010

ON THE

MUSKRAT DAM PROJECT
DISTRICT OF KENORA (PATRICIA PORTION), ONTARIO

FOR

SEREM LIMITED

BY

geoterrex limited

No. 85-106
P. Norgaord, P.Eng.,

Sonior Goophysicist.
R. Koith, B.Sc., Field Gouphysicist.
W. Tachaikowsky, B.Sc., Goophysicist.
G. MacQueen, B.Sc., Geophysicist.
ottawa, Canada, NOVEMBER, 1970.
Page
I. INTRODUCTION 1
II. PERSONNEL 2
III. CLAIMS COVERED 5
IV. GEOPHYSICAL INSTRUMENTS 7
v. LINE CUTTING 8
VI. GEOPHYSICAL SURVEYS 9
Eloctromagnetic Survey 9
Vertical Loop Mothod 9
Horizontal Loop Method 12
Magnetic Survey 14
VII. PRESENTATION OF DATA 14
VIII. DISCUSSION OF RESULTS 15
Claim Block XII 16

- **まI -20
$-X X I I$ -22
$X X V$ 24
XXVI 26
$-X X Y I$ -29
XXIX 31
$X X X$ 33
$X X X I$ 35
XXXII 37
XXXIV 39
XXXV 42
$-X X X V I-$ -44
XXXIX 46
$X L$ 48
XLIII 50
XLVI 52
XLVII 55
t -61
ŁII -63
I.V 65
LX 67
Page
VIII. DISCUSSION OF RESULTS
Clalm Block LXI 69
IX. CONCLUDING REMARKS 71
Accompgnying this Report
- Appondix
Contonte:
I. Locotion Mop
II. SE-300 Specification Sheet
1II. SS-15 Specification Shoet
IV. Ronka MKIV Specification Shoot
V. MF=1 Specificotion Sheot
VI. MF-2 Spocification Sheet
VII. M-700 Specificotion Shoet
VIII. Reforences
IX. Resumes - P. Norgaard R. Kelth
W. Techoikowaky
G. MacQueen

Abstract

In the period from June 5 to October 10, 1970, Geoterrex Limited of 1312 Bank Street, Ottawa I, Ontario, completed ground followup surveys over claim groups held by Serem Limited, Sulte 770, 2100 Drummond Stroet, Montroal, Quobec. The claim groups involved in the followup profect are located on the geological formations known as the Muskrat Dam Lake Belt which is located along the Severn River southwest of Muskrat Dam Lake. This lake is situated about 200 miles NNE of the town of Red Lake in northwestorn Ontario. Access to the orea was by alrcraft from Red Lake.

The ground followup survey completed by Geoterrex Limited involved line cutting followed by yextical and horizontcl loop olectromognotic and magnetic surveys The fleld project wos uporyised on site by R, Koith, B, Sc., who is o Geoterrex stoff geophysicist, the ontire project was comploted under the diraction of Pa Nergaers. Their qualifications are described in the attached Curricula Vitae.

The purpose of the survey wos to locate and evaluate geophyeically, on the ground, certain electromagnetic anomaliss obtained during a systematic reconnaissance coverage of the orea, using the airborno INPUT electromagnetic systame The anomalies to be locatod and evaluated were located within claim blocks, most of which wore ataked prior to the commencement of the ground followup survey. A totol of 132 chaline ach of an area of approximotely 40 acres was covered duxing the followup programme.

The profect was completed from a centrally located bose camp. Accese to the various claim groups, which were quite acattered, was achieved by the use of boats when possible or by helicopter. A Dominion Helicopter GB-2 was attached to the base comp for most of the project.

II. PERSONNEL

The following is a list of the Gooterrex personnel necestary to the completion of the survey oo well os the number of elght-hour man doys spent by oach person on the project during the field operation, and in the office, for the completion of the compilation and the geophysical report.

II. 1 Fiold Operation

Robert Koith, Geophysicist, 324 Cambridge St., Ottava, Ontario.

Peer Norgaard, Geophysiciot, 749B Springland Drive, OTinina, Ontario.

No. of 8-Hour Man Day:

Wolf Tachoikowaky, Goophysiciat, 790 Springland Urive, Ottara, Ontario.

Frank Dalidowicz, Geophysicist,
740 Springland Drivo,
Ottawa, Ontario.
Piorre filtoau, Surveyor,
1312 Bank Stroet,
Ottava, Ontario.
Gary Peacock, Operotor, c/o 1312 Bank Street, OTTAHA, Ontario.44
Anthony Kexr, Operotor, c/o 1312 Bank Street, Ottona, Ontorio. 15
Gary Cole, Operator, c/o 1312 Bonk Street, Ottawa, Onturio. 44
Ken Keith, Operator,
617 Churchill Ave.. Ottowa, Ontario. 50
Androw Scott, Operotor,c/o 1312 Bank Street,Ottava, Ontario.59
Clotus Nevell, Operator,c/o 1312 Bonk Street,Ottava, Ontario.55
Gerard Couture, Operator,c/o 1312 Bank Street,Ottana, Ontario.32
Robert Giret, Operotor,c/o 1312 Bonk Streot,Ottava, Ontario.25
Ted Sullivan, Operator,s/o 1312 Bank Streot,Ottona, Ontorio.32
A. Jacob, Operotor,R.R. HA,AnO8, Quebec. 117
Dolphis Frenette, Cook, 1179 St. Poter Avo.. Bothurst, N.B. 117
Charlie McDougall. Line Cutter, R.R. ${ }^{4}$
Amos, Queboc. 112
Úvorge Mowatt, Line Cutter, R.R. ${ }^{\prime \prime} 4$, Amos, Quebec. 112
John Jacob, Lino Cuttor, R.R. \#4, Amos, Quebec. 68
Joe McDougall, Line Cuttor, R.R. \#4,
Amos, Quoboc. 68
Batiste Oghinany, Line Cuttor, R.R. \#4.
Amos, Quebec. 63
Roland Kistabish, Lino Cutior, R.R. \#4,
Amos, Queboc. 68
Andrew Kistabish, Line Cutter, R.R. \#4, Amos, Ousbec. 55John Mapatcheo,R.R. \#4,
Amos, Quobec. 28
Henri Rupertheuso,
R.R. \#4,
Amos, Quebec. 28
Sumpary:
Juno 5-Ootober 10, 1970-Fiold Work
Total Man Days on Oeophysios and Surveying 639
Total Man Days, Line Cutting 602
Total Man Days, Cook 117
Total Field Timo: 1.358
Ofiles:
Compilation, intexpretation and reporting - October
2 - November 20. 1970.
No. of 8-Hour Man Days
Robert Keith, Geophysicist,324 Cambxidgo St.,Ottawa, Ontario.12
P. Norgaard, Goophysicist,749B Springland Drive,Ottava, Ontario.5
W. Tschaikowsky, Goophysicist, 790 Spxingland Drive, Ottowa, Ontario. 13G. MocQueen, Geophysicist,840 Springland Drive,ottawa, Ontario.5
G. Couture, Compilor,c/o 1312 Bank Streot,Ottawa, Ontario.10
Total Office Time: 45
III. CLAIHS COVERED
The following is o list of the cloims corerod inthe various claim blocks.

NAME OF CLAIM BLOCK	$\begin{aligned} & \text { NO. OF } \\ & \text { CLAIMS } \\ & \hline \end{aligned}$	CLAIM NUMBERS
XII	4	KRL 237559-237562
XXII	4	KRL 264270-264273
XXIII	-7	KRL 264263-264269
XXV	8	```KRL 237510-237515 KRL 281192 KRL 280813```
XXVI	5	KRL 264202-264207
$X X V I I$	6	KRL 264161-264166
XXIX	15	$\begin{array}{ll} \text { KRL } & 237450-237461 \\ \text { KRL } & 237550-237552 \end{array}$
XXX	15	KRL 237535-237549
$X X X I$	4	KRL 264204 KRL 264208-264210
XXXII	4	KRL 264215-264218
XXXIV	8	$\begin{aligned} & \text { KRL. } 264282-264287 \\ & \text { KRL. } 281194-281195 \end{aligned}$
XXXV	6 ...	KRL 264247-264252
XXXVI	-6	-KRL 264237-264242
XXXIX	4	KRL 237440-237443
XI .	9	$\begin{aligned} & \text { KRL } 237499-237506 \\ & \text { KRL } 280808 \end{aligned}$
XLIII	4	KRL 264167-264170
XLVI	4	KRL 26421s-264222
XLVII	9	KRL 264257-264258 KRL 237517-237524
XLVIII	6	KRL 264288-264293
L	-. 4	KRL 264253-264256
LII	4	KRL 264243-264246
LV	4	KRL 264211-264214
LX	4	KRL 237479-237482
LXI	6	$\begin{aligned} & \text { KRL 237474-237477 } \\ & \text { KRL 271817-171818 } \end{aligned}$

IV. GEOPHYSICAL INSTRUMENTS

Electromagnetic Surveys:

The reconnaisance E.M. survey was conducted primarily using the Scintrox manufoctured SE- 300 vertical loope tilt angle unit. Thia inatrument operotes ot two frequencies 400 Hz and 160 CHz and can be used at these two fraquencios at a sepgration of 600 foet or less. When o greater penetrotion wa: needed, the MCPhar SS 15 was utilized. This instrument has the two frequencies of 1000 and 5000 Hz and con be used ot a eparation of 2000 feot.

In order to old in interpreting the conductors found esing the vertical loop systom, dotail work ras cemoleted using the hoxizontal loop system. The instrument that was usod was the Huntoc macie Ronko MKIV which has a single frequency of 876 Hz . In this instrument, the in-Phase and Out-of-Phase components are reod directly os o percentage of the tronsmitted field Thero is a choice of two coble lengths, nomely 200 and 300 foot, the choice of coble length deponding on the depth of penetration required in the porticulor situotion.

The specifications of these instruments ore given in the Appendix to this report.

For the ground magnetic coveroge of the survey oreos, MF-1, MF-2 and M-700, fluxgnte magnetometers wore used. The MF-1 and MF-2 are monifactured by Scintrex inimited while the M-700 is made by McPhar. The specifications of these instruments which meagure the vertical componont of the magnetic fleld, are described in the Appendix.
V. LINE CUTTING

In the course of covering the claine described in Section III of this report, a totad of 86, 000 feet of base dine ros established. Picket lines positionod ot right angles to the various baso lines rece spased ot 400 frot interrali: a total of 506.800 feet of picket linos was cut. All linos woro cholnod ond picketed rith stations ot 100 foot intervals Tho tetal numbar of eatahlishedatationsin aporoximatalx 5 , 300

The desired locotions and directions of all bose lines wore specified in odvance by Sorom Limited; the actual line cutting vas directed by a qualified survoyor who positioned the base lines in the field by the use of a transit and roforring to woll ostablished topographical points. Host picket lines vere ostoblished at right angles to the base lines by the surveyor using the transit.

VI. GEOPHYSICAL SURVEYS

Electromagnotic Survoy

The Iilt Angle or Vortical Loop Mothod - In tilt angle or vertical loop E.M. systems an alternoting magnetic field is established and the direction of the totol magnetic field due to the transmitter and to oddy currents induced in the ground is meosured. For the survey techniques employed during the survey, the transmitting coil is hold stationary in a vertical position during a measurement and the recoiver coil is used as o "null" measuring devices i.e. rotated oround a horixontal axis until it is in a position of mindmun induction. At thls point, the plone of the receiver coil containe the total field vector, or, when socondary field are present the major axis of the polorizotion ollipse. The vortical transmitter-horizontal receiver coil configuration is the coil orrangoment which is most recommended for roconnaissance and detail surveys, particularly in the Precambian shield or elsewhere where the geologic conductors are oxpected to dip ot angles of greater than obout 30 degrees. This configuration gives a minimum response from truly flot-lying conductors such os overburden; it is also unaffected by elevation differences between the coil provided that the tronsmitter coll is proporly oriented.

The two survey tochniques that were used for the vortical loop surveys were the "Breadelif" or "Porallel line" tochnique, and the "Exixed Irensmittor" technique.

The "Broadside" or "Parollel Line" Technigue - In this method the travores lines are inclined ot opproximatoly right angles to the oxpected strike olthough the direction is not too critical. The two colls move progressively along two parallel linos rith hath coils being at the same "latitude" rolotive to the grid. At each 100 foot station, a reading is taken using the high frequency signal and, if an onomalous tilt is observed the observations is generally repeoted using the lower frequency. High frequency tilt onglos ore generally always as large as the low frequency angles so that no conductor will be missed by employing this techrique.

The "Fixed Tronsmittgx" Technique - In applying this method the relative position of the tronsmitter and receiver is exactly the same as that in the parallel-line method; i.e. the transmitter is a vertical loop which is so orionted that the recelver position lies in its plane. The plon of operations is rother different, however. The tranoajter is kipt ct cine position and the rocolvar is moved along the pick:t lino noarby, making dip-angle meosuroments ot regular intervels. The plane of the transmitter must be rototed with eoch observation so that it alwaye contains the receiver position.

Interpretation of "Tilt Angle" Data - The technique omployed when meosuring the direction of the ts thefieldeax 1ts compononts by means of o null configurotion combinos mojor odvantages in operationol officioncy with limited interpretation capabilitios. The lotter partly rosults from tho insufficiency of null configurations to measure in ellipticolly polarized fields. The plane of the recelving coll, whan
it is in a position of minimum induction, contains the total field vector, or, when phose shifted secondary fiolds are present, the major axis of the polarization ollipse. With increased ellipticity the null position widens and the measuremonts begin to lose definition.

In spite of the limited interpretation copabilities of the vertical loop technique, it is on extremely popular and preforred method for ground followup of conductive zone: located by airborns EM reconnaisance surveys.

In proper application of tilt-angle methods, the emphosis should be on an operational efficiency, particularly in following up alrborne surveys, where the main problem is to determine the locotion of conductors whose relative significance has olready beon assessed in the interpretation of the airborne data. The results of VEM surveys are usually presented as profiles showing the angular deviation from the free-air null position in the plane of moosurement. The horixontal location of the conductive oxis is indicated by the crossover point for single steeply dipping corductors. Depth of burial, conductivity, sixe and geometry are reflected in the curve shopes and amplitudes; the use of two well soparated frequenm cies aids in distinguishing the various porowetors.

Although the qualitative interprotation of VEM dato is difficult, experience shows that in normal Precambian Shiold conditions adequate information con be derived from VEM data for the positioning of dxill holes, as well as the ovaluation of the reltive conductivity of a particulor con-
ductivity of a particulor conductivo xone; the relationshipp between the anomalous tilt angles obtained at 400 Hz and 1600 Hz using the SE-300 system on o porticular conductor, indicotes whothor a conductor is of high or low conductivity. For o body of specific size and shope the ratio of the 400 Hztilt angle to the 1600 Hr tilt ongle will vary with the conductivity. For low conductivity, the 1600 Hz widl give o much larger response than will the 100 Hzi for high conductivity, the ratio will becomo vory noarly unity. Large bodies give rise to ratios nearer unity thon do small bodies but the spacial distribution of the conductor will help to separate the size effect from the conductivity offect.

Generally speaking, the overage base metal sulphide body is of sufficient size and conductivity to give ratios noor unity, but strong grophitic zones may likewise givo rise to high rotios. Overburden effects, serpentines, shear zones, weokor motallic sulphide and graphito distributions may all give riso to smaller rotios. It is not possible to resolve the various possible conductive sou:ces on the bosis of the E.M. measurement alone.

Hoxizontal Loop Method - In the horizontal loop prospocting syatom two light ceids one recelying ond one transmitting aro kept horizontal and a fixed diatonco opart. The recelver measures both in in-phase and quadrature components of the socondary or onomolous fiald an a nearcentaga of the primory fiold intensity Measuromonts of this typo con only be made if there is a mechanical link between the receiver ond the transitter which is used for tho dual purpose of

maintaining an accurate separation between the coils and of obtaining o reference signal from the tronsmitter for the phase measurement. The results are presented as profilos showing | tho variation of real (in-phose) and imoginory (out-of-phose |
| :--- |
| quadure) components of the sacondary field plotted ct | the mid point betwoen the colls. The systeal is symmetrical and the positions of transmitter and receiver are interchangeable.

In the surveying technique used with the horizontal loop the transmitter and receiver travel progressively along o traverso perpendizular to the onticipoted strike of the conductivozenes A. constarit separotion is mointained by koeping tho connocting cablo taut. Roodings ore taken every 100 foet. This roading intorval is roduced to 50 feet rherever onomolous roodings are encountored.

The maximum coupled coil configuration used in the horizontal loop system gives results which ore the oasiost to interpret of all the eloctromagnetic systems. The horizontal loop profile over a single vertical conductor shows a negative trough of which the shoulders exhibit sall positive valves. One distinct odvantoge of the horizontal loop data is that it gives a direct indication of tho width of a body. Thus quanifative doterminotions of the conductivity, expressed in mhos, and the width are possible as opposed to the conductivity width product (mho/moters) obtained from vertical loop data. Accurote determinations of depth and dip aro also possible. Those facters maka tha harlzantal_hapmathad. valuable occessory to the fact and aftiaieat vartical loen "Broodside" mothod.

Magnetic Survey - The purpose of the ground magnetic survey was to study the relationship of magnetic activity to the conductive xolles mopped using the electromagnotic techniquo. E.M. anomalios surveyed from the aix which appear to have direct aixborng mognetic correlation are often shown to have ossociated magetic octivity rather than direct correlotion once the ground surveys have been comploted.

All roadings on g porticular grid are "tiod" to 0 common bose for that arid and during the survey of a grid the maximum length in time of o survey loop would be obout one hour, in order to have good diurnol control.

Observations were mode ot 100 foot intervals on a reconnaissanco basis but tho reading interval was generally reduced to 50 feot in areas of magiatic activity noted in the vicinity of conductive rones.
VII. PRESENTATION OF DATA

The electromagnetic and magnetic dota is presented in profile form on plates reloted to the narrow claimgroups. For eoch clatm group tho profilo presentation includes a location plon ac a scale of 1 inch $=\frac{1}{2} m i l e$ and a separate sketch of the claim block at a scale of 1 inch $=\frac{1}{2}$ mile, showing the actual claim loyout for the group.

The location of the vorious cloim groups, with respect to the Sovern River and Muskrat Dom Lake, is shown on the area locotion mop included in the Appendix to this report.

For the profile prosentetion, tho horizontal scole used is 1 inch a 200 feet. The tilt ongle obtained from the vartical loop E.M. survey ore plotted at o scale of inch $=$ 10 degrees or 1 inch 20 degress ond the hoxirental lesp dato is plotted ot athor i inch $=108$ or inch $=20 \%$ as required for a clear presentation. The magnetic data is plotted ot euitable scoles os indicated on the individual plates.

For ease of correlation an interprotation of the electromagnetic and tho magnetic profiles ore generally superimpoaed. Detoiled magnetic data is also oprovided on a separate plan mop for oach claim block.
VIII. DISCUSSION OF RESULTS

The results of the ground followup survey will be discussed for oach claim group in turn below.

Claảm Block XII

Cloim Block XII is locoted in the contre of a large area indicated to be underiain by felsic motovolcanics and which is crossed by the oxis of the Sandhill Crone anticline, trending east-west across the cloin block.

The INPUT survey intersected a very good conductor, also striking east-west, which extends beyond the property boundaries. This conductor is locoted just south of the centre of the block. The midde airborne intersection is shorp with the intersections to the oast and west being slightly brooder and having channel retios indicoting oven better conductivitywidth values. A magnetic high south of the main conductor is Indicated by the INPUT records. The ooromognetic map shows that the rest of the area is magnetically quiet.

The ground survey was perforwed on lines rurining perpendicular io on eost-west base line positioned in the centre of the claim block. The ground suxvey locatod the main INPUT conductor just south of the bose line with o strike of $N 85^{\circ} \mathrm{E}$. In the centre of the property this is one single conductox. On the east end, onother conductor parallels it 200 feet to the north. On the wust end, a conductor parallels the main conductor 200 feet to the south. The dual conductor would occount for the inciease in opparent conductivity-width of the INPUT intersections at the east and west ends of the property and would alzo account for the incroosed broadness of these INPUT anomalies. The conductivity-width determined in the contral portion of the conductor froe the horlzentad $j 000$ date 195 mhos. This vory good conductivity persists tovards the cast
but decreosos somowhat towards the west. On the westernnost line the conductivity-width for the respective conductors $i s$ 24 mhos for the northern conductor and 35 mhos for the southern one, conductivity-widths which are still quite high. The dip in the centre soction is steoply to the south, and at the west end the conductors oppear vertical; in the eost it is impossible to determine dip due to the interference of the two conductors and the "off strike" offoct.

The INPUT survey also intersected o one line anomaly on the northwost boundary of the property. This was located by the ground survey at the north ond of the westernmost line, terminoting obout 400 foet to the oast; this conductor could thue extond towarus the west off the property. A conductivitywidth of 19 mhos is indicoted by the horizontal loop doto. The quadrature background level bacomes slightly negotive in the vicinity of this conductor suggosting a more conductive overburden or perhops a thickening of the overburden.

Other indicated possible conductors ore probably due to topographical or surficiol effocts as indicated by some of the detulled work.

The survey areo is magnotically quiet for the most part. A magnetic anomaly ls however locoted ot the south ond of most lines os would be expected from the INPUT records. The strike is the some as that of the EM conductors. Thore is no mogne. tic exprossion corrolating with the main conductor on any line, but thero is a very broad mognetic "high" of 140 sameascoinolding with the isolated conductor ot the northwest corner
of the property. The magnotic high yiolds a dopth to source of 120 foet which compares with a dapth of 90 feet colculated from the olectromagnotic survey data. The possibillty of conduc ive overburden here, which wa previously hoted, could account for this discrepancy.

The ovexall depth of cover in the survey areo is in the order of 70 feet, except, as just noted, in the northwest corner of the property whore the depth appears greater. Depth determinations were mode from both the horizontal loop and vertical loop data ond from two of the southorn mognotic onomalles. Depthe to source of 60 to 80 feet wore obtained.

For purposes of testing the various conductors by drilling, some drill hole location are suggested balow:
a) Lino $12 K$

If it is desired to test the main conductor by drilling, the euggested line is 12 W where the horizontol loop doto indicotes o width of 50 feet and a very good conductivity-width of 95 mhos. The conductivity is thus obout 60 mhos/meters. The conductor is locoted ot $1+50 \mathrm{~S}$ ond 1 : at a depth of 70 feet as indicated by both horizontal loop and vertical loop profilas. The conductor dips steeply to the south.

A suggested drill hole location for testing the E.M. conductor is os follows: Collar ot $3+00 \mathrm{~S}$ on Line 12 W and drill north olong the line at on inclination of 45° for o distance of about 250 foot.
b) Line 24 W

The south dual conductors on Line 24 W is very well defined so that a drill hole location is suggested in case it is desired to chock this conductor. The oxis is locoted at $3+50 S$. The horizontal loop profile indicates o depth of cover of 60 foot and o conductivity-width of 35 mhos. The conductor appeors to be vertical.

A suggested drill hole location is follows: Collax at $4+75 \mathrm{~S}$ on Line 24 W and drill north olong tho line at on inclination of 45° for a distance of about 225 foet.
c) Line 24 W

A drill hole is suggested for the isolated E.M. anomoly at the north end of Line 24 W . The axis is locoted ot $7+00 \mathrm{~N}$. Collar at $5+50 \mathrm{~N}$ on Line 24 W and drill north along the line ot on inclination of 45° for a distance of about 270 foet.

Clain Block XXII

The oastern two thirds of this claim block is indicated to fall within o north-south trending belt of metasediments. The western section of the property is shown as being underlain by mofic metavolcanics. An onticlinal oxis is indicated to pass through the central part of the claim block, cutting across the geological contact.

The INPUT sutvey shows on oxcellent conductor striking across the wostern part of the claim block in a S.W. direction and being just slightly south of the castern claim. It oppears that the anomolies on flight line 14 S may be plotted too far north of their octual location aince the anomalies on adjacent lines fall in line but the line 145 intersection does not.

The ground survey base line strikes $N 113^{\circ} \mathrm{E}$ intersecting the northwest cornex of the claim block.

The E.M. survey over these grid lines mappod one conductive zono hoving o strike direction of opproximately $N 105^{\circ} E$ and o strike length of ot least 1800 foet. This conductor appears to extend outside the boundary of the claim block both towarde the oast and the west.

The conductivity of this zone is very good at shoun by Low to high frequency ratios of 0.8 to 0.9 . The horizontal loop data indicates the rone to have a conductivity width of about 120 to 140 mhos. The width of this xone appears to vary from 15 feet on Line 20 W to 40 feet on Line 24 W giving the zone o conductivity of 12 to 24 mhos/metox.

This conductor is coincident with magnetic anomaly having a magnitude ranging from 200 gammas on Line 16 W to o dipole magnetic feature of about 1200 gammas on Line 24W. The depth to the top of she conductor has been calculated to bee In the order of 60 feet. This corresponds very well with calculation made from the magnetic data which implies that the magnetic material is upproximotoly 60 feet below the surface.
The dip in this region appagrs to be vertical or possibly very steeply towards the south.

To check the source of both the E.M. and the magnetic anomalies the following drill hole suggested: Collar at $8+60 S$ on line 24 W and drill north along the line ot an inclinetron of 45° for ot least 230 foot.

This claim block is located in on areo underloin by felsic motavoicanics just to the oost of the Sovern River foult and south of the cast-west trending axis of the Sondhill Crane onticline.

The airborne kurvey on this cloim block has indicated at loast four soporate, conductive zones. One being located near the plotted position of the base line, two north of this posifion and one south of it. One of the zones north of the base line oppears to hove direct magnetic correlation.

Becouse of the flooded wampy terrain on which this claim block was aituated, the complotion of the geophysical surveys in this areo was impossible during the summer program. Most of the lines north of the bose line howover were surveyed with eithor the verticol loop or the horizontal loop E.M. unita. Rewults here indicated soveral conductive rones, one being located at the bose line on Line 20E ond ot least two others located north of this bcise line. The southern zone hos only been noted on one llise os the survey coverage did not oxtend far onough south. It has a conductivity width factor of approximotely 95 mhoa ond appears to be about 10 foet wide giving it a conductivity of approximotely 30 mhos/meter. . The depth to the top of the source of this response is in the order of 50 foet, and the dip is vertical.

Noxth of the base line, the conductor giving the hest rosponse is locotad ot about $11+00 \mathrm{~N}$ and hos a trike direcition of about N $115^{\circ} \mathrm{E}$ ond a length of at leost 2000 foot. This xdpe
appears to hove excellent conductivity as indicated by low to high frequency ratios of 0.9 to 1.0 and a calculated con-ductivity-width factor of roughly 60 mhos. The zone is very narrow, having a width in the order of one meter. The depth to the top of the zone is in the order of 60 to 80 feet.

The magnetic survey was not started for this claim block but should be completed during o winter program.

No drill hole. locations will be suggested at this stage for these conductors because of tho limited data available. Normal survey coverage should is completed during o winter program.

Clain Block XXV

This claim group is locoted vory close to the east-wost trending fox Bay syncline which occure in on areo of metosedimentory rocks.

The airborne survey hos indicated two zones of conductivity, ono boing faixly long and very narrow and having extremely good conductivity, while the other zone locoted to the north is very hort and gives o poor conductivity, wook INPUT response.

The ground survey has mapped one very long curving conductor having n strike length of obout 3,800 feet and a strike direction of botwoon $N 90^{\circ} \mathrm{E}$ and $\mathrm{N} 100^{\circ} \mathrm{E}$. The conductivity of this zone is vory good for the ontire strike longth as indicoted by low to high frequency rotios vorying from 0.8 to 1.0 .

For Line 32W horizontal loop dato is avoilable; the results indicote the zone to hove a conductivity-width factor of approximotely 140 mhos and a width in the order of 30 feet.

「airly hallow overburden depths ore indicated; calculations made from the E.M. responser yiold o depth to the top of tho conductor of approximately 20 to 40 feot. The dip is noar vortical or posibly a vory steep northorly one.

The onductor is apparently reloted to a magnetic body 0 os indicoted by a coincident dipole magnetic footure which might be reloted to remanent magnetion of the source moterial. Readings varying from +2000 gammos to -3000 gommas have been
noted along the axis of this zone. Another large and much broader magnetic feature was noted along the southern ends of the grid lino. However, no significant E.M. conductors are apparent within this magnetic feature, although some localizod E.M. responses do exist probably caused by surficial conductivity.

Suggested drill hole locations for testing the conductor are os follows:

1) Collar at $4+10 \mathrm{~N}$ on Line 32 W and drill south along the line at on inclination of 45° for a distance of ot lost 180 feet.
2) Collar ot $2+00 \mathrm{~N}$ on Line 20 W and drill south along the line ot an inclination of 45° for a distance of at least 180 foot.

There is no evidence of the second shorter conductor which was located on the airborne survey. This airborne onomadly was noted to be about 500 feet north of the longer conductor well within the present survey coverage. This airborne conductor is very weak and there is a possibility that the source is located at a depth too great to be noted by a 400 foot coll separation.

Claim 8lock XXVI

This claim group is located very near the contoct of the metasediments with metagabbro and metodiorite, south of the Fox Bay synclino.

The alrborne survey has indicated numerous anomolies oxtending opproximately from the plotted position of the base line to the northern boundary of the claims. The complexity of those responses suggest several probably parallel conductors located in an orea having some magnotic octivity. South of this band of conductors, there oppeors to be till onother conductive rone, however, this zone is very short, oppearing less than 1000 feet in length. A single conductor axis is indicated.

The ground surveys have shown thot the claim block is situated slightly south of desired positions. The base line is located on the short southorly conductor while the conductive band towards the north is located ot the northern onds of the lines.

This northern zone is composed of ot leost two porallel conductors. Thelr conductivitios are vory good as indicated by low to high froquancy rotios ronging from 0.8 to 1.0 . The horizontal loop data shows a conductivity-width factor betwoon 100 and 250 whos for the two ronos on Lines 12 W and 16 W and a lower conductivity-width of 20-35 mhos on Lines 20 W to 24 N . All zones have d'roct magnotic correlotion rith amalitudes the poaks varying from 200 gommos to 8000 gammas.

The depth of cover along these xones hos been calculated to be 30 to 60 feet. The dip oppears to be vorticol.

The best E.M. -osponses from the south conductor was noted on Lines 12 W and 16 W . On Line 12 W , the low to high frequency response ratio of the 'crossover' located at $13+30 \mathrm{~N}$ is about 0.9 and the calculated conductivity-width foctor is approximately 200 mhos. The apparent width of the rone of conductivity is in the order of 40 feot and the depth to the top of the source is about 40 feet.

A 2000 gammo mognetic anomaly is coincident with tho conductor axis at this location. A drill hole to test tho anomaly here should be located as follows: Collar ot $14+20 \mathrm{~N}$ on Line 12 W and drill south along the line ot on inclinotion of 45° for a distance of about 200 feet.

On Line 16 W , the low to high frequency response ratio of the 'crossover' located at $13+30 \mathrm{~N}$ is approximately 0.8 ond the calculited conductivity width factor is in the order of 190 mhos. The xone oppenrs much norrower on this line than on Line 12 W and the depth to the top of the source is 40 to 50 feet. The zone here hos o 400 gamma directly correlating mognetic anomoly. A drill hole to test the conductor here should be located as follows: Collar at $14+20 \mathrm{~N}$ on Line 16 W and drill south along the line ot an inclinotion of 45° for a distance of about 200 feet.

The rone locoted 300 feet iurther to the north has the best peok to peok response on Line 16 W at about $15+80 \mathrm{~N}$ where the conductivity-width factor has been calculated to be about 240 mhos. The conductive xone appears to have a width of about 40 foet and to be at depth of roughly 40 feet. To check this torget the following drill hole location is suggested: Collor at $16+70 \mathrm{~N}$ on Line 16 W ond drill south cinge the line at an incilination of 45° for a distance of approximotely 200 feot.

The short south rone located at the base line hos o wuch poorer conductivity thon the conductors to the north with low to high frequency response ratios of no greater thon 0.7. Although E.M. responsos have been noted on two lines, nomely Line 24W and Line 28W, this zone may not extend os far to the cost os Line 24 W ince no horizontal loop response wos noted here. The conductor does have a coincident magnetic feotures the shope of which could indicate a source having romonent mognetism. The dopth to the top of the source oppears to be in the order of 70 feet. A drill hole to test the anomaly here should be located as follows: Collar at $1+90 \mathrm{~N}$ on Line 28 W ond drill south along the line at an inclinotion of 45° for a length of at least 240 foot.

Other minor conductor axes are much weaker and have a poorer dofinition. Some cannot be fully mopped because of the cut off of the survey covernge at the northern ond of the grid. For better definition of the rones located near the north boundary of the claim group, additional E.M. coverage toward the north would be required.

Cloim Block XXVII

This claim block is situatod in on aroa underlain by metasediments, metogabbro, metadiorite ond mofic metavolcanica.

The oisbotne INPUT survey shows one long conductive zone extending from ono ond of the cloim block to the other. Some magnetic activity is noted along the strike of this conductor zone.

The ground E.M. resulta reveal a conductive zone of at least 4000 foot in length extending from one end of the claim block to the other. On the eastorn two lines only one axis is ovident, however, further towards the west, two conductore are noted each hoving ite best response centered on Line 20E. Towards the eost on Lines $12 E$ and $8 E$ the responses from both conductors are very weok, with the shorter south conductor probably terminating here. On Line 0 , the longer main conductor is again well defined.

The conductivity of the main zone itextronely high os indicoted by low to high frequency responso rotios of 0.9 to l.O. The conductivity width factor for this zone os calculated from the horizontal loop results obtained on Lines 20 E and 16 E is in the range of 100 to 140 mhos. The width of this zone of $4+20 \mathrm{~N}$ on Line 20 E and $3+80 \mathrm{~N}$ on Line 16 E appears to be in the order of 30 feot. Some mognetic octivity 12 noted to be very nearly coincident with this E.M. conductor except on Line 28E where there does not appear to be any mognetic anomaly. It would thus seem unlikely that the source of the E.M. rosponse is mognetic.

The hooter cone located about 300 feet further south is much weaker and has a poorer apparent conductivity os indicated by the conductivity-width factor of roughly 20 mhos. This cone is also related to magnetic feature although it does not appear to be directly correlating.

The depth to the top of the conducting body appears to be in the order of 40 th 60 feet. The dip is very nearly vertical or possibly very steely towards the south.

The following drill holes are suggested for testing the source of the E.M. onomalies.

1) Collar at $3+20 \mathrm{~N}$ on Line 20 E and drill north along the line ot an inclination of 45° for at least 210 feet.
2) Collar at $0+40 S$ on Line $20 E$ and drill north along the line at an inclination of 45° for at least 2 iQ foot.

Claim Block XXIX

This claim group is situated very near the contact between the metovolcanice to the south ond the metagobbro and motadiorite which form the Fox Bay Sill.

The ground surveys on this vary norrow group of cloims has i.idicated one long conductor extending from Line 12 W to Line 44W and probably beyond this wezternmost line for a strike length of at least 3200 feet. Another weoker and wuch shorter conductor obout 200 feet to the south is evident from the E.M. responses obtained on Lines $32 W$ and 36%.

The conductivity of the long xone is extremely high as indicoted by low to high frequency rotio responses of obout 1.0. The conductivity seom to become much poorer towards the east where the ratio is about 0.4 on Line 12 W . Conduct-ivity-width factors of 260 to 280 mhos have been colculated for this conductor on Lines $32 \mathrm{~W}, 36 \mathrm{~W}$ and 40 W . The zone oppears to be fairly narrow, probobly less than 10 foot thick. Some mognetic activity appears to be related to the conductor although o direct correlotion is not fully ovident. On some lines, the axis hos a coincident magnotic poak of up to 2000 gammas (i.e. Lines 24 W and 28 W). Some lines have the magnetic pook slightly displaced from the apparent position of the conductor while on other lines, there is only a very small brood magnetic foature, of 100 to 200 gammas (i.e. Lines 12W, 20W, $32 \mathrm{~W}, 44 \mathrm{~W}$.

The short conductor located on Lines 32 W and 36 W about 200 feet south of the longer xone also hos a very good conduct-ivity-width factox of 160 whos. This zone has a coincident magnetic anomaly of about 3000 gammos.

The apparent depth to the top of these conductors is in the order of 30 feet. The dip is apporently a vertical ono.

To check the source of these two conductors, the following drill holes are uggested:

1) Collar ot $3+50 \mathrm{~S}$ on Line 32 W and drill south along the line ot on inclination of 45° for a length of at least 200 foot.
2) Collar at $6+00 \mathrm{~S}$ on Line 32 W and drill south along the line of an inclination of 45° for a length of obout 200 foot.

This claim block fas not surveyed completely due to some of the $=10 i m s$ being flooded so thot more work is required.

This claim block is underlain by metagabbro and motadiorite which form the Fox Boy Sill.

The airborne survey hos indicated one long eost-west etriking conductive zone extending from one end of the claim block to the other. This rone oppears to have extremely good conductivity and on some of the flight lines, the INPUT anowaly has a coincident magnetic feature.

Using the Broodside configuration vertical loop method with a coil separation of 400 feet, only reak responses were noted, possibly indicating sources to be too deep for a positive detoction using this relatively short coll seporation. A fixod tronsmittor configuration with an 800 foot coil separation and froquericies of 5000 Hz and 1000 Hz was then utilized in an attempt to define the conductor axes.

With this method, two axes were mapped. The main zone curves acroes all the surveyed lines, i.e. from line 8 W to Line $32 W$, and is located on the north side of the base line. The conductivity oppoars to be vory good with low to high frequency response ratios of very noarly 1.0. The oxis of this zone is poraliel to and lncoted 100 to 200 feet north of a 300 to 500 gamm magnetic anomaly which occtirs on the northern flank of on 8600 gamma magnetic zone. The other conductor oxis wae only traced on Line 8 W to Line 16W. This zone also has very good conductivity and is located 100 feet north of the large magnetic anomaly (8000 gamms). It is pos-
sible that onother zone may exist further noxth. However, there is insufficient goophysicol covercye for tracing this zone.

The dip in this region os indicated by the mognetic pattern, appears to be toward the north. The depth to both the top of the conductive body and the mognetic material is in the order of 120 to 150 feet.

To test the source of the two conductors, the following drill holes are uggested:

1) Coller at $4+90 \mathrm{~N}$ on Line 16 H and drill south olong the line at an inclination of 45° for at least 350 feot. It may be nocessary to extend this drill hole to intorsect the magnetic material.
2) Collar at $0+30 S$ on Line 16 W and drill south along the line at an inclination of 45° for at least 350 feet.

No geological infornction was avalloble for the oxea in which this claim block is situated.

The alrborne survey has indicated three possibly paralled rones with foirly good conductivity in on oreo of relotively low magnotic activity.

The ground surveys mapped three parallel conductors. The zone giving the best E.M. response is located 400 to 600 feot n. : th of the base line. Onoline 24 E ite conductivity oppears very good with low to high frequency response ratio uf obout 1.0 and a culculoted conductivity-width of roughly 100 mhos. The conductivity oppears to decrease towards the northest; on line i2E the conductivity-width is in the order of 20 mhos. There is magnetic octivity associated with this conductor.

The conductor giving the next best response is locoted 200 to 300 feet south of the bose line. This rons does not appear to extend beyond Line $20 E$ towards the southeast. Howover, it is still open towords the northwest. Its conductivity is fairly good with a low to high frequency response rotio of 0.6 to 0.7 and a conductivity-width factor of 70 whos as colculated from the horizontal loop results on Line 12E. This xone appears vory wide here, possibly as much as 3 u fnet thick. On Lines $4 \mathrm{E}, 8 \mathrm{E}$ and 12 E , the conductor axis is locotod 200 feot northeost of a 100 to 500 gamma magnetic unomaly.

The third zone is situated 200 feet south of the base line. The conductivity here is poor to fair os indicated by low to high frequency response ratios of 0.4 to 0.6 and 0 colculoted conductivity-width of 10 mhos on $1.1 n$ e 12E. However, this zone is directly coincident with a magnetic anomaly having c magnitude of 100 yammos on Line 20E, 200 gammas on Lino 16 E and Line 12 E and up to 1000 gammas on Line 8 E .

The depths to the top of the conductive sources appear to vary throughout the grid. Northeast of the base line where the best conductor is located, the calculated depth is approxmutely 50 feat. The conductor just south of the bose line also appears to be at a depth of 50 feet on Line 12E. However, the depth seems to increase towards the southeast as the third conductor is at a depth of about 80 foot on Line 12 E and probably oven deeper towards the southeast. The apparent dip in this region is near vertical or possibly a steep northeasterly one.

Suggested drill hole locations for testing the three E.M. anomaly sources ore as follows:

1) Collar at $5+40 \mathrm{~N}$ on Lino 24 E and drill south along the line at on inclination of 45° for a length of 210 foot.
2) Collar at $1+305$ on Line $12 E$ and drill south along the line at an inclination of 45° for a length of 210 foot.
3) Collar at $7+50 S$ on Line 12 E and dxill south along the line ot an inclination of 45° for a length of about 250 foot.

Clodm Block XXXIY

There was no geologica: map ovallable for the region in which this claim block is locatod.

The INPUT survey hos indicated the posalbility of three parallel conductive zones having faixly good conductivities in an area of little mognotic activity. It is posible that the conductors may be quite deoply buried in this region, judging by the INPUT responses.

The ground E.M. results have confirmed the presence of as many as thee parallel conductors having o strike direction of approximately north-south.

The zone glving the bost response stroddes the base line botwoen Lines 8 W and 20W. This zone has fairly good conductivity with low to high frequency response ratios of 0.7 to 1.0 and a conductivity-width of about 50 mhos as calculated for the conductor at $2+80 \mathrm{~N}$ on Line 20 W and ot $1+20 \mathrm{~N}$ on Line 16W. The other two conductors, located about 200 foet on oither side of this main zone appor to give slightly weoker rospofises than the centre ono. However, the conductivities are still foirly high with low to high frequency response ratios of 0.7 to 1.0 . It would appear then that these two conductors ore at a slightly greater depth than the main rone. The opporent depth to the top of the source of the centre zone 1s in the order of 120 to 130 foet. The other two rones oppear to be ot o depth of 140 to 150 feot. The dip 800 m to be towards the southwest.

Some magnetic activity was noted in this area, although it does nut appear to be related to any of the conductive zenes.

To test the sources of the E.M. responses the following drill holes ore suggested:

1) Collor ot $10+40 \mathrm{~N}$ on Line 20 W and drill north along the line at an inclination of 45° for ot least 350 feet.
2) Collar at $1+00 \mathrm{~N}$ on Line 20 W and drill north along the line at an inclination of 45° for at least 330 feet.
3) Collar at $8+10 \mathrm{~S}$ on Line 12 W and drill north along the line at an inclincation of 45° for ot least 350 feet.

Clain Block XXXIV

This claim block is underlain by motagabbro and motadiorites which form the Fox Boy Sill.

The INPUT survey hos indicated two major zones of conductivity within this cloim block. One is located olong the base line and appears to have extromely high conductivity. The other zone is situated in the northern half of the cloim block with the best conductivity occuring in the northeastern corner. Nelther of the zones appear to have any associated mognetic octivity on the alrborne data.

The ground E.M. surveys have mapped two single conductors. The north conductor has a lightly curving axis with o strike direction of roughly $\mathrm{N} 100^{\circ} \mathrm{E}$. This zone extends from Line 12 W to line 12 E and is still open towards the oast. Its conductivity is fairly good with low to high frequency response ratios of 0.7 to 0.9 on the costernmost 1 ines and 0.5 to 0.6 on Lines $0,4 \mathrm{~W}$ and 8 W . Contrary to the oirborne results, the oxds is colncident with a mognetic anomaly hoving varying amplitudes of 300 to 1200 gammos. The depth to the top of the source is in the order of $80-100$ feot. The dip oppears to be a steep southerly one.

The following drill hole is suggested for testing the source of the E.M. ond Mag responses: Collar at $7+00 N$ on Line 8 E and drill north along the line ot an inclination of 45° for a length of about 270 foet.

The second rone located near the base line oppears to be situoted in an area of complex geological etructure as the direction of the conductor changes very drastically olong strike. From a strike direction of about $N 80^{\circ} \mathrm{E}$ ot the wostern end of the grid, the conductor curves towards the southeast until the direction is about $N 350^{\circ} E$ at Line 0 . A "detailed" grid was cut and surveyed at this southeastern end with traverses perpendicular to this changed strike direction. The conductivity of this zone is very good along the entire strike length, with low to high frequency response ratios of 0.7 to 1.0 . The conductivity-width factor varies along the strike, probably indicating changes in the width of the conducting body which can be noted on the horlzontal loop profiles. The conductivity-width factors thot have beon calculated for thio conductor ore: Line 28 W - 80 mhoy, Line 24W130 mhos, Line 20W - 40 mhos and on the detail grid, Line $8 N-$ 200 mhos, Line $4 N-90$ mhos and Line 0 - 200 mhos.

In general, there appeare to be an increose in conductivity on Lines 0 and 8 W at the point where the strike change is the greatest.

The conductor axis colncides with a magnetic poak on all the surveyed lines; amplitudes varying from 100 to 1500 gammos are noted. This conductor oxis with the coincident magnetic response appears to be located ot o contact betweon an area of relatively quiet magnetic background activity to the north and east and a zone of mognetic disturbances extending opproximotely 1000 feot towards the southwest.

The apparent depth to the top of the conducting matexial is approximotely 60 to 80 feet. Tho dip appears to be a steop southwesterly one.

The following drill holes ore suggested for testing the source of this E.M. Mag onomaly:

1) Collar at $1+30 \mathrm{~N}$ on Line 24 W and drill north olong the line at an inclination of 45° for a distance of 250 feot.
2) Collar at $0+50 \mathrm{E}$ on Line 8 N of the detail grid and drill northeast along the line ot an inclination of 45° for o distance of 250 foet.

This claim block is located on the Fox Bay Sill which is composed of metagabbro and metadiorite.

The airborne survey sopped one long east-west striking conductive zone extending from one end of the claim block to the other. The conductivity oppears to be fairly good; there does not seem to be any mognetic activity ossocioted with the conductor.

The ground E.M. results confirm the presence of one singlo long conductor having a strike direction of about N $110^{\circ} \mathrm{E}$ and extending from Line 8 E to ot least Line 40E. Its conductivity is fair with low to high froquoncy responio rotios of 0.5 to 0.8 and a calculoted conductivity-width factor of about 10 whoz on Line 8 E at about $4+40 \mathrm{~N}$. There oppeors to be a very mall magnetic anomaly correloting directly with the conductor throughout the survey area. On line 8 E an anomaly pook of 500 gammas was noted while on the other lines a 50 to 100 gamma anomaly is evident.

The apporent depth to the top of the conductor is in the order of 60 to 80 feet on Line 8 E , however, the thickness of cover seems to increase towards the eost where depths of about 100 feet have been calculated. The dip appears to be noar vertical or possibly very steoply towards the south.

To test the surce of the E.M. responses, the following dxili holes are suggestod:

1) Collar at $4+20 \mathrm{~N}$ on Line 8 E and drill north al ing the line at on inclinotion of 45° for at leost 250 foot.
2) Collor ot $1+50 \mathrm{~N}$ on Line 32 E and drill north along the line at an inclination of 45° for at least 280 feet.

Another mojor conductive zone wos located ot the west end of the grid near the bose line. However, the detail grid from claim block XXXIV hos covered the full extent of this zone and its characteristics hove been discussod.

Thore also uppoars to bo possibility that other conductors are prosent within this aroo at olightly greater depth than the main zone. Sone very weok responses were noted throughout tho grid. To check this possibility, on E.M. survay using o slightly grooter coil seperetion-msey s00-800 feot is recommended.

Claim Block XXXVI

This cloim group is lorated to the west of Fox Bay. The Ontario Doportment of Mines geological maps indicate that the areo is undarlain by metagabbro and metadiorite with metasedimente lying to the north. The airborne INPUT records indicate a conductive zone with good conductivity and an associated magnetic andmaly offset to the south. The airborne records indicate broad zones of conductivity which might possibly represent multiple conductors.

The survey grid was aut with o base line azimuth of 70°. The broadside results obtained using a 400 foot coil seporation were not definitive but do indicote the presence or conductive zones of fairly good conductivity. Three survey lines were surveyed with a 600 foot coll separation and a frequency of 1600 Hz . This dota more clearly defines one contral conductor striking approximatoly $N 90^{\circ} \mathrm{E}$ but the data is still locking in definition. A depth in the order of 170 foot is indicated.

The claim block was then surveyed with the fixed transmitter configuration and frequencies of 1000 Hz and 5000 Hz . Surveying was with o 600 foot seporation, and fox one line, on 800 foot soparation. This dota clearly defines, the conductive zono indicated previously. The low to high frequency ratio indicotes good conductivity and the shope of the profiles, especially reverse crossovers to the south, clearly indicate o south dip. The posibility thot theso reverse crossovers could be due to another conductor ot the south odge of the
property was ruled out by using fixed tronsmitter setups in this region. The profiles obtained indicated only the previously found conductive axia. Depths of 160 to 190 feet are indicated.

Other conductive axes are indicated by the fixed transmitter profiles, at tho southeast corner of the property and to the north of the main konductor. However, their conductivities are much poorer and thus hoye a lover prioxity of laportonce.

The magnetic profiles are relotively sooth, but show a slight und gradual rise of roughly 300 gammos towards the southern ends of the lines.

To test the main conductor, the following drill hole is suggosted: The conductor axis crossel Line 16 E at $0+80 \mathrm{~N}$ and is at a depth of approximately 170 feet. Collar at $1+40 \mathrm{~S}$ and drill north olong the line ot on inclinciiion of 45° for a distance of about 400 feot.

Cloim Block XXXIX

This claim block is locoted south of Fox Bay. The area is underlain by felsic and mafic metavolcanics. The airborne survey indicates two good conductors obout l,000 feot aport in the centre of the claim block. There is olso an indication of a conductive zone along the west boundary of the cloim.

The ground survey was conducted on a grid having a base line azimuth of 97°. The main conductor lies to the north of the base line and strikes almost eost-west. This conductor oxtending from Line $4 W$ to Line 28 W , has the largest peok-topeak responss on Lines 16 W and 12 W where the low to high frequency response ratios are roughly 1.0. Depth calculations for both of these lines indicote a distance to the top of the source in the order of 80 feet and the profiles suggest vertical or eteop southorly dips. The horizontol loop data gives a depth of 80 foet and a conductivity-width of 30 mhos for the conductor on Line 12 W . The horizontal loop results on Line 16 W how the conductor as very narrow and at a depth of only 35 feet.

Another shorter conductor occurs south of the base line on Lines 12 W and 8 W . This conductor has a good rotio of low to high frequency. Both the horizontal and vertical loop mothods indicote depths of approximately 80 foot as well as a shallow dip towards the south. From the horizontal loop profiles, the width of the conductive zone hos been calculated to be about 100 foot.

There are two other conductive foatures located within this block. One lies about 400 feet to the north of the moin conductor and the otrer is located just inside the south boundary of the clalm group. The conductivity of both of these zones is varioble olong the length with low to high frequency rotios varying from 0.4 to 1.0 . However, the responses from these zones are very weak and thus appear to merit a lower priority roting.

Both the main conductor ond the shorter conductor just south of the base line hove very closely ossocioted magnetic anomalies.

Line 12 W is suggested os a good locotion to test the main conductor and also the shorter secondary conductor. The main conductor crasses Line 12 W ot $5+80 \mathrm{~N}$ ot a depth of about 80 feet. The width of the conductor is approximately sixty feot. The following drill hole is suggested: Collar at $4+50 \mathrm{~N}$ on Line 12 W and drill ot an inclincotion of 45° north olong the line for about 260 feet.

The axis of the secondary conductor crosses Line 12 W at $1+205$ ot a depth of about 70 feot. Horizontal loop data infors width of 70 feet. The following drill i.sle is suggested: Collor at $2+40 S$ and drill north along the line at an inclination of 45° for o distance of 250 feot.

Claim Block XL

Claim group X is located about throonquartors of a mile north of Nekence Lake in an area that is underlain by mofic motavolconics. Within the cloim group there ore two six-channel anomalies, these being located on the same flight 1ir.e in the western part of the claim block. Tho strike esctent of these conductors os indicated by the airborne resu!ta iz thus, very limited.

The ground survey grid base line has a direction of $N 74^{\circ} \mathrm{E}$. The results of the ground survey show three definite conductors, one of which is intersected on one line only. The two other conductors intersect two survey lines.

The northernmost axis intersected Line 44 W at $17+40 \mathrm{~N}$ and Line 48 W at $17+00 \mathrm{~N}$. The calculated depth to the top of the conductor is in the otder of 50 feet, and the low to high frequency ratio of .6 on line 44 W indicates this zone to have a fair conductivity.

The second twomline conductor was locoted at $13+80 \mathrm{~N}$ on Line 36 W and at $12+20 \mathrm{~N}$ on Line 40 W . The conductivity of this zone is foirly good with low to high frequency response rotios of . 06 to .08 . The opparent depth to the source is 50-60 feet.

To test the second tro-line conductor, a drill hole is suggested on Line 40 W . The following location is suggested: Collor of $11+10 \mathrm{~N}$ and drill north along the ilno at an inclination of 45° for a distance of 240 foot.

To test the conductor on Line 20 W the following drill hole is suggested: Collar ot $3+70 S$ on Line 20 W and drill north along the line ot on inclination of 45° for a distance of 200 foet.

Cloim Block XLIII

This chait oroup conslete fof four clatme lying opproximately one wile south of fox Bay and three-quarters of a mile east of Fox River. The Ontario Department of Mines regional geology map indicotes that the axea is underiain by felsic motavolcanics with a pessible contact botween folsic and mafic metavolcanics a short distance to the south. The airborne results are mostly poox with only one six chonnel anomaly, one five channel anomaly and several threo and four channel anomalies. The only multiple-line conductive zons on the alrborne results would seom to correspond to an areo of deop swamp through which the ground survey was not carried our.

The ground survey was carried out on a grid hoving a base line direction of $\mathrm{N} 127^{\circ} \mathrm{E}$. The only E.M. onomoly of any significance found by the ground survey wa located at obout $7+00 \mathrm{~N}$ on Line 20E; it has a direct magnotic association of several thousand gommas. The depth computed was of the ordex of 60 or 70 feet while the conductivity-width product wos colculated to be obout 15 mhos.

There is one other suggestion of a zone at $5+50 \mathrm{~S}$ on Line l6E, but the conductivity-width product indicotos a vory poor conductor.

The results of the magnetics survey indicote a complex structure. The magnetic feotures hove short strike lengths and soem to have dips in a southorly direction.

The only a uggested drill holea would be to test the zone on Line 20E. The results suggest two closely spoced conductors at $5+00 \mathrm{~N}$ and $6+90 \mathrm{~N}$ with the ono at $5+00 \mathrm{~N}$ being of poor quality. The depth to the top of the better conductor was calculated as seventy feet and the following drill hole Ls recomended to test its source: Collar at $5+70 \mathrm{~N}$ and drill north along the line at on inclination of 45° for a distance of 240 feet.

To test the poorer conductor, collar at $3+69 \mathrm{~N}$ and drill north along the line ot on inclination of 45° for a distance of 240 foet.

Claim Block XIVI

This claimblock consists of four cloims lying olong the northoast edge of Sondhill Crane Island. The geological report indicates thot the area is underlain by metagabro and metodiorite with a posible contact betwoon this unit and metavolcanics to the north. About one-half mile to the north of the group is a oynclinal axis.

The aixborne results indicate soveral broad conductive zones hoving good conductivity. Two of the conductor intersections show small directly corrolating magnetic anomolios.

The ground sirvey was carried out on a grid havirg obose lino direction of N55 ${ }^{\circ}$. The vortical loop E.M. results using the broadaide configuration show multiple conductive zonos. Interpretation of these resulte indicates many porallel conduciors which could, with the aid of fixod transmitior and horlzontal loop results, be traced for several hundrede of foet along their strike length.

The best defined of theso zones was the one extending from line $8 W$ to line 24 H in the southeost corner of the grid. The best conductivities vere on Lines 12 W and 16 W where the low to hiyh froquoncy rotios exceeded .9 and the conductivitywidth product was about 60 mhos. The zone wes narrow where it intereected Line 16 W , but on line 12 W the indicated width was roughly 50 feet. Calculotions on boih hoxixontal and vortical loof data for line 12 W indicoted dopths of the order of 120 feat.

A second conducior having its axis parallel to the bose line on Lines $16 \mathrm{~W}, 20 \mathrm{~W}$ and 24 W hos approximately the some depth to the top of the source moterial os the first conductor. Hovever, the conductivity of this zone oppeors slightly weoker with low to high froquency ratios of about 0.7 .

Saveral other parallel xones were noted tovards the northeast. Theix conductivities ore oll foixiy good with low to high frequency rotios in the order of 0.7 .

The presence of many conductive zones hos been inferred on the plot of the geophysical reaults. The complexity here har mode dip determinations difficult but from the results and bocause of the presence of o syluclinal axis to the north, steep north dips are thought most likely.

The magnetlc profiles all show o gradual climb from both ends of the survey lines towards the centre. The amplitude of this anomaly is approximotely 200 gommas. This wight woll represent o lithologic chenge. Howover, the conductive axes do not appeor to have ony direct magnetic ossociotion.

To test the first conductor doscribed, a drill hole is suggested on Line 12 W where the conductor intersocts the line at $8+00 S$ and 1 a locoted at a depth of about 110 feet. The hole should be collared ot $6+40 S$ and drilled south olong the 1 ine at an inclination of 45° for a distance of 300 foet.

The uxis of the socond conductor croses Line 20W ot $\cdots, 40 S$ and the depth to the top is ebout 100 feet. The fol'ouing drill hole is suggested: Collar ot $1+10 \mathrm{~N}$ and drill south along the line at an inclination of 45° for a distance of 280 fest.

Cloin 8lock XLVII

This cloim group is locatod on the northeest side of Sandhill Crane Island. The geological map of the district indicates that the area is underlain by motasediments along the river and by metagobbro and motadiorite a short distance from the river. Sulphides were found along the shore of the island, in the northwest portion of the property. The airborne survey results indicate several parallel conductive zones showing good conductivity on the airborne record tapes. The best conductivity occurs on the east side of the claim block.

The bround grophysics wos first corried out on a grid hoving a base line azimuth of 32° but when this proved unsuitable, the base line was reoriented according to the strike inferred from the initial data and new cross lines were cut. The oximuth of this second bose line was 59°. The work which was done on this second grid indicated multiple conductive zores. The xatios of low to high frequency were foir to excellent with most values in the ronge .6 to 1.0 . In many cases, the results show interference betweon the closely spaced conductive zenes and position of the axes ore difficult to locate. Dopth ond dip colcuictions are also very difficult to determine.

At the northorn end of the cloim block, the ground rosults showed two zores which moy be qualitatively assessed. The low to high fraquoncy ratios oxe very good, exceoding .9 in all cases but one. The resulta show two conductive rones tronding approximotely paralled to the new base line and obout 400 foet opart. The langer and more northorly of these two
conductors extende over o strike length of opproximately 1200 feet from $8+75 \mathrm{~N}$ on Line 0 to $10+00 \mathrm{~N}$ on Line 12 W . Within this length, the conductor is vell defined and the high to low frequency ratios ore very good. A dapth calculation completed on the conductor where it crosees line 8 W yields a value of 100 feet while another calculation for the point where it croses Line $4 h^{\prime}$ gives a depth of 90 feot. Becouso of the proximity to the other conductivo rono, o dip dotermination is difficult but on examination of the overall profiles of magnotlcs and E.M. results, would suggest a stop northorly dip.

The second and horter conductor has a strike longth of approximately 800 feet from $3+80 \mathrm{~N}$ on Line 0 to obout $5+30 \mathrm{~N}$ on Line 8 W . As with the longer conductor, this rone hos very good ratios of high to low frequency indicating a good conductivity. A depth calculation of $6+20 \mathrm{~N}$ on Line 4 W indicates a depth of obout 90 foot.

The magnetic features in the aroa of the conductors are all brood and the magnotic grodient is low. It is not possible to correlate the magetics with any one conductor.

Yo test the longer conductor, a drill hole is recommended on Lino 4 W . The colculations hove indicated that the conductor axis crosses Line 4 W at $9+60 \mathrm{~N}$ and at a depth of 90 foet. The following drill holo locotion is recommended: Collar at $11+00 \mathrm{~N}$ and drill south along the line at an inclinotion of 45° for o distonce of 270 feot.

To teat the ohorter conductor, a drill hole is recommended on Line 4W. The colculotions have indicated that the axis of the conductor crosson Line 4 W at $6+20 \mathrm{~N}$ with a depth to the top of 80 foet. The following drill hole is suggested: Collar at $7+50 \mathrm{~N}$ and drill south along the line ot an inclinotion of 45° for a distance of 250 foot.

The conductive xones strike into the loke where sulphides wore noted along the shore. The survey lines ahould thus be extended over the submerged sections of the property. As well, the conductive rones in the western portion of the suxveyed area are not very well defined and should be resolved using some fixed transmitter setufs.

This group of six cleims is located about one mile northwost of the south tip of Sandhill Crone Island. According to the Ontorio Deportment of Mines geological mop, the block lies obout one half mile north of the Sandhill Crane Anticline in an area where a band of mafic metovalconics comes in contact with metagobbro and motadiorite to the north and felsic metovolcanics to the south. The oirborne survey results show one conductive zone striking approximotely eost-west through the centre of the claim block. The conductivity of the zone varies from good at the eastern end, to very good ot th, western end. The western end olso has indications of possible magnetic correlation. There is also one flight line intersoction in the northeast corner of the claim block but the conductivity of this intersection is only fair.

The ground geophysical surver boe carried out on a grid having a base line azimuth of 81°. Three cunductive zones are present and for ease of discussion, they have been designatod as "main", "south", and "north", zones.

The moin conductor is roughly parallel to the base line and lies very close to it for most of its strike longth. On the western end, there is direct magnetic correloticn of opproximately 200 nammas. The low to high frequency rotios ore all about. 8 indicating fairly good conductivity. Colculations based on the vertical loop E.M. resulte indicote depths to tho top that vary from 80 foot on Line 20 E to 120 feot on Line 3E. The horizontal loop dato pertaining to this conductor indicato a conductivity-width product of about 160 mhos. A conductor width of obout 30 foot and a dopthen
feet for the zone on Line 12E. The dato for Line $4 E$ indicote greater width, but also greater depth of burial and poorer conductivity. This is most likely the conductor that corresponds to the main airborne E.M. anomaly.

The south conductor lies about 500 feet to the south of the main conductor and is approximateiy parallel to it. The strike length of this conductor is about 1200 foot, extending from Line 12 E to Line 0 . The low to high frequency ratios vary from 0.7 on Line $4 E$ to 1.0 on Line 8 E . Depth indicated from the verticol loop dato for Line 4 L is obout 130 feot while the horizontal loop data for the same line yields a depth of 150 feet. The width indicated on Line $4 E$ is about 30 feet and the conductivity-width product is about 90 mhos indicating vory good conductivity. Both this conductor and the main one quite likely extend beyond the west boundary of the claim block.

The north conductor is inferred only. It extends for a distance of about 800 feet just inside tho northeost boundary of the claim block. The rotios of low to high frequency are vory poor and indicate fairly low conductivity os would be expected from the airborne data.

A depth calculation on the magnetic footure located near $2+00 \mathrm{~N}$ on Line 16 E indicated a depth of about 100 feot. This checks woll with the depth calculated from the E.M. data. The dip inforred from the magnetic data are steeply toward: the north.

The following daill hole is suggested: Collor ot $0+10 S$ on Line $!2 E$ and drill south along the line ot on inclinotion of 45° for o distance of 250 feet.

To test the south conductor, the following drill hole is suggested: Collor ot $2+40$ on Line 4 E and drill south olong the line at on inclination of 45° for a distance of 270 foot.

Cloim Blpck L

This group of four claims lies approximately one half wile northwest of Sandhill Crane lslond in an area that is underlain by felsic motovolcanics. The block is just north of the Sondhill Crane Anticline. The airborne results sho: two zones of conductivity, one very short zone having good conductivity of the southoast cornor ond onother zone having poor conductivity locoted along the southern boundary of the cloim block. It must be noted here thot the position of the claim block is slightly to the northwest of the proposed location.

The ground geophysical survey was corried out on a grid having o base lineceimuth of 71°. The results indicato the presence of only two short zones of conductivity. Ore of these lies near the southwest boundary of the claim block on Linez 24 W ond 20W. The conductivity of this zono is fair, but the results do not allow a definito positioning of the conductor nor do thoy allow any depth calculations. This zone is probably the expression of the airborne anomaly low cated along the south boundory.

The second of the two conductors is situoted in the southeast corner, crossing Lines 8 h and 4 H obout 500 feet south of the bose line. The conductivity is poor with the low to high frequoncy rotio on line 4 k being 0.4 . Thio depth calculoted from these rosults on this line is of the order of 90 foot.

The magnetic profiles are relatively featureless. It appears that this block of claims has been positioned to the west of the desired location. The ground survey location map shows on offset of almost one half mile to the west of the desired location and a comparison of the ground results with the airborne records tend to Indicate that the offset may exceed oven that amount with the result that the one six-channel airborne anomaly lies just outside the east boundary of the claim block. More claims should be added towards the east if possible and the ground survey coverage extended.

Claim BIpack LII

This claim block consists of four claims lying approximotely one-half mile southwest of Sondhill Crane Island. The geological mop of the area ir cotes that the group is underlain by metagabbro and motadioxize with mofic motovolcgnice to the north ind metovolconic breccia to the south. The Sandhill Crone Anticline lies approximately three quarters of a mile to the north. The airborne survey results indicate several anomalous zones having good conductivity with one of the zones in the southern half of the grows extending from the west boundary out under the small lake on the east bunday.

The bose lino of the grid was cut ot on azimuth of 90°. Three zones of conductivity wore indicate by the E.M. results.

The southern zone is the longest, extending from the west boundary across the claim group and out under the lake on the east side of the claim block. The best conductivity is noted on the western half of the conductor where the ratio of low to high frequency response is .8 on Line 16 l and 1.0 on Line 20W. The depth computed from the xesuliz on Line 2 NW is approximately 130 feet. The conductor axis crasser Line 20 W at $6+00 \mathrm{~S}$.

The centre conductor crosses line 12 W at $2+505$ and Line 8 W at $3+00 S$ and it is very likely that also extends out under the lake on the east side of the claim group. On bath lines, the low to high frequency response ratios are about id
which indfcotes good conductivity. Depth colculatione completed for beth lines indicoto depths of the order of 1 ? foot.

The north aonductor is infarred on two lines only, those being Lines 8 W and 4 W . This conductor runs parallel to the bose line 500 feet to the north. It produces almost only uni-directional tidt-angles and o low peak-to-peak rosponse. The rotios of lou to high requency responso are oxcellent, both exceoding 1.0 . These results would tend to indicate a very deep, shallow, southorly dipping bedrock source. More work, possibly in the form of fixed transmittor detailing, is rocommended for o better definition of this conductor axis.

The magnetic profilas ore foatureless.

Yo test the south conductor, a dxill hole is suggested on Line 20W. The conductor axis crosses this line at $6+00 \mathrm{~S}$ and ot a calculated depth of 130 foet. Collar at $7+80 S$ and drill north along the line at on inclination of 45° for a distance of 320 foot.

To test the contre conductor, a drill hole is sugested on Line 8 W . The conductor axis croses this line ot $3+005$ at a calculated depth of 100 foot. Collar the hole at $4+50 S$ and drill north olong the line at an inclination of 45° for a distance of 280 foot.

Claim Block LV

This group of four claims lies opproximately one mile south of Kippen Lake and severol hundred feet oost of the Windigo River. The Ontario Dopartment of Mines geological mop indicotes granitic rocks to the eost of this block. Possing through tho block is a fault zono which is part of the Windigo River fault system. The airborne survey indicates several vory good conductors lying on o line extending from the southwost corner of the cloim block to the contro of the north boundary.

The ground survey was initially carriod out on a grid having o bose line azimuth of 18°. The results of this survey indicoted one good conductor which wos striking at obout 60° to the survey lines and another short conductive zone having very poor conductivity locoted about 300 feet to tho oast of the arain zone.

To obtoin better definition of the one good conductor, o second dotoil grid was aut hith a bose line gzimuth_of 160° and short cross linos. Verticol loop F. M. oquipmont was used to survoy theso linos at first and then two lines woro solocted and horizontal loop E.M. oguipment was omployod to give odditionol informatione from the vertical loop E.ll. dota it was noted that the ratio of low to high frequancy was poor on line 0 but the rotios for the other lines were of the order of .7 or bettor indicoting good to very good conductivity. The opporent depth to the top of the conductive materiol os colculoted from the doto from linos 4 S and 8 S is in the order of $40-60$ feot.

Horizontol loop E.M. quipment was used on Linez $4 S$ and 85 of the detall grid. This dato indicated conductor widthe of about 60 to 70 feet. The best conductivity-width product was calculated to be about 70 mhos on Line 8S. The depth indicoted for Line $8 S$ is roughly 40 feot ond the dip oppear: to be near vertical.

A magnetic feature was noted to be very closely related to the conductor axis. This axis occurs 50 to 100 feet west of the magetic poak. Howevor, it must be noted that the vertical loop "crossover" does not coincide with the centre of the conductor oxis as indicoted by the horixontal loop data. It appears that the "crossover" in this cose indicatos one edge of a very brood conductive rone, i.e. the vestern odge. Taking this foct into consideration, it would then onpear that this conductor hos a coincident magnotic response and thus is probably related to some mogetic moterial.

To teat the source soterial giving the E.M. and mognotic responses, the following drill hole ls uggesteds Collar at $1+10 \mathrm{~W}$ on Line 8 S of the detall grid and drill oost olong the line ot on inclinotion of 45° for o distance of 200 feet.

Cloim Block LX

This group of four claims is located about two miles north of Kippen Loke in on areo of mofic motavolconics. The airborne survey results indicate a short strike length conductive zone here.

The ground survey was carxied out on a grid having a bose line arimuth of 127°. Only ono definite conductor wos located on the grid and with tho oid of fixed transmitter results, this anomaly was troced over a strike length of obout 800 feet. On the three lines which intersected the conductor the low to high frequency ratios were all greoter thon .8 which indicater good conductivity. The depth calculated for the intersections on Lino 125 wos 80 feet. Horizontal loop E.M. equipment was also used on Line 125 and indicoted a conductivity-width product of approximotely 70 mhos and a possible width of the oxder of forty feet.

The sognotic survey mopped only one forture which porallels the conductor and lies obout 600 feet east of it. The amplitude of the onomaly varles from about 1000 gommas on the southeast end to about 1,500 gammas on the northwest and of the anomaly. Uepth colculations on two difforent profiles ylelded depths to source of the ordor of 100 foot. This ogrees woll with rosults obtained from the E.M. survoy.

To test the main conductor, o drill hole is auggested on Line 12S. This line intersecte the conductor axis at $1+70 \mathrm{~W}$ and the depth indicated is 90 feet. The dip would appear to be vertical, or poseibly a very steep southwesterly one.

Collar the hole at $3+\mathrm{NOW}$ and drill northeast along the line at on inclination of 45° for o distonce of 250 feet.

The horizontal loop survey has indicated yet another possible conductive zone on line 12 S between stotions $0+00$ and $5+00 \mathrm{E}$. There is a posibility thot this zone is oblique to Line 12S. The vertical loop results would also lood to this conclusion. The conductivity would oppear to be very good os indicated by the lack of out-of-phose responso.

A detailed grid consisting of two or three lines spaced ot 400 foot intervals positioned with the troverses ot right ongles to Line 12 S that is, parallel to the present bosa line, should resolve such a conductor.

Cloim Block LXI

This group of cloims is located about one mile northrest of Kippon Loke in on areo thot is underloin by mafic metovolconics. The Muskrat Dam Lake Sill. lies just to the north of the claim block. The airborne survey indicates at least two, closely spoced, highly conductive zones striking northeast-southwest through the claim block.

The ground survey wos corried out on g arid hoving o base line oximuth of 64°. The data revoaled soveral parallel zones of conductivity lying in the northwest corner of the cloin block and all trending ot an angle of roughly 80° to the traverse.

Tho south zone extends from Line 36 E to at leost Line 16E. Good to excellent conductivities have boen indicated by low to high frequency responso rotios of 0.7 to 1.0 . The conductivity width product hos beon colculated to be about 70 mhos on Line 20E. The opporent depth is in the order of 110 feet and the dip oppeors to be a stacip southerly one.

The central conductor would oppear to be the best defined and also the longest. It extends from $10+30 \mathrm{~N}$ on Line 28 E to $8+20 \mathrm{~N}$ on Line 12 E but depth calculations and conductivity rotios may be calculoted only on the three central lines. In all of these cases, the conductivity is falrly good with low to high froquency response ratios in the order of 0.7 . The conductivity-width hos been calculoted on Line 20e to be in the order of 35 mhos. The dip oppears to be a ste日p southerly one and the depth is in the order of 100 feot.

The north conductor parallele the central xone and lies about 300 feet north of $1 t$. The conductivity appors to be fairly good with low to high frequency responso rotios of roughly 0.8 . The conductivity width is in the order of 90 whos. The depth calculated from the resulte on Line 20 E is in the order of 100 foet.

The magnotic profiles ore rolatively foatureless in the areo where the E.M. conductors are located. ilowever, on line 20E the southern conductor is coincident with on 800 gammo mognetic pook but this magnetic onowaly is very locolized having no expression on any of the adjacent lines. It would thus appear likely that the E.M. conductor consists of a nonmagnotic matarial.

Drill Hole Suggeations:

To test the north conductor: The conductor axis crosses Line 20E at $12+40 \mathrm{~N}$ ot a calculated depth of 100 feet. Collar the hole at $10+90 \mathrm{~N}$ and drill north along the line at an inclination of 45° for o distance of 280 feet.

To test the contral conductor: The conductor axis croseos line 20 E ot $9+30 \mathrm{~N}$ at a calculated depth of 100 foet. Collar the hole ot $7+90 \mathrm{~N}$ and drill north along the line at on inclinotion of $45^{\prime \prime}$ for a diatance of 270 feet.

To tost the south conductors The axis of the conductor crosses Line 20 E at $2+20 \mathrm{~N}$ ot a colculated depth of 110 foet. Collor the hole at $0+60 \mathrm{~N}$ and drill north along the line at an inclination of 45° for a distance of 300 foet.

In concluding the discussion of the results of the ground followup survey, it might be well to emphasize that the treatment of the various conductor systems hos been strictly on the boss of the geophysical results. No prionrities hove been established and no recommendations for drin.. ling are given although drill hole locations are suggested for nearly all conductor: in the event that some of them might be checked by drilling subject to the application of various other parameter and considerations which might relate to this particular exploration programme.

Respectfully submitted,
P. Norgaard, PEng.,

Senior Geophysicist.

R. Koith, B.Sc.,

Field Geophysicist.

W. Tschaikowsky, B. Sc.,

Geophysicist.

G. MacQueen, B.Sc., Geophysicist.


```
E.M. UNIT SPECIFICATION SHEET
```


SE-300 DUAL FREQUENCY ELECTROMAGNETIC TRANSCEIVER

The SE-300 Electromagnetic Unit consists of two identical transceiver units. Dual frequency excitation provides diagnostic information to distinguish between subsurface conductors and curds in resolving ovorburdon from bedrock conduction effects. A unique receiver cirsultry extends the useful sopuration of tho transcoivors $\because 0 \quad 1200$ ft., providing greatly incrocusod offoctivo dopth ponotration.

$$
S P E C I E X C A I X O N
$$

Frequency range

FREQUENCY TRACKING:

FREQUENCY TRACKING:

TRANSMITTER OUTPUT:

SEPARATION:

RECEIVER SENSITIVITY:
$\frac{400 \mathrm{cps} \text { and } 1600 \mathrm{cps} \text { (other fro- }}{\text { quencies optional). }}$
Better than $+2 \%$ over extended periods at normal ambient tomperatures.

Receiver versus ťansmitさor: Better than 1% over tomporaturas from $-40^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$.

Approx. 150 NT at 1600 cpa and approx. 180 N 1 ot 400 cps. Higher outputs optional.
 deflection is 55° OQ foll using 400 cps deflection is 5°

50 Millimicrovolts.

SE-300 Dual Frequoncy Eloctromognetic Tronscoiver Cont'd.

BATTERY:

SATTERY LIFE:
WEIGRT:
$2 \times$ No. 731 Evorcady lantozn - batteries or NEDA 918.

Approximately 10 days.
Coil- $8 \frac{1}{2} \cdot 1 \mathrm{bs} ., 3.85 \mathrm{Kg}$. Raceiver - $2 \mathrm{lbs} ., 90 \mathrm{Kg}$. Transmittar - 20\% 1bs. 9.3 Kg .

V.H.E.M. UNIT SPECIFICATIONS

Dosrisiag Erequoncios: 600 and 2400 cycios ocer seconc
Ogeraisno Range:
Voさtical Loop - Null widih of approximatidy $\because 10^{\circ}$ at a transmitter-receiver separation of 500 fect.

 Horizontal Loop - Transmitter - receiver sopara-

 tions of 100, 200 or 300 f60t,
 I-onsmittar Powor Supply: Special High Encrgy, Lightweight
battary pack--Supply Voluage:
AS volts--Supply Cuzsent 250
milliamperes.
Approximate Battory Life: 15 hours of transmission time.
Note: The above battery supply may be replaced by any d.c.
power source of 48 volts and $\frac{1}{4}$ ampere rating.
Rocosvon Supgly:
2 iypo El46 Everady batiory
Approximate battery life: 250
operating hours.
Coseting Tomprature Range: $35^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$.
Hejghts:
Tronsmittor - 9 lbs.
Recoivor $-\quad 8 \frac{?}{2}$ lbs.

ELECTROMAOMETC SYSTEMS

MODEL SS15 LARGE LOOP E.M. UNIT

4 long ronge: 2000 f.

- inultoneous Dual Frequency.
- Verticol loop, dip-angle measurement.
- For cestail surveying.

The Model SSIS provides long ronge operation with o minimuni of weight. For transporting, the equipment folds down to readily partable units.

The tronsmitter con be operoted at either 1000 or 5000 cycles per sesend. It can also be eperated to provide alter-

The yerticol transmilter loop system provides noximum discrimination ageinst conducting overburden so that maximum exploration depth, roughly half the distance between receiver ond transmitter, can be ochieved. noting bursts rl 1000 and 5000 cycle current. This mode of operation permits measurements of both frequencies simulioncously. The dyalfuraunsy angationprovides good estimation of anomaly conductivity from the dip-angle meosurement.

The receiver contains o tuned pick-up coil assembly, a tronsistorized amplifier with earphone output and a built-in clinometer for eosy dip-angle meosurement.

Operating Ronge 20	2000 feet
Oferating Frequency 100	1000/5000 c.p.s.
Tronsmitter power supply 30	300 wall engino generator
WEIGHTS	
Pockooord mounted engine gerierotor	Stor S2 lis.
Tronsmitter coil and pockbourd	25 lbs .
Coil mast and spreader bor	18 lbs.
Recoiver	5.5

Description
The Mark IV unit is a single freguency, staridare prospecting unit using the same bosic receiver, coils ard fittings as the Marks 1 and III. The result is a highly reliable: simple to operate, low-cost, rugged ficld instrument, suitable for a wide ronge of exploration problens. Coils can be sepqrated 100,200 and 300 fest gopart permitiing exploration to depths greater than 100 fect

Specifications

Frequency $\quad 876$ Cycles
Power Output
4 Watts
Readout

Bottery
Wural nuid through headphones with direct dial reading of in and out of phase values.

8 - RM42R Mercury colls (1.35 V).
Requirements
Operational
Weight 40 lbs. appraximately.
Shipping
Wgaght
97 lbs.
Bottery Life RM42R - 2 weoks
781 - 3 months

RANGES:
Plus or minus - 1,000 gammas f.sc.

3,000	$"$
10,000	$"$
30,000	$"$
100,000	$"$

Sensitivity - $\begin{aligned} 20 & \text { gommas } / \mathrm{div} \text {. }\end{aligned}$ $200 \quad$ "
$500 \quad "$
$2,000 \quad$ "
METER:

ACCURACY:
Taut-band suspension
1000 gammas scale $1-7 / 8^{\prime \prime}$ long- 50 div. 3000 gammas scale $1-11 / 16^{\prime \prime}$ long-60 div.

1000 to 10,000 gamma ranges $\pm 0.5 \%$ of full scale. 30,000 and 100,000 gamme ranges $\pm 1 \%$ of full scale.

OPERATING TEMPERATURE: $\quad-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+100^{\circ} \mathrm{F}$

TEMPERATURE STABILITY: Less thon 2 gammas per ${ }^{\circ} \mathrm{C}$ (1 gamma/ ${ }^{\circ} \mathrm{F}$)
NOISE LEVEL: Total 1 gamma P-P
LONG TERM STABILITY: ± 1 gamma for 24 hours at constant temperature.

BUCKING ADJUSTMENTS: $\quad 10,000$ to 75,000 gammas by 9 steps (Latitude)
of approximately 8,000 gammas and fine control by 10 turn potentiometer. Convertible for southern hemisphere or $\pm 30,000$ gammas equatorial.

RECORDING OUTPUT:

RESPONSE:
CONNECTOR:
BATTERIES:

CONSUMPTION:
DIMENSIONS:

WEIGHTS:
1.7 ma per oersted for 1000 to 100,000 gamma ranges with maximum termination of 15,000 ohms.
$D C$ to $5 \operatorname{cps}(3 \mathrm{db}$ down)
Amphenol 91-MC3F1
$12 \times 1.5 \mathrm{~V}$ flashlight batteries "C" cell type (AC power supply available)

50 milliamperes
Instrument - $6 \frac{1}{2} 1{ }^{11} \times 3 \frac{1}{2} \times 12 \frac{1}{2} 1{ }^{11}$ $165 \times 90 \times 320 \mathrm{~mm}$

Battery pack - $4^{\prime \prime} \times 2^{\prime \prime} \times 7^{\prime \prime}$ $100 \times 50 \times 180 \mathrm{~mm}$

Shipping Container - $10^{\prime \prime}$ dia $\times 16^{\prime \prime}$ 254 mm dia. $\times 410 \mathrm{~mm}$

Instrument - 5 lbs .12 oz 2.6 kg
Battery Pack - $2 \mathrm{lbs} .4 \mathrm{oz} \quad 1.0 \mathrm{~kg}$
Shipping - 13 lbs. $\quad 6.0 \mathrm{~kg}$

	RANGES SENSitivity
Standard:	Plus or mmos
	1,000 gammas isc. 20 gammas div.
	3.060 gammas tisc. 50 gammas div.
	30.600 g.mmasi f.sc. 500 gammas div.
	100,000 gommas tsc. 2000 gammeis div.
Optional:	100 gamimas fisc. 2 gammas div.
	300 gammas fisc. 5 gammas/div.
Meter:	Tantbund suspension
	100 gamma scale 2.1" long --50 div.
	$300 \mathrm{gamman} \mathrm{scate} \mathrm{1.9"} \mathrm{long} \mathrm{-} 60$ div.
Accuracy:	1000 to 10.000 gamma ranges $\pm 0.5 \%$ of full scale.
Operating Temperature:	- 40 C co + $40^{\circ} \mathrm{C}$
	$-40^{\circ} \mathrm{F}$ to + $100{ }^{\circ} \mathrm{F}$
Iemperature Coeffitient:	Less than 1 gamma per ${ }^{\circ} \mathrm{C}\left(1 / 2 \mathrm{garma}{ }^{\prime} \mathrm{F}\right.$)
Noise level:	Less than 1 gamma P.P
Bucting Adjustments: (latitude)	$\cdots 20.000$ to a 80.000 gammas
	9 steps of 10.000 gammas plus tine control of 0 - 10.000
	famonas by ten tum potentioncter. Reversible for southern hemsphere.
Recording Output:	Optional.
Llectrical Responso:	
	in circuit. D.C. to 20 cps with theter network shorted for recordiag purposes.
Comector:	Camon KO2.16.10SN
	for plug Cannon KO3-16-10.PN and cover KOE-16.7.
Batucries:	Internal $3 \times 6 \mathrm{~V} \cdot \mathrm{l}$ amp/hr. Seated Lead Acid rechargeable
	Centralab CiC 6101: recharge time 8 Hrs .
Consumption:	60 milliamperes - GC6101 batteries are rated for 16 hours
	contmuous use.
Dimensions:	$6^{\prime} \cdot{ }^{\prime \prime} \times 23^{\prime \prime} \times 10^{\prime \prime}$ Instrument.
	$161 \mathrm{~mm} \times 71 \mathrm{~mm} \times 254 \mathrm{~mm}$
Weights:	Sth. $802 \ldots 2.5 \mathrm{~kg}$
Battery Charger:	$0 \times 2 \%$ " 21.2
	$155 \mathrm{~mm} \times 64 \mathrm{mmi} \times 64 \mathrm{~mm}$
	$110 \mathrm{~V} \cdot 220 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ supply or 28.42 V D.C. supply Automatic charge rate and cutoff preset for Contralab
	GC6t01 batteres.

M700

FLUX GATE MfGNETOMETER

- Vertical fiels measurement.

E Self Levelling.

- Direct reod out ingommos.
a 5 scale ronges, 1000 10 100,000 gammas.
- Sensitivity: 20 gommas jer scale division on 1000 gommoranges
a Reodability: 5 gommos moximum.
- Temperoture drift: Iess than 50 gommos from- $3510+55^{\circ}$ Centigrade.

leather carrying case, internolly mounted botteries, set of spare batteries, instruction manual and foam fitted transit case.

Although basically designed as a hand held field magnetometer, an occessory socket greatly extends the versatility of the instrument, by accommodating externol sensing heads for horizoniol field measurements, airborne measurements, drill hole necosurements, etc. Exiemol batteries may olso be used in place of the nomal internol. ly mounted bolteries. All accessories ore ovailable from McPhor.

WEIGHT
6% Ites. less baticries and carrying cose.

REFERENCES

1. Ontorio Deportment of Mines Geological Report 74, Muskrat Dom Lake Areo by L.D. Ayres.
2. Geological Survay of Canada, Economic Geology Report No. 26 "Mining and Groundwater Geophysica" - 1967 (Bose Metals).
3. "Interprotation Theory in Appliod Geophysics" Chapters 15 and 18, Grant, F.S. and Wost, G.F.

SEG, "Mining Geophyaice", Volume I, Chopter III.
5. SEG, "Mining Geophysics", Volume II, Chapter II Ports A and C, Word, S.H.
6. Interpretation Manual of V.E.M. Data, Geoterrex.
7. Instruction Manual for SE-300 V.E.M. Unit, Scintrex.

NAME:	NORGAARD, Peer.
POSITION:	Senior Geophysicist,
	Manager of Ground Geophysical Surveys.
NATYONALITY:	Canadian
DATE OF BIRTH:	August 8, 1935
EDUCATION:	University of Toronto, 1955-1959.
	B.A.Sc. Engineering Physics, Geophysics Opzion.
IANGUAGES:	Spoken Fluently - English, Danish
	Working Knowledge - French, Spanish, German, Norwegian.

SOCTETY MENBERSHIPS:
Socicty of Exploration Gcophysicists Canadion Exploration Gcophysical Society Association of Profossional Engineers of Orita:Associotion of Professional Engineers oi British Columbia
Canadian Institute of Mining and Metalluruy

LOPRRIENCE:

```
1956
(Sumar)
```

Operated a "plane table" on a geologicai mappine project near Keno Hill, Yukon Territory for United Keno. The job involved the preparction of base maps and plotting of geological daia us well as handling the topographical control.
i95\%-i958
(Summers)

1959-1962
Geophysical trainee with British Americar Jil Company on a "track" seismic crew operating in the bush near Hinton, Alberta and in the Noith West Territories. As a trainee worked o: ali phases of the bush operation, i.e., rocord: : crow, drill crew, survey crew, and as a shoo:c: and eventually as a data compiler.

Employed as a fiold geophysicist and survey party chief by Rio Tinto Canadian Exploraiion

1959-1962
Cont'd.

1962-1966

1966
in northwestern Quebec, Northern Ontcric, Now Brunswick, Gospe Area and Central Eritisn Columbia. Supervised ground followup survey, employing vertical loop E.M. techniques combince with magnetic and gravity surveys. Was iarty chief and meter operator on a large scale gravity survey in central Gaspe, responsible for the complete operation. During 1960 became involved in Induced Polarization studies employing D.C. pulse type instrumentation which became main undertaking till termination of employment.

Commenced work in the geophysical contracting industry as an employee of Canadian Aero Mineral Surveys. Initially, position was that of ficld geophysicist conducting Induced Polarization surveys on foreign projects such as Ireiand, during 1962, Nicaragua, early 1963, Ataccim Deseri in Chile during 1963-1964, Northeastern Australic. during late 1964, and early 1965. Appointed supervisor of all Canadian ground geophysical operations in 1965. This position involved sales of services, interpretation and reporting, hiring and training of personncl and handling ni all planning and logistics for ground geophysicai crews. Most of the "ground" contract wozk cartici out by Canadian Aero Mineral Surveys during this time consisted of Induced Polarization surveys,

Was involved in the formation of Geoterrex Limitea in the position of Manager of Ground Geophysical Operations, being completely responsible for the "ground" department which offers services in seismic, induced polarization, integrated ground followup, resistivity, gravity and magnetics on a world-wide basis.

二URRICULUA: VITAE

```
AC:
OOSIION: Goophysicist
AATONALITY: Canodion
DATE OF BIRTH: December 7, 1944
EDUCATION: Carleton University 1964-1968, B.Sc.
    Physics and Gcology. (Goophysics Option)
RigUAGES: Spokon Fluently - English
Working Knowledge - French.
EXPERIENCE:
```

REITH, Robert J.

Goophysicist
Canadion

1065-65-67: (Summers)
i908:
May-Novombar

9950:
Novombor

EDUCATION: Corleton University 1964-1968, B.Sc.
Physics and Gcology. (Goophysics Option)

Spokon Fluently - English
Working Knowledge - French.

Gcological Assistant and Gcologist with tho Geological Survey of Canoda doing mapping.

Geophysical Operator and Party Chief with Anaconda American Brass, Eastern Exploration Division, conducting and supervising alcotromagnetic and magnetic survoys rolated to ground followup programmos in New Brunswick.

Employed by Geoterrex Limited as a fiajd geophysicist, conducting and supervising various types of ground surveys including I.P., gravity, eloctromagnetic surveys of various types, and ground magnotic surveys as woll os integratod ground followup programmos. Responsibilities hove also inciuded training of personncl, interpretation and report writing. Offico work, in addition, has involvod the interprotation of airborno clectromognctic survoys comploted, using In?UT and in-phaso/out-of-phoso equipmont.
Page
I. INTRODUCTION?II. -PERSONNEL-9
II. 1 Field Operation June 5 - October 10, 1970 4
II. 2 Field Operation Jan. 11 to Feb. 26 \& March 12, 1971II. 3 Office: Preparation of ReportMarch 18 to April 20, 1971
III. CLAIMS COVERED 10
IV. STATISTICS 11
V. GEOPHYSICAL INSTRUMENTS 13
V. 1 Vertical Loop Electromagnetic Survey 13
V. 2 Horizontal Loop Electromagnetic Survey 14
V. 3 Magnetic Survey 14
VI. LINE CUTTING $i 5$
VII. GEOPHYSICAL SURVEYS 16
VII. 1 Til: Angle or Vertical Loop Electromagnetic Method 16
VII. 1.2 "Broadside" or "Parallel Line" Configuration 17
VII. 1.3 "Fixed Transmitter" Configuration 17
VII.1.4 Interpretation of "Tilt Angle" Data 17
VII. 2 Horizontal Loop Method 19
VII.2.2 Interpretation of Horizontal Loop Dato 20
VII. 3 Magnetic Survey 21
VIII. PRESENTATION OF DATA 22
IX. DISCUSSION OF RESULTS - 24
IX. 1 Claim Block XXIX 25
IX. 2 Claim BLock XXX 30
IX. 3 Claim Block XLII 35
IX. 4 Claim Block XLIII 40
IX. 5 Claim Block XLVII 43
IX. 6 Claim Block LVI $5 i$
IX. 7 Claim Block LVII 54
IX. 8 Claim Block LXII 60
X. CONClUdING REMARKS 64
XI. REFERENCES 65
APPENDIXI. LOCATION MAP
II. SE-300 SPECIFICATION SHEET
IIT-VHEM-SPECIFIGATION SHEET
IV.SS15 SPECIFIEATYONSHEET
V. RONKA MARK IV SPECIFICATION SHEETVI. M-700 SPECIFICATION SHEET
VII. MF-1 SPECIFICATION SHEET
VIII. MF-2 SPECIFICATION SHEET
IX. RESUMES - P. Norgaard, R. Keith

During the Summer of 1970 and the Winter of 19\%1, Geoterrex Limited of 1312 Bank Strect, Otiawa, Ontario, completed ground followup surveys over claim groups held by Seren Limitée, Suite 770, 2100 Drumond Strect, Montral, Quebec. The clajn groups involved in the followup project are located in the Nuskrat Dam_ake greenstone belt which is located northeast of Sandy Lake in northwestern Ontario. Muskrat Dam Lake is situated in the center of this greenstone belt and is about 200 miles NNE of the town of Red Lake. Access to the orec was by aircraft from Red Lake.

The purpose of the survey was to locote and evaluate geophysically, on the ground, certain electroncinetic cnomalies which hod been obtained during a systematic reconnaissance coverage of the crea, using the airborne INPUT electromagnetic system. The anomalies to be located and evaluated were located within claim blocks, most of which were staked prior to the commencement of the ground followup survey.

This repor deals with only a part of the overali ground followup projecr. A rotal of claims, eoch of an area of approxinately $A 0$ acres, aze discussed herein. Surveying on oll but two of these elains was conpleted by February 26, 1971. Two claims on Cloim Group XLVII were not staked till late Februazy and these were surveyed on March 12. Of the eight claingroups, four had been portly surveyed duzing the suman of 1970 between June 5 and October 10 , Additional surveying
on these plus the complete surveying of the other four claim blocks was conducted from January 11 to Fabruary 26 and on March 12 as mentioned above.

The ground followup survey completed by Geoterrex
Limited involved line cutting followed by vertical loop and horizontal loop electromagnetic surveys and magnetic surveys.
The field project was supervised on site by ReKeith. B. Se., who is a Geoterrex staff geophysicist. The entire project was completed under the direction of P. Norgaord. Their qualifications are described in the attached Curricula Vitae.

The summer phase of the project was completed by operating from a centrally locoted base camp. This base camp was moved once during the course of the season. Access to the various claim groups, which were quite scattered, was achieved by the use of boats when possible or by helicopter. A Dominion Helicopter G-2 was ottached to the base camp for most of the project.

For the winter phose of the roject, one base camp was established plus two fly comps. Access to the claim grcups was by snowmobile where possible. Various fixed-wing planes stayed at the base camp from time to time for a few days at a time, providing support for the camps and occess to some of the grids.

III. CLAINS COVERED

The following is a list of the claims included in the various claim blocks which were surveyed for this part of the total nroject.

CLAIM BLOCK	
NUMBER	NO. OF CLIXIMS
	$\frac{8}{l}$

XXX	15
$X L I I$	5

XLIII

XLVII

LVI
L.VII

LXII

NO. OF
CLAIMS

15
5

6

13

8

9

7

TOTAL NO. OF CLAIMS:71

CLAIM NUMBERS
KRL 237450-237454 KRL 237550-237552

KRL 237535-237549
KRL 264171-254173
KRL 237528-237529
KRL 237488-237489
KRL 264167 - 264170
KRL 300602 - 300603
KRL 237517-237524
KRL 264257-264258
KRL 280807
KRL 237465-237472
KRL 237553-237558
KRL 237462-237464
KRL 300126
KRL 237563-237565
KRL 237525-237527

The total number of stations establisined for ecch type of survey is listed below for each claim biock.

CLAIM $310 C k$	3ROADSTDE	$\begin{gathered} \text { FIXED } \\ \text { TRASSUITTER } \end{gathered}$	$\begin{gathered} H 0 R I 70,9 \mathrm{M} \\ 1000 \end{gathered}$	YOSEIIC
29	414		354	414
30	627	190	676	1457
42	234	46	138	204
43	206	75	185	469
47	808	364	241	1151
56	190	69	55	680
57	280		183	966
62	210	119	95	416
TOTAL:	2969	Bó	1725	5775

TOTAL FOR ALL TYPES OF SURVEY: I1.33?

The total lengths of survey line cut on coch ciaim block is listed below:

$\begin{aligned} & \text { CLASM } \\ & \text { BLOCK } \end{aligned}$	OTA: BASE LINE : ENOTHS	TO:AL LENOTHS OF PICKET LYNES
29	10,600 ft.	$36,400 \mathrm{it}$.
30	12,200	82,000
42	3,600	23,400
43	5,200	30,900
47	12,400 "	80,100

CLATM
$\frac{\text { BLOCK }}{}$
56
57
62
TOTAL:

total lase line lingThs
5,000 ft.
5,100
4,000
$58,100 \mathrm{ft}$

TOTA: EENGTHS OF PICNET LIMES
38,000 ft.
56,600
10,400
$387,800 \mathrm{ft}$.

V.i Vertiont boop E]estrogagnetio Survoy:
 Vertical looo unitin ncinufactured by Scintrex Linited. The
 measured at scoarations up to 600 fect. Under ideal conditions, a slightly greater separation may be used. This instruncnt is portable so that it may be usod for both breadiside and iixad transmitter configurations.

Nicphar VHEM vortical and horizontal loop units were used for some vortical loop surveying. This instrument oporates at fibsuencies of 600 Hz and 2400 Hz but the maximum separetion is only 400 fegitite T The unts are lighter and nore portable thai the SE 300^{\prime} s so thet they were used on grids where the units hac to be carrice some distance and where a 400 foot line separation wasmefficient.

A Micphar S515 vortical loop unit was used where o greciter ponetration was required. The frequencies used are 1800 Hen and 5000 tix and the separation can bo as large as 2000 facit The transmitting coil is mounied on a mast and powered by a notor-gencrator. This unit is thus only used in a fixes tronsmitter configurgtion.

The specifications of these instruments are given in the Appendix to this report.

V. 2 Horizontal Loop Eloctromogetic Survey:

For the Summe: operation, Ronka MK IV horicontal doon units wore used to gain additional information about the conductors intersected by veridical loop surveying. The uperating freguency is 876 Hz and the cable lengit; available are 100, 200, and 300 fied. The choice of cable longth used depends on the depth to source indicated by vertical loop surveying. The longer the cable used, the greater the depth of penetration of the systen.
 zontal loop units were used for horizontal loop surveying.
 frequency is used over very conductive bodies and the higher frequency over all others. This procedure yields the most accurate determinaiions of conductivity-width and depth. The sene cheice of cobledenaths.ore available as with the Rokno MK IV

The specifications of these instruments are given in the Appendix to this report.

V. 3 Magnetic Survey:

Measurements of changes in the vertical component of magnotic intensity over the survey areas were made with $\quad \mathbb{M} E=$
 netometers are manufactuzed by Scintrex Limited. Them Monana
 ments are given in the Appendix to this report.

Picket dincurich were cut on the various claim heck
to be surveyed by the geophysical instrumots. The desired locations and directions of the base fines were upecified in
 right angles to the various base ines. 1070 Because of the weak responses obtained on conc of these grids due to a fairly large depth to source, the lines were 300 1071 operation. The transmitter anu receiver wore then set
 ב intervals. The totalicngtt of base line estobitined is .
 directed by a qualified surveyor who positioned the base lines in the field by the use of a transit. Lines were turned off
 Winter 1971 operation line outing woes supervised by the fixed geophysicist in charge of the total operation. The base lines for this phase of the operation were positioned by the more experienced of the field men doing the line cutting.
VII. GEOPUYSICN SURVEVE

VII.1.1 General Description:
 nocunetic ficld is esiablishud and tho dijection of the tutui magnetic field due to the transmitter and to oddy curreatis induced in the ground is measured. For the survey configuiations employed during this survey, the transmitting coil is held stationary in a vertical position, oriented so that its plane passes through the receiver coil. The receiver coil is used as a "null" measuring device, i.e. rotcted around the horizontal axis joining the iwo until it is in a position of minimum induction. At this point, the pione of the receiver coil contains the totol field vector, E , , wen sucondory ficids are present, the mojor axis of tho polarization illipse. The vertical transmitter-horizontal receiver coil corifiguretion is the coil arrongenient which is nost recommended for reconncissance and detail surveys, particularly in the precambian shield or elsewhere where the geologic conductors are expected to dip at angles of greoter than obout 30 degrous. This configuration gives a minimum response from iruly flat-iying conductors such os overburden; it is also unaffected by elevaiion cifferences between the coil provided that the trarismititer coil is properly oriented.

The two survey contigurations that were used for the voriical loop surveys were the "3roadside" or "Parallei Line" configuration and the "Fixed Transmitter" configuration.

V11.1.2 The "Broadside" or "Parallel Line" Configuration:

In this mothod the traverse lines are inclined ot approximotely right engles to the expected strike although the direction is not too pritical. The two coils nove progressively along two parallel lines with both coils being ot the sarec "latitude" relative to the grid. At each 100 foot station, tro readings are taken, one using the high frequency signal, and one using the low frequency signal.
VII.1.3 The "Fixed Transmitior" Configuration:

Afier a conductor hos beca loceted usirg a byoctside configurcition, this corductor moy be bettur reolved by using the fixed tronsmitter configurotion espocially vinure multiple conductars or poor conductors are involved. The transmitting cojl remains fixed over the indicated position of the cencuration ard the receiving coil is moved alorg on odjacent line. For each 1000 foot station along the receiving linc, the transmititag cuil is vertical with its pline pointing towords the receiving coil and the receiving coil is tilled about tric axis joining the two coils. The plane oí the tansaiting coil ís thus rotated with each observation so that it always contains the receiver position.
VII. T. 4 Intorpráation of "Tilt Angle" Data - The technique employed when neasuring the direction of the total field or its components by means of a nuil configuration, combines nojor advontages in operational efficiency with limited interpreiation
copabilities. The latter partly results from the insufficiency of null configuzations to measure in cllipitically polazizod ficlds. The planc of the recoiving coil, whon it is in o posjijon of mirimum induction, contains the total fielci vector, or, when phase shifted secondary fields are present, ihe major axis of the polarization dlipse. Uith incrocsoc ellipticity the null position widens and tho measurements begin to lose definition.

In spite of the limited interpretation capabilities of the vertical loop technique, it is an extruncly popular and preferred method for ground followup of conductive zonss located by airborne [M reconnaissance surveys.

In proper opplicotion of tilt-angle mothods, the onphasi s should be on an operational efficioncy, particularly in following up uisborne surveys, where the main problem js io determine the location of conductors whose reiative significonce hos already been assessed in the interpretation of the airborne data. The results of VEn surveys cre usuabdy cs profiles showing the ongular deviation from the free-aif nell position in the pione of measurement. The horizontal locetion of the conductive axis is indicated by the crossover point for single steeply dippirg conductors. Depth of burial, conductivity, size anci geometry are reflected in the curvo shapes and amplitudes; the use of two well separnted frequencies ajds in distinguishing the various parameters.

Although the qualitative interpretation of VEM dota is difficult, experience shows thot in norncl Precambrian Shiold
condijions adequate information con be derived from VEit data for the positioning of drill holes, as well as the evaluation of the relative conductivity of a particular conductive zone. The relationship between nomalous tilt angles obtained at 400 Hz and 1000 Hz using the SE-300 systen on a particular concuctor, indicates whether a conductor is of high or low conductivity. For a body of specific size and shape the ratio of the 400 Hz tilt angle to the 1600 Hz iilt angle will vary with the conductivity. For low conductivity, the 1600 Hz will give a much larger response than will the 400 Hz; for high conductivity, the zatio will become very nearly unizy. Large bodies give rise to ratios nearer unity thon do small bodies but the spacial distribution of the conductor will help to separate the size offect from the conductivity offect.

Generally speaking, the average base metal sulphide body is of sufficient sizo and conductivity to give ratios near unity, but strong grophitic zones may likewise give rise to hich ratios. Overburden effects, serpentines, shear zones, woker metallic sulphide and graphite distributions may all give rise to smoll ratios. It is not possible to resolve the various possible conductive sources on the basis o. the EM measurement alone.
VII. 2 The Horizontal Loop Method:
VII.2.1 General Description:

In the horizontal loop prospecting system two lightwoight coils, one recoiving and one transmitting, are kept horizontal and a fixed distance aport. The receiver measures both in-phase and quadrature components of the secondary or anomalous
ficld as a percentoge of the prifary field intunsity. Mocouroments of this type can only be made if thero is a mochonical link between the receiver and the transmitier which is used ior the dual purpose of maintaining an accurate separation betweon the coils and of obtaining a reference signol from the transmitter for the phase moasurement. Tho resulte aro presenied
 (out-of-phase or quadrature) components of the secordary field plotted at the mid point between the colls. The system is symmetrical and the positions of transmitter and receiver are interchangeable.

In ince surveying technique used with the horizorital loop the transmitter and receiver trovel progressively along a traverse perpendicuiar to the anticipated etrike of the conductive zone. A constant exparation is maintained by keoping the connocting cable tout. Readings are takon every 100 fect. This recising intervei is reduced to 50 feet wherever anomalous readings are encountered.
VII.2.2 Interpシetation of Horizonol Loop Data:

The maximun coupled coil configuration used in the horizontal loop system gives results which are the easiest to interpret of all the electronagnetic systems. The rorizontal loop profile over a single vertical conductor shows a negative trough of which the shoulders exhibit small positive velucs. One distinct advantage of the ho:izontal loop data is that it gives a direct indicotion of the width of a boty.

Thus, quantitative dederainations of tho conductivity, expressed in mhos/meter, and the width are possible as opposed to the conductivity-width produci (mhos) obtainca from ve:tical loop data. Accurato doterminations of depth and dip ase also possible. These factors make the horizontal loop bathod a valuabie accessory to the fast and officicnt vertical loop "Broadside" method.

VII. 3 Mcgnetic Survox:

The purposo of the grourd magnetic survey was to study the relationship of mognetic ostivity to the conductive zones mopped using the eloctromagnetic technique. Ex anomalies surveyed from the air wheh appoar to have direet ajrborne ricgnotic correlobion are often :hown io hove aswocictod magnetic activity rather than direct correlation once the ground surveys heve beon completed. In mony coüs, the pattozn of magnetic intensity mopped will indicote the boundaries of the different geological units presont.

All readings on a particular grid are "tied" to a comon base for that grid ond during the survey of a grid the maximum longth in time of a survey loop would be about ono hour, in order to have good diurnal controi.

Observations were made ot 102 fegt interyels on a roconnaissance basis but the reading interval was generally reduced to \bar{j} feet in areas of magnetic activity.

The eloctronagnetic and mounctic dater io presented in profile form on separate maps for each claia block which include a location plan at a scale of 1 inch $=\frac{1}{2}$ mile and a separaice sketch of the claim block at a scale of inch = mile, showing the actual clain layout for the group.

The location of various clain blocks, with respect to the Severn River and Muskrat Dan Loke, is shown or the arca location map included in the Appendix to this report.

For the profile presentetion the horizontal scale usod is i inch $=200$ feet, The tilt angles obtained from the vortical Loop EM survey are plotted at a scale of ? inch : 10 decirees or i inch $=20$ degrees and the horizontal loop ciata is plotited at either inch $=10 \%$ or 1 inch $=20 \%$ as required for a clear presentation. The magnctic data is plotted ot suitable scoles as indicated on the individual nap.

For ase of correlazion and interpretation, the electiomagnetic and the magnetic profiles are generally superimposed. The actual nagnetic values are also provided, being presented on a separate plan map for each claim block.

In addition to the geophysicol date, the profile plans show the location of any cloim posts noted within the grid in the course of completing the geophysical surveys. At least onc post per arici was locotedi

The following is a list of the claim blocks with their corresponding data maps.

CLAIM BLOCK NUMBER MAPS

29	EM and Magnetic Profiles, 1970 grid.
	EM and Magnetic Drofiles, West grid.
	EM and Magnetic Profiles, East grid.
	Mognetic Readings, 1970 grid.
	Magnetic Readings, East and West grids.
30	EM Profiles (Broadside Configuration) 1970 Old grid.
	EM Profiles (Fixed Transmitter Configuration 800 feet separation) 1970 Old grid.
	EM Profiles, 1971 Old grid.
	EM Profiles, 1971 East grid.
	EM Profiles, 1971 West grid.
	Magnetic Contours, 1970 Old grid.
	Magnetic Contours, 1971 East and West grids.
42	EM and Magnetic Profiles
	Magnetic Readings
43	EM and Magnetic Profiles, 1970 grid.
	EM and Magnetic Profiles, 1971 grid
	Magnetic Readings, 1970 grid
	Magnetic Readings, 1971 grid.
47	EM and Magnetic Profiles, 1970 Old grid.
	EM and Magnetic Proiiles, (Broadside Confi-
	EM Profiles (Detail)
	1971 grid.
	Magnetic Readings, 1970 Old grid.
	Magnetic Readings, 1971 grid.
56	EM and Magnetic Profiles
	Magnetic Readings

Magnetic Readings

CLAIM BLOCK NUMOER

57 En and Magnetic profjeses Gif Profiles (Horizontal Loop Mothoc) Mognotic Readings

62
EM and Mognetic Profilos Hagnetic Readings.
IX. DISCUSSION OF RESULTS

The results of the ground followup suzveys are discussed below for each clain block. Geological infozmation for the discussion is oblained from mops in the Ontario Deportnent of Mires, Geological Repori 7t--"Goonogy of the Muskrat Dan Lake Area". As weil, Federol Governmert deroragnetic nops ot a 1,000 foot mean terrain clearance were consulted along with the more detailed aeromagnetic maps of Canadion Onyx Mines which were flown at a mean terrain clearance of 450 feet.

IX. 1 Cloim Block XXIX:

Claim group XXIX is located in a complex geological setting. The northern claims are indicated by the government geology map to be mainly underlain by metagabbro and metadioría, forming tho Fox Bay sill. Motavolcanic bands of felsic composition and of intermediate composition interfinger with the mafic rocks in the southern. and the western section of the claim block. Granitic rocks are located to the south of the metavolcanics. The strike is shown as approximotely east-west at the east end of the claim block and $N 105^{\circ} \mathrm{E}$ for the rest of the property. The dips shown in this area are either vertical or steeply to the south. On Canadion Onyx Mines' magnetic contour map (mean terrain clearance 450 feet) this property falls on the smooth gradient between an absolute magnetic high of 62,500 gammas to the north over the metagotbro and metadiorite, and an absolute magnetic low of 60,720 gammas to the south, over the edge of the granite. The magnetic strike is east-west to the east of the claim block, changing to WNW over the claim block.

In the center of the block, the INPUT survey intersected a good conductor striking approximately east-west. The conductivity is good over o length of 3,000 feet and the conductor appears to continue for another 2,000 feet west as a poor conductor. In the southeast part of the claim block, another conductor of medium to poor confuctivity was intersected over a strike length of about 1500 feet. The apparent strike is ESE which is discordant with both the magnetic trends and the mapped geology.

block was surveyed in the Summer of 1970. In early Winter	
1971	balance of the areamas covarad The original grid
was extonded to the west by six additional lines arid lines were also positioned from a now baseline, striking N $106^{\circ} \mathrm{E}$, in order to survoy tho threo claims in the $S E$ cornor.	

One long conductor, of very high conductivity, parallels the west basoline for a strike length of more thon 3600 feet, being intersected about 450 feet south of the baseline. This zone possibly extends another 2,000 feet west on the extended lines, however the conductivity here is very low so that this could be an entirely different zone. Another poor conductor was intersected on these west lines about 500 feet to 600 feet further south. A short, very conductive body was intersected on Lines 32 W and 36 W , about 250 feet south of the main body. The strike length of this conductor is thus not more than about 600 feet. On the east grid, one conductor striking approximately east-west was intersected about 250 feet north of the south claim boundary. The conductor extends for the full length of the grid, giving it a strike length in excess of 4,400 feet.

The area is magnetically guiet except in the vicinity of the main conductors. In some cases there is coincident EM and mognctics with sharp peaks of more than 2000 gummes. Adjacent lines however have broad, low amplitude anomalies or no activity at all over the conductors.

The conductivity indicated for the long conductor which parallels the west base line is very high. The conductivitywidth determined from the horizontal loop data obtained on Line 32 W is 270 mhus but in general, the conductivity-width is between 100 and 200 mhos. The value for Line 28 W is reduced to about 50 mhos but the conductivity-width is large agoin east of here on Lines 24 W and 20 W .

At the ends of the conductor, on Lines 16 W and 12 W and on Line 48 W , the apparent conductivity-width is reduced to about 20 mhos. The indicated depth to source is about 25 feet on most lines but there is a local increase to about 60 fect on Line 48 W . The dip appears to be near vertical. No appreciable width is indicoted. There is coincident magnetics on a few lines, noticeably on Line 24 W with a 2000 gammo peak. Other magnetic peaks are small or offset from the conductor axis. On Line 32 W where the best conductivity is indicated, there is no magnetic response over the conductor.

The EM responses on the lines west of the above zone indicate a possible extension to the west edge of the property with the conductivity-widths here being less than 10 mhos. Depth determinations are questionable but indicated depths are larger than for the main body. The magnetic profiles are quiet on these lines.

The short conductor noted on Lines $32 W$ and $36 W$ yields a cunductivity-width determination of 160 mhos on Line $32 W$; the much lower value of 12 mhos indicated for Line 36 W may be due to this being very near the end of the conductor. A

3000 gamma coincident magnetic anomaly is located on both lines. No appreciable width is indicated. The dip appears to be near vertical and the depth to source determined from the horizontal loop is obout 20 feet.

On the extended west lines a second poor conductor is indicated about 500 to 600 feet south of the previously mentioned one. The conductivity-width indicated on Line 48 W is 8 mhos with a depth to source of about 15 feet. The conductivity west of this appears to be less. This conductor was intersected by the INPUT as well, which showed that it continues to the east, being located just south of the claim group. On a few of theso lines, high north tilts indicate that the conductor falls just beyond the south end of the lines.

The single conductor on the east grid has a strike direction which is at 20° to that of the base line. The conductivity-width is about 10 mhos for most of the conductor but increases to about 30 mhos on Line 36 E . A depth of about 50 feet is indicoted for Line 12 E which would appear representative of the western part of this grid but the depth becomes shallower towards the east, where a depth of about 20 feet is indicated on Line $36 E$. A width of 25 feet is apparent on Line $36 E$ but no appreciable width is indicated on Line $12 E$. The dip appears to be steeply to the south. On all lines coincident magnetic peaks are noted which for the east part of the grid are of about 500 gammas amplitude and sharp. For the west part of the grid, the magnetic p nks are about 100 gammas and broad. The magnetics thus confirm the difference in dopth of cover for the two halves of the grid.

In order to test the various conductive zones riapped during this survey, drill hole locotions are suggested below. Each drill hole is chosen so as to intersect the conductor about 50 feet below the calculated position of the top of the conductor on the line which has yielded the best defined and most interesting geophysical results.

To test the long conductor located 450 feet south of the west base line, drill on Line 32 W . The conductor here is at $4+30$ and at a depth of 25 feet. Collar on Line 32 W ot $5+20 S$ and drill north along the line at an inclination of 45° for a length of at least 200 fect.

A drill hole to intersect the short conductor located 250 feei south of the obove conductor should be collared or Line 32 W as well. The conductor axis here is situated at $6+805$ at a depth of 15 feet. Collar on Line 32 W ot $7+60 \mathrm{~S}$ and drill north along the line at an inclination of 45° for a length of at least 200 feet.

A drill hole to intersect the conductor on the east grid should be collared on Line $36 E$. The limits of the conductor here are located at $1+60 \mathrm{~N}$ and $1+85 \mathrm{~N}$ and the source is at o depth of 20 feet. Collar on Line $36 E$ at $0+80 N$ and drill north along the line at an inclination of 45° for a length of at least 200 feet.
IX. 2 Claim Block XXX:

This claim block is shown as being underlain by metamorphosed gabbro and diorite which form the Fox Bay Sill. The INPUT survey intersected a long conductive zone which crosses the claim block in an east-west direction, in about the center of the Fox Bay Sill. At ire west end of the claim block, the conductor appears to bend to the northwest. A large conductivitythickness product is indicated and the conductor appears coincident with a 3,000 gamma magnetic high in the center of the claim block. Other conductor responses were detected in the cast end, in the area covered by Fox Bay.

The land portion of the claim block was surveyed using ground EM and magnetics during the Summer of 1970. The broadside EM survey using a 400 foot coil separation gave only weak responses, and some fixed transmitter coverage based on the broadside data failed to give consistent "crossovers". Consdering that these results could suggest that the conductive source might be too deep for definitive detection, vertical loop fixed transmitter surveying was undertaken with a trans-mitter-receiver separation increased to $800 \mathrm{fee}^{+}$. Using the McPho SS 15 unit for this coverage, large tilt angles and broad crossovers were recorded which appeared to indicate two highly conductive bodies separated by about 500 feet. The magnetic data obtained on this grid was contoured and shows a zone of high magnetic intensity which rises to about a 6,000 gamma amplitude near the center of the grid. The trend is approximately east-west in the east and curving to the northwest ot the west end.

Following the completion of the sumer field season, the dota was reviewed und two new base lines were chosen so as to better define the cenducters eresent. The now yrid lines have been designated as the "East Grid" and the "Wost Grid". During tho early Winter of $19 \% 1$ theso grids were cut and surveyed. The East Grid baseline strikes $N 66^{\circ} \mathrm{E}$ and the lines have been extended to cover the water-covered portion of the claim bjock. The West Grid boseline strikes N $134^{\circ} \mathrm{E}$. Lines were positioned at 300 foot intervals in order to have the option of using a 600 foot coil separation for the basic broadside EM coverage and still have the station density required for assessment purposes.

Broadside surveying on the now grids yiclded tilts larger than recorded previously but for the most part these werc unidirectional.

A few days were then spent trying to obtain fixed trans.mitter data to explain the breadide results On the East Grid a conductor at about 15 S at the east end was mapped by the fixed transmitter EM surveying. Fairly consistent crossovers ot about the baseline at the east end indicate another conductor. Elsewhere, inconsistent data was obtained which was later shown to be caused by a very wide body as described below. All the fixed transmitter data that was obtained on the West Grid is plotted. Most of it is typical of the inconsistent data obtained elsewhere over the wide conductive source. The magnetic intensity values recerded on the two new grids were contoured on seporate plan maps.

Line 16 W of the Old Grid was surveyed with the horizontal loop instruments and positive in-phase readings and negative guadrature readings were obtained over galength of mere than 1,000 fegt, suggesting that the source is a very wide conductive body. This correlates with a magnetic zone have a magnetic intensity of 2,000 to 3,000 gammas amplitude on the north flank of the main magnetic high suggesting that the positive in-phose readings may be partially affected by the magnetic permeability of the conductive body. After having obtained these results on Line 16 W of the 01 d Grid and interpreted them in terms of a very wide source, much of the Old Grid and the Wast Grid and some of the East Grid were then resurveyed with the herizental loop system using a 300 foot coil separation and reading twe frequencies.

Horizontal loop surveying has outlined a very wide conductive body which is located on the north side of the main magnetic high. The coriductive body is coincident with a magnetic zone 2,000 to 3,000 gammas in amplitude which parallels the main magnetic axis. Both the magnetic strike and the conductor strike curve to the northwest at the west end of the claim block and both zones continue in an casterly direction to the east end of the clcim block. The amplitude of the conductor response is largest from Line $8 W$ on the Old Grid to l.ine $12 S$ on the West Grid, a length of about 2400 feet. This also coincides with the length over which the magnetic intensity is largest and where both trends show a marked curvature. The width over which the conductor is positively defined is about 700 fect, which norrows to 400 feet at the onds. The conductor
continues beyond this to the east but the response is less clecrly defined. The main magnetic anomaly yields a depth to source determination of about 130 feet which is consistent with She response from the EM. If this depth is assumed to be the same for th conductor, then a conductivity-thickness product of about 5 to 10 mhos would be indicated by the horizontal loop data. The fixed transmitter "crossovers" obtained using a coid separation of 800 feet, occur at the indicated edges of this body as would be expected. The overall magnetic response on the claim block suggests an opparent steep dip to the north.

Three other conductors were noted within the claim block, with norrow widths by comporison to the main body. A conductor at about $15 S$ on Lines 0 and 6 W of the East Grid hos a frequency response ratio of about 1.0 indicating a large conductivity-width product. The depth to source is about 160 feet which would account for the lack of a definite response by the horizontal loop survey. This conductor is coincident with a broad magnetic high of about 1,000 located ot about the south edge of the wide conciuctive zone.

Another conductor of only moderate conductivity is also located at the east end, situated on the north side of the wide conductive zone. The depth to source is about 120 to 150 feet.

A very poor conductor was intersected on the 0ld Grid near the south end of Lines C nnd $4 W$. This conductor is best defined by the horizontal loop doto which shows only a quadrature
anomaly at the two frequencies and an apparent width of 60 fact. The conductivity is so low that no definite depth to source determination can be made; however, the source appears to be at a shallow depth.

A suggested drill hole to test the main, wide conductor should be located on Line 24 W of the Old Grid. This line is located in the center of the curved trend noted from both the magnetic and the conductive responses. The positive in-phose readings are largest in this vicinity and the horizontal loop profile is well defined on this line between about $3+605$ and $8+00 \mathrm{~N}$. Collar on Line 24 W of the $01 d$ Grid at $4+30 \mathrm{~N}$ and drill south along the line at an inclination of 45° for a length of at least 280 feet. This hole should intersect the top of the conductor at $3+00 \mathrm{~N}$ which corresponds to about the center of the horizontal loop response.

If it is desired to test the conductor noted at the east end of the East Grid at about 15 S , a drill hole should be located on Line $6 W$. The conductor is indicated here to be at $14+40 S$ and at a ciepth of about 180 feet. Collar on Line 0 at $12+60 S$ and drill south along the line at an inclination of 45° for a length of at least 320 feet. This hole should intersect the collauctor at about 50 feet below its indicated top.

IX. 3 Claim Block XLII:

This area is shown as being underlain by mofic metavolcanics. The published magnetic contour map of Canadian Onyx Mines shows the claim group to be crossed by a broad magnetic high of about 1300 gammas (mean terrain clearance 450 feet) trending cast-west and bending to the north at the east and west ends. The INPUT survey has intersected a complex pattern of conductors with strike directions from ENE to ESE. Some of these anomalies are broad, suggesting multiple conductors.

Ground surveying has defined more than 10 separate conductors located within this claim block. The strike lengths vary from about 500 feet for a few of the conductors to more than 2000 feet for the longest. Most strike directions are within 15° of being east-west. Some of the conductors curve along strike. In some cases, adjacent conductors are parallel but for others, a conductor a few hundred feet away can have a strike direction up to 30° different. Depths are generally shallow, in the order of 20 feet or less. The largest depth to source indications are about 40 feet. The dip varies between being vertical to steeply to the north.

The area is magnetically very active with numerous. anomalies in the 4,000 to 5,000 gamma range. Many peaks line up in the same general direction as the EM conductors, but there are also many isolated peaks. In general, there doesn't appear to be direct magnetic correlation with the conductors. Apparent correlation in a few cases may merely be by chance.

The longest conductor is located about 700 feet south of the north claim boundary. It strikes roughly east-west over a length of more than 2,000 feet, exteriding to the east and west edges of the claim group. A width of 60 foet is indicated on Line $4 E$ and 8 E by the fixed transmitter data. The horizontal loop data indicates about the same width on Lire $4 E$ but indicates - 100 foot width on Line 8 E . The dip on these two lines is steeply to the north. The conductivity-width on Line 8 E and Line 12 E is about 30 mhos. This decreases to 10 to 20 mhos to the west and to less than 10 mhos to the east. On most lines, depths of 10 to 20 feet are indicated, but the conductor oppears deeper where it crosses Line $16 E$ and Line 20E. Another conductor parallels this one, 150 feet to the north on Line $4 E$ and possibly on Line 0 . The conductivity-width is about 20 mhos on Line $4 E$ and the depth is about 10 feet. A third conductor is located about 200 feet to the south of the main conductor on Lines 8 E and 12 E . The strike here is about $\mathrm{N} 110^{\circ} \mathrm{E}$. A depth to source of about 40 feet is indicated. The conductivity-width is about 10 mhos. Another conductor was intersected on Line $12 E$ at $17+50 N$ from where it trends $W N W$ and crosses the north claim boundary. This appears to have very good conductivity and some width on Line 8 E where the conductor is located right on the claim boundary.

A very good conductor was intersected on Lines $16 E$ and 20E at about the baseline with a strike of $N 105^{\circ} \mathrm{E}$, and a conductor intersection on Line 28 E at about the baseline may be on extension of this zone. A conductivity-width of between 50 and 100 mhos is indicated on Lines $16 E$ and $20 E$. The conductivo
source would appear to have no appreciable width and to be very near surface. The dip is near vertical. On Line $20 E$ there is a sharp 7000 gamma magnetic peak coincident with this conductor.

About 300 feet north of the above conductor on Line $16 E$, there is another ma:n conductor, striking $N 75^{\circ} E$, being intersected on Line 12 E through Line 24 E , and apparently extending beyond the east claim boundary. The strike length is thus greater than 1500 feet. Because this conductor is off-strike with respect to the original baseline, a now baseline was cut at an angle of 30° to the original, and three new survey lines were positioned over part of the conductor. This detail grid was surveyed using vertical loop broadside and horizontal loop methods. The conductor has a conductivity-width of about 25 mhos and the indicated depth to source on Line 0 at the east clain boundary is 35 feet. The conductor gets shallower towards the west; on Line $8 W$ the depth to source is apparently less than 10 feet. The dip is generally near vertical, however, on Line $8 W$ there is o suggestion of a steep northerly dip. A width of 30 feet is indicated on Line $8 W$. On the other lines, the conductor oppears to be narrow. Another conductor, 30 feet wide and with a conductivity-width of about 25 mhos was intersected on Line 0 of the detail grid about 300 feet south of the baseline conductor. A depth of about 10 feet is indicated with the dip being again near vertical.

In the area of the "main baseline" conductor and the "detail baseline" conductor, there is actually a total of 5 conducters orasent. Besides the three already mentioncd, another one was intersected between the two baselines and a fifth conductor is about 200 to 300 feet south of the main baselino conductor. These 5 conductors are all within a zone about 1,000 feet wide and extending for about 1500 feet, up to the cast claim boundary.

A two-line conductor was also intersected on Line 24 E and Line 28 E at about $8+00 \mathrm{~S}$. The strike direction is $\mathrm{N} 120^{\circ} \mathrm{E}$. The response on Line 28 E may be on end ffect so that the total length could be less than 400 feet. For Line $24 E$, the transmitter was located off the conductor so thot conductivity-width and depth determinations can not be made reliably. The conductivity width appears to be only moderate however. The depth is probably 50 feet or less. The dip can not be determined because of the axis being off-strike with respect to the baseline direction.

To test the main conductors located on this property, various drill hole positions are suggested below. Each drill hole is chosen so as to intersect the conductor about 50 feet below the calculated position of the top of the source.

A drill hole to intersect the long conductor locoted 700 feet south of the north claim boundary, should be locoted on Linc 8 E . The conductor here extends from $11+00 \mathrm{~N}$ to $12+00 \mathrm{~N}$ and is at a depth of about 10 feet. Collar on Line 8 E at $12+25 \mathrm{~N}$ and drill south along the line at an inclination of 45° for a length of at least 200 feet.

A drill hole to intersect the very good conductor located near the main baseline, should be collared on Line 16E. The conductor here is located at about $0+30 S$ and is very near surface. Collar on Linc $16 E$ at $0+30 N$ and drill south along the line at an inclination of 45° for a length of at least 180 feet.

To intersect the main detail grid conductor, a drill hole should be located on Line 8 W of the detail grid. The conductor here extends from $0+70 S$ to $1+00 S$ and is at a depth of less than 10 feet. Collar on Line $8 W$ ot $0+25 S$ and drill south along the line at on inclination of 45° for a length of at least 180 feet.

Ground surveying perfcrmed on this grid in the Summer of 1270 was restricted in places due to deep swamps which made parts of some linas innossible to survey. As well, the strike direction indicated by the magnetics was about 25° off-strike from the baseline used. A new baseline was turned off from old Line 28 E at $0+00$. The new baseline strike direction is about $N 105^{\circ} E$, The area was resurveyed on this second grid in additional claims to the eost.

The Ontario Department o. Mines regional geology map indicates the claim block to be crossed diagonally by a contact with felsic metavolcanics to the northeast and mafic metavolcanics to the southwest. One multiple-line conductive zone was intersected by the INPUT survex, irending approximately casi-west across the center of the claim block. A one line conductor was intersected about 600 feet further north, also in about the center of the claim block.

The one long conductive zone was outlined by ground surveying and found to be located at the baseline of the second grid. The conductor was traced for a definite strike length of 800 feet, and possibly extends another 400 feet towards the east and also possibly further towards the west. This conductor was intersected during the summer survey on the original grid, Line $16 E$ at $5+50 \mathrm{~S}$. A conductivity-width of 2 mhos or less is indicated. The computed depth to source is about 50 feet but this is somewhat questionoble; the dip is near vertical.

Two short conductors were intersected on Linc $4 W$ at about $8+00 N$ and at $9+70 N$. A "broadside" EM crossover was also obtained on Line 0 but the horizontal loop traverse on this line yielded only a positive anomaly. This suggests that the conductor cones close to being intersected by Linc 0 but is not quite long enough to intersect this line. The total strike length is thus about 400 feet. The conductivity-width is about 10 mhos and the width of the conductor at 8 N is obout 120 feet. No width can be determined for the conductor at $9+70 \mathrm{~N}$. A 4000 gamma magnetic high is coincident with the wide conductor, being situated at the south edge of a 400 foot wide zone of high magnetic intensity which has on amplitude of about 1000 gammas for the rest of the zone. The conductor at $9+70 \mathrm{~N}$ does not coincide with a magnetic peak but is located within this mognetic zone. A depth to source of about 30 feet was calculated for these conductors. The conductors were intersected during the 1970 survey, on Line 20E (of the original gria). The data obtained by that survey, which was completed using Ronka MK IV HEM units, gave a depth to source of about 60 feet. A dip indication is not clear but it would probably be near vertical.

The magnetic survey clearly defines two areas which would probably correlate with the different lithologic units indicated on the government geologicol map. On the two eastern lines and the north part of the other lines, the magnetic response is fairly featureless except over the two short conductors on Line $4 W$. This region would correlate with the felsic metavolcanics. On the south part of the west lines, the magnetic intensity is high or very active. This section would correlate with the mafic metavolcanics.

A drill hole to test the short, wide conductor, should be located on Line $4 W$ where the conductor is located between $7+30 \mathrm{~N}$ and $8+50 \mathrm{~N}$ at a depth of 30 to 60 feet. Collar on Line $4 W$ at $6+90 N$ and drill, north along the line at an inc!ination of 45° for a length of at least 300 feet.

If it is desired to drill the other short conductor on Line $4 W$, a drill hole should be collared at $8+70 N$. The conductor here is located at $9+70 \mathrm{~N}$ and at a depth of 30 to 60 feet. Drill north along the line at an inclination of 45° for a length of at least 200 feet.

Claim Group XLVII is situated on the northwest corner of Sandhill Crane Island and is about one third water covercd. The area is shown on the government geology map to be crossed by a geological contact, with metamorphosed gabbro and diorite to the southeast and metasediments to the northwest. The Windigo River fault cuts across the east end of the claim block. The indicated dip is generally steeply to the south. Sulphides have been found along the shore, in the area mapped as metasediments.

This area was covered twice, with the INPUT system using two different flight directions. Several different conductive zones were jntersected although the correlation of some anomalies is not readily apparent. A number of the airborne anomalies indicate very good conductivity.

The ground geophysics was first eqraried out on a grid having a baseline azimuth of 32° but when this oreved unsuitable, the baseline was reoriented according to the strike inferred from the initial data and new crosslines were cut. The qzimuth of this second baseline is 59°. Surveying was carricd out on this detailed grid during the 1970 summer fieid season, with surveying being restricted to the section of the claim block on land. A number of conductive zones were intersected, with strike directions roughly parallel to the new baseline. The horizontal loop EM system with a 200 foot coil separation did not detect these conductors however.

During the early Winter of 1971, the lines of the second grid were extended onto the ice in order to complete the coverage of the claim block. All of the grid was surveyed at this time including the part which had been surveyod during the preyious sumper. The previous readings were repeated because this didn't entail much additional work and the earlier profiles appeared to be more noisy than normal. Because of the numerous closely spaced and deep conductors, a large number of fixed transmitter setups were required in order to properly resolve the various zones. Horizontal loop, this time completed using a 300 foot coil separation, did detect the conductors.

The clajm.block was extended to the east by two claims in order to contain the conductors intersected at this end. Surveying on these two claims was done in mid March.

In the eastern part of the claim block three conductors are located within a width of 6 to 8 hundred feet. The northern one is about 1600 feet long, has moderate conductivity and is narrow. The middle one extends for about 2400 feet, having moderate conductivity for the eastern part but very good conductivity at the west end. The west end of this conductor is fairly wide The southern conductor has been intersected between Line $16 E$ and line $12 W$ for a strike length of at least 2800 feet but \ddagger possibly extends further west, perhops joining up with one of the conductors at the west end of the claim block. The conductivity is quite good and the conductor is fairly wide.

In the northwest corner of the claim block a short conductor was intersected just north of the shore line on Lines 16 W and 12 W . The probcble strike length is about 800 feet. This may be a wide body or perhaps two closely spoced conductors. The conductivity is moderate to good.

In the west part of the claim block, the brocdside data gives indications of a number of conductors. Fixed transmitter setups in this area allow the correlation of some of these apparent conductors but not others. One long conductor is located at about 9 N and parallels the baselinc. It extends from the west boundary to about Line 28 W and possibly further, for a strike length of about 2,000 feet. The conductivity is good. Sone width is indicated on one line. Another conductor is locoted about 1000 feet to the south. The strike length has only been verified over a length of 800 feet where a good conductivity is indicated but no appreciable width is apparent. Between these two conductors, the fixed transmitter setups failed to give consistent crossovers. The horizontal loop in this area gove positive in-phase readings. A possible horizontal body here might account for these results.

The indicated depth to source for the EM conductors is between about 60 and 120 feet. Only one conductor is indicated to be shallower. Where the angle of dip can be determined, it is generally near vertical or steeply to the south. A few profiles indicate a north dip but these indications are assumed to be unrelioble.

The magneiic intensity profiles over most of the detail grid are foirly quiet, possibly reflecting the metasediment rocks. The conductors all fall within this area and gencrally have no magnetic expression. The conductor in the northwost corner of the clain block, just north of the shore line does, however, fall withan a 500 foot wide band of fairly active magnetic response. At the extreme west edge of the property, a zone of very high magnetic intensity is located along strike with the above band although, in between, the magnetic profiles are quiet.

Starting from between the detail \because rid bascline and the original baselinc, and extending south, the survey lines hove intersected o number of magnetic anomalies, which rise to about 500 gammas. This zone possibly denotes the metamorphosed gabbro and diorite.

Each of the main conductors is described quantitatively below with a drill hole suggested to test the conductor at the location indicated to be most interesting geophysically. Drill holes are calculoted so as to intersect the conductors approximately 50 feet below the indicated position of the top of the conductor.

The northern conductor of the three intersected in the castern part of the claim block has a conductivity-width of about 15 mhos. The depth to source is 60 to 100 feet. No
appreciable width is indicated. To drill this conductor, collor on Line 0 where the conductor has perhops a better conductivity. The horizontal loop profile on this line is somewhat distorted because of the adjacent conductor. The conductor is located at $12+50 \mathrm{~N}$ at an approximate depth of 80 feet. Collar on Line 0 at $10+90 \mathrm{~N}$ and drill north along the line at an inclination of 45°. for a distance of at least 320 feet.

The middle of the three conductors intersected in the zastern part of the claim block has a conductivity-width of about 15 mhos in its center section. The conductivity on the three wesiern lines is very high as indicated by frequency response ratios of 1.0 . The horizontal loop on Line 12 W gave positive quadrature readings which might be due to conductive overburden over o very gooc conductor, however, os a result, no conductivity-width value can be assigned. On Line 12 W a width of about 130 feet is indicated. The depth to source is about ill feet on the western lines and about 60 feet for the cast lines. To drill this conductor, collar on Line 12 W where the body is indicated to be wide. On Line 12 W , the conductor is located between $9+20 \mathrm{~N}$ and $10+50 \mathrm{~N}$ and at a depth of about 110 teet. Collar on Line 12 W at $8+00 N$ ard drill north along the line at an inclination of 45° for a distance of at least 320 feet.

The southern of the three conductors at the east end of the claim block is considered a good drilling target becouse of the good conductivity and the width of the body. The width
is about 80 feet except at the ends where widths of about 30 feet are indicated. A conductivity-width of 30 mhos is indicated on lines 0 and 8 E . The other three horizontal loop profiles indicate values of greater than 50 mhos. The depth to source is about 60 feet. A suggested drill hole location is on Line 12 E where there is both an apparent width of about 90 fect and a large conductivity-width of 60 mhos. On Line $12 E$ the conductor is located between $7+10 \mathrm{~N}$ and $8+00 \mathrm{~N}$ at a depth of about 60 feet. Collar on Line $12 E$ at $6+20 N$ and drill north along the line at an inclinatinn of 45° for a length of at least 300 feet.

The conductor just north of the shore inne, in the northwest corncr of the clain block, has a conductivity-width of about 20 mhos. Two conductors about 50 feet apart is considered the most likely explanction for the width of the horizontal loop anomaly. The depth to source is about 40 feet. This conductor pair is located within, and near the rorth side of, c 500 foot wide band of fairly active magnetic intensity. As well there is direct correlation with a 300 to 500 gamma magnetic peak within this band. Ther are also indications of a possible conductor axis located at the south side of this magnetic band, on Lirces 16 W and 20 W . To test this conductor, or conductor pair, drill on Line $12 W$ where the conductors are indicated to be at $19+00 \mathrm{~N}$ and at $19+45 \mathrm{~N}$ and at o depth of about 40 feet. Sollar on Line 12 W at $18+10 \mathrm{~N}$ and drill north along the line at an inclination of 45° for a length of at least 280 feet.

The conductor intersected at about 9 N on the west linos appears to be uniform along strike. The conductivity-width is about 25 mhos. The depth to source is 70 to 80 feet. A possible width of 40 feot is indicated by the horizontal loop on Line $36 W$ where, as well, another conductor appears to be locoted adjacent to it on the south side. The position indicated for the conductor on this line is different for the fixed transmitter and the horizontal loop which is perhaps duc to the possible horizontal body to the south. Because of the ambiguity of the position on Line 36 W , a suggested drill hole is given for line $40 W$ which, however, docs not have any appreviable width indicated. The conductor on Line 40 W is located at $8+80 \mathrm{~N}$ at a depth of about 80 feet. Collar on Line 40 W ot $7+50 \mathrm{~N}$ and drill north along the line at an inclination of 45° for a length of at least 280 feet.

The conductor located near the baseline ot the west end of the grid has a conductivity-width of about 25 mhos a.id is at a depth of about 100 feet. If it is desired to test this conductor by driiling, a hole should be coilured on Line foW where the conductor is located at about $1+505$. The horizontal loop indicates a depth of 90 feet on this line. Collar on Line 40 W at $2+90 S$ and drill north along the line at an inclination of 45° for a length of at least 280 feet.

If a horizontal body is located between tine two western conductors a depth of about 120 feet would be indicated for it. The conductivity would appear to be moderate to good. If it is desired to test this possible conductor by drilling, a
hole should be collared on Line 40 W at about $0+30 \mathrm{~N}$ and drilled north along the line at an inclination of 45°. This hole should pass through the center of the conductor at about 50 feet below its top. The hoie should extend for at least 320 feet.

IX. 6 Cloim Block LVI:

The government geological map indicates that this claim group is uaderiain by a belt of metasediments striking NE-SW. The contact with the granitic rocks isshown as falling within the northwest corner of the claim group where the rocks form a migmatitc of alternating granitic sills and metasedimentary layers.

The INPUT survey intersected one conductor, with a strike length of half a mile, of very good conductivity plus a short conductor a few hundred fect to the north, intersected on one line only. The plotted position of the anomalies have a zig-zag relationship to each other, along strike, suggesting that the "lag" used is excessive. By changing this "lag" it is seen that the conductor is coincident with a magnetic high on all lines. Othorwise, the magnetic high would alternately fall on e:ther the north or the south side of the conductor.

The ground sur ey also intersected this long conductor. Tho strike length is greater thon 3600 feet, extending right up to the boundaries of the claira group. The conductor curves across the grid, striking approximately NE-SW!. Another conductor is situated 350 feet to the north on Line 24 E . The strike length of this conductor is about 600 feet.

The conductivity-thickness product varies along strike but is generally obout 20 mhos for the main conductor. For the shori conductor on Line 24 E the value indicoted is 6 mhos, which is more doubtful because of the short striko length. Depth to source determinations from the broadside, fixed transmitter and horizontal loop data yield values from 35 feet to 70 feet with the exception of Line 18 E . The depth to source on Line $18 E$ is 10 feet or less. The dip appears to be near vertical.

Most of the suryey arag is mageticaliy local sections are fairly active however. One band of magnetic activity three to four hundred feet wide follows the main conductor. The main conductor is located just inside the south edge of this band. The short conductor is located on the north edge of the band.

To check the main conductor, it is suggested that it be drilled on line i 8 E . The conductor here is twenty feet wide, centered ai $0+70 \mathrm{~N}$. The conductivity-thickness indicated by the 200 foot separation horizontal loop is 23 mhos. This is of the same order as the value indicated by the fixed transmitter, the broadside, and the 300 foot horizontal loop. The depth to source appears to be 10 feet or less. A vertical dip is inferred. The government geology map indicates that dips in this area are aither verticcl or very steep to the southeast.

A suggested drill hole to test this conductor is as follows: Collar on Line 18 E at $0+00$ and drill north along the
line at an inclination of 45° for a length of at least 190 feet. This hole should interscct the conductor about 50 feet below the calculated position of the top of the conductor.

A 1500 foot wide band mapped as metamorphosed gabbro and diorite cuts diagonally across the center of this claim group in a NE-SW direction. The area on either side of the band is underlain by mafic metavolcanics. An outcrop of metamorphosed iron formation has been mapped on the shore line, just east of the property. Dips measured in the area are vertical or very steep towards either the NW or the SE.

The INPUT survex intersected one long conductor of excellent conductivity, striking EiNE and located within the area mapped as the band of gabbro and diorite. Another parallel conductor located about one thousand feet to the northwest was intersected in the western port of the claim group. The conductivity is good on one line but only moderate on the others. In the southeast corner of the claim block, a zone of high conductivity was intersected; the INPUY anomalies are brood over this body, suggesting some depth of cover.

The baseline for the grid starts in the northeast corner of the claim block and strikes N117 W . It would thus fall within the gabbro and diorite band. At least four different conductors roughly paralleling the baseline were intersected with a 1200 foot width centered on the baseline. One long conductor located at $3 S$ at the east end of the grid and at about $5 S$ at the west end, extends for the fuil length of the grid.

In the northeast cornex of the claim block, two short conductors were intersected within 400 feet of this long conductor towards the north. Another conductor was intersected cbout 1000 fect north of the long conductor but responses obtained over this conductor are only of good quality over a strike length of 1800 feet in the middle of the grid. In the southeasi corner of the claim block a conductor was intersected on two lines only, where it cuts across the corner, striking $N 50^{\circ} E$. Further west, along the shore, still another conductor was noted. The apparent dips over the whole area appear to be near vertical.

The ground magnetic pattern mapped on this grid defines the different lithologic units prosent very well. The central band of metamorphosed gabbro and diorite is indicated by a zone of moderate magnetic activity about 1000 foot wide. Many magnetic peaks coincide with the oxes of the conductors whereas others do not. On either side of this zone the magnetic activity is quiet which would indicate the mafic metavolcanics. The southern part of the grid is crossed by a broad bond of high magnetic intensity which rises to 10,000 garmas in places. This band is about one thousand feet wide and strikes $N 50^{\circ} E$. The government geological map indicates that iron formation is located along the shore just east of here which would probably be the source of the high magnetic intensity. The conductor intersected in the southeast corner is located along the south boundary of this bard of high magnetic response. The conductor situated further west along the shora, is located just north of this magnetic band.

The long conductor noted just south of the base line was traced over a strike length of 4200 feet. This conductor would appear to be located at the south edge of the band of gabbro and diorite. The conductivity is very good on Line 24 W and Line $36 W$ where conductivity-widths of 45 mhos and 35 mhos are indicated respectively. East and west of these lines, values of 10 mhos or less are indicated. The depth to source is about 20 fect. No oppreciable width is suggested except on Line $24 W$ where the apparent width is about 70 feet. Magnetic correlation occurs only on two lines and thus may merely be coincidental.

In the northeast corner of the claim block, the above long conductor plus two others are all locoted within about 400 feet. The long conductor is the furthest south. The middle conductor was intersected on two lines only, for a strike length of 600 feet, but it probably extends beyond the claim boundary towards the east. The conductivity-width is 50 mhos or more and the apparent depth to source on these two lines is 10 to 15 feet. A width of 20 feet is indicated on Line $12 W$ and a possible width of 50 feet on Line $12 W$. The conductor coincides with a magnetic anomaly of about 2000 gammas on these lines but this magnetic axis continues to line 18 W , beyond the end of the conductor.

The conductivity of the northernmost of the three conductors in the northeast corner is poor with conductivitywidths of less than 5 mhos being indicated. The depth to source is again about 20 feet. No appreciable width is indicated.

A magnetic anomaly coincides with the conductor on the threc linos where the conducior was intersected but is not present on Line 15 W , one of the intermediute lince.

The conductor intersected at about 6 N is located ot the north edge of what would be the bard of metamorphosed gebbro and diorite. The conductivity-width indicated on Line 30 W is about 20 mhos but the value indicated on the other lines is less than 5 mhos. The dopth to source is about 20 feet; no op!reciable width is indicated on the lines traversed with the horizontal loop system. A magnetic anomaly which on l.ine 30 W is of about 9000 gamme, is coincident with the conductor axis on all lines. The megnetic axis extends from Line 18W to possibly Line $39 W$. Beyond these lines the EM responses are not well defined cna are probably end effects. On Lines 36 W and 42 W another conductor is located betwen the above conductor and the baseline but the conductivity indicated here is very poor.

The conductor which cuts across the southeast corner of the claim block has a very good conductivity-width, indicated to be about 45 mhos on line 24%. The depth to source is about 90 fect; there is no oppreciable width. North tilts at the south end of Line $30 W$ probably indicate that the conductor extends as for as this line, for a strike length of 1200 feet with a further extension probable beyond the claim boundaries. No magnetic anomaly coincides with the conductor.

The conductor located further west along the shore line has a possible strike length of as much as 1800 feet but the EM
responses on some lines are poor. A very low conuctivitywidth of 1.5 mhos was determined from the horizontal loop data on Line 36 W where a depth of about 20 feet is apparent.

In order to test the various conductive zones mapped during this survey, drill hole locations are suggested below. Each drill hole is positioned to intersect the conductor about 50 feet below the claculated position of its top on the line which has yielded the most interesting geophysical results.

The long conductor indicated to be at the south adge of the band of gabbro and diorite is best drilled on Line 24 W where the greatest width and largest conductivity-width were determined. The conductor here is between $4+105$ and $4+805$ and at a depth of 10 feet. Collar on Line 24% at $5+105$ ani drill north along the line at an inclination of 45° for a length of at least 180 feet.

To test the middle of the three conductors in the northoust corner of the claim block, collar on Line ow. The conductor here is between $1+40 S$ and $1+905$, although this apparent width is somewhat questionable. The calculated depth is 15 feet. Collar on Line $6 W$ at $2+? 5 S$ and drill north along the line at on inclination of 45° for a length of at least 180 feet.

The best place to drill the conductor which apparently is located along the north edge of the gabbro and diorite band, is on line 30H, where the conductivity is greatest. The conductor here is located at $4+60 \mathrm{~N}$ at a depth of about 20 feet.

Collar on Line $30 W$ at $3+90 N$ and drill north along the line at an inclination of 45° for a length of at least 190 feet.

To test the conductor in the southeast corner of the claim block, drill on Line 24W. The conductor axis is at $28+00 S$ and at o depth of about 90 feet. Collar on Line 24 W at $26+50 S$ and drill south along the line at an inclination of 45° for a length of at least 280 feet.
IX. 8 Claim Block 1XII:

The goology map of the area shows this claim group to be located on the southoast flank of a syncline. The northwest part of the property is mapped as mafic metavolcanics and the southeast part is shown as metamorphosed gabbro and diorite. The INPUT survey intersected a number of different conductors within the claim group. One long conductor of good conductivity extends for the length of the claim group in a northeast direction. A weaker conductor was intersected on three lines, north of the main conductor in the western portion of the grid. In the northermost claim, a short, good conductivity body was intersected. And lastly, a good conductor was intersected in the southeast corner of the claim group.

This claim group adjoins claim group XLVI, located to the southwest. The baseline of giid XLVI was extended to the southwest and grid lines cut to cover claim joup LXII. Ground Eti surveying appears to have delineated the same conductors detected from the air. The long conductor was intersected at about the baseline and extends from one corner of the claim group to the other, for a strike length of obout 3700 feet. The response on the westerntiost line may, however, be an end effect. A conductoz was intersected about 1300 feat north of this conductor and another about 1300 feet to the south. The conductor in the north claim was intersected on Line 28 W at loN. The horizontal loop profiles indicate that the conductors generally have significant widths. Depth to source indications are about 120 feet. The suggested dip is to the north.

The ground magnetic survey is only moderately active to quiet and there does not appear to be correlation with the conductors except possibly for the conductor in the southeast corner. The only pattern that can be discerned is possibly a rise of about 100 gammas in the magnetic intensity for the northwestern half of the property, which may indicate the mafic met volcanics.

The long conductor has an indicated width of almost 200 feet on Line $46 W$ and 80 feet on Line $40 W$. This conductor may join up with a possible 300 foot wide body on Line 28%. The width of the conductor makes conductivity-width and depth determinations very questionable. The conductivity-widin would appear however, to be less than 15 mhos. The depth would be about 120 feet and possibly as much as 150 feet. Another, weak conductor is located about 300 feet further south on a few lines.

The conductor in the north claim was only intersected on two lines but the body may extend further east where a possible conductor is indicated on grid XLVI. Only part of the horizontal loop anomaly on Line 28% was recorded so that the width of the conductor con not be determined. The width is at least 60 feet but may be more. A depth of 50 to 60 feet is indicated. The conductivity -width is about 5 mhos.

The conductor in the southeast corner was well defined by both horizontal and vertical loop surveys, only on Line 46 W . The vertical loop responses on the adjacent lines may be end effects. A conductivity-width of about 10 mhos and a depth of
about 90 feet is indicated. This conductor may be related to a broad magnetic anomaly of 100 gammas on Line 46 W between $14+505$ and $19+005$.

The conductor in the northwest corner was intersected on only two lines where weak responses were recorded. The length of the conductor would be about 600 feet. The conductivity is poor. The depth is taken to be that generally indicated i.e.i about 120 fect.

Drill hole locations are suggested below for the three main conductors. To test the main long conductor, a drill hole should be collared on Line $46 W$ where the conductor is almost 200 feet wide. The conductor here is located between about $2 \div 30 S$ and $4+20 S$ and is taken to be at a depth of cibout 120 feet. Collar on Line $46 W$ at $0+50 S$ and drill south along the line ot an inclination of 45° for a distance of about 500 feet. This hole should intersect the conductive body near its top, north edge and would be doout 80 feet below the top at the center of the body.

The northern conductor should be drilled on Line 28 W where it is betweon cbout $10+50 \mathrm{~N}$ and $11+10 \mathrm{~N}$ and at a depth of 50 to 60 feet. Collar on Line 28 W ar $11+90 \mathrm{~N}$ and drill south along the line at an inclination of 45° for a distance of obout 250 feet. This hole should pass through the indicated center of the body at about 50 feet below its top.

If it is desired to test the conductor in the southeast corner of the claim block, a drill hole should be located on

Line 46 W . The conductor here is located at $15+10 \mathrm{~S}$ and at a depth of about 90 feet. Collar on Line 46 W at $13+70 \mathrm{~S}$ and drill south along the line at an inclination of 45° for a distance of about 260 feet.

X. CONCLUDING REMARKS

In concluding the discussion of the results of the ground followup survey, it might be well to emphasize that the treatment of the various conductor systems has been strictly on the basis of the geophysical results. No prioriti.s have been established and no recommendations for drilling are given although drill hole locations are suggested for nearly all conductors in the event that some of them might be checked by drilling subject to the application of various other parameters and considerations which might relate to this particular exploration program.

Respectfully submitted,

P. Norgaard, P. Eng., Senior Geophysicist.
$\beta+1, \overrightarrow{2} 4$
R. Keith, B.Sc.,

Geophysicist.

XI. REFERENCFS

Ayres, L.D., (1969) Geology of the Muskrat Dam Lake Area, District of Kenora, Geclogical Report 74, Ontario Department of Mines.

Bosschart, R.A., (1967), Ground Electromagnetic Mothods, Mining and Groundwater Goophysics, Economic Gcology Report No. 26, Gcological Survey of Cancda, pp. 67-80.

Frischknecht, F.C. and G.E. Mangan, (Released to open files, Oct. 21, 1960), Preliminary report on electromagnetic model studies, U.S. Geological Survey.

Grant, F.S. and West, G.F., (1965) Interpretation Theory in Applied Geophysics, pp. 444-572.

Model SE-300 EM Unit, Instruction Manual, Scintrex Ltd.
Paterson, N.R. (1967), Exploration for mossive sulphides in the Canadian Shisld, Mining and Groundwater Geophysics, Economic Geology Report No. 26, Geological Survey of Canada, pp. 275-289.

Strangway, D.W., (1966), Electromagnetic Parameters of Some Sulphide Orebodies, Mining Geophysics, Vol. I, S.E.G., George Banta Company, Menasha, Wisconsin, pp. 227-242.

Ward, S.H., (1966), The Electromagnetic Method, Mining Geophysics, Vol. II, S.E.G., George Banta Company, Manasha, Wisconsin, pp. 224-372.

Muskrat Dam Lake area

THE CLAIMS i I NUMERICAL ORDER ARE AS FOLLOWS :

$$
\begin{aligned}
& \text { KRL 237440-43incl. } \\
& 450-54 \quad 1 \\
& \text { 462-72" } \\
& \text { 474-77" } \\
& \text { 479-82 " } \\
& \text { 488-89 " } \\
& \text { 499.-506 " } \\
& \text { 510-515" } \\
& \text { 517-529 " } \\
& \text { 535-565" } \\
& \text { 264167-73" } \\
& \text { 202-22" } \\
& \text { 247-52" } \\
& \text { 257-58 II } \\
& \text { 282-9311 } \\
& \text { 280807-808 } \\
& 813 \\
& 281192 \\
& \text { 194-195 } \\
& 300126 \\
& \text { 602-603 } \\
& \text { TOTAL : } 145 \mathrm{cl} .
\end{aligned}
$$

i) ASSESSMENT WORK DETAILS

Township or Area_Muskrat Dam Lake area
Type of Survey_ Geophysical Survey EM
Chief Line Cutter Charlie McDougall or Contractor

RR \#_ Amos, P. Address
Party Chief _R. Keith, R. Sc.- Name

> 321. Cambridge Sta Ottawa, Ont.

Consultant __P. Norgaard

$$
\text { 74,98 Spring land } \mathrm{nr} \text { Addie, Ottawa, Ont. }
$$

COVERING DATES
June 5th/Octcber lath, 1970
Line Cutting_ -January 11ti_ March 10th, 1971
Field \qquad - dit on

Office \qquad October 2nd/November 20th, 1970 February 20th/March lUth, 1971

INSTRUMENT DATA

Make, Model and Type See attached sheets
Scale Constant or Sensitivity
Or provide copy of instrument data from Manufacturer's brocibure.

Radiometric Background Count

Number of Stations Within Claim Group \# 8795
Number of Readings Within Claim Group \# 16760
Number of Miles of Line cut Within Claim Group- 14.8
Number of Samples Collected Within Claim Group ___

SIGNED E. NOTZLI,
grith:

MINIS CLAIMS TRAVE,RSE.I
List numerically

TOTAL.
145

Send in duplicate to:
FRED W. MATTHEWS SUPER VISOR-PROJECIS SECTION DEPARTMENT OF MINES \& NORTHERN AFFAIRS WHITNEY BLOCK QUEENS PARK 'TORONTO, ONTARIO

GEOPHYSICAL SURVEYS
SEREM Ltd
Muskrat Dam Lake area

THE CLAIMS IN NUMERICAL ORDER ARE AS FOLLOWS :
KRL $237440-43$ incl.

$$
\begin{aligned}
& \text { 450-54 " } \\
& \text { 462-72 " } \\
& \text { 474-77.11 } \\
& \text { 479-82 II } \\
& .488-89 \text { II } \\
& \text { 499-506" } \\
& \text { 510-515" } \\
& \text { 517-529" } \\
& \text { 535-565" } \\
& .264167-.73 \text { " } \\
& \text { 202-22" } \\
& \text { 247-52" } \\
& 257 \text { - } 58 \text { " } \\
& \text { 282-93" } \\
& \text { 280807-808 } \\
& 813 \\
& 281192 \\
& \text { 194.-195 } \\
& 300126 \\
& \text { 602-603 }
\end{aligned}
$$

TOTAL : 145 cl.

FOR ADDITIONAL
INFORMATION
SEE MAPS:
53G104NW-0015 \#1-59

-

Postyl

CLAM Group XXVI

Block $\ddagger 26$

C KRL264206

(1)

185	165	145	125	c	6.5	4%	25	BL	$2 N$	$4 N$	$6 N$	8 N	10 N	127

53G104 NW -0015 \#12

为
．

125	105	85	$6 S$	$4 S$	25	0	$2 N$	$4 N$	$6 N$	$8 N$	$10 N$	$12 N$	$14 N$

NETRUNENT: VERTiCaL LOOP ELECTROMAGNETIC units

vertical loop electromagnetic method broadside configuration

KRL264 167

vertical loop electromagnetic method FIXED TRANSMITTER CONFIGURATION
KRL 264167

Block \# 43

536104NW-0015 \# 27

[2

Lanm siocm zut
Block \# 46

536/04NW-0015\#31

HORIZONTAL LOOP ELECTROMAGNETIC METHOD

Block \# 48

53G/04NW-0015 \#33
$12 N \quad 10 N \quad 8 N \quad 6 N \quad 4 N \quad 2 N \quad 0 \quad 2 S \quad 45 \quad 65 \quad 85 \quad 10 S \quad 125 \quad 145 \quad 16 S .185$

instrument: mf-z fluxgate magnetometer

 4

53G/04Nw-0015\#34

53G/04NW-0015 \# 36

550

4W 2W 2E $4 E \quad 6 E \quad 8 E \quad 10 E \quad 12 E \quad 14 E \quad 16 E$

Canm Bioch

ertical loop electromagnetli method
brdadside configuration

$53 \mathrm{G} 104 \mathrm{NW}-0015 \neq 37$

$$
\underset{y}{w}
$$

Block \# 61

INSTRUMENTS:
VHEM HORIZONTAL ANO VERTICAL LOOP
ELECTROMAGNETIC UNITS Electromagnetic units

CONDUCTOR INDICATED
NO WIdTh determineo
approximate width shown to scale

POSSIOLE CONDUCTOR INDICATER

 1

Block \# 39 WEST

HORIZ ONTAL LOOP ELECTROMAGNETIG METHOD 200 FOOT SEPARATION FREQUENCY - 2400 Hz

VERTICAL LOOP ELECTROMABNETIC METHOD BROADSIDE CONFIGURATION

LINE 60W

LINE 52 W

LINE 48W

$$
\frac{\text { VERTICAL LOOP ELECTROMAQNETIC METHOD }}{\text { BROADSIDE CONFILUAAATION }}
$$

$$
53 G 104 N W-0015 \# 48
$$

instrument: M700 Fixagate Magnetometer

536/04NW-0015 \# 54

No Wioth Detremneo o $\frac{n}{v}$

curm ghoup Ive

Block \# 56

wem oot

HORIZONTAL LOOP ELECTROMAGNETIC METHOD
SEPARATION: 200 fett frequenct: 2400 Hz .

SOUTH TLLTS

VERTICAL LOOP ELECTROMAGNETIC METHOD BROADSIDE CONFIGURATION.

VERTICAL LOOP ELECTROMAGNETIC METHOD fixed transmitter configuration

53G/04NW-0015 \# 54

$$
53 G / 04 \mathrm{NW}-0015 \# 59
$$

