trace 8 0.004 3 Trace 9 Trace 4 Trace 10462 Trace 8 0.002* 9 Trace <th></th> <th></th> <th>PROJECT: P</th> <th>Randall Lake</th>			PROJECT: P	Randall Lake
10444 Trace 10488 0.018 5 Trace 9 0.026 6 Trace 1 0.002* 8 Trace 2 Trace 9 Trace 3 Trace 9 Trace 3 Trace 9 Trace 4 Trace 2 Trace 5 Trace 2 Trace 6 Trace 3 Trace 7 0.004 5 Trace 7 0.004 5 Trace 2 Trace 6 Trace 2 Trace 7 Trace 2 Trace 8 0.004 3 Trace 9 Trace 2 Trace 9 Trace 7 0.052 - 0.060 10462 Trace 9 Trace 9 Trace 7 0.052 - 0.060 10468 0.002*	Sample No.	Oz. Gold	Sample No.	Oz. Gold
5 Trace 9 0.026 6 Trace 1 0.002* 8 Trace 2 Trace 9 Trace 3 Trace 9 Trace 3 Trace 10451 Trace 4 Trace 2 Trace 5 Trace 3 Trace 6 Trace 4 Trace 7 0.004 5 Trace 10750 Trace 6 Trace 2 Trace 7 Trace 2 Trace 6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 10468 0.002* 6 0.002* 9 Trace 9 Trace 10468 0.002* 6 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace	10444	Trace	10488	0.018
6 Trace 10490 Trace 7 Trace 1 0.002* 8 Trace 2 Trace 9 Trace 3 Trace 9 Trace 4 Trace 2 Trace 4 Trace 2 Trace 6 Trace 3 Trace 6 Trace 4 Trace 7 0.004 5 Trace 1 Trace 6 Trace 1 Trace 7 Trace 2 Trace 6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 9 Trace 4 Trace 10462 Trace 5 Trace 9 Trace 6 0.002* 9 Trace 9 Trace 10468 0.002* 1	5	Trace	9	0.026
7 Trace 1 0.002* 8 Trace 2 Trace 9 Trace 3 Trace 10451 Trace 4 Trace 2 Trace 5 Trace 3 Trace 6 Trace 4 Trace 7 0.004 5 Trace 10750 Trace 6 Trace 2 Trace 7 Trace 1 Trace 6 Trace 2 Trace 7 Trace 2 Trace 8 0.004 3 Trace 9 Trace 2 Trace 10462 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 9 Trace 10470 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002*	6	Trace	10490	Trace
8 Trace 2 Trace 9 Trace 3 Trace 10451 Trace 4 Trace 2 Trace 5 Trace 3 Trace 6 Trace 3 Trace 7 0.004 5 Trace 1 Trace 6 Trace 2 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 10462 Trace 5 Trace 9 Trace 6 0.002* 9 Trace 9 Trace 10468 0.002* 6 0.002* 9 Trace 9 Trace 10470 Trace 9 Trace 1 Trace 9 Trace 3 Trace 1 Trace 4 Trace 3	7	Trace	1	0.002*
9 Trace 3 Trace 10451 Trace 4 Trace 2 Trace 5 Trace 3 Trace 6 Trace 3 Trace 7 0.004 5 Trace 10750 Trace 6 Trace 2 Trace 7 Trace 2 Trace 8 0.004 3 Trace 9 Trace 2 Trace 10462 Trace 4 Trace 10468 0.002* 6 0.002* 9 Trace 9 Trace 10468 0.002* 6 0.002* 9 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 2 0.002* 6 Trace 3 0.002* 5 Trace <td>8</td> <td>Trace</td> <td>2</td> <td>Trace</td>	8	Trace	2	Trace
10451 Trace 4 Trace 2 Trace 5 Trace 3 Trace 6 Trace 3 Trace 7 0.004 5 Trace 10750 Trace 6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 3 Trace 6 0.002* 9 Trace 7 0.052 - 0.060 10462 Trace 9 Trace 9 Trace 7 0.052 - 0.060 10468 0.002* 6 0.002* 9 Trace 9 Trace 10468 0.002* 6 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 7 T	9	Trace	3	Trace
2 Trace 5 Trace 3 Trace 6 Trace 4 Trace 7 0.004 5 Trace 10750 Trace 6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 3 Trace 5 Trace 10462 Trace 6 0.002* 9 Trace 7 0.052 - 0.060 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 1 Trace 9 Trace 5 Trace 9 Trace 6	10451	Trace	4	Trace
3 Trace 6 Trace 4 Trace 7 0.004 5 Trace 10750 Trace 6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 3 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10468 0.002* 6 0.002* 9 Trace 9 Trace 10468 0.002* 9 Trace 2 0.070 - 0.078 10760 Trace 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 3 0.002* 5 Trace 3 0.002* 6 Trace 7 Trace 9 Trace 7 Trace 9 Trace 8 T	2	Trace	5	Trace
4 Trace 7 0.004 5 Trace 10750 Trace 6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 10462 Trace 4 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 8 0.002* 9 Trace 9 Trace 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 9 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 6 Trace 3 0.002* 6 Trace 4 Trace 9 Trace 5 Trace 9 Trace 8 Trace 9 Trace 8 Trace	3	Trace	6	Trace
5 Trace 10750 Trace 6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 3 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 9 Trace 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 2 0.002* 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 3 0.002* 6 Trace 3 0.002* 6 Trace 5 Trace 9 Trace 6 Trace 9 Trace 6 Trace 9 Trace 9 Trace 10480 Trace 9 Trace	4	Trace	7	0.004
6 Trace 1 Trace 7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 3 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 2 0.002* 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 4 Trace 3 Trace 3 0.002* 6 Trace 5 Trace 9 Trace 6 Trace 9 Trace 6 Trace 9 Trace 7 Trace 9 Trace 9 Trace 1 Trace 9 Trace	5	Trace	10750	Trace
7 Trace 2 Trace 8 0.004 3 Trace 10462 Trace 4 Trace 3 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 2 0.002* 6 Trace 3 0.002* 6 Trace 3 0.002* 6 Trace 5 Trace 9 Trace 6 Trace 9 Trace 7 Trace 9 Trace 9 Trace 9 Trace 9 Trace 9 Trace 1 Trace 9 Trace 1 1	6	Trace	l	Trace
8 0.004 3 Trace 10462 Trace 4 Trace 3 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 5 Trace 9 Trace 9 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace	7	Trace	2	Trace
10462 Trace 4 Trace 3 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 3 Trace 2 0.002* 4 Trace 9 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 9 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 3 0.002* 1 Trace <	8	0.004	3	Trace
3 Trace 5 Trace 10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 2 0.002* 6 Trace 2 0.002* 6 Trace 3 0.002* 6 Trace 4 Trace 9 Trace 5 Trace 9 Trace 6 Trace 9 Trace 6 Trace 9 Trace 9 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace <	10462	Trace	4	Trace
10468 0.002* 6 0.002* 9 Trace 7 0.052 - 0.060 10470 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 7 Trace 9 Trace 9 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace <	3	Trace	5	Trace
9 Trace 7 0.052 - 0.060 10470 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 2 0.002* 6 Trace 3 0.002* 7 Trace 3 0.002* 6 Trace 3 0.002* 7 Trace 5 Trace 8 Trace 5 Trace 9 Trace 6 Trace 9 Trace 8 Trace 9 Trace 8 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	10468	0.002*	6	0.002*
10470 Trace 8 0.002* 1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 6 Trace 9 Trace 7 Trace 10480 Trace 8 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	9	Trace	7	0.052 - 0.060
1 Trace 9 Trace 2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 6 Trace 9 Trace 7 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	10470	Trace	8	0.002*
2 0.070 - 0.078 10760 Trace 3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 6 Trace 9 Trace 7 Trace 9 Trace 9 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	1	Trace	9	Trace
3 Trace 1 Trace 4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 7 Trace 10480 Trace 8 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	2	0.070 - 0.078	10760	Trace
4 Trace 2 0.002* 5 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 7 Trace 10480 Trace 9 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	3	Trace	1	Trace
5 Trace 3 0.002* 6 Trace 4 Trace 7 Trace 5 Trace 8 Trace 6 Trace 9 Trace 7 Trace 10480 Trace 8 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	4	Trace	2	0.002*
6Trace4Trace7Trace5Trace8Trace6Trace9Trace7Trace10480Trace8Trace1Trace9Trace2Trace10770Trace30.002*1Trace40.0142Trace50.0243Trace	5	Trace	3	0.002*
7Trace5Trace8Trace6Trace9Trace7Trace10480Trace8Trace1Trace9Trace2Trace10770Trace30.002*1Trace40.0142Trace50.0243Trace	6	Trace	4	Trace
8 Trace 6 Trace 9 Trace 7 Trace 10480 Trace 8 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	7	Trace	5	Trace
9 Trace 7 Trace 10480 Trace 8 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	8	Trace	6	Trace
10480 Trace 8 Trace 1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	9	Trace	7	Trace
1 Trace 9 Trace 2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	10480	Trace	8	Trace
2 Trace 10770 Trace 3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	1	Trace	9	Trace
3 0.002* 1 Trace 4 0.014 2 Trace 5 0.024 3 Trace	2	Trace	10770	Trace
4 0.014 2 Trace 5 0.024 3 Trace	3	0.002*	1	Trace
5 0.024 3 Irace	4	0.014	2	Trace
	5	0.024	3	Trace
6 Trace 4 Trace	6	Trace	4	Trace
7 0.026 5 Trace	7	0.026	5	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Bell - White analytical laboratories LTD.

HAILEYBURY, ONTARIO P.O. BOX 187.

TEL: 672-3107

Certificate of Analysis

Page 3 of 4

NO . 0418		DATE:	February 17, 1988
SAMPLE(S) OF:	Core (284)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		

		PROJECT: Randall Lake
Sample No.	Oz. Gold	Sample No. Oz. Gold
10776	Trace	10811 Trace
7	Trace	2 Trace
8	Trace	3 Trace
9	Trace	4 Trace
10780	Trace	5 Trace
]	Trace	6 Trace
2	Trace	7 Trace
3	Trace	8 Trace
4	Trace	9 Trace
5	Trace	10820 Trace
6	Trace	l Trace
7	Trace	2 Trace
8	Trace	3 Trace
9	Trace	4 Trace
10790	Trace	5 Trace
۱	Trace	6 Trace
2	Trace	7 Trace
3	Trace	8 Trace
4	Trace	9 Trace
5	Trace	10830 Trace
6	0.002*	l Trace
7	0.002*	2 Trace
8	Trace	3 Trace
9	Trace	4 Trace
10800	Trace	5 Trace
1	Trace	6 0.002*
2	Trace	7 Trace
3	Trace	8 0.010
4	Trace	9 Trace
5	Trace	10840 Trace
6	Trace	l Trace
7	Trace	2 Trace
8	Trace	3 Trace
9	Trace	4 Trace

* Estimated

Trace

10810

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Trace

5

Penil

HAILEYBURY, ONTARIO P.O. BOX 187.

TEL: 672-3107

PROJECT: Randall Lake

Certificate of Analysis

Page 4 of 4

NO.	0418

NO.	0418		DATE:	February 17, 1988
SAMPLE	(S) OF:	Core (284)	RECEIVED:	February 1988

SAMPLE(S) FROM: Mr. J. North, Geocanex Ltd.

ample No.	Oz. Gold	Sample No.	Oz. Gold
10846	Trace	10881	Trace
7	Trace	2	Trace
8	Trace	3	0.002*
9	Trace	4	Trace
10850	0.002*	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	10890	0.002*
6	Trace	J	0.014
7	Trace	2	0.002*
8	0.002*	3	Trace
9	Trace	4	Trace
10860	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	0.002*	8	0.014
4	Trace	9	0.020
5	Trace	10900	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	Trace	3	0.008
9	0.060 - 0.056	4	Trace
10870	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	10910	Trace
6	Trace	١	Trace
7	Trace	2	Trace
8	Trace	3	Trace
9	0.012	4	Trace
10880	Trace	5	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Per

	P.O. BOX 187. HAILEYBI	JRY. ONTARIO TEL:	672-3107
	Certificate of	Analysis	
NO. 0422		DATE:	February 18, 198
SAMPLE(S) OF:	Core (34)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geoc	anex Ltd.	
		PROJECT:	Randall Lake
Sa	ample No.	Oz. Gold	
	9501	Trace	
	2	Trace	
	3	Trace	
	10498	Trace	
	9	Trace	
	10500	Irace	
	10932	Trace	
	4	Trace	
	5	Trace	
	6	0.002*	
	/	Trace	
	9	Trace	
	10940	Trace	
	1	Trace	
	2	Irace	
	3	Trace	
	1	Trace	
	2	Trace	
	3	Trace	
	4	Trace	
	6	Trace	
	7	Trace	
	8	Trace	
	10960	Trace	
	1	Trace	
	2	Trace	
	3	Trace	

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM. UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

	P.O. BOX 187.	HAILEYBURY, ONTARIO TEL: 672-3107
	Certif	icate of Analysis
NO. 0427		DATE: February 18,
SAMPLE(S) OF:	Core (33)	RECEIVED : February 1988
SAMPLE(S) FROM:	Geocanex Lto	i.
		PROJECT: Randall Lake
S	ample No.	Oz. Gold
	9001	Trace
	2	Trace 0.002*
	3 4	Trace
	10972	0.002*
	3	0.002*
	4	0.010
	6	Trace
	7	Trace
	8	0.002*
	10980	Trace
	1	Trace
	2	Trace
	3	Trace
	4 5	Trace
	6	Trace
	7	0.002*
	8 Q	0.020
	10990	0.002*
	1	Trace
	2	0.002*
	4	Trace
	5	0.002*
	6	1race 0.002*
	/ 8	Trace
	9	Trace
	11000	0.002*

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM. UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187. HAILEYBURY, ONTARIO TEL: 672-3107

Certificate of Analysis

NO. 0438		DATE:	February 19, 1988
SAMPLE(S) OF:	Core (7)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.	Oz. Gold
10459	0.002*
10460	Trace
1	Trace
10464	Trace
5	Trace
6	Trace
7	Trace
* Estimated	

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD. 1. . . 1 sim.

P.O. BOX 187, HAI

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0448		DATE:	February 23, 1988
SAMPLE(S) OF:	Core (47)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.	UZ. GOID	Sample No.	UZ. 6010
9505	Trace	10922	Trace
6	Trace	3	Trace
7	Trace	4	Trace
8	0.002*	5	Trace
9	Trace	6	Trace
9510	0.016	7	0.062
1	Trace	8	Trace
2	Trace	9	Trace
3	0.014	10930	0.018
4	Trace	1	Trace
5	Trace	10944	Trace
6	Trace	5	Trace
7	Trace	6	Trace
8	Trace	7	Trace
9	Trace	8	Trace
9520	Trace	9	Trace
١	0.002*	10965	Trace
2	Trace	6	Trace
10916	0.002*	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	10970	Trace
10920	Trace	l	Trace
1	Trace		

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

P.O. BOX 187. HAILEYBURY, ONTARIO TEL: 672-3107

Certificate of Analysis

NO . 0462		DATE:	February 23, 1988
SAMPLE(S) OF:	Core (42)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
······································		PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9589	Trace	9610	Trace
9590	Trace	1	Trace
l	0.002*	2	Trace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace	5	Trace
5	Trace	6	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	0.002*	9620	Trace
9600	0.002*	l	Trace
J	Trace	2	Trace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace	5	Trace
5	Trace	6	Trace
6	Trace	7	Trace
7	Trace	8	Trace
8	Trace	9	Trace
9	Trace	9630	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD. -PER_

HAILEYBURY, ONTARIO P.O. BOX 187.

TEL: 672-3107

Certificate of Analysis

NO . 0473		DATE:	February 24, 1988
SAMPLE(S) OF:	Core (26)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No	Oz. Gold
9005	Trace
6	0.002*
7	Trace
8	Trace
9	Trace
9010	Trace
]	Trace
2	0.002*
3	0.020
4	0.054 - 0.052
5	0.040
6	0.002*
7	Trace
· 8	Trace
Ğ	Trace
9020	Trace
1	Trace
2	Trace
3	Trace
4	Trace
5	Trace
ő	Trace
7	Trace
8	Trace
9	Trace
9030	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187,

HAILEYBURY, ONTARIO

TEL: 672-3107

Certificate of Analysis

NO. 0474		DATE:	February 24, 1988
SAMPLE(S) OF:	Core (73)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		

PROJECT: Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9031	Trace	9068	0.142 - 0.136
2	Trace	9	0.108 - 0.104
3	Trace	9070	0.074 - 0.070
4	Trace	1	0.034
5	0.002*	2	0.104 - 0.096
6	0.002*	3	0.184 - 0.174
7	Trace	4	0.112 - 0.110
8	Trace	5	0.040 -
9	Trace	6	0.210 - 0.210
9040	Trace	7	0.016
1	Trace	8	0.072 - 0.080
2	Trace	9	0.060 - 0.054
3	Trace	9080	0.070 - 0.066
4	Trace	1	0.002*
5	Trace	2	Trace
6	Trace	3	0.002*
7	Trace	4	0.006
8	Trace	5	Trace
9	Trace	6	Trace
9050	0.002*	7	Trace
1	0.002*	8	0.002*
2	Trace	9	Trace
3	Trace	9090	Trace
4	Trace	1	Trace
5	Trace	2	Trace
6	Trace	3	Trace
7	0.008	4	Trace
8	Trace	5	Trace
9	Trace	6	Trace
9060	Trace	9631	Trace
1	0.002*	2	Trace
2	0.002*	3	Trace
3	0.002*	4	Trace
4	0.056 - 0.050	5	Trace
5	0.048	6	Trace
6	0.170 - 0.170	7	Trace
7	0.120 - 0.114		

* Estimated IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

<u>;</u> -/

PER_

P.O. BOX 187. HAILEY

HAILEYBURY. ONTARIO

TEL: 672-3107

BELL-WHITE ANALYTICAL LABORATORIES LTD.

,

PER____

Certificate of Analysis

NO . 0486		DATE:	February 25, 1988
SAMPLE(S) OF:	Core (66)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.	,	
		PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9523	Trace	9556	Trace
4	Trace	7	Trace
5	0.022	8	Trace
6	Trace	9	Trace
7	Trace	9560	0.002*
8	0.152 - 0.150	l	Trace
9	Trace	2	Trace
9530	Trace	3	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	6	Trace
4	Trace	7	Trace
5	Trace	8	0.004
6	Trace	9	0.002*
7	Trace	9570	Trace
8	0.002*	1	Trace
9	Trace	2	0.006
9540	0.002*	3	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	6	Trace
4	Trace	7	Trace
5	Trace	8	Trace
6	Trace	9	Trace
7	Trace	9580	Trace
8	Trace	1	Trace
9	Trace	2	Trace
9550	Trace	3	Trace
1	Trace	4	Trace
2	Trace	5	Trace
3	Trace	6	Trace
4	0.008	7	Trace
5	Trace	8	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

Bell - White ANALYTICAL LABORATORIES LTD.

HAILEYBURY, ONTARIO P.O. BOX 187.

TEL: 672-3107

Certificate of Analysis

NO. 0494		DATE:	February 26, 1988
SAMPLE(S) OF:	Core (61)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

<u>Sample No.</u>	Oz. Gold	Sample No.	Oz. Gold
9702	Trace	9765	Trace
3/02	Trace	5705	Trace
4	Trace	7	Trace
т 5	Trace	, 8	Trace
5	Trace	0	Trace
7	Trace	9770	Trace
8	Trace	3770	Trace
0	Trace	2	Trace
0710		2	Trace
3710		5	Trace
2		4 E	The
2		5	Trace
3		0 7	The
4 5		/	Trace
5		0	Two
0 7		0700	There
0	Trace	9780	These
0	Trace	l	Trace
0720	Trace	2	Trace
9720	Trace	3	Irace
1	Trace	4 F	Trace
2	Trace	5	Irace
3	Irace	b	Irace
4	Irace	/	Irace
9/5/	Irace	8	Irace
8	Irace	9	Irace
9	lrace	9790	Trace
9760	Trace		0.002*
1	Trace	2	Irace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace		

IN ACCORDANCE WITH LONG ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

HAILEYBURY, ONTARIO P.O. BOX 187.

TEL: 672-3107

Certificate of Analysis

NO. 0496		DATE:	February 26, 1988
SAMPLE(S) OI	∹: Core (49)	RECEIVED	February 1988
SAMPLE(S) FF	юм: Mr. J. North, G	Geocanex Ltd.	
	······································	PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9124	0.002*	9149	0.006
5	0.004	9150	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	0.018	3	Trace
9	Trace	4	0.002*
9130	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	0.002*
3	Trace	8	Trace
4	0.002*	9	Trace
5	0.004	9160	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	0.012	3	Trace
9	Trace	4	Trace
9140	Trace	5	Trace
1	0.248 - 0.256	6	Trace
2	0.002*	7	Trace
3	Trace	8	Trace
4	0.002*	9	Trace
5	0.002*	9170	Trace
6	0.040	1	Trace
7	0.002*	2	Trace
8	Trace		

* Estimated

IN ACCORDANCE WITH LONG ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

1-1-Pra

BELL-WHITE ANALYTICAL LABORATORIES LTD.

B	ELL- W HITE ANALYTICAL L	ABORATO	RIES LTD.
P.	O. BOX 187. HAILEYBURY. ONT	ARIO TEL	672-3107
	Certificate of Analy Page 1 of 4	Jsis	
NO. 0499		DATE:	February 26, 1988
SAMPLE(S) OF:	Core (230)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9097	Trace	9175	Trace
8	Trace	6	0.002*
9	Trace	7	Trace
9100	Trace	8	Trace
1	Trace	9	Trace
2	Trace	9180	Trace
3	Trace	1	0.002*
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	0.002*
9	Trace	7	0.002*
9110	Trace	8	Trace
1	Trace	9	Trace
2	Trace	9190	Trace
3	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	lrace	4	Trace
/	0.006	5	Trace
8	Irace	6	Irace
9	Irace	/	Irace
9120	Irace	8	Irace
	Irace	9	irace
2	Irace	9200	Irace
3	Irace		Irace
91/3	Irace	2	Irace
4	Irace	3	Irace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM. UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-BATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

BELL - WHITE ANALYTICAL LABORATORIES LTD.			
	P.O. BOX 187. HAILEYBURY. ONT	ARIO TEL:	672-3107
Certificate of Analysis			
NO . 0499	Page 2 of 4	DATE:	February 26, 1988
SAMPLE(S) OF:	Core (230)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9204	Trace	9233	Trace
5	0.002*	4	Trace
6	Trace	5	Trace
7	Trace	6	Trace
8	Trace	7	Trace
9	Trace	8	Trace
9210	Trace	9	Trace
1	Trace	9240	Trace
2	Trace	1	Trace
3	Trace	2	Trace
4	Trace	3	Trace
5	Trace	4	Trace
6	Trace	5	Trace
7	0.008	6	Trace
8	0.002*	7	Trace
9	Trace	8	Trace
9220	Trace	9	Trace
1	Trace	9250	Trace
2	Trace	1	Trace
3	Trace	2	Trace
4	Trace	3	Trace
5	Trace	4	Trace
6	Trace	5	Trace
7	0.002*	6	Trace
8	Trace	7	Trace
9	Trace	8	Irace
9230	Trace	9	Trace
]	0.008	9260	Irace
2	Trace	1	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

-

Bell - White ANALYTICAL LABORATORIES LTD.				
	P.O. BOX 187. HAILEYBURY. ONTARIO TEL: 672-3107			
Certificate of Analysis				
NO. 0499	Page 3 of 4	DATE:	February 26, 1988	
SAMPLE(S) OF:	Core (230)	RECEIVED:	February 1988	
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.			
		PROJECT:	Randall Lake	

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9262	Trace	9666	Trace
9638	Trace	9725	Trace
9	Trace	6	Trace
9640	Trace	7	0.002*
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	9730	Trace
4	Trace]	Trace
5	0.002*	2	Trace
6	Trace	3	Trace
7	Trace	4	Trace
8	Trace	5	Trace
9	Trace	6	Trace
9650	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	0.002*	9740	Trace
4	Trace	1	Trace
5	Trace	2	Trace
6	Trace	3	Trace
7	Trace	4	Trace
8	Trace	5	Trace
9	Trace	6	Trace
9660	Trace	7	Trace
1	0.002*	8	Trace
2	Trace	9	Trace
3	Trace	9750	Trace
4	Trace	1	Trace
5	Trace	2	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

	Bell - White ANALYTICAL	LABORATORIES LTD.
	P.O. BOX 187. HAILEYBURY, ONT	TARIO TEL: 672-3107
NO. 0499	Certificate of Anal Page 4 of 4	JSIB DATE: February 26, 1988
SAMPLE(S) OF:	Core (230)	RECEIVED : February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.	
		PROJECT: Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9753	Trace	9819	Trace
4	Trace	9820	Trace
5	Trace	1	Trace
6	Trace	2	Trace
9795	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	Trace
9	Trace	7	Trace
9800	Trace	8	Trace
1	Trace	9	Trace
2	Trace	9830	Trace
3	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	Trace
9	0.002*	7	Trace
9810	Trace	8	Trace
1	0.030	9	Trace
2	Trace	9840	Trace
3	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	Trace

BELL-WHITE ANALYTICAL LABORATORIES LTD.

,

,

1

PER

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD. P.O. BOX 187. HAILEYBURY. ONTARIO TEL: 672-3107

Certificate of Analysis

NO . 0501		DATE:	February 26, 1988
SAMPLE(S) OF:	Core (58)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.	UZ. GOID	Sample No.	UZ. 6010
9667	Trace	9696	Trace
8	Trace	7	Trace
ğ	Trace	8	Trace
9670	Trace	ğ	Trace
3070	Trace	9700	Trace
2	Trace	5700 I	Trace
2	Trace	2	Trace
3	Thace	2	Trace
4		3	Trace
5		4 K	Trace
7	Trace	5	Trace
0	Trace	0 7	Thace
0	Trace	/	Thace
9	Trace	0	Trace
9680	Trace	9	Trace
1	Trace	9710	Trace
2	Irace		Irace
3	irace	2	Irace
4	Irace	3	irace
5	0.002*	4	Irace
6	Trace	5	Irace
7	Trace	6	Trace
8	Trace	7	Trace
9	Trace	8	Trace
9690	Trace	9	Trace
1	Trace	9720	Trace
2	Trace	1	Trace
3	Trace	2	Trace
4	Trace	3	Trace
5	Trace	4	Trace

* Estimated

BELL-WHITE ANALYTICAL LABORATORIES LTD.

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

x- ----PER_

Bell - WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187. HAILEYBURY. ONTARIO

TEL: 672-3107

Certificate of Analysis

NO . 0529		DATE:	February 29, 1988
SAMPLE(S) OF:	Core (30)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.		
		PROJECT:	Randall Lake

Sample No.

(98	4	7 8
9	98	5	9 0 1 2 3
•	98	6	4 5 6 7 8 9 0
			1 2 3 4 5 6 7
	98	7	8 9 0 1 2 3 4

6

0	Ζ	•	ł	G	0	1	d	
				-	_	-		-

Trace Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM. UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

Trace

	Bell - White ANALYTICAL LA	ABORATO	RIES LTD.	
	P.O. BOX 187. HAILEYBURY. ONTA	RIO TEL	672-3107	
Certificate of Analysis				
NO . 0540	Page 1 of 2	DATE:	February 29, 1988	
SAMPLE(S) OF:	Core (112)	RECEIVED:	February 1988	
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.			
		PROJECT:	Randall Lake	

Sample No.	Oz. Gold	Sample No.	Oz. Gold
8501	Trace	9280	Trace
2	Trace	1	Trace
3	Trace	2	Trace
4	Trace	3	Trace
5	Trace	4	Trace
6	Trace	5	Trace
7	Trace	6	Trace
8	Trace	7	Trace
9	Trace	8	Trace
8510	Trace	9	Trace
1	0.002*	9290	Trace
9263	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	Trace
9	Trace	7	Trace
9270	Trace	8	Trace
1	Trace	9	Trace
2	Trace	9300	Trace
3	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	Trace
9	Trace	7	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

PER

	Bell-White ANALYTICA	L LABORATORIES L	ſD.	
	P.O. BOX 187. HAILEYBURY.	ONTARIO TEL: 672-310	07	
Certificate of Analysis				
NO. 0540	Page 2 of	DATE: Febr	uary 29, 1988	
SAMPLE(S) OF:	Core (112)	RECEIVED: Febr	uary 1988	
SAMPLE(S) FROM:	Mr. J. North, Geocanex Lto			
		PROJECT: Randal	1 Lake	

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9308	Trace	9402	Trace
9	Trace	3	Trace
9310	Trace	9898	Trace
1	Trace	9	Trace
2	Trace	9900	Trace
3	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	Trace	6	Trace
9	Trace	7	Trace
9320	Trace	8	Trace
1	Trace	9	Trace
2	Trace	9910	Trace
3	Trace	1	Trace
4	Trace	2	Trace
5	Trace	3	Trace
6	Trace	4	Trace
7	Trace	5	Trace
8	trace	6	Trace
9	Trace	7	Trace
9330	Trace	8	Trace
1	Trace	9	Trace
2	Trace	9920	Trace
3	Trace	1	Trace
4	Trace	2	Trace
9401	Trace	3	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERNT IN THE FIRE ASSAY PROCESS.

	O. BOX 187. HAILEYBURY. ONTA	ABORATOR	CIES LTD. 672-3107	
Certificate of Analysis				
NO. 0542		DATE:	February 29, 1988	
SAMPLE(S) OF:	Core (60)	RECEIVED:	February 1988	
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.			
		PROJECT:	Randall Lake	

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9924	Trace	9954	Trace
5	Trace	5	Trace
6	Trace	6	Trace
7	Trace	7	Trace
8	Trace	8	0.002*
9	Trace	9	Trace
9930	Trace	9960	0.002*
1	Trace	1	0.002*
2	Trace	2	Trace
3	Trace	3	0.002*
4	Trace	4	0.002*
5	Trace	5	Trace
6	Trace	6	Trace
7	Trace	7	Trace
8	Trace	8	Trace
9	Trace	9	Trace
9940	Trace	9976	Trace
1	Trace	7	Trace
2	Trace	8	Trace
3	Trace	9	Trace
4	Trace	9980	Trace
5	Trace	l	Trace
6	Trace	2	Trace
7	Trace	3	Trace
8	Trace	4	Trace
9	Trace	5	Trace
9950	Trace	6	Trace
1	Trace	7	Trace
2	Trace	8	Trace
3	Trace	9	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

PER_____

	Bell - White analytical LA	BORATOR	RIES LTD.
P	.O. BOX 187. HAILEYBURY, ONTAI	RIO TEL:	672-3107
	Certificate of Analy	sis	
NO . 0545		DATE:	February 29, 1988
SAMPLE(S) OF:	Core (5)	RECEIVED:	February 1988
SAMPLE(S) FROM:	Geocanex Ltd.		

Sample No.	Oz. Gold
8913	Trace
4	Trace
5	Trace
6	Trace
7	Trace

. .

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERNT IN THE FIRE ASSAY PROCESS.

. .

BE	LL-WHITE ANALYTICAL	LABORATO	RIES LTD.	
P.O.	BOX 187, HAILEYBURY, ONT	ARIO TEL:	672-3107	
Certificate of Analysis				
NO . 0551		DATE:	February	29, 1988
SAMPLE(S) OF:	Core (34)	RECEIVED:	February	1988
SAMPLE(S) FROM:	Geocanex Ltd.			

Sample No.	Oz. Gold
9299	Trace
9300	Trace
1	Trace
2	Trace
3	Trace
Δ	Trace
5	Trace
Š	Trace
7	Trace
2 2	Trace
9	Trace
9310	Trace
1	Trace
2	Trace
2	Trace
Л	Trace
4 5	Trace
5	Trace
7	Trace
8	Trace
9	Trace
9320	Trace
1	Trace
2	Trace
3	Trace
4	Trace
5	Trace
6	Trace
9970	Trace
1	Trace
2	Trace
3	Trace
4	Trace
5	Trace
-	

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

BELL-WHITE ANALYTICAL LABORATORIES LTD.

	Bell - White	ANALYTICAL		RIES LTD.
	P.O. BOX 187.	HAILEYBURY, ONI	ARIO IEL	6/2-310/
	Certifi	icate of Anal	ysis	
NO . 0553			DATE:	February 29, 1988
SAMPLE(S) OF:	Core (21)		RECEIVED:	February 1988
SAMPLE(S) FROM:	Mr. J. North,	Geocanex Ltd.		
			PROJECT:	Randall Lake

Sample No.	Oz. Gold
9877	Trace
8	Trace
9	Trace
9880	Trace
1	Trace
2	Trace
3	Trace
4	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	Trace
9890	Trace
1	Trace
2	Trace
3	Trace
4	Trace
5	Trace
6	Trace
7	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

1

Certificate of Analy	JBiB
NO. 0563	DATE: February 29, 198
SAMPLE(S) OF: Core (37)	RECEIVED : February 1988
SAMPLE(S) FROM: Mr. J. North, Geocanex Ltd.	
	PROJECT: Randall Lake
Sample No.	Oz. Gold
8512	Trace
3	Trace
4	Trace
5	Trace
6	Trace
7	Trace
8	Irace
9	Irace
8520	
2	Trace
3	Trace
4	Trace
5	Trace
6	Trace
7	0.002*
8	Trace
9	Trace
8530	Irace
	Trace
2	Trace
5 Л	Trace
5	Trace
6	Trace
7	Trace
8	Trace
9	Trace
8540	Trace
	Irace
2	Trace
С Л	Trace
4 5	Trace
5 6	Trace
, 7	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS.

PER

ļ

P.O. BOX 187. HAILEYBURY. ONTARIO

TEL: 672-3107

Certificate of Analysis

Page 1 of 4

NO. 0564	DATE:	February 29, 1988
SAMPLE(S) OF: Core (276)	RECEIVED:	February 1988
SAMPLE(S) FROM: Mr. J. North, Geoca	anex Ltd.	

PROJECT: Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
8549	Trace	8584	Trace
8550	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	8590	Trace
6	Trace	l	Trace
7	Trace	2	Trace
8	Trace	3	Trace
9	Trace	4	Trace
8560	Trace	5	Trace
1	Trace	6	Trace
2	Trace	7	Trace
3	Trace	8	Trace
4	Trace	9	Trace
5	Trace	8600	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	Trace	3	Trace
9	Trace	4	Trace
8570	Trace	5	Irace
1	Trace	6	Irace
2	Trace	/	Irace
3	Irace	8	Irace
4	lrace	9	Irace
5	Irace	8610	Irace
6	Irace	l	Irace
/	Irace	2	Trace
8	irace	3	Trace
9	Irace	4 E	Trace
8580	Irace	5	
	Trace	ס ד	Trace
2	Irace	/	The
3	irace	8	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

P.O. BOX 187. HAILEYBURY. ONTARIO TEL: (

TEL: 672-3107

Certificate of Analysis

NO . 0	564	Page 2 of 4	DATE:	February 29, 1988
SAMPLE(S)	OF:	Core (276)	RECEIVED:	February 1988
SAMPLE(S)	FROM:	Mr. J. North, Geocanex Ltd.		
			PROJECT:	Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
8619	Trace	8910	Trace
8620	Trace	1	Trace
1	Trace	2	Trace
2	Trace	8918	Trace
3	Trace	9	Trace
4	Trace	8920	Trace
5	Trace	1	Trace
6	Trace	2	Trace
7	Trace	3	Trace
8	Trace	4	Trace
9	Trace	5	Trace
8630	Trace	6	Trace
1	Trace	7	Trace
2	Trace	8	Trace
3	Trace	9	Trace
4	Trace	8930	Trace
5	Trace	1	Trace
6	Trace	2	0.002*
7	Trace	3	0.002*
8	Trace	4	0.002*
9	Trace	5	Trace
8640	Trace	6	Trace
1	Trace	7	0.002*
2	Trace	8	Trace
3	Trace	9	Trace
4	Trace	9335	Trace
8901	Trace	6	Trace
2	0.002*	7	Trace
3	0.002*	8	Trace
4	0.002*	9	Trace
5	Trace	9340	Trace
6	Trace	1	Trace
7	Trace	2	Trace
8	Trace	3	Trace
9	Trace	4	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

Bell - White ANALYTICAL LABORATORIES LTD.

P.O. BOX 187. HAILEYBURY. ONTARIO TEL

TEL: 672-3107

Certificate of Analysis

Page 3 of 4

NO . 0564	·	DATE:	February	29, 1988
SAMPLE(S) OF:	Core (276)	RECEIVED:	February	1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.			

PROJECT: Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9345	Trace	9379	Trace
6	Trace	9380	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	3	Trace
9350	Trace	4	Trace
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
6	Trace	9390	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	3	Trace
9360	Trace	4	Trace
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
6	Trace	9400	Trace
7	Trace	9404	Trace
8	Trace	5	Trace
9	Trace	6	Trace
9370	Trace	7	Trace
1	Trace	8	Trace
2	Trace	9	Trace
3	Trace	9410	Trace
4	Trace	ז	Trace
5	Trace	2	Trace
6	Trace	3	Trace
7	Trace	4	Trace
8	Trace	5	Trace

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERENT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

-

Æ	
	\sim

P.O. BOX 187. HAILEYBURY.

HAILEYBURY. ONTARIO TEL

TEL: 672-3107

Certificate of Analysis

Page 4 of 4

NO . 0564		DATE: February 29, 1988
SAMPLE(S) OF:	Core (276)	RECEIVED: February 1988
SAMPLE(S) FROM:	Mr. J. North, Geocanex Ltd.	

PROJECT: Randall Lake

Sample No.	Oz. Gold	Sample No.	Oz. Gold
9416	Trace	9450	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	3	Trace
9420	Trace	4	Trace
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
6	Trace	9460	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	3	Trace
9430	Trace	4	Trace
1	Trace	5	Trace
2	Trace	6	Trace
3	Trace	7	Trace
4	Trace	8	Trace
5	Trace	9	Trace
6	Trace	9470	Trace
7	Trace	1	Trace
8	Trace	2	Trace
9	Trace	9990	Trace
9440	Trace	1	Trace
1	Trace	2	Trace
2	Trace	3	Trace
3	Trace	4	Trace
4	Trace	5	Trace
5	Trace	6	Trace
6	Trace	7	0.002*
7	Trace	8	Trace
8	Trace	9	0.002*
9	Trace	10000	Trace

* Estimated

IN ACCORDANCE WITH LONG-ESTABLISHED NORTH AMERICAN CUSTOM, UNLESS IT IS SPECIFICALLY STATED OTHERWISE GOLD AND SILVER VALUES REPORTED ON THESE SHEETS HAVE NOT BEEN ADJUSTED TO COMPEN-SATE FOR LOSSES AND GAINS INHERNT IN THE FIRE ASSAY PROCESS. BELL-WHITE ANALYTICAL LABORATORIES LTD.

/

Ministry of Northern Developm Ontario	Report ^{nent} of Work	DOCUMENT NO W8903. 65			
Name and Postal Address of F	Recorded Holder	Mining	53B14SE0002 16 R/	NDALL LAKE	900
	Se	e attached		see a	ttached
c/o 1003-34	King Street	E. Toronto	, Ontario	M5C 1E5	
Summary of Work Perforn	nance and Distribution	of Credits			
Total Work Days Cr. claimed	Mining Clair Prefix Num	m Work ber Days Cr. Pre	Mining Claim fix Number	Work Minin Days Cr. Prefix	g Claim Work Number Days Cr.
for Performance of the follow work. (Check one only)	ing see				
Manual Work	attac	hed		• • • • • • • • • • • • • • • • • • •	
Shaft Sinking Drifting of other Lateral Work. Compressed Air, other Power driven or mechanical equip.	or *****				
Power Stripping					
Diamond or other Core drilling					
All the work was performed o	on Mining Claim(s):	see attache	ed	Kardall Lake	Galea
Required Information eg:	type of equipment, N	ames, Addresses, etc.	(See Table Below)	Keynsk Lak	C G 2085
Contractors: Midwest Diamond Drilling 180 Cree Crescent Winnipeg, Manitoba					
Core size: B.Q 1 7/16					
Geologist in charge: Jon North 1669 St. Gabriel Crt Windsor, Ontario					
Number of Ha	les: 26		M M	BR 28 1989	
Total footage	e : 15,000	+ 14,995.4 + 108.4		see fil	e No. 127
Available His report	t	10,886.0 Cebruary 23r	1 1989	CEIVED	
Usiky this report		8336.			reserver Report W3103-127
Balance in regive 7	tis report	2427.3 days	March 6/	89 Hetorden Hold	ber or Agent (Signature)
Certification Verifying Rep	port of Work	2 D S U anys		1	the set
I hereby certify that I have or witnessed same during an	a personal and intimate kind/or after its completion	nowledge of the facts set and the annexed report is	forth in the Report of W	ork annexed hereto, havin	g performed the work
Name and Postal Address of P H.J. Hodge	erson Certifying		<u></u>		$\left(\right)$
1002 24 177-0	+ TP Manager 4 -	Ont NEO 17	Date Certified	2 Q	Signer/re)
Table of Information/Atta	chments Required by t	the Mining Recorder	J March 07		m
Type of Work	Specific inform	nation per type	Other information (Cor	mmon to 2 or more types)	Attachments
Manual Work	· · · · · · · · · · · · · · · · · · ·				
Shaft Sinking, Drifting or other Lateral Work	N	lii	Names and addresses of manual work /operated with dates and hours of	of men who performed d equipment, together of employment.	Work Sketch: these are required to show
Compressed air, other power driven or mechanical equip.	Type of equipment				extent of work in relation to the
Power Stripping	Type of equipment and Note: Proof of actual co within 30 days of record	amount expended. ost must be submitted ding.	Names and addresses o together with dates wi	of owner or operator hen drilling/stripping	
Diamond or other core drilling	Signed core log showing core, number and angles	; footage, diameter of s of holes.	done.	•	Work Sketch (as above) in duplicate
Land Survey	Name and address of Or	ntario land surveyer.		Nil	Nil
768 (85/12)					

· 1

•

Randall Lake

.

ر *۲*

·

				and the second
		OWNER	Licence No.	Credit Requested
RANDALL LARE P	a 719916	Power	Т 4642	60 credits each
BAUDALL LAKE	719912	Power		
DANNALL LAKE	719918	Power		* except claim fisted
DANGUNGE TARE	719919	Power		below
RANNALL LARE	719920	Power		
RANDALL LARE	720001.	Power		
RANDALL LARE	720002	FOWet		
RANDALL LATE	720000	LONGI		<i>,</i>
RANDALL LARE	720001	L'OWGY Davies		
RANDALL LARE	720006	Power	· .	
RANDALL LARE	720007	lover		
RANDALL LARE	720008	Power		
RANDALL LAKE	720009	Power		
RANDALL LAKE	720010	Power		
RANDALL LAKE	720011	Power	•	
RANDALL LARE	720012	Power		
RANDALL LAKE PA	a 720013	Power		*56 credits each (196)
RANDALL LAKE	720014	Power		
BANNALL LARE	720015	LUAUT		
RABBALL LARE	720016	bower.		
RAUDALL LARE	720017	Lower		
RANDALL LAPE	720018	Power		
RANDALL LARE	720019	lower		
RANDALL LARE	720020	Power		
RANDALL LARE	720022	Power		
RANDALL LARE	720023	LONGI.		
RARDALL LARE	720024	Power		
RANDALL LAKE	720025	Pover		
RANDALL LARE	720026	Power		
RAUDALL LARE	720027	Power		
RARDALL LARE	720028	Fower		
RARUALL LARE	720029	Power		
RATURE LARE	729030	Power		
	720031	Dowes.	E.L.O	
RANNALL LARE	720032	Power	allille	
RANDALL LARF	720033	Power	DI VY	\mathcal{X}
RANDALL LARE	720034	LONG).		EI EI
MANDALL LAKE	720051	Power		NS F10
RANDALL LARE	720052	Power Power		
RÅNDALT, LARE	720053	Power	The Real P	8 Fin
RANDALL LARE	720054	lower	AN THINK	s El
RANDALL LAKE	720055	Power	LE: PA	<u></u>
RANDALL LAKE	720056	Lower	Vinter	
KARLALL LAKE	720057	Power	.0. 113	
ANNALL LAKE	720058	lower		
	720059	Power		
AUDALL LARR	720061	Pover tu	•	
ANDALL LARP	72001	LONG1.		
ANDALL LARE	720002	Power		
ANDALL LARE	720064	Povor		
ANDALL LAKE	720065	Pover		
	·	1 (2 M 12 1		

Randall Lake

894

.

:

		CLAIN	OWNER	Licence No.	Credits Requested
	RANDALL LARE Pa	720066	Power	Т 4642	60 credits each
	RANDALL LARE	720067	Power		11
	RANDALL LARE	720068	Сомет		H
	RANDALL LARE	720069	lover		**
	RANDALL LARE	720070	l'over		11
	RANDALL LARE	720071	Power		11
	RANDALL LAKE	720072	Power		11
	RARDALL LARE	720073	Power		H
	RANDALL LAKE	720074	Pover		н .
	RANDALL LAKE	720090	Power		11
	ICANDALL LAKE	720094	Daver		11
	RANDALL LARE	720092	Power	10.1	• • •
	NANDALL LAKE	720093	Power	a hand	••
	BARDALL LAKE	720094	Power K	FILM YA	11
	DANDALL LAKE	720095	Power	CLEWED SET	11
	BAUDALL LAKE	720096	Pover	OLIVED I	11
	DAUNALL LAKE	720097	Tover -	0 1089 9	11
	BANDALL LARE	720098	Power E	MAR - M	ft
	DANNAL LAKE	720099	Fower 15	DATRICIA MININO	11
	DANDALL LAKE	720100	Power Val	PATTINISION	u .
	DANNALL LAKE	823409	Power V/	is dil	100 credits each
;	RANDALL LAKE	823410	l'ower N	CTITETT	ii ii
	BANDALL LAKE	823411	Power	TIN	11
•	RANDALL LAKE	823412	l'ower		11
;	RANDALL LAKE	823413	Power		
•	RANDALL LAKE	823414	Power		H .
1	RANDALL LARE	892633	C. Darvedů	К 20388	160 credits each
•	RANDALL LAKE	892634	C. Darveau		ii
	RANDALL LAKE	892635	C. Drisvend		11 /
	RANDALL LAKE	892636	C. Darveau		**
	RANDALL LARE	892637	C. Darveau		tt
	RANDALL LARE	892638	C. Darveau		11
•	RANDALL LAKE	892639	C. Darveau		11
	RANDALL LAKE	903579	H. Landviere	S 6827	11
	KANDALL LAKE	964906	C. Darveau	К 20388	11
ł	RANDALL LAKE	964907	C. Darveaú		180 credits each
	RARDALL LARE	964908	C. Darveau		160 credits each
•	RANDALL LARE	964909	C. Darveau		160 credits each
ļ	RANDALL LAKE	964910	C. Daiveau		180 credits oach
;	RANDALL LARE	964934	H. Lariviere	S 6827	160 credits each
	RANDALL LARE	964935	H. Lartytere		
•	RANDALL LAKE	961936	11. Lariviere		11
1 1	RANDALL LAKE	961937	II. Lartytere		11
	RANDALL LAKE	964938	II: Lariviere		**
	RANDALL LAKE	964939	H. Lartytorn		11
	RANDALL LAKE	964940	11 Lartutoro		11
			the training the second		11

101 claims

Randall Lake

a 1

REC#	lclaimart		
Pa	720004		
	720005/		
	7200 10 4	720009-	
	7200161	720012,7	720008-
	720018/		
	7200247		
	7200297	720023	
	7200534	·	
	720055/		
	7200621		
	720063/	120056 -	
	7200734		
	7200747		
	720090/		
	720091		
	720097/		
	72.0065-		

	/ertical Field Magnetic Profile x 1000 gammas)	2 IC	Z Ø	
Mole VLF Free restore F.D.MT VLF VLF <td>5</td> <td>I</td> <td></td> <td>Ι</td>	5	I		Ι
NO2 ULF_PROBUT FILM NU-PA-26 VLF-A VLF-A VLF-A VLF-A VLF-A 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 01 0 02 0 03 0 04 0 05 0 05 0 06 0 07 0 08 0 09 0 09 0 00 0 00 0 00 0 00 0 00 0 00 0 00	j			
M22 RL-08-26 VLF-Fronter Filler VLF-A Biscorery LBL No <	۰. ۱			
RL - 80 - 26	Mag.		-	
RL-89-26 OPERATION VLF-A VLF-A <td></td> <td></td> <td></td> <td></td>				
NL-BB-26 A/A A/A VLF-A SECONDERTLANC Reg ACC Reg		Fraser Filter		
PL-88-26 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2		VLF- Huss		
PATA VLF-A Description Res B0 Res		6 _/		
EXERCISE TO LINE 20 50 1	0/b		VLF-A	A .
00	DISCOVERY LAKE	20		
00 00 00 00 00 00 01 00 02 00 03 00 04 00 05 00 06 00 07 00 08 00 09 00 00 00) 0		Ia	
00 00 00 00 For legend see Figure No. 5 0 50 50 50 50 50 50 50 50 50				1
b00 Image: set of the set				
500	200	. <u></u>	· · · · · · · · · · · · · · · · · · ·	
300				
300				
300				
300				
400 For legend see Figure No. 5 9				
400 For legend see Figure No. 5 0 50' 100' Scale 1' = 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-86-26 T	300			
MMMMMM For legend see Figure No. 5 0 50' 100' Scale 1' = 40 leet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26 ***********************************				
400 For legend see Figure No. 5 0 50° 100° Scale 1° – 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-68-26				
400 For legend see Figure No. 5 0 50 100' Scale 1' = 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26 .500				
400 For legend see Figure No. 5 9 50' Scale 1' = 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26 500	DATHALACUL			
For legend see Figure No. 5 Scale 1* - 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26 The section of the term of	J.J. M. Marker M.		•	
Scale 1* = 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST	For legend see Figure No. 5			
Scale 1" = 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26	o 50'	óo.		
POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26	Scale 1" = 40 feet	Ę		
RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26	POWER EXPLORATIONS INC.			
D.D.H. SECTION 112+00 W LOOKING WEST D.D.H. No. RL-88-26	RANDALL LAKE PROPERTY	rio		
D.D.H. No. RL-88-26	D.D.H. SECTION 112+00	▶ -500		
D.D.H. No. RL-88-26	LOOKING WEST			
	D.D.H. No. RL-88-26			

7a 7a5c, the set of the set o

.

.

•

ia 5, a, si, se, 5, c,

Vertical Field Magnetic Profile (x 1000 gammas) 5 N - ⊿ N - 6 - 5 - 4 -3 Mag VLF-Fraser Filter RL-88-19 a∕b VLF-A DATUM DISCOVERY LAKE T - 100 ----- -----·· -- -- -300 -----_____ - - 400 ------For legend see Figure No. 5 Scale 1" = 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 98+00 W LOOKING WEST - 500 D.D.H. No. RL-88-19 BY: J.N. / R.T.M. DATE: Jan Feb. 1988 SCALE: 1: 480 FIGURE No. 18 GEOCANEX LTD 538145E0002 16 RANDALL LAKE 210 .

-	· · · · ·		
Vertical Field Magnetic Profile (x 1000 gammas)	z ທ 1	2 0 1	Z N I
- 6	I	, I	·
- 5			· · · · ·
- 4			
3			
- 2			
	/		
RL	-88-25 /		
0 DATUM DISCOVERY LAKE			Discovery Lake
	/ 20	/	
·		/	
· • 100 · · · · · ·			
		/	
-200			Mode
			defor
		·	
- 300			
	•	,	
		•	
			• · · · ·
Nacia da alto			
JAMAN AND			
For legend see Figure No. 5			
0 50'	100'		
Scale 1" = 40 feet	±		
POWER EXPLORATIONS INC.	—		
RANDALL LAKE PROPERTY			
Opapimiskan Lake Area, Patricia M.D., Onta D.D.H. SECTION 80+00 V	ario ₩ -500		
LOOKING WEST			
D.D.H. No. RL-88-25	- 	IA I TAK BIA	· · · · · · · · · · · · · · · · · · ·
GEOCANEX LTD TORONTO CANADA	χ. 1988 μ0 23		
	53814SE0002 16 RANDALL LAKE	220	

•

Vertical Field Magnetic Profile (x 1000 gammas) ~ 6 - 5 -Mag. VLF-Fraser Filter RL-88-24 DATUM o∕b 0·03 5·0 - 100 . Net Malan - 400 For legend see Figure No. 5 100' Scale 1" = 40 feet POWER EXPLORATIONS INC. RANDALL LAKE PROPERTY Opapimiskan Lake Area, Patricia M.D., Ontario D.D.H. SECTION 64+00 W LOOKING WEST -500 -----D.D.H. No. RL-88-24 GEOCANEX LTD BY: J.N. / R.T.M. DATE: Jan.-Feb. 1988 SCALE: 1: 480 FIGURE No. 22 230 53B14SE0002 16 RANDALL LAKE

.

VLF EM Fraser F	iltered
Inphase Profi I	ile (%) 150
	125 -
	100
	75 –
	50 -
 .	25 –
	0 -
J., .	
	•
	:

P
-

iltered le (%)	150 – 125 –	100 -	75 -	20	25	0			 · · ·					
Fraser F lase Profi														
VLF EM	_				i				· · · · · · · · · · · · · · · · · · ·			· · ·		
Î									·					
									:					
N21-	-				Ì						(, , ,		-72	
												i.	Ю. Н. О.	
												· · · · /		
									•	(*				
N 91 -					ļ		-			•		<u> </u>		
					, ,		\mathbf{h}				•	2a,b		
											~	nmm		
												min	•	
N 91 -	•							,	1 1 2		Zone ; cd			
		·									Foult altero			
							er							
							ou Riv			· · · ·	mmm			
		-) Carib			,		m m		
N ÞI —	-					-	North							

		2 2 2 3 4 3 4 3 4 1 4 1 4 1 4 1 4 1 4 1 1 1 1						C Li Q
N E					:			ALL LAKE
					: : :	,	- 200	Sablescode 16 RAND
л 2 —	Filter	RIVER	:			MU) Igure No. 5	feet TIONS INC. PROPERTY tricia M.D., Ontario N 20+00 W EST & 21 & 21 & 21	BY: JN./H.I.m. DATE.Jan.Feb. 1988 SCALE: 1: 480 FIGURE No. 19
/ertical Field Magnetic Profile x 1000 gammas)	Mag.	DATUM NORTH CARIBOU		- 200	-300	400 For legend see Fi	Scale 1" = 40 POWER EXPLORA RANDALL LAKE Opapimiskan Lake Area, Pa D.D.H. SECTIO LOOKING W LOOKING W	GEOCANEX LTD TORONTO CANADA

•

I	VLF EM Inpl	l Fraser hase Pro	Filtere ofile (% 15	d 6) 0
			12	5 –
			10	0 -
			7	5 -
			5	io —
-•			2	5 -
I				
297'				
				3
			and and the second second second	
··· · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·				

• • • • • • •

