

53B15NW0007

010

REPORT

ON

MAGNETIC AND VLF-EM SURVEYS

ON THE

STAUNTON LAKE PROPERTY

DISTRICT OF KENORA, PATRICIA MINING DIVISION

NORTHWESTERN ONTARIO

FOR

POWER EXPLORATIONS INC.

NTS 53-B/15 NW

1

i

RECEIVED

SEP 1.2 1988

MINING LANDS SECTION

May 1988

Stephen B. Medd, B.Sc.

Ø10C

TABLE OF CONTENTS

Ĩ

.

		raye
1.0	SUMMARY	1
2.0	INTRODUCTION	3
3.0	PROPERTY DESCRIPTION, LOCATION AND ACCESS	3
4.0	TOPOGRAPHY AND VEGETATION	6
5.0	PREVIOUS WORK	6
6.0	REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION	9
7.0	PROPERTY GEOLOGY	12
8.0	DESCRIPTION OF GEOPHYSICAL PROGRAM	14
9.0	RESULTS AND INTERPRETATION	15
	9.1 Magnetic Data 9.2 VLF-EM Data	15 18
10.0	CONCLUSIONS AND RECOMMENDATIONS	29
11.0	REFERENCES	34

APPENDICES

А	CERTIFICATE	OF	QUALIFICATION	Back	of	report
---	-------------	----	---------------	------	----	--------

LIST OF FIGURES

FIGURE	NO.	1 •	- LOCATION MAP	Page	4
FIGURE	NO.	2 ·	- CLAIM SKETCH	Page	5
FIGURE	NO.	3.	- PROPERTY LOCATION AND REGIONAL GEOLOGY	Page	10

TABLE NO. 1 - TABLE OF VLF-EM CONDUCTORS

LIST OF DRAWINGS

SL-1-E	~•	MAGNETOMETER S	SURVEY -	VERT.	FIELD	RDGS.	Back	of	report
SL-1-W		MAGNETOMETER S	SURVEY -	VERT.	FIELD	RDGS.	н	н	14
SL-2-E		MAGNETOMETER S	SURVEY -	VERT.	FIELD	CONTOURS	5 "	11	н
SL-2-W		MAGNETOMETER	SURVEY -	VERT.	FIELD	CONTOURS	5 "	н	91
SL-3-E	**	VLF-EM SURVEY	I.P. &	QUAD. H	PROFILE	ES	*1	**	u
SL-3-W		VLF-EM SURVEY	I.P. &	QUAD. I	PROFILI	S	H	"	"
SL-4-E		VLF-EM SURVEY	FILTERE	D I.P.	CONTOU	JRS	11	11	11
SL-4-W		VLF-EM SURVEY	FILTERE	D I.P.	CONTOU	JRS	11	**	**
SL-5-E		GEOPHYSICAL II	NTER. &	VERT. I	FIELD C	CONTOURS	, n	11	
SL-5-W		GEOPHYSICAL I	NTER. &	VERT. H	FIELD C	CONTOURS	11	11	11

1.0 SUMMARY

Magnetic and VLF-EM surveys, were carried out during January and February, 1988, on the Staunton Lake property of Power Explorations Inc.

Three geological domains are interpreted from the magnetic and VLF-EM data in conjunction with previous geological data. From north to south, they are: clastic metasediments, mafic metavolcanics with iron formation, and tonalitic batholith rocks.

Hosted within the mafic metavolcanic domain are three weak to moderate magnetic bands representing weak iron formation units. Parts of these units are conductive indicating pyrrhotite-pyrite bearing iron formation or mineralized stratabound shear structures in oxide facies iron formation. At the west end of the property, the magnetic units appear to be squeezed as the distances between them narrow. This could be a result of emplacement of the tonalitic batholith to the south. An apparent thickening of parts of the iron formation in this area suggest possible small scale folding.

Magnetic data also reveal a number of north-northwest to north-northeast crosscutting faults.

The majority of VLF-EM conductors are interpreted as representing fault/shear structures. The North Caribou River Fault System is the dominant structural feature believed to cross through the property. It is marked by two main, weak to moderate conductive trends, and a number of small-scale, parallel and subparallel conductors. The fault system changes direction from west-northwest on the west end of the west end of the property, where it crosscuts two iron formation units, to east-northeast on the central and east parts of the property.

Seven fences have been selected along which diamond drilling should initially commence. This totals to 21 holes and approximately 6,300 feet of drilling.

2.0 INTRODUCTION

The following report describes the results of ground magnetic and VLF-EM surveys conducted during January and February, 1988, over the Staunton Lake property of Moss Resources Ltd. The two surveys were undertaken to delineate lithological units, structural trends and alteration zones, and to locate conductive zones of sulphide-bearing iron formation, other stratabound sulphide mineralization and shearing, all of which could host gold. Particular attention was given to delineating the North Caribou River Fault Zone which is known to traverse the property in an east-northeast direction. This is the most prominent fault zone in the North Caribou Lake greenstone belt and one which is known to host Cu-Ag-Au mineralization.

3.0 PROPERTY DESCRIPTION, LOCATION AND ACCESS

The Staunton Lake property is located approximately 110 air miles north-northwest of the town of Pickle Lake and 170 air miles northeast of the town of Red Lake in Northwestern Ontario (Fig. No. 1). A block of 74 contiguous, unpatented mining claims form the property (Fig. No. 2). The property does not include a block of 8 contiguous claims which it encloses. To the southwest, the property is bordered by a claim block held by E.W. Bazinet for Milner Consolidated Silver Mines Ltd. and Beaufield Resources Inc. Claim numbers and recording dates are as follows:

Claim Numbers

Recording Dates

Pa	1007849-1007886	inclusive	(38)	October	14,	1987
Pa	1.007929-1007934	inclusive	(6)	October	14,	1987
Pa	1008072-1008101	inclusive	(30)	October	14,	1987

Total 74 Claims

These claims held by Moss Resources Ltd., 1003-34 King Street East, Toronto, Ontario, M5C 1E5.

Access to the property is attained by helicopter or by float plane from Pickle Lake or Red Lake to a number of lakes on, or adjacent to the property. Furthermore, Highway 808, an all-weather gravel road from Pickle Lake to Windigo Lake, ends approximately 25 miles south of the property. During January to April, a winter road exists between Windigo Lake and Weagamow Lake and passes within five miles of the property.

4.0 TOPOGRAPHY AND VEGETATION

The property is situated along the north shores of Staunton and Seeseep Lakes. Lakes, ponds and rivers cover 20% of the property. Overburden ridges trend northeast and are produced by well-drained sand and boulder drumlinoid deposits. Clay till sheets commonly occupy the low-lying areas which are covered by black spruce and thick muskeg.

5.0 PREVIOUS WORK

The following is a chronological account of previous work on the property and adjacent areas:

<u>1939</u> - The geology of the area was mapped at a scale of one inch to one mile by Jack Satterly for the Ontario Department of Mines.

<u>1960</u> - An airborne magnetometer survey was flown in the area by the O.D.M.-G.S.C. (Maps 909G and 919G). The survey indicates that at least one east-northeast trending iron formation traverses the property.

<u>1978</u> - Linecutting, geological mapping, and ground magnetic and electromagnetic surveys were conducted over six claim blocks held by St. Joseph Explorations Ltd., located southwest of the property. Diamond drilling for gold and massive sulphides was recommended.

<u>1979</u> - Six holes were diamond drilled by St. Joseph Explorations Ltd. for a total of 1,788 feet. All six holes were located on the present Randall Lake property of Power Explorations Inc. situated along the North Caribou River Fault to the southwest. Assays were carried out for Au, Cu, and Zn.

<u>1982</u> - The Ontario Geological Survey published a regional geological compilation map (Map 2292) at a scale of one inch to four miles (O.G.S., 1982). This map was compiled from data obtained during a 1973 reconnaissance geological survey.

<u>1984</u> - Moss Resources Ltd. staked 75 claims covering a 5.4 mile strike length along the North Caribou River Fault southwest of the property.

<u>1985</u> - In March, 1985, magnetic and VLF-EM surveys were conducted over the Randall Lake property belonging to Moss Resources Ltd. and Power Explorations Inc. under a joint venture agreement.

- 7 -

<u>1985</u> - The Ontario Geological Survey released a preliminary geological map (Map P.2834) at a scale of one inch to onehalf mile (Bartlett <u>et al.</u>, 1985). This map was based on geological mapping of the Eyapamikama Lake area during the summer of 1984.

<u>1986</u> - The Ontario Geological Survey released a set of 38 airborne magnetic and electromagnetic maps (scale 1:20,000) that covered the entire North Caribou - Opapimiskan Lakes greenstone belt. The airborne survey was flown by Aerodat Ltd. during the winter of 1985. Maps 80726 and 80727 cover the property area.

<u>1986</u> - Geological mapping, magnetic and horizontal-loop EM surveys were performed over the claim block bordering the Staunton Lake property to the southwest. The work was done for Milner Consolidated Silver Mines Ltd. and Beaufield Resources Inc. under a joint venture agreement. Details of the three surveys are referred to in Section 7.0 (Property Geology) of this report.

<u>1987</u> - A staking rush in the belt accelerated in 1987 such that by year's end, the entire length of the North Caribou River Fault and the boundary between South Rim Metavolcanics and Eyapamikama Metasediments were completely staked.

<u>1987</u> - The Milner Consolidated Silver Mines Ltd. - Beaufield Resources Inc. joint venture diamond drilled seven holes for a total of 2,572.5 feet on the claim block adjacent to the Staunton Lake property on its southwest side. The best gold assay yielded 0.021 ounces gold per ton from interval 171-180 feet of Hole No. 3 located at co-ordinates 2+30N,8+00W (Grid 1) on claim 870717. The auriferous interval contained interbanded chert-magnetite-grunerite with 20% pyrite and pyrrhotite as massive bands and fracture-fillings. The zone was micro folded and sheared with trace amounts of arsenopyrite. Overall, results were disappointing and no further work was recommended in the near future.

6.0 REGIONAL GEOLOGY AND ECONOMIC MINERALIZATION

The property is located in the North Caribou - Opapimiskan Lakes greenstone belt which belongs to the Sachigo Subprovince of the Superior Province of the Canadian Shield. The belt forms a narrow, arcuate, isoclinal synclinorium that stretches for approximately 90 miles from end to end (Fig. No. 3).

A thick clastic metasedimentary sequence, known as the Eyapamikama Lake Metasediments, occupies the central and northwest part of the belt. This sequence is flanked to the north by the North Rim Metavolcanics and to the south by the South Rim Metavolcanics. The South Rim Metavolcanics contain mafic to felsic metavolcanic flows and tuffs; the main lithologies being fine-to-medium grained, massive and pillowed mafic flows. The North Rim Metavolcanics contain predominantly mafic metavolcanic rocks. Both units host extensive zones of banded oxide facies iron formation and cherty chemical sediments. Gabbro and quart-feldspar porphyry sills and dykes are found throughout the North and South Rim Meta-These intrusives are probably co-magnetic with volcanics. their host rocks because they commonly predate D₁ structures.

In the vicinity of Opapimiskan Lake, the North and South Rim Metavolcanic units pinch out and they are replaced by the Opapimiskan-Markop Metavolcanics. These rocks are mafic and

- 9 -

ultramafic in composition, and are possibly older and geochemically more primitive. They are similar compositionally to the Keeyask Lake Metavolcanics at the west end of the belt. Located at the easternmost end of the belt are a sequence of pillowed and massive mafic metavolcanic flows known as the Forester-Neawagank Metavolcanics. These rocks may be confused with metamorphosed mafic plutonic rocks, however, the presence of interbeds of banded iron formation and pillow structures are evidence of their volcanic origin (Breaks, et al., 1986).

Granitoid paragneiss and migmatized rocks border the north side of the belt. Felsic intrusives such as the North Caribou Lake Batholith border the south side. A myriad of felsic porphyry, aplite and pegmatite dykes crosscut the margins of the belt.

The regional metamorphic grade varies from greenschist to lower-middle amphibolite facies.

Deformation of the belt involved at least three phases of Only rare examples can be documented of the D_1 folding. event which produced isoclinal folding resulting in the synclinal shape of the belt. The present isoclinal shapes of F1 folds are sometimes seen in banded iron formation and are probably the result of rotation of fold limbs nearly parallel to F_2 fold limbs. The D_2 deformation event was the major tectonic and metamorphic event in the belt. F2 folds are closed to open, assymetric Z and S mesoscopic folds which possess near vertical, axial planar, penetrative In most of the belt, this cleavage is generally cleavage. oriented in a northwest to west-northwest direction with associated lineations having shallow plunges to the northwest

or northeast. D_3 structures are only locally penetrative and are usually manifested as broad open warps in the stratigraphy and earlier fabrics.

Gold mineralization occurs with quartz-pyrrhotite veins and disseminated sulphides in grunerite-chert banded iron formation at Opapimiskan Lake. The presence of grunerite in banded iron formation correlates with zones of increased shearing that commonly parallel iron formation banding and axial planes of F_2 folds. Sulphide mineralization commonly shows a preferential association with these gruneritic zones. Sulphide-bearing quartz-carbonate \pm tourmaline veins and shear zones are gold-bearing and could be related to either S_1 or S_2 structures. D_1 related shear zones, such as the North Caribou River Fault are hosts for gold. The gold is associated with intense shearing and quartz-sulphide-iron carbonate alteration (North, 1987).

To date, the most economic gold zones in the belt are found in the west Anticline Zone of the Musselwhite deposit and the Snoppy Lake deposit, located in the Opapimiskan Lake area. Published reserves for the West Anticline Zone are over 3.2 million tons at 0.17 ounces gold per ton. The Snoppy Lake deposit has estimated reserves of 6 million tons grading 0.2 ounces gold per ton.

7.0 PROPERTY GEOLOGY

No previously recorded detailed geological data is known to exist for the property. However, regional mapping of the area was carried out in 1973 by the O.G.S. and the results were released in 1982 on Map 2292 at a scale of one inch to four miles (O.G.S., 1982). A more focussed mapping program of the Eyapamikama Lake area was undertaken by the O.G.S. in 1984. The results of this survey are presented on preliminary geological map P.2834 at a scale of one inch to one-half mile, released in 1985 (Bartlett <u>et al.</u>, 1985). Detailed geology, geophysics and diamond drilling were carried out in 1986-1987 on the Milner Consolidated Silver Mines property which borders the Staunton Lake property on its southwest side.

From the sources of geological data mentioned above, a rudimentary picture of the property geology can be constructed. Bedrock exposure is poor, approximately 5%, with a majority of outcrops apparently occurring along parts of the Seeseep and Staunton Lakes shorelines. Drilling on the adjacent property to the southwest encountered overburden thicknesses of 5 to 40 feet. Geological, magnetic and electromagnetic data from the adjacent property indicate that three geological domains continue east-northeasterly on to the Staunton Lake property. From north to south, they are: clastic metasediments of the Eyapamikama Metasediments; mafic fine-tomedium grained metavolcanic flows and tuffs of the South Rim Metavolcanics; and tonalite and granitoid rocks belonging to the North Caribou Lake Batholith. The data also indicates the possible extension on to the property of at least one continuous conductive iron formation unit contained within the mafic metavolcanics. This iron formation unit is flanked on its north side by a linear topographic depression and coincident EM conductor which could represent a concordant shear zone within the North Caribou River Fault System. Two other narrow, linear magnetic features, possibly oxide facies iron formation, also strike on to the property.

- 13 -

Drill core data from the adjacent property to the southwest reveal that the iron formation - shear zone area contains ubiquitous micro folding, brecciation and shearing in the rocks. The best gold assay came from this potential shear zone and yielded 0.021 ounces gold per ton over nine feet from interbanded chert-magnetite-grunerite with 20% pyrite and pyrrhotite as massive bands and fracture-fillings. Similar mineralized structures probably exist on the Staunton Lake property.

8.0 DESCRIPTION OF GEOPHYSICAL PROGRAM

During January and February, 1988, linecutting, and ground magnetic and VLF-EM surveys were conducted over the Staunton Lake property of Power Explorations Inc. The personnel involved were:

C.	Bertrand	Val d'Or, Quebec	Linecutter Ja	in.9-20, 1988
с.	Darveau	Amos, Quebec	Linecutter Ja	n.9-20, 1988
R.	Darveau	Amos, Quebec	Linecutter Ja	n.9-20, 1988
Y.	Gregoire	Amos, Quebec	Linecutter Ja	n.9-20, 1988
Y.	Jacques	Amos, Quebec	Linecutter Ja	n.9-20, 1988
R.	LeMay	Amos, Quebec	Linecutter Ja	n.9-20, 1988
J.	Paquette	LaSarre, Quebec	Linecutter Ja	n.9-20, 1988
Ρ.	Trapper	LaSarre, Quebec	Linecutter Ja	n.9-20, 1988
F.	Recoskie	Pickle Lake,	Magnetometer	Jan. 28-
		Ontario	Operator	Feb. 10, 1988
D	J. Recoskie	Val d'Or,	Magnetometer	Jan. 28-
		Quebec	Operator	Feb. 10, 1988
D.I	E. Recoskie	Val d'Or,	VLF Operator	Jan. 28-
		Quebec	-	Feb. 10, 1988
R.	Carpenter	Sioux Lookout,	VLF Operator	Jan. 28-
	-	Ontario	-	Feb. 10, 1988

An east-west trending baseline was cut across the property and perpendicular lines were cut 200 feet apart with pickets erected at 100 foot intervals. The magnetic survey was performed using a Scintrex Fluxgate MF-2 magnetometer. Readings of the vertical magnetic field were taken every 100 feet along the survey lines, and in areas of high magnetic gradient readings were taken at 50 foot intervals. Diurnal drift changes in the magnetic field were estimated by taking repeat readings at previously established stations at time intervals not exceeding 1.5 hours. Corrections were made, accordingly, to the vertical magnetic field value obtained at each station. The results of the magnetic survey were plotted and contoured and are presented on maps in back of the report.

The VLF-EM survey employed a Geonics EM-16 receiver tuned to receive the 24.0 kHz signal transmitted from Cutler, Maine (NAA). Readings of inphase (tilt-angle) and quadrature were taken every 100 feet along the survey lines. The results are presented in profiled format and contoured format (Fraserfiltered inphase values) on maps in back of the report.

9.0 RESULTS AND INTERPRETATION

Refer to the geophysical interpretation maps in back of the report.

9.1 Magnetic Data

Three major geological domains are inferred from the magnetic data, in conjunction with geological data from two sources (Bartlett <u>et al.</u>, 1985) and (Milner Consolidated Silver Mines Ltd., 1986):

- Clastic metasediments (Eyapamikama Metasediments) north part of the property.
- Mafic metavolcanic flows and tuffs with iron formation (South Rim Metavolcanics) - central part of the property.
- 3. Tonalite and granitoid rocks (North Caribou Lake Batholith) south part of the property.

The property is dominated by an east to east-northeast trending package of mafic metavolcanics containing three relatively narrow magnetic bands interpreted to be sulphide and/or oxide facies iron formation. Iron formation bands IF-1 and IF-2, on the north and central parts of the property, respectively, have weak to moderate magnetic responses with values generally between 1000 and 4000 gammas. IF-1 peaks magnetically at 19,000 gammas on the west side of the property. IF-2 peaks magnetically at 8600 gammas on the centre of the property. IF-2 is believed to be the east extension of a chert-magnetite iron formation which was mapped and verified magnetically on the adjacent property to Iron formation IF-3 borders the tonalite the southwest. domain and is considerably weaker and less continuous magnetically than IF-1 and IF-2, with values generally between 600 and 1500 gammas. A peak value of 3500 gammas occurs on its west side.

The mafic metavolcanic/iron formation package is bordered to the north by a domain of relatively subdued and isolated magnetic peaks and depressions. Values generally range between 100 and 500 gammas. This area is interpreted to be clastic metasediments. Bordering the south side of the mafic metavolcanic/iron formation package is a domain of intermediate granitoid rocks or tonalite. This area is characterized by a very flat magnetic response, with values falling within a narrow range between 400 and 600 gammas. Two west-northwest trending dykes and one north-northeast trending dyke traverse through the tonalite domain but do not appear to enter the adjacent mafic metavolcanic/iron formation package of rocks. These dykes could be diabasic in composition.

Numerous faults or shears cross the property, however, only a fraction of these are indicated by flexures or disruption of magnetic and VLF-EM conductors. Those faults that are apparent from the magnetic data include two north-northeast trending faults and one north-south trending fault on the east part of the property. On the west part of the property, two north-northwest trending faults have been interpreted based on magnetic data. Furthermore, two west to westnorthwest trending conductors, A4 and B4, cut obliquely across iron formation bands IF-1 and IF-2, respectively, appearing to disrupt and abate their magnetic responses. These two conductors are believed to be parallel, conductive shears within the North Caribou River Fault System.

On the west part of the property, distances narrow between iron formation bands IF-1, IF-2 and IF-3, suggesting they have been squeezed into their present position by the tonalitic batholoth to the south. Deformation appears to be intense in this area as seen by the dense concentration of conductors, interpreted to be shears; and by the suggestion of small scale folding and apparent thickening of the iron formation bands. 9.2 VLF-EM Data

Six types of bedrock conductors are interpreted as occurring on the property. They are summarized below:

- I Stratabound Conductors with a Magnetic Association Type 2 - pyrrhotite-pyrite bearing iron formation or sheared iron formation with secondary sulphide mineralization.
- II Conductors without a Magnetite Association
 - A. Concordant and Subconcordant Conductors Type 2
 Type 2 ambiguous source: pyritic and/or graphitic concordant horizons, conductive contacts, concordant faults and shears.

Type 3 - concordant or subconcordant faults and shears.

B. Discordant Conductors

Type 4 - west to west-northwest trending faults and shears.

Type 5 - east-northeast trending faults and shears.

Type 6 - west-northwest trending faults and shears.

Table No. 1 describes each conductor in detail and assigns a priority (very high, high, moderate, low) with respect to the conductor's potential for gold mineralization.

Note that each conductor is assigned a conductor strength rating (strong, moderate, low, very low) based on a scheme outline below. Negative quadrature response refers to quadrature that behaves inversely to the inphase (i.e. quadrature values are positive when inphase values are negative and vice versa). This is typical of good conductors. Positive response refers to quadrature that behaves the same way as the inphase (i.e. quadrature values are positive when inphase values are negative). This is typical of poor conductors. Also, note that most conductors vary in strength along strike, therefore, conductor strengths are given as a percentage over the total length of the conductor.

- I Strong Conductance
 - A. Inphase peak-to-peak response is 60-100%+ with negative (inverse) quadrature or weak to moderate positive quadrature response, or
 - B. Inphase peak-to-peak response is 50-60% with strong negative quadrature response.
- II Moderate Conductance
 - A. Inphase peak-to-peak response is 30-60% with negative quadrature or weak to moderate positive quadrature response, or
 - B. Inphase peak-to-peak response is 60-70% with strong negative quadrature response, or
 - C. Inphase peak-to-peak response is 60-70% with strong positive quadrature response.

III Low Conductance

- A. Inphase peak-to-peak response is 10-30% with negative quadrature or weak to moderate positive quadrature response, or
 - B. Inphase peak-to-peak response is 30-40% with strong positive quadrature response.

STAUNTON LAKE PROPERTY

Conductor Label (Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
A 1	West	Iron Fm. (IF-1)	35% strong 25% moderate 40% weak	2,500	Very high	Strongest part associated with high magnetics adjacent to discordant conductive shear (A4).
^B 1	West	Iron Fm. (IF-1)	15% moderate 70% weak 15% very weak	4,400	Very high	Pyrrhotite-pyrite in iron formation or sheared iron formation. Same zone as conductor A ₁ .
c ₁	West	Iron Fm. (IF-1)	75% moderate 25% weak	4,200	Very high	Pyrrhotite-pyrite in iron formation or sheared iron formation. Same zone as conductors A_1 , B_1 .
D ₁	East	lron Fm. (IF-1)	100% very weak	1,400	Moderate	Weak pyrrhotite pyrite in iron formation. Magnetic response is weak.
^Е 1	West	Iron Fm. (IF-1)	100% moderate	400	Very high	Sulphide lens in folded part of iron formation IF-1.
F 1	West	Iron Fm. (IF-2)	100% very weak	700	High	Adjacent to discordant conductive shear (B4) which could be main North Caribou River Fault.
G ₁	West	Iron Fm. (IF-2)	100% very weak	700	Moderate	Weak pyrrhotite-pyrite in iron formation. Same zone as conductor F_1 .
H ₁	West	lron Fm. (IF-2)	100% weak	1,300	High	Weak pyrrhotite-pyrite in iron formation. Same zone as conductors F_1 , G_1 .
1 1	East/ West	Iron Fm. (IF-2)	15% strong 50% moderate 35% weak	6,600	Very high	Strongest part associated with high magnetics. Pyrrhotite-pyrite in iron formation or sheared iron formation.

- 20

ł

STAUNTON LAKE PROPERTY

Conductor Label Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
J	East	Iron Fm. (IF-2)	100% weak	400	Low	Sulphide lens in iron formation or over- burden noise.
κ ₁	East/ West	Iron Fm. (IF-3)	45% moderate 40% weak 15% very weak	7,600	High	Pyrrhotite-pyrite in weak iron formation (IF-3 north horizon).
L1	East	Iron Fm. (IF-3)	15% moderate 30% weak 55% very weak	3,000	Moderate	Could be same zone as conductor K ₁ .
Ml	West	Iron Fm. (IF-3)	35% strong 25% moderate 40% weak	1,600	Very high	Pyrrhotite-pyrite in folded/faulted iron formation.
Nl	East/ West	Iron Fm. (IF-3)	10% strong 60% weak 30% very weak	6,500	High	Pyrrhotite-pyrite in weak iron formation (IF-3 south horizon) adjacent to tonalitic batholith.
A ₂	West	Clastic Metasediment	100% weak	700	Low	Could be a weakly conductive contact or concordant fault in the clastic metasediments.
B 2	West	Clastic Metasediment	100% weak	1,300	Low	Same zone as A ₂ .
c ₂	West	Clastic Metasediment	100% very weak	1,200	Low	Same zone as A ₂ , B ₂ .

- 21 -

STAUNTON LAKE PROPERTY

Conductor Label Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
D ₂	West	Clastic Metasediments	100% very weak	1,200	Tom	Same zone as A ₂ , B ₂ , C ₂ .
E ₂	West	Clastic Metasediments	15% moderate 85% weak	3,000	Low	Same zone as A_2 , B_2 , C_2 , D_2 .
F ₂	West	Clastic Metasediments	50% weak 50% very weak	800	Low	Could be a weakly conductive contact or concordant fault in the clastic metasediments.
G ₂	West	Clastic Metasediments	40% weak 60% very weak	2,200	Low	Same zone as F ₂ .
H ₂	West	Clastic Metasediments	100% weak	900	Low	Same zone as F ₂ , G ₂ .
I ₂	East	Clastic Metasediments	100% very weak	600	Low	Could be a lens of disseminated pyrite.
J ₂	West	Mafic Metavolcanics- Iron Fm. (IF-1) Contact	100% very weak	1,200	Moderate	Weakly conductive contact or sheared contact.
κ2	West	Mafic Metavolcanics- Iron Fm. (IF-3) Contact	5% strong 35% moderate 60% weak	5,400	Very high	Could be sulphide bearing and sheared iron formation contact. Sinuous shape due to faulting/folding.
L ₂	East/ West	Mafic Metavolcanics	50% moderate 50% weak	1,200	Low	Weak magnetic association. Could be sulphide bearing mafic metavolcanic horizon.

- 22 -

STAUNTON LAKE PROPERTY

Conductor Label Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
M 2	East	Mafic Metavolcanics	100% weak	400	Low	Same zone as L ₂ .
N 2	East	Mafic Metavolcanics	35% weak 65% very weak	2,800	Low	Same zone as L_2 , M_2 . Weak magnetic association.
° ₂	East	Mafic Metavolcanics	25% moderate 75% weak	3,600	Moderate	Weak magnetic association. Could be sulphide bearing mafic horizon or very weak iron formation.
P 2	East	Mafic Metavolcanics	100% very weak	1,200	Low	Could be a weakly conductive contact or concordant fault.
۵2	East	Mafic Metavolcanics	100% weak	400	Low	Same zone as P ₂ .
R ₂	East	Mafic Metavolcanics	50% weak 50% very weak	800	Low	Same zone as P_2 , Q_2 .
s ₂	East	Mafic Metavolcanics	100% weak	1,100	Low	Could be weakly conductive contact or concordant fault.
T ₂	East	Mafic Metavolcanicв	65% weak 35% very weak	1,200	Low	Similar to condutor T_2 .
U 2	East	Mafic Metavolcanics	55% moderate 45% weak	2,800	Moderate	Could be conductive contact or concordant shear parallel to concordant shear I ₃ .

- 23 -

Т.

STAUNTON LAKE PROPERTY

Conductor Label (Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
A 3	East/ West	Clastic Metasediment	20% moderate 80% weak	1,800	Moderate	Could be subconcordant shear connecting with conductor C ₁ in iron formation (IF-1)
^В 3	East	Clastic Metasediment	50% moderate 50% very weak	1,600	Low	Same zone as A3.
c ₃	West	Mafic Metavolcanics	70% weak 30% very weak	2,300	Moderate	Subconcordant shear which could intersect iron formation (IF-1).
D ₃	West	Mafic Metavolcanics	60% moderate 40% weak	2,400	Moderate	Same zone as C3. Appears to crosscut weak magnetic trend in mafic metavolcanics.
^Е 3	East	Mafic Metavolcanics	15% moderate 85% weak	2,400	Low	Could be same zone as C_3 , D_3 .
F ₃	West	Mafic Metavolcanics	100% weak	1,600	Moderate	Subconcordant shear which could intersect iron formation (IF-2).
G ₃	East	Mafic Metavolcanics	50% weak 50% very weak	1,800	Moderate	Subconcordant shear which could connect with conductor I_1 in iron formation (IF-2).
H ₃	East	Mafic Metavolcanics	100% very weak	1,200	Low	Subconcordant shear parallel to conductor G3.
1 ₃	East/ West	Mafic Metavolcanics	25% moderate 65% weak 10% very weak	13,600	High	Could be main part of the North Caribou River Fault. Strength increases over magnetic highs.

STAUNTON LAKE PROPERTY

Conductor Label Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
J ₃	East	Mafic Metavolcanics	75% weak 25% very weak	3,200	Moderate	Subconcordant shear which could intersect iron formation (IF-3). Possible extension L_1 .
к ₃	East/ West	Tonalite	25% strong 40% moderate 35% weak	5,100	Moderate	Edge effect on north side of Seeseep Lake Could also be a shear along tonalite boundary.
L ₃	East	Tonalite	45% moderate 30% weak 25% very weak	3,900	Moderate	Same as conductor K ₃ .
M ₃	East	Tonalite	50% moderate 50% weak	2,900	Moderate	Same as conductors K3, L3.
N ₃	West	Tonalite	50% weak 50% very weak	900	Low	Fault subconcordant to tonalite boundary.
° ₃	West	Tonalite	30% moderate 70% weak	70 0	Low	Could be same fault as conductor N ₃ but disrupted by two dykes.
P 3	West	Tonalite	60% moderate 40% weak	2,800	Low	Could be same fault as conductors N_3 , O_3 , but disrupted by two dykes.
Q3	West	Tonalite	100% moderate	800	Low	Fault subconcordant to tonalite boundary.
R ₃	West	Tonalite	100% moderate	800	Low	Could be same fault as conductor Q_3 .
s ₃	West	Tonalite	80% moderate 20% weak	1,100	Low	Could be same fault as conductors Q_3 , R_3 , but disrupted by two dykes.

- 25 -

STAUNTON LAKE PROPERTY

Conductor Label Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
т ₃	West	Tonalite	65% weak 35% very weak	1,100	Low	Fault subconcordant to tonalite boundary.
U 3	West	Tonalite	100% strong	600	Low	Could be same fault as conductor T_3 but disrupted by a dyke.
V 3	West	Tonalite	15% moderate 70% weak 15% very weak	2,600	Low	Fault subconcordant to tonalite boundary.
W 3	West	Tonalite	60% moderate 40% weak	2,000	Low	Similar to conductor V_3 .
A 4	West	Clastic Metasediments, Iron Fm. (IF-1) and Mafic Metavolcanics	25% moderate 60% weak 15% very weak	5,600	Very high	West-northwest trending discordant shear cutting IF-1. Part of the North Caribou River Fault System.
B ₄	West	Mafic Metavolcanics and Iron Fm. (IF-2)	90% weak 10% very weak	5,500	Very high	West-northwest trending discordant shear cutting IF-2. Part of the North Caribou Fault System.
A ₅	West	Tonalite	35% moderate 65% weak	1,100	Low	East-northeast trending discordant fault.
B ₅	West	Tonalite and Iron Fm. (IF-3)	55% weak 45% very weak	2,900	Moderate	East-northeast trending discordant fault intersecting iron formation (IF-3).

STAUNTON LAKE PROPERTY

Conductor Label Numeral Denotes Conductor Type)	Map Sheet	Probable Host Rock	Conductor Strength	Length (Feet)	Priority	Interpretation
° ₅	West	Tonalite and Iron Fm. (IF-3)	10% strong 65% moderate 25% weak	4,800	High	East-northeast trending discordant fault intersecting iron formation (IF-3).
D 5	West	Tonalite	25% moderate 4 55% weak 20% very weak	,100	Low	East-northeast trending discordant fault cut by dyke.
A 6	West	Tonalite	15% strong 85% moderate	2,300	Moderate	West-northwest trending fault (graphitic?) along edge of dyke. Could also be lake edge effect.
в ₆	West	Tonalite	100% strong	3,200	Moderate	West-northwest trending fault (graphitic? along edge of another parallel dyke.
с ₆	West	Mafic Metavolcanics	50% weak 50% very weak	900	Low	West-northwest trending fault.
D ₆	West	Mafic Metavolcanics	80% weak 20% very weak	2,100	Low	West-northwest trending discordant fault.
E ₆	West	Clastic Metasediments	85% weak 15% very weak	1,800	Low	West-northwest trending discordant fault.
F ₆	West	Clastic Metasediments	65% weak 35% very weak	1,200	Low	West-northwest trending discordant fault.

- 27 -

- A. Inphase peak-to-peak response is less than 10% with negative quadrature or weak to moderate positive quadrature response, or
- B. Inphase peak-to-peak response is 10-20% with strong positive quadrature response.
- The North Caribou River Fault System is interpreted as changing from a northeast direction, southwest of the property, to a west to west-northwest direction at the west end of the property. As it continues towards the east end of the property, it changes direction again, to an eastnortheast trend that parallels the shoreline of Seeseep Lake. The north shoreline of Seeseep Lake may in fact be faultbounded.

Generally, the fault system is interpreted to form a 1,200 foot wide zone on the west end of the property between conductors A_4 and B_4 . These two conductors are believed to be two of the more dynamic and prominent shears within the fault system. They cut obliquely across iron formations IF-1 and IF-2, respectively, causing marked flexures and abatements in the magnetic responses of the iron formation units. An abatement in the magnetic intensity could reflect hydrothermally produced grunerite from magnetite, as well as silica and carbonate flooding. All are important ingredients for gold deposition in the area.

On the central and east parts of the property, the fault system is interpreted as being confined mainly between iron formations IF-2 and IF-3. Conductor I₃ is a dominant, continuous conductor between the two iron formation units and could be the east extension of a shear represented by conductor B₄. Similarly, conductors I₁, and G₃ could form the east extension of a shear represented by conductor A₄.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Drill target selection is based on two general models of gold mineralization for the west end of the North Caribou -Opapimiskan Lakes greenstone belt. Gold mineralization on the Staunton Lake property should be sought in the following geological environments:

- Iron Formation: particularly, D₂ fold hinges; concordant to subconcordant axial shear zones; conductive zones which could represent both primary and secondary replacement of magnetite; and areas of magnetic abatement which could represent gruneritization, and silica and carbonate flooding.
- 2. D₁ fault/shear structures: namely, the North Caribou River Fault System and subsidiary splay structures, particularly where individual shears intersect or are proximal to iron formation.

An initial diamond drilling program should test a variety of targets based on the two models described above. To accomplish this, seven fences have been selected for drilling for a total of 21 holes and approximately 6,300 feet. This is based on an average hole depth of 300 feet; an average hole separation of 400 feet; and a drilling direction from south to north at an inclination of -50° .

Fence No. 1

Location: L88+00W, 7+00S to 14+00S Number of Holes: 3 Approximate Footage: 900 feet

Targets to Test:

1. North contact of iron formation IF-1 and west end of conductor B_1 which appears to be offset from conductor A_1 by a crosscutting conductive shear (A₄).

- 30 -

- 2. Conductor A₄, which could represent one of the more prominent shear structures within the North Caribou River Fault System. It becomes locally stronger where it intersects iron formation IF-1. Furthermore, the intersection is marked by a flexure and abatement in the magnetic response.
- 3. South contact of iron formation IF-1 and east end of conductor A_1 which appears to be offset from conductor B_1 by a crosscutting conductive shear (A4).

Fence No. 2

Location: L80+00W, 4+00S to 12+00S Number of Holes: 2 Approximate Footage: 600 feet Targets to Test:

- 1. Conductor B_1 , which could represent pyrrhotite-pyrite mineralization within iron formation IF-1 or within a stratabound shear. Magnetic data suggest faulting and/ or folding near this part of the conductor.
- Conductor A4, which could represent a dynamic shear within the North Caribou River Fault System.

Fence No. 3

Location: L68+00W, BL0+00 to 6+00S Number of Holes: 2 Approximate Footage: 600 feet Targets to Test:

- 1. Conductor B_1 in an area of possible small scale folding and apparent thickening of iron formation IF-1.
- Conductor E₁, a short, moderate strength conductor which could represent a lens of pyrrhotite-pyrite within folded iron formation IF-1 or a mineralized axial shear structure.

Fence No 4

Location: L76+00W, 23+00S to 31+00S Number of Holes: 3 Approximate Footage: 900 feet Targets to Test:

- Conductor B₄, which could represent a dynamic shear structure within the North Caribou River Fault System similar to conductor A₄.
- 2. Conductor K_2 , which could be a mineralized or sheared contact along the north side of iron formation IF-3.
- 3. Conductor C₅, which crosscuts iron formation IF-3 in a northeast direction and could represent a splay fault off a shear structure marked by conductor B₄. A north-northwest trending fault crosscuts the iron formation nearby. The magnetic intensity is weakened in this area.

Fence No. 5

Location: L104+00W, 13+00S to 28+00S Number of Holes: 3 Approximate Footage: 900 Targets to Test:

- Conductor A₁ in iron formation IF-1 where a marked abatement in the magnetic intensity exists.
- 2. Conductor B₄, which could represent a dynamic shear structure in the North Caribou River Fault System. The conductor crosscuts iron formation IF-2 in an area which is marked by a very large and prominent abatement in the magnetic intensity, possibly a result of hydrothermal alteration.
- 3. Conductor K_2 , which could be a mineralized or sheared contact along the north side of iron formation IF-3. The magnetic intensity is weakened in this area.

Fence No. 6

Location: L20+00E, 8+00N to 13+00S Number of Holes: 4 Approximate Footage: 1,200 feet Targets to Test:

1. Conductor I_1 which could represent pyrrhotite-pyrite mineralization in iron formation IF-2 or within a stratabound shear. Conductor I_1 , could be the east extension of conductor A4, a possible shear structure within the North Caribou River Fault System.

- 3. Conductor K_1 , associated with a weakening of the magnetic intensity along the north horizon of iron formation IF-3.
- 4. Conductor N_1 , associated with a weakening of the magnetic intensity along the south horizon of iron formation IF-3.

Fence No. 7

Location: L32+00E, 11+00N to 9+00S Number of Holes: 4 Approximate Footage: 1,200 feet Targets to Test: Along strike of the same four conductors in Fence No. 6.

Respectfully submitted,

Styl hadd

Stephen B. Medd, B.Sc. Geocanex Ltd.

11.0 REFERENCES

- Milner Consolidated Silver Mines Ltd., 1986. A report on geological and geophysical surveys on their Staunton Lake property by E.W. Bazinet; from the Ontario Geological Survey Assessment Files Research Office, Toronto.
- Milner Consolidated Silver Mines Ltd., 1987. A report on diamond drilling results from their Staunton Lake property by E.W. Bazinet; from the Ontario Geological Survey Assessment Files Research Office, Toronto.
- Barlett, J.R., <u>et al.</u>, 1985. Precambrian Geology of Eyapamikama Lake Area (Opapimiskan Lake Project), Kenora Geological Survey, Map P.2834, Geological Series - Preliminary Map. Series 1:31,680. Geology 1984.
- Breaks, F.W., <u>et al.</u>, 1985. Opapimiskan Lake Project. Precambrian and Quaternary Geology of the North Caribou Lake Area, District of Kenora, Patricia Portion; p.268-276 in Summary of Fieldwork and Other Activities 1985, Ontario Geological Survey.
- Breaks, F.W. <u>et al.</u>, 1986. Opapimiskan Lake Project: Precambrian Geology of the Opapimiskan - Forester Lakes Area, District of Kenora, Patricia Portion; p.368-378 in Summary of Fieldwork and Other Activities 1986, Ontario Geological Survey.
- Hodge, H.J., May, 1985. VLF-EM and Magnetic Surveys, Randall Lake Property, District of Kenora (Patricia Portion), Patricia Mining Division, Ontario, Moss Resources Ltd. for Moss Resources Ltd. - Horseshoe Resources Ltd. Joint Venture; 25p., unpublished report of Geocanex Ltd.
- North, J.W., August, 1987. Report on Prospecting, Trenching, Channel Sampling and Geological Mapping, Randall Lake Property, District of Kenora, Patricia Mining Division, Northwestern Ontario for Power Explorations Inc.; 39p., unpublished report of Geocanex Ltd.
- O.D.M.-G.S.C., 1960. Aeromagnetic Maps 909G and 919G; Scale: one inch to one mile.
- O.G.S., 1982. Map 2292, Big Trout Lake North Caribou Lake Geological Compilation Series, Scale: one inch to four miles.

Survey and Compilation, March to July, 1985.

- Piroschco, D., and Shields, H., 1985. Geology and Gold Mineralization of the Eyapamikama Lake Area of the North Caribou Lake Greenstone Belt, District of Kenora (Patricia Portion); p. 277-286 in Summary of Fieldwork and Other Activities 1985, Ontario Geological Survey.
- Piroschco, D., 1986. Structural Geology and Gold Mineralization of the Eyapamikama Lake Area of the North Caribou Lake Greenstone Belt, District of Kenora (Patricia Portion); p.379-385 in Summary of Fieldwork and Other Activities 1986, Ontario Geological Survey.
- Sage, R.P., and Breaks, F.W., 1982. Geology of the Cat Lake - Pickle Lake Area, Districts of Kenora and Thunder Bay; Ontario Geological Survey, Report 207, 238 p.

APPENDIX A

CERTIFICATE OF QUALIFICATION

THIS IS TO CERTIFY THAT:

I have been a resident of Toronto, Ontario since 1984.

I have been actively engaged in Canadian and foreign mining and explorations since 1979.

I am a graduate of the University of Waterloo, Waterloo, Ontario, with an Honours B.Sc. (1983) in the Co-op Program of Earth Sciences.

I am an associated member, in good standing, of the Geological Association of Canada.

I have disclosed, to the best of my knowledge, all relevant material, descriptive and interpretative, used in the compilation of this report.

DATED THIS 16th DAY OF June, 1988

tal

Stephen B. Medd, B.Sc. Geologist

-

900

~								act 2/	
\sim	Ministry of	Report of Wo	ork	DOCOME	NE WOL	nstructions: -	Please type	e or print.	
(\mathcal{P})	Northern Developme	nt IGeophysical (Seologica	1 W8803	3.211		If number	of mining clai	ms traversed
Ontario	5 vixon	Geochemical a	nd Expen	ditures) St	aunton La	ke Note:	Only days	s credits calcul	ated in the
	Mining Lands			8411.	- 4 -4		in the "E	xpend. Days C	iy be entered r." columns.
Type of	J Survey(s)				g Act	Township	Do not use	shaded areas belo	ow.
Type of	Örönk	TARA L CUMU		j.	-	C Sees	eep la	ke Area (22204
Claim Ho	older(s)	<u>ysical surve</u>				0	Prospector	's Licence No.	
	see a	ttached					see at	ttached	
Address	1003-34	King St. Eas	t, To	ronto,	Ontario M	5C 1E5		,	
Survey C	Company				Date of Survey	v (from & to)	······································	Total Miles of lin	e Cut
	Geoca	nex Ltd			08,1011	88 26. 1	02.88	441	
Name an	d Address of Author (o	f Geo-Technical report)	····· •·····						
Ster	ohen B. Medd	, 1117-7 Cre	scent	P1. TC	ronto, On	tario'			
Credits I	Requested per Each (Claim in Columns at ri	ight	Mining C	laims Traversed	(List in nume	rical seque	nce)	
Special r	TOVISIONS	Geophysical	Daγs per Claim	Prefix	Number	Days Cr.	Prefix	Number	Expend. Daγs Cr.
For f	irst survey:	- Electromagnetic	40	see	attached				
in Et	cludes line cutting)	- Magnetometer	20						
		-	20						
For e	ach additional survey:	- Radiometric							
E	nter 20 days (for each)	• Other							
	• • •	Geological							
		Geochemical	· · · · · · · · · · · · · · · · · · ·						
Man Day	/s		0						
		Geophysical	Claim						
Comp and e	olete reverse side nter total(s) here	- Electromagnetic							
		 Magnetometer 						Personal and an and an	
		Padiamotria							
		- Nationietric							
	RECE	V E Đ							
	••••	Geological							
	SEP 6	Geochemical					1500	10	
Airborn	e Credits		Days per			-A		SXX-	
	MINING LAND	s section	Claim			/9×	ALANI	₩ <u>−</u> F@}-	
Note	Special provisions	Electromagnetic				120		nait	
	to Airborne Surveys.	Magnetometer				I GI M		1980 E11	
		Radiometric				TET		MINING F	
Expend	itures (excludes pow	er stripping)	<u>I</u>			- Fat	ATAUNA	STON TE	
Type of	Work Performed					XA		-	
						<u> </u>		<u> </u>	
Perform	ed on Claim(s)								
		<u> </u>							
Calculati	ion of Expenditure Day	s Credits							
Tota	I Expenditures	Day	s Credits						
\$		+ 15 =		1			Total num	ber of mining	
	0.05	[{			claims cov report of v	vered by this work.	74
Total	Days Credits may be ap	portioned at the claim h	older's		For Office Use	Only			
in co	e. Enter number of day: lumns at right.	s credits per claim selecte	ed	Total Day	/s Cr. Date Recorde	d	Mining Be	corder	
L		\square		Recorded	Sept. 1,	1988	1 F:	and the second	ner -
Date	· 2N/COR	corded Holder or Agent (Signature)	444	10 Date Approve	d as Recorded	Branch Dir	ector	
\sum_{m}	2/2/11/201	- AAC	-	<u>ار لـــٰــٰ</u>	J See	revisa	1 50	Tement	
Certific	ation Veritying Repo	rt of Work		<u> </u>	Josephin she Day	• • • • • • • • • • • • • • • •	und harra 4		leho work
or wi	by certify that I have a thessed same during and	personal and intimate ki I/or after its completion	and the an	n the facts set nexed report i	sorth in the Report	t of work anne	xea nereto, i	aving pertormed	I CHE WORK
Name an	d Postal Address of Per	son Certifying							
ļ;	H.J. Hodge 1	003-34 King-		East, 1	<u>oronto, O</u>	ntario	MSC LE	5	
}	-	9			Date Certified	1168	Certified b	v (Signature)	
L					1 mm g	M100	0_//	<u>// Y</u>	

STAUNTON LAKE PROPERTY

FOR

POWER EXPLORATIONS INC.

CLAIMS NUMBERS

Rene Darveau

Claude Darveau License # K 20388

20388	License #	S 6095
	Pa 1007929)
	1007930)
	1007931	L
	1007932	2
	1007933	}
	1007934	ŀ
	Pa 1008073)
	1008073	- }
	1008074	1
	1008075	
	1008076	
	1008077	7
	1008078	3
	1008079)
	1008080)
	1008081	L
	1008082	2
	1008083	3
	1008084	1
	1008085) •
	1008086) 7
	1008087	
	1008080	א גר
<i>x</i>	1000003	")
	1008090	
•	1008092	2
	1008093	, A
	1008094	ĺ
	1008095	5
	1008096	5
	1008097	7
	1008098	3
	1008099)
	1008100)
	1008101	L
	Total 74 Claims	3

Ministry of Northern Development and Mines

Geophysical-Geological-Geochemical Technical Data Statement

File W8803-211

İ

TO BE ATTACHED AS AN APPENDIX TO TECHNICAL REPORT FACTS SHOWN HERE NEED NOT BE REPEATED IN REPORT TECHNICAL REPORT MUST CONTAIN INTERPRETATION, CONCLUSIONS ETC.

Type of Su	rvey(s) <u>Ma</u>	<u>gnetic a</u>	nd VLF-EM		
Township o	or Area <u>SE</u>	ESEEP La	ke area	· ····	MINING CLAIMS TRAVERSED
Claim Hold	ler(s) <u>se</u>	e attach	ed	*******	List numerically
	<u></u>	·····			
Survey Con	npany <u>Ge</u>	ocanex L	td.	·	See Attached List
Author of l	Report <u>St</u>	ephen B.	Medd		(prenx) (number)
Address of	Author <u>11</u>	<u>17-7 Cre</u>	scent Place, T	<u>oronto, On</u>	t.
Covering D	ates of Surv	ey Januar	y 9 - February (linecutting to office)	26, 1988	
Total Miles	of Line Cu	t441_M	iles		
	کار میں ویسیدیسید ہ				
SPECIAI	, PROVISIO	<u>DNS</u>		DAYS	
CREDIT	S REQUES	ГЕD	Geophysical	per claim	
ENTED	10 2 /:	I	Electromagnetic.	40	
line cutti	ng) for first	iudes	Magnetometer	20	
survey.	0/		-Radiometric		
ENTER 2	20 days for	each	–Other		
additiona	ll survey usi	ng	Geological		·····
same grid	l.		Geochemical		
AIRBORN	E CREDITS	(Special provis	ion credits do not apply to ai	irborne surveys)	
Magnetome	ter	Electromagn	etic Radiom	etric	
		(enter u			
DATE: Se	pt. 9/88	SIGNA	TURE:Author of Re	port or Agent	
			0 -		
Res. Geol		Qualifi	ications	752	
Previous Su	rveys	_			
File No.	Туре	Date	Claim Hold	er	
••••••					
••••••			•••••••••••••••••••••••••••••••••••••••		
			••••••		
			•••••••••••••••••••••••••••••••••••••••		
			•••••••••••••••••••••••••••••••••••••••		TOTAL CLAIMS74
L	I				

OFFICE USE ONLY

GEOPHYSICAL TECHNICAL DATA

GROUND SURVEYS - If more than one survey, specify data for each type of survey

N	umber of Stations <u>23093</u> Number of Readings MAG 28173 VLF 23093								
S	tation interval100 Feet (50 Feet)Line spacing 400 Feet								
P	rofile scale 1 Inch = 40% for VLF-EM								
C	ontour interval100 Gammas for Magnetics								
ы	Instrument Scintrex Fluxgate MF-2 Magnetometer								
E	Accuracy – Scale constant <u>± 10 Gammas</u>								
UN	Diurnal correction method Looping Back to Control Stations								
MA	Base Station check-in interval (hours) < 1.5 Hours								
•	Base Station location and value Variable								
AGNETIC	Instrument <u>Geonics EM-16</u> VLF-EM Receiver Coil configuration <u>Vertical</u> Coil separation <u>Infinity</u>								
Ő									
CIH	Method: A Fixed transmitter Shoot back In line Parallel line								
ILE	Frequency 24 KHZ GULLEL, MAINE (NAA) (specify V.L.F. station)								
H-4	Parameters measured Inphase (Tilt Angle) and Quadrature								
	Instrument								
	Scale constant								
Υ	Corrections made								
AVI									
GR	Base station value and location								
	Elevation accuracy								
	Instrument								
1	Method Time Domain								
	Parameters - On time Frequency								
	- Off time Range								
E	Delay time								
LIV	- Delay time								
SIS	- Integration time								
RE	Flectrode array								
	Electrode spacing								
	Turne of electrode								

INDUCED POLARIZATION DESIGNATION

SELF POTENTIAL

Instrument	Range
Survey Method	
·	
Corrections made	

RADIOMETRIC

Instrument	
Values measured	
Energy windows (levels)	
Height of instrument	Background Count
Size of detector	
Overburden(type, depth – include outcrop ma	ap)
OTHERS (SEISMIC, DRILL WELL LOGGING ETC.) Type of survey	
Instrument	
Accuracy	
Parameters measured	
Additional information (for understanding results)	
AIRBORNE SURVEYS	
Type of survey(s)	
Instrument(s)	
Accuracy	
(specify for each type of survey)	
Aircraft used	
Sensor altitude	
Navigation and flight path recovery method	
Aircraft altitude	Line Spacing
Miles flown over total area	Over claims only

GEOCHEMICAL SURVEY – PROCEDURE RECORD

Numbers of claims from which samples taken_____

Total Number of Samples	ANALYTICAL METHODS				
Type of Sample(Nature of Material)	Values expressed in: per cent				
Average Sample Weight	p. p. m.				
Method of Collection					
	Cu, Pb, Zn, Ni, Co, Ag, Mo, As,-(circle)				
Soil Horizon Sampled	Others				
Horizon Development	Field Analysis (tests)				
Sample Depth	Extraction Method				
Terrain	Analytical Method				
·	Reagents Used				
Drainage Development	Field Laboratory Analysis				
Estimated Range of Overburden Thickness	No. (tests)				
	Extraction Method				
	Analytical Method				
	Reagents Used				
SAMPLE PREPARATION	Commercial Laboratory (tests)				
Mesh size of fraction used for analysis	Name of Laboratory Extraction Method				
Mesh size of fraction used for analysis					
••••••••••••••••••••••••••••••••••••••	Analytical Method				
	Reagents Used				
Canaral	General				
General					
	······································				

STAUNTON LAKE PROPERTY

FOR

POWER EXPLORATIONS INC.

CLAIMS NUMBERS

Claude Darveau License # K 20388

Pa	1007849	Р	a 1	007929
	1007850		1	007930
	1007851		1	007931
	1007852		1	007932
	1007853		T L	007933
	1007854		T	007934
	1007855			
	1007850	a	- 1	008072
	1007858	r	a 1 1	000072
	1007859		1	000073
	1007860		1	008075
	1007861		1	008076
	1007862		1	008077
	1007863		1	008078
	1007864		ī	008079
	1007865		ī	008080
	1007866		ī	008081
	1007867		1	008082
	1007868		1	.008083
	1007869		1	008084
	1007870		1	008085
	1007871]	008086
	1007872]	.008087
	1007873]	880800.
	1007874]	.008089
	1007875		3	.008090
	1007876		1	.008091
	1007877]	.008092
	1007878]	.008093
	1007879]	.008094
	1007880	i i]	.008095
	1007881		J	.008096
	1007882		1	.008097
	1007883]	.008098
	1007884		1	.008099
	1007885		1	.008100
	1007886	_]	.008101
		Total	74	Claims

Rer	ne Dar	vea	u 6005
пι	Jeuse	# 3	0095
Pa	10079	29	
	10079	30	
	10079	31	
	10079	32	
	10079	33	
	10079	34	
Þa	10080	72	
- 4	10080	73	
	10080	74	
	10080)75	
	10080	076	
	10080)77	
	10080	78	
	10080)79	
	10080	080	
	10080	81	
	10080	82	
	10080	83	
	10080)84	
	10080	85	
	10080	986	
	10080)87	
	10080	88	
	10080)89	
	10080	90	
	10080	91	
	10080	992	
	10080	193	
	10080	194 0 5	
	10080	192	
	10000	190 107	
	10000	100	
	10000	100	
	10000	00	
	T0001	.00	

Ministry of Northern Development and Mines

Ministère du Développement du Nord et des Mines

October 14, 1988

Your file: W8803-211 Our file: 2.11603

Mining Recorder Ministry of Northern Development and Mines Court House P.O. Box 3000 Sioux Lookout, Ontario	ONTARIO GEOLOGICAL SURVEY ASSESSMENT FILES OFFICE
POV 2TO	NCT 2.4 1988
Dear Sir:	RECEIVED
Re: Notice of Intent dated September 29, 1988	TUTVED

Geophysical (Electromagnetic and Magnetometer) Survey submitted on Mining Claims PA 1007849 et al in the Area of Seeseep Lake

The assessment work credits, as listed with the above-mentioned Notice of Intent, have been approved as of the above date.

Please inform the recorded holder of these mining claims and so indicate on your records.

Yours sincerely,

W.R. Cowan Provincial Manager, Mining Lands Mines & Minerals Division

Whitney Block, Room 6610 Queen's Park Toronto, Ontario M7A 1W3

Telephone: (416) 965-4888 *Lm* RM:pl Enclosure

cc: Mr. G.H. Ferguson Mining and Lands Commissioner Toronto, Ontario

> Mr. C. Darveau/Mr. R. Darvea/ Power Explorations Inc. Suite 1003 34 King Street E. Toronto, Ontario M5C 1E5 Attn: Mr. H.J. Hodge

Resident Geologist Sioux Lookout, Ontario

•	
\sim	
1 COL	
1 11 1	
\mathbf{V}	
Ontario	

_

and

, 1

Ministry of Northern Development

es

Technical Assessment Work Credits

	1
	2.11603
Mining R	ecorder's Report of
W8803	.211
	Mining Re Work No. W8803

Type of survey and number of Accessment says credit par tlaim Mining Claims Assessed nophysical 40 days Betetromagnetic 40 days Magnetometer days 1007857 to 864 inclusive Magnetometer days 1007869 to 872 inclusive Induced polarization days 1007869 to 872 inclusive Induced polarization days 1007875 to 866 inclusive Other days 1007875 to 934 inclusive 1008072 to 093 inclusive 1008095-096 1008095 1008095 sochemical days Man days Airborne Special provision Ground Special provision Ground Credits have been reduced because of corrections to work dates and figures of applicant. 1007850-851 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC PA 1007850-851 PA 1007852 1007852 1007855 1007856 1007852 1007855 1007858 1007852 1007856 1007850 1007852 1007856 1007850 1007852 1007856<	Type of survey and number Assessment days credit per c eophysical Electromagnetic Magnetometer	of laim	Mining Claims Assessed
Beephysical 40 days PA 1007854-855 Magnetometer days 1007857 to 864 inclusive Magnetometer days 1007857 to 864 inclusive Induced polarization days 1007857 to 866 inclusive Induced polarization days 1007857 to 866 inclusive Induced polarization days 1007857 to 866 inclusive Other days 1007857 to 934 inclusive Secological days 1008095-096 Secological days 1008098 Beechemical days 1008100 Secological Ground Ø 1008101 Man days Airborne 1008101 Special provision Ø Ground Ø 1007850-851 Credits have been reduced because of partial coverage of claims. 10 days ELECTROMAGNETIC PA 1007856 1007850-851 10 days ELECTROMAGNETIC PA 1007850-851 1007856 1007850-851 1007852 1007852 1007856 1007868 1007852 1007852 1007857 1007856 1007853 1007852 1007874 1007874 100809	Geophysical Electromagnetic	40	
Electromagnetic days Magnetometer days Rediometric days Induced polarization days Induced polarization days Induced polarization days Other days Other days Induced polarization days Other days Induced polarization Ground IX Special provision IX Ground IX	Electromagnetic	40 1	PA 1007854-855
Magnetometer	Magnetometer	days	1007857 to 864 inclusive
Padiometric		days	1007867
Induced polarization	Radiometric	days	1007869 to 872 inclusive
Other 1007929 to 934 inclusive Other days Inclusive 1008072 to 093 inclusive 1008095-096 1008095-096 Inclusive 1008098 Icological days Icological Greedits have been reduced because of partial Icoverage of claims. Icoredits have been reduced because of corrections Icological Credits have been reduced because of corrections Icological 20 days ELECTROMAGNETIC 10 days ELECTROMAGNETIC PA 1007853 PA 1007853 PA 1007854 1007852 1007854 1007865 1007865 1007865 <	Induced polarization	davs	1007875 to 866 inclusive
Other			1007929 to 934 inclusive
action 77 (19) See "Mining Claims Assessed" column 1008095-096 eological	Other	days	1008072 to 093 inclusive
ieological	ection 77 (19) See "Mining Claims As	sessed" column	1008095-096
Seeochemical	Seological	days	1008098
Man days Airborne Special provision Ground Credits have been reduced because of partial coverage of claims. Credits have been reduced because of corrections to work dates and figures of applicant. ecial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC PA 1007850 PA 1007850-851 1007855-866 1007873 1007874 1007873 1007874 1008097 1008099 insufficiently covered by the survey	Seochemical	davs	1008100
Man days Airborne Special provision Ground Ground Ground Credits have been reduced because of partial coverage of claims. Credits have been reduced because of corrections to work dates and figures of applicant. Credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 1007856 1007868 1007865-866 1007873 1007874 1008094 1007874 1008097 1008099 Insufficient technical data filed			
Special provision in the original interview of partial coverage of claims. Ground interview of partial coverage of claims. Credits have been reduced because of corrections to work dates and figures of applicant. Credits have been reduced because of corrections to work dates and figures of applicant. accial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC 10 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 PA 1007849 1007852 1007856 1007868 10077852 1007857.866 1007873 1008094 1007874 1008097 1008097 1008099 insufficiently covered by the survey insufficient technical data filed	Man days 🔄	Airborne 📋	
□ Credits have been reduced because of partial coverage of claims. □ Credits have been reduced because of corrections to work dates and figures of applicant. ecial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 1007856 1007868 10078574 1007873 1007874 1008099 credits have been allowed for the following mining claims □ not sufficiently covered by the survey □ insufficient technical data filed	Special provision 🔀	Ground 🔀	
Credits have been reduced because of corrections to work dates and figures of applicant. ecial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 PA 1007856 1007868 1007865-866 1007873 1007874 1008094 1007874 1008097 1008099 insufficient technical data filed	Credits have been reduced because coverage of claims.	of partial	
ecial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC 10 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 PA 1007849 1007856 1007868 10077852 1007865-866 1007873 1008094 1007874 1008097 1008099 insufficiently covered by the survey	Credits have been reduced because to work dates and figures of applic	of corrections ant.	
ecial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC 10 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 PA 1007849 1007856 1007868 10077852 1007865-866 1007873 1008094 1007874 1008097 1008097 credits have been allowed for the following mining claims			
ecial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC 10 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 PA 1007849 1007856 1007868 10077852 1007865-866 1007873 1008094 1007874 1008097 1008099 insufficient technical data filed			
ecial credits under section 77 (16) for the following mining claims 30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC 10 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 PA 1007849 1007856 1007868 10077852 1007865-866 1007873 1008094 1007874 1008097 1008099 insufficiently covered by the survey Inot sufficiently covered by the survey Insufficient technical data filed			
30 days ELECTROMAGNETIC 20 days ELECTROMAGNETIC 10 days ELECTROMAGNETIC PA 1007853 PA 1007850-851 PA 1007849 1007856 1007868 10077852 1007874 1007873 1008097 1008099 credits have been allowed for the following mining claims insufficiently covered by the survey insufficient technical data filed	cial credits under section 77 (16) fo	or the following m	ining claims
PA 1007853 PA 1007850-851 PA 1007849 1007856 1007868 10077852 1007865-866 1007873 1008094 1007874 1008097 1008099 1008097 credits have been allowed for the following mining claims Inot sufficiently covered by the survey Insufficient technical data filed	30 days ELECTROMAGNET	IC 20 day	s ELECTROMAGNETIC 10 days ELECTROMAGNETIC
1007865-866 1007873 1008094 1007874 1008097 1008099 1008097 credits have been allowed for the following mining claims	PA 1007853 1007856	PA 100 100	07850-851 PA 1007849 07868 10077852
1007874 1008097 1008099 1008097 credits have been allowed for the following mining claims	1007865-866	100	1008094
credits have been allowed for the following mining claims not sufficiently covered by the survey insufficient technical data filed	1007874 1008099		1008097
credits have been allowed for the following mining claims not sufficiently covered by the survey insufficient technical data filed			
insufficiently covered by the survey insufficient technical data filed	credits have been allowed for the fo	ollowing mining cla	aims
	not sufficiently covered by the surv	ey [_	

. 1

Technical Assessment Work Credits

Date Sept. 26, 1988 W.8803

2.11603 Mining Recorder's Report of Work No. W.8803.211

File

Recorded Holder	Darveau/Power F	volorations Inc
Township or Area		
Seeseep Lake Area	······································	
Type of survey and num Assessment days credit p	nber of er claim	Mining Claims Assessed
Geophysical Electromagnetic	days	PA 1007854-855
Magnetometer	20 days	1007857 to 864 inclusive 1007867 to 872 inclusive 1007874 to 886 inclusive
Radiometric	days	1007929 to 934 inclusive 1008072 to 098 inclusive
Induced polarization	days	1008100-101
Other	days	
Section 77 (19) See "Mining Claim:	s Assessed" column	
Geological	days	
Geochemical	days	
Man days []	Airborne 🔲	
Special provision	Ground 🕅	
Credits have been reduced beca coverage of claims.	use of partial	
Credits have been reduced beca to work dates and figures of app to work dates and figures of app	use of corrections plicant.	
Special credits under section 77 (16	6) for the following m	ining claims
15 days MAGNETOMETER	10 days MA	GNETOMETER 5 days MAGNETOMETER
PA 1007853	PA 100785	0-851 PA 1007849
1007856	100787	3 1007852
1007865-866		
1008099		
No credits have been allowed for th	e following mining cla	aims
I not sufficiently covered by the	survey	
		· · · · · ·
		order that the total surplus of assessed
The Mining Recorder may reduce the ab exceed the maximum allowed as follows	ove credits if	ogocal - 40; Geochemical - 40; Section 77(19) - 60.

CEMETERY LAKE G-1989

,

Bab K.

en la représentation

------RGADS C) UNE∃ ાજ, હુટાં સું CHARL THEAM FLOODING OR FLOODING PIGHTS SUBDIVISION OR COMPOSITE PLAN RESERVATIONS SHORELINE 137 E DOCUMENT SYMBO SURFACE & MIT -PrGHTS SURFACE RIC MINING RIGHT SUR OFER MINING PIGHTS G. CONEXT 379 CN V الاتحار عرادة الله المحصو NOTE Krypsis Vesi€O IN Ú - ENTED PRICE TO MAY & A TENTEE BY THE PUP ANTE ANT ASD V 586 980 60 SUBS-REFERENCES AREAS WITHDRAWN FROM DISPOSITION M.R.O. - THURNG RIGHTS ONLY 1990 - 1997 - 1997 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -AND SUCTORES AND TREASED FROM TR Description Order No Des Description File Sect. 26.80 W50/86 96174 St. M. 1898 Vol. 19 Sect 26.80 W 50/86 200 April 18, 1986 SEPT. 16/86 Oct 23/96 Nov 6186 Ten islar APR 2/87 Apr. 20/81 Per 30/07 Al 30/81 922148 SCALE 1 INCH = 40 CHAINS FEET 1000 2000 0 200 METRES :300 (1 KM1 (2 KM) A REA MIN R. AGME HISTRATIVE DISTRICT SICUX LOOKCUT HINING DIVISION PATRICIA LAND THELES / SEGISTRY I VISION KENGRA (PATRICLA PORTICS) -----Ministry of Land Carly AnGISTRY OF Carla Matural Marca amount 4 10110 18 F Qenter 1 Turniari FRT# FEBYLARY - 1954 -G-2204

-

Grid line with 100 foot stations	▶ , , , , , , , , , , , , , , , , , ,
Claim post, line, witness post	□
Stream, lakeshore	
Instrument	onics EM-16
TransmitterNAA, Cutler, Ma	ine, 24.0kHz
Readings, taken facing north, pl	otted. IP QP
Profiles, at 1" = 40%, plotted	+
Inphase profile	۱ ــــــــــــــــــــــــــــــــــــ
Quadrature profile	

Grid line with 100 foot stations
Claim post, line, witness post D
Stream, lakeshore
InstrumentGeonics EM-16
TransmitterNAA, Cutler, Maine, 24.0kHz
Contours of Fraser filtered inphase data
+ 50% contour
+ 10% contour

.

4800E	5200E	5600E	6000E	6400E	6800E	7200E	7600E	8000E	8400E	8800E	9200E	9600E	1 0000E	10400E	1 0800E	11200E	11600E	1 2 0 0 0 E	12400E	. 2800E	1 3200E
																•					
$ \begin{array}{c} 1100\\ 750\\ 723\\ 780\\ 660\\ 540\\ 570\\ 560\\ 560\\ 560\\ 860\\ 810\\ 673\\ 660\\ 640\\ 622\\ 640\\ 622\\ 600\\ 622\\ 740\\ 1400\\ 1900\\ 3000\\ 1250\\ 900\\ 640\\ 540\\ 550\\ 550\\ 540\\ 540\\ 540\\ 540\\ 5$	620 640 650 620 660 680 720 640 720 640 720 640 720 640 720 670 720 670 720 670 730 820 980 870 840 680 680 680 660 680 680 660 680 660 680 710 820 980 870 840 660 660 670 730 820 980 870 840 660 660 660 730 820 980 870 840 660 660 730 840 660 730 840 660 660 730 820 980 870 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 730 840 660 660 730 840 700 730 840 660 660 730 840 700 730 840 700 730 840 700 730 840 700 730 840 770 730 840 770 730 840 770 730 840 770 730 840 770 730 840 770 730 840 770 730 840 770 730 840 770 770 840 770 770 840 770 770 840 770 840 770 840 770 840 770 770 840 770 770 840 770 770 840 770 770 840 770 770 840 770 770 840 770 770 840 770 770 840 770 770 770 770 770 770 770 770 770 7	760 740 790 820 880 960 1200 1150 1075 1000 1000 960 850 80b 840 720 900 850 840 720 900 850 840 720 900 850 840 720 900 840 720 900 850 850 850 850 850	740 820 900 U 1000 U 1300 V 1900 0 1550 U 1200 1100 980 750 820 760 670 Q 720 X 650 0 1000 U 1000 1000 U 1000 1000 U 1000 1000 U 1000 U	$ \begin{array}{r} B20 \\ 920 \\ 1000 \\ 1300 \\ 1400 \\ 1200 \\ 1000 \\ 1000 \\ 920 \\ 870 \\ 770 \\ 700 \\ 770 \\ 700 \\ 770 \\ 700 \\ 640 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 600 \\ 570 \\ 600 \\ 700 \\ $	$ \begin{array}{c} 940 \\ 980 \\ 1100 \\ 1850 \\ 2650 \\ 1250 \\ 1025 \\ 940 \\ 820 \\ 1025 \\ 940 \\ 820 \\ 700 \\ 660 \\ 640 \\ 640 \\ 640 \\ 640 \\ 630 \\ 640 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 630 \\ 640 \\ 640 \\ 640 \\ 640 \\ 660 \\ 640 \\ 660 \\ 640 \\ 660 \\ 640 \\ 660 \\ 640 \\ 660 \\ 640 \\ 660 \\ 640 \\ 660 \\ 640 \\ 660 \\ 640 \\ 630 \\ 640 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 6$	810- 980 1225 2300 1625 960 870 810- 750 680 620 640 630 670 620 670 620 650 620 500 660 590 710 660 650 620	$ \begin{array}{r} 860 \\ 300 \\ 1050 \\ 900 \\ 840 \\ 820 \\ 00 \\ 840 \\ 820 \\ 00 \\ 680 \\ 0 \\ 650 \\ 670 \\ 640 \\ 610 \\ 620 \\ 600 \\ 650 \\ 880 \\ 00 \\ $	1000 940 1400 1100 950 810 730 700 660 696 680 650 650 650 610 400 510 660 670 630 580 550 550	$ \begin{array}{c} 1050 \\ 1000 \\ 940 \\ 980 \\ 860 \\ 840 \\ 800 \\ 770 \\ 740 \\ 730 \\ 740 \\ 730 \\ 740 \\ 730 \\ 740 \\ 690 \\ 630 \\ 660 \\ 610 \\ 580 \\ 610 \\ 640 \\ 660 \\ 610 \\ 580 \\ 610 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 520 \\ 510 \\ $	1000 850 850 780 780 750 700 680 620 520 590 1620 S 580 520 520 520 520 520 520 520 510	740 770 660 & 690 00 690 00 680 660 660 660 660 660 660 660 670 640 670 710 & 2790 930 1050 7970 840 670 570 563 563 563	600 680 700 660 680 640 660 640 660 690 670 690 670 690 600 640 640 660 820 920 1350 1825 1000 740 600 620 610 620 590 590	7700 580 710 600 670 710 710 710 670 710 710 670 670 710 670 670 710 670 670 710 670 670 710 670 670 710 670 70 670 70 70 70 70 70 70 70 70 70	92- 800 730 710 700 690 620 640 640 640 640 640 640 640 64	$ \begin{array}{c} 810 \\ 790 \\ 750 \\ 690 \\ 690 \\ 650 \\ 690 \\ 650 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 640 \\ 600 $	$ \begin{array}{c} 790 \\ 700 \\ 700 \\ 680 \\ 670 \\ 690 \\ 640 \\ 620 \\ 740 \\ 700 \\ 620 \\ 740 \\ 700 \\ 620 \\ 630 \\ 660 \\ 620 \\ 950 \\ 900 \\ 630 \\ 660 \\ 620 \\ 620 \\ 600 \\ 600 \\ 620 \\ 570 \\ 620 \\ \end{array} $	660 520 680 680 640 680 640 680 640 680 710 700 660 720 650 720 650 720 650 720 650 720 780 920 950 9	92 740 700 710 680 720 72 610 680 640 630 640 700 980 1125 1250 1250 1250 1250 950 750 640 610 660 590 640 630 580 570 580	778 - 730 730 72 680 650 690 690 700 622 680 670 700 655 550 670 710 1000 800 820 700 620 640 610 620 600 630 640 610 620 600 630 700 7	-770 B10 B10 B30 720 750 750 700 680 650 730 710 760 700 680 650 730 710 760 700 680 650 730 700 680 650 730 700 680 650 730 700 680 650 730 700 680 650 730 700 700 700 680 650 730 700 700 680 650 730 700 700 700 700 680 650 730 700 700 700 680 650 730 700 700 680 650 730 700 700 700 700 700 700 70	988 988 980 770 730 680 760 700 660 700 660 700 660 700 70
530 580 560 470 440 410 410 380 350 .380	730 V 700 80 640 0 540 550 520 510 520 520 520	$ \begin{array}{c} $	630 580 560 570 570 600 610 550 580 	640 600 620 600 590 560 600 540 530 520 550	- 580 - 580 - 560 - 560 - 540 - 540 - 540 - 550 - 520 - 500 - 530 - 510	620 580 570 550 550 540 540 520 520 520	540 00 560 00 530 00 530 00 530 530 530 520 510 510 510	530 540 540 520 530 520 520 520 520 510 510 490	- 520 - 510 - 470 - 460 - 490 - 440 - 460 - 450 - 450 - 460 - 450 - 460 - 440	- 510 BA 520 - 520 - 520 - 520 - 520 520 490 460 460 460 460 460 460							·				

LAKE

Scale 1 inch = 400 feet

1500

2000'

LEGEND

Grid line with 100 foot stations 🛶 🛶 🛶
Claim post, line, witness post D
Stream, lakeshore
Instrument
Magnetic readings in gammas

2.11603

PO STAU Pa	NTON atricia	LAKE F	ONS INC. PROPERT Ontario	• Y		Grid	line with 1	LEGENE 00 foot stat) tions	<u>₩</u> ₽
Мас	gneto	meter	Survey			Strea Instr	m, lakesho ument	ore	Scintre	× MF-2
N N	/ERTI RE	CAL F	FIELD S			Magr	netic readi	ngs in gamn	nas	789
EDCANEX	GEOCA	nex LTD O, CANADA	BY: J.H./ DATE: Apri SCALE: 1 DWG. No: S	R.T.M. 1988 4800 L-1-W			53B15N₩0007			260
		2	.11	303						
		SHEET II								
		We	st	East						
		For grid I	ocation map	see east	sheet					
0		500' Scale	1 inch = 4	00 feet)'	2000' 		160 170	270 170	220 150
								230 200 160	- 190 - 300 - 360	- 140 - 220 - 200 - 230
								- 130 - 90 - 130	- 220 - 210 - 160	170 LO 160 E 150 C
								90 70 100	- 100 - 80 - 120	140 140 120
	-	œ <u>→ 220</u> — ·	<u></u>	<u> </u>	- [] [80		- +150 -	н во н 120 	- 140 - 50 	+ 100 + 40 + 40
BASE L	LINE OO	200			200 60		140 100 120			
		180 160 120	- 210 - 170 - 170	- 70 - 100 - 40	20 - 160 - 140	+ 160 - 80 - 100	- 70 - 30 - 30	- 30 - 0 -70	0 -130 -180	160 230 900 2775
		160 1 170 1 180	200 88 200 88 200 80 190 1	- 190 - 140 - 150	- 140 - 210 - 240	20 68 80 00 120 1	60 50 130	¶ 0 - 70 - 310	-120 880 2100 1600 2100 2025	3800 O 2600 O 2100 O 2650 O 2800 - 2600
		180 - 240 - 380	210 - 300 - 340	- 220 - 220 - 240	- 200 - 280 - 560	- 220 - 430 620 - 930	- 350 740 - 1350 3600 - 8000	340 750 1050 - 3500 7800 - 5500	2100 - 2450 2500 - 3000 4500 - 3000	3000 - 5100 5600 - 7000 3100 - 490
	ſ	200 	400 	- 380 - 600 - 820	980 1400 1575 	1275 1450 520 1100 1250 960	1 9000 - 15250 5400 - 3000 - 1350 - 800	5800 - 3500 - 650 - 60 - 50	900 - 520 - 200 - 650 1830 - 240	- 100
		580 - 930 - 900	720 720 700	720 580 560	1600 1100 380 - 300 500	660 650 480	450 520 300 240	1250 - 0, -100 - 130 - 130 - 1425	-90 - 80 180 - 310 - 320	270 440 980 10
	 	750 - 540 - 530	570 740 500	- 550 - 300 - 500	500 440 - 280	430 98 220 00 - 350 -	220	180' 140 160 - 350	+ 450 1000 + 1050 440 - 380	1375 00 2300 00 1850 00 1625 0 1050 -
	 	1300 900 380	800	510 - 220 1400 - 220 - 80	340 250 220	260 230 220	200 300 300	590 250 220	200	- 500 - 380 - 260
	- 		$ \frac{120}{260}$		240 250	220	+ 340			- 320 - 440 - 370
		220 340 630	- 360 570 - 680 - 440	280	530 890 2600 1600 400	850 980 1625 1400	- 560 - 500	- 620 - 760	620 1050 1300 1350	480 840 ^(N) 1275 ^(D)
	1	1800 - 630 - 160	-1000 0 900 0 280 0 210 0	300 840 2575 1300 780	260 400 1100 3200 1550	1000 & 2000 & 2600 & 1250 - 520	700 1000 1675 1550 660	680 460 - 240	1900 - 870 420 - 240	760 - 300 - 220
	, 	1 1 40 1 40 1 20	120	+ 200 - 100 - 110	390 140 160	- 160 - 180	- 460 - 210 - 280	160	- 160 - 160	120
	 	- 100 - 130 - во	190 - 170 - 160	60 80 170	- 210 - 190 - 220	180 240 150	210 150 - <u>150</u>		- 170 - 170 - 190	- 400 - 630 - 560
	l te	- 160 	- 170 - 180 - 210	1 <u>00</u> — — - 200 200	- 180 - 260	- 100 - 130 - 120	210 200 200	180 - 150 - 140	- 170 - 210 - 170	- 240 - 300 - 190
		200 180 200	180 - 180 - 150 ලා	+ 180 - 120 - 140	1 40 1 160 1 180	220 160 170	220 240 220	120 160 200	- 440 - 830 - 740	190 210 220 280 0
		80 140 150	220 200 230 0 140	1B0 100 , 150	- 180 - 190 - 180	170 00 240	270 270 240	180 150 180	- 330 - 260 - 270	180 200 160
		140	160	170	200 200 250	240	- 220 - 250 - 250	- 160 - 290 - 520	- 260 - 210	200
T.L. 50	s i	128	200	260	240	260	270	460	200	1 180
		MOC	MOC	мос	мос	X O C	мос	MOC	мос	мос
		112	108(104	100(96(921	88	84(80(

Grid line with 100 foot stations	, ,
Claim post, line, witness post :	- * ' + :
Stream, lakeshore	<
Instrument	//F−2
Contours of vertical magnetic field in gar	nmas
10,000 gamma contour	
2500 gamma contour	
500 gamma contour	
100 gamma contour	.

