## These Terms Govern Your Use of This Document

## Your use of this Ontario Geological Survey document (the "Content") is governed by the terms set out on this page ("Terms of Use"). By downloading this Content, you (the "User") have accepted, and have agreed to be bound by, the Terms of Use.

Content: This Content is offered by the Province of Ontario's Ministry of Northern Development and Mines (MNDM) as a public service, on an "as-is" basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever.

Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the "Owner"). Both your use of a linked Web site, and your right to use or reproduce information or materials from a linked Web site, are subject to the terms of use governing that particular Web site. Any comments or inquiries regarding a linked Web site must be directed to its Owner.

Copyright: Canadian and international intellectual property laws protect the Content. Unless otherwise indicated, copyright is held by the Queen's Printer for Ontario.

It is recommended that reference to the Content be made in the following form: <Author's last name>, <Initials> <year of publication>. <Content title>; Ontario Geological Survey, <Content publication series and number>, <total number of pages>p.

Use and Reproduction of Content: The Content may be used and reproduced only in accordance with applicable intellectual property laws. Non-commercial use of unsubstantial excerpts of the Content is permitted provided that appropriate credit is given and Crown copyright is acknowledged. Any substantial reproduction of the Content or any commercial use of all or part of the Content is prohibited without the prior written permission of MNDM. Substantial reproduction includes the reproduction of any illustration or figure, such as, but not limited to graphs, charts and maps. Commercial use includes commercial distribution of the Content, the reproduction of multiple copies of the Content for any purpose whether or not commercial, use of the Content in commercial publications, and the creation of value-added products using the Content.

Contact:

| FOR FURTHER <br> INFORMATION ON | PLEASE CONTACT: | BY TELEPHONE: | BY E-MAIL: |
| :--- | :--- | :---: | :---: |
| The Reproduction of <br> Content | MNDM Publication <br> Services | Local: (705) 670-5691 <br> Toll Free: 1-888-415-9845, ext. <br> 5691 (inside Canada, <br> United States) | Pubsales@ndm.gov.on.ca |
| The Purchase of <br> MNDM Publications | MNDM Publication <br> Sales | Local: (705) 670-5691 <br> Toll Free: 1-888-415-9845, ext. <br> 5691 (inside Canada, <br> United States) | Pubsales@ndm.gov.on.ca |
| Crown Copyright | Queen's Printer | Local: (416) 326-2678 <br> Toll Free: 1-800-668-9938 <br> (inside Canada, <br> United States) | Copyright@gov.on.ca |

## LES CONDITIONS CI-DESSOUS RÉGISSENT L'UTILISATION DU PRÉSENT DOCUMENT.

## Votre utilisation de ce document de la Commission géologique de l'Ontario (le « contenu ») est régie par les conditions décrites sur cette page (《 conditions d'utilisation »). En téléchargeant ce contenu, vous (l'« utilisateur ») signifiez que vous avez accepté d'être lié par les présentes conditions d'utilisation.

Contenu : Ce contenu est offert en l'état comme service public par le ministère du Développement du Nord et des Mines (MDNM) de la province de l'Ontario. Les recommandations et les opinions exprimées dans le contenu sont celles de l'auteur ou des auteurs et ne doivent pas être interprétées comme des énoncés officiels de politique gouvernementale. Vous êtes entièrement responsable de l'utilisation que vous en faites. Le contenu ne constitue pas une source fiable de conseils juridiques et ne peut en aucun cas faire autorité dans votre situation particulière. Les utilisateurs sont tenus de vérifier l'exactitude et l'applicabilité de tout contenu avant de l'utiliser. Le MDNM n'offre aucune garantie expresse ou implicite relativement à la mise à jour, à l'exactitude, à l'intégralité ou à la fiabilité du contenu. Le MDNM ne peut être tenu responsable de tout dommage, quelle qu'en soit la cause, résultant directement ou indirectement de l'utilisation du contenu. Le MDNM n'assume aucune responsabilité légale de quelque nature que ce soit en ce qui a trait au contenu.

Liens vers d'autres sites Web: Ce contenu peut comporter des liens vers des sites Web qui ne sont pas exploités par le MDNM. Certains de ces sites pourraient ne pas être offerts en français. Le MDNM se dégage de toute responsabilité quant à la sûreté, à l'exactitude ou à la disponibilité des sites Web ainsi reliés ou à l'information qu'ils contiennent. La responsabilité des sites Web ainsi reliés, de leur exploitation et de leur contenu incombe à la personne ou à l'entité pour lesquelles ils ont été créés ou sont entretenus (le «propriétaire»). Votre utilisation de ces sites Web ainsi que votre droit d'utiliser ou de reproduire leur contenu sont assujettis aux conditions d'utilisation propres à chacun de ces sites. Tout commentaire ou toute question concernant l'un de ces sites doivent être adressés au propriétaire du site.

Droits d'auteur : Le contenu est protégé par les lois canadiennes et internationales sur la propriété intellectuelle. Sauf indication contraire, les droits d'auteurs appartiennent à l'Imprimeur de la Reine pour I'Ontario.
Nous recommandons de faire paraître ainsi toute référence au contenu : nom de famille de l'auteur, initiales, année de publication, titre du document, Commission géologique de l'Ontario, série et numéro de publication, nombre de pages.

Utilisation et reproduction du contenu : Le contenu ne peut être utilisé et reproduit qu'en conformité avec les lois sur la propriété intellectuelle applicables. L'utilisation de courts extraits du contenu à des fins non commerciales est autorisé, à condition de faire une mention de source appropriée reconnaissant les droits d'auteurs de la Couronne. Toute reproduction importante du contenu ou toute utilisation, en tout ou en partie, du contenu à des fins commerciales est interdite sans l'autorisation écrite préalable du MDNM. Une reproduction jugée importante comprend la reproduction de toute illustration ou figure comme les graphiques, les diagrammes, les cartes, etc. L'utilisation commerciale comprend la distribution du contenu à des fins commerciales, la reproduction de copies multiples du contenu à des fins commerciales ou non, l'utilisation du contenu dans des publications commerciales et la création de produits à valeur ajoutée à l'aide du contenu.

## Renseignements :

| PoUR PLUS DE RENSEIGNEMENTS SUR | VEUILLEZ VOUS ADRESSER À : | PAR TÉLÉPHONE : | PAR COURRIEL : |
| :---: | :---: | :---: | :---: |
| la reproduction du contenu | Services de publication du MDNM | Local : (705) 670-5691 <br> Numéro sans frais : 1888 415-9845, poste 5691 (au Canada et aux États-Unis) | Pubsales@ndm.gov.on.ca |
| l'achat des publications du MDNM | Vente de publications du MDNM | Local : (705) 670-5691 <br> Numéro sans frais : 1888 415-9845, poste 5691 (au Canada et aux États-Unis) | Pubsales@ndm.gov.on.ca |
| les droits d'auteurs de la Couronne | Imprimeur de la Reine | Local : 416 326-2678 Numéro sans frais : $1800668-9938$ (au Canada et aux États-Unis) | Copyright@gov.on.ca |

Ministry of
Natural
Resources
Hon. Alan W. Pope Minister
W. T. Foster

Deputy Minister

## -

- 


## -

$$
-
$$

## Ontario Geological Survey

OPEN FILE REPORT

Open file reports are made available to the public subject to the following conditions:
This report is unedited. Discrepancies may occur for which the Ontario Geological Survey does not assume liability. Recommendations and statements of opinion expressed are those of the author or authors and are not to be construed as statements of government policy.

Open file copies may be read at the following locations:
Mines Library
Ontario Ministy of Natural Resources
8th Floor, 77 Grenville Street, Toronto
The office of the Regional or Resident Geologist in whose district the area covered by this report is located.

Handwritten notes and sketches may be made from this report. Check with the Library or Regional or Resident Geologist's office as to whether there is a copy of this report that may be borrowed. The Library or Regional or Resident Geologist's office will also give you information on copying arrangements. A copy of this report is available for Inter-Library Loan.

This report is on file in the Regional or Resident Geologists' office(s) located at:

## All Regional and Resident Geologists'Offices

The right to reproduce this report is reserved by the Ontario Ministry of Natural Resources. Permission for other reproductions must be obtained in writing from the Director, Ontario Geological Survey.

[^0]
## $-$

- 


## - <br> -

- 

Final Research Reports, 1983

## Preface

This publication includes one final report on a research project that teminated March 31, 1982 and was funded under the Ontario Geoscience Research Grant Program. A requirement of the Program is that recipients of grants are to submit final reports within six months after termination of funding.

A final report is defined as a comprehensive summary stating the findings obtained during the tenure of the grant, together with supporting data. It may consist, in part, of reprints or preprints of publications and copies of addresses given at scientific meetings.

It is not the intent of the Ontario Geological Survey to formally publish the final reports for wide distribution but rather to encourage the recipients of grants to seek publication in appropriate scientific journals whenever possible. The Survey, however, also has an obligation to ensure that the results of the research are made available to the public at an early date. Although final reports are the property of the applicants and the sponsoring agencies, they may also be placed on an open file. This report is intended to meet this obligation.

E.G. Pye<br>Director<br>Ontario Geological Survey

Table of Contents Page
Abstract ..... 2
Introduction ..... 2
Previous Structural Work and Regional Setting ..... 4
Macrostructure of the Southwestern Faraday Metagabbro Complex ..... 5
Petrography and Microstructure of the FMC ..... 8
Emplacement of Pegmatite Bodies ..... 10
Geochemical Affinity of Uranium ..... 11
Major Conclusions ..... 15
Figure Captions ..... 17
Appendix 1 Magnetic Fabric of Metagabbros ..... 52
Appendix 2 Microstructural Study ..... 69
Appendix 3
Data and Statistics used for Summary Display and Correlation in Figure 16 ..... 79
Appendix 4
Station Location Map ..... 90
Acknowledgements ..... 92
Bibliography ..... 93

## -

## Maps (In Back Pocket)

1. Lithologic Map (Outcrops and Rock Types)
2. Foliation Trojectories and Lineation Map 3. Foliation and Dip Contour Map

# Ontario Geoscience Research Grant Program Grant No. 82 <br> Structural Controls of Uranium-Ore Bodies In the Madawaska Mines Bancroft Area 

## by

R.I. Bedell ${ }^{l}$ and W.M. Schwerdtner ${ }^{1}$

```
l
    University of Toronto
    Department of Geology
    Toronto, Ontario
```

Manuscript approved by E.G. Pye, Director, Ontario Geological Survey, April 22, 1983.

This report is published by permission of E.G. Pye, Director, Ontario Geological Survey.

Uranium-bearing pegmatite bodies in the Madawaska Mines area were emplaced preferrentially into the southwestern Faraday Metagabbro Complex. The pegmatite bodies are virtually undeformed. They were emplaced in the waning stages of Grenville Orogeny. Not dilation but replacement (partial assimilation) of host rock was the main mechanism of emplacement. The majority of the pegmatite bodies are subparallel to the internal structure and outer contact of the southwestern Faraday Metagabbro Complex.

All chemical elements that were predominantly incorporated into the mafic minerals of the pegmatite bodies have a positive correlation with uranium. All elements that were predominantly incorporated into the felsic minerals of pegmatite bodies have a negative correlation with uranium. Zirconium, a highly refractory element, has a correlation coefficient of 0.96 with uranium. This suggests that uranium precipitation occurred under magmatic conditions and while the host rocks were being assimilated.

INTRODUCTION
Most of the uranium in the Madawaska Mines is confined to a medium to coarse grained granite-syenite, collectively called pegmatite, which occurs predominantly as sheets and finger-like bodies (dikes, sills, and veins) in the southwestern portion of the Faraday Metagabbro Complex (Figure 1). We carried out field-based research with the aim
of determining what structures and structural processes controlled the emplacement of these pegmatite bodies. Although the problem of uranium fixation was outside the scope of the original project, we felt compelled to pursue this subject sufficiently to develop a comprehensive model.

Two different processes lead to the emplacement of granitoid pegmatite bodies into common metamorich host rocks: (1) dilation, and (2) replacement. Upon brittle fracture or other modes of discontinuous deformation of host rocks, one of the rival processes generally dominates in the development of quartzo-feldspathic veins and common pegmatitic bodies. Simple geometric criteria have benn established (Kretz, 1968) which permit the geologist to differentiate between dilation veins and replacement veins. These criteria are difficult to use where pegmatite bodies are quasi-concordant, non-planar, and/or severely deformed. It was, therefore, necessary to investigate whether the pegmatite bodies at Madawaska Mines had been severely strained, together with their gabbroic host rocks. As part of this investigation, we mapped the fabric pattern of the southwestern Faraday Metagabbro Complex (FMC) and studied a suite of large rock specimens in the laboratory. Apart from its tectonic importance, this work led to a structural map also reflecting the physical anisotropy pattern in the southwestern $F M C$. This pattern correlates broadly with the geometric pattern of the pegmatite bodies in the mine. In addition, we found convincing evidence underground that replacement of gabbroic host rock was the dominant mechanism of emplacement. As we had suspected, most pegmatite bodies in the $F M C$ were emplaced into highly strained gabbroic rocks,

The $F M C$ is located near the southeastern border of the crudely elliptical Faraday Granite (Hewitt and Satterly, 1957). The rocks at the southern margin of the Faraday Granite are fenitized, and belong to a long alkalic belt that traverses the Bancroft area (Schwerdtner and Lumbers 1980, figure 10; Bedell 1982, figure 16.1).

Diverse modal compositions and textures occur in the FMC. This prompted mine geologists to neglect the host rocks and monitor only the $U$, $T h$ abundance and geometry of the pegmatite bodies. Little et al. (1972) suggested that the pegmatite bodies are associated with a plunging synform and an adjacent antiform to the north (Figure 2). We found no compelling evidence for these large folds in the foliation pattern of the host rocks. Owing to a northeasterly-trending regional foliation and the lobate character of the southeastern border of the southwestern FMC, quasi-concordant pegmatite sheets diverge and converge locally, and create fold-like forms in the pegmatite pattern of the mine. The origin of the lobate geometry of the southern contact of the FMC (Figure 3 ) is unknown and cannot be found without detailed study of the metasedimentary envelope of the FMC. We did not undertake such a study.
the southwestern FMC was carried out at surface as well as in easily accessible parts of the Madawaska Mines. We wanted to obtain a detailed picture of the macroscopic strain pattern in the $F M C$, and assess if, and to what degree, the system of the pegmatite bodies is concordant to the structure of the host rocks. The distribution, form and orientation of larger pegmatite bodies was determined at surface. More complete information about the pegmatite bodies has been obtained by mine geologists underground, and was readily available to us for use in this study.

In addition to the structural mapping, we collected oriented specimens of metagabbro for study of the mineral fabric and measurement of the magnetic anisotropy. We also judged the L, S strain fabric (Schwerdtner et al. 1977) of deformed mafic clots by visual inspection of orthogonally cut $a \neq$ surfaces (Figure $4 \hat{N}$, and compared the results with those of the magnetic susceptibility anisotropy determinations.

Maps 1, 2, and 3 contain most of the data obtained by field mapping. Important structural results of this mapping will be discussed in the following paragraphs.

The attitude of foliations and lineations were measured in the field throughout the southwestern FMC. To represent the variation in attitude of foliation, the southwestern FMC was conveniently divided into five domains for which we constructed rose diagrams and contoured stereoplots (Figures 5 and $6_{\uparrow}^{a-g}$. A synoptic rose diagram for all foliation strikes is shown in Figure 7 a.

Figures $7 a$ and $7 b$ reveal that the regional foliation
trend is approximately $N E^{-6-} S^{-}$, but that there are many local effects as well. Among the three northern domains, the trend shifts according to the northward-concave curvature of the foliation pattern (Figure 5). The scatter in the southwestern rose reflects the presence of a round nepheline syenite plug (map 1) and an interference between (1) the regional foliation, (2) a northwesterly-striking shear zone, also discernible in the central northern lobe, and (3) the lobate contact of the FMC. Although small folds in foliation were observed in several outcrops, we found no compelling evidence for macroscopic folding (see Previous Structural Work).

Stereoplots for the various surface domains as well as all accessible underground levels (Figures 6a-6g) reflect the prevailing $S E$ dip of the region. Mineral lineations cluster strongly (Figure 8) and confirm the field observation that stretching is predominantly down-dip on the regional foliation plane.

Figure 3 shows that in the $S E$ border region of the $F M C$, where Madawaska Mines is located, most uranium-ore bodies at the adit level of mining trend parallel to the NE regional grain. Near the lobate contact of the $F M C$, the ore bodies tend to follow the local pattern of the contact-parallel foliation. Apparently the foliation in the host rock controls the orientation of the pegmatite bodies in this small region. Throughout most of the southwestern FMC and the mine, the strike of the foliation tends to be subparallel to the pegmatite contacts (figure 9).

Joint attitudes, routinely obtained during field mapping, show considerable scatter in a synoptic stereoplot (Figure 10). However, a large number of joints are subvertical and trend NW-SE. The preferred orientation of joints is thus perpendicular to the regional structural grain.

Numerous specimens of deformed metagabbro were cut orthogonally to foliation and lineation (Figure 4). After visual inspection, specimens were grouped according to whether they were (1) predominantly lineated, (2) predominantly foliated, (3) as well lineated as foliated, or (4) virtually undeformed. The results were plotted on a map of the southwestern $F M C$, and reveal that there are several areas with consistent $L, S$ fabric (Figure 11).

Our attempt to quantify the $L, S$ fabric scheme by means of the magnetic susceptibility anisotropy method was not successful (Appendix 1). Results were not always consistent for individual large specimens. On the other hand, some of the consistent magnetic results clearly disagreed with the shape of the $L, S$ fabrics as determined by inspection. We attempted to find the source of difficulty by studying heterogeneous samples and learnt that the primary compositional layering (at a mm to cm scale) has a strong influence on the shape of the susceptibility ellipsoid. For example, some lineated metagabbros have a fine mafic layering which results in an oblate ellipsoid of bulk magnetic susceptibility anisotropy. To be a reliable measure of the
strain fabric, the susceptibility ellipsoid of this rock should be prolate. The main reason for analytical results inconsistent with the visual estimates appears to be the relatively coarse grain size of the magnetic minerals relative to the size of the drill cores measured in the torque meter. The inadequate size of the measured cores results in inhomogeneous magnetic fabrics. Tests of drill cores were made by shaving off minor portions of the sample. This procedure led to significant changes in the bulk magnetic susceptibility ellipsoid. In addition, the maximum deflections (which reflect the magnetic content of the rock) vary widely between the three cores used for each sample location (Appendix 1).

## PETROGRAPHY AND MICROSTRUCTURE OF THE FMC

The Faraday Metagabbro Complex (FMC) is texturally and modally diverse. It ranges in composition from anorthositic gabbro to amphibolite and contains relict massive to layered enclaves reflecting its premetamorphic history. The rocks of some areas exhibit greater than $100 \%$ tensile strain.

In the anorthositic rocks the mafic minerals appear as aggregates of amphibole, some of which still contain relict clinopyroxene cores. Rare orthopyroxene can be found, and when plotted on the pyroxene quadrilateral phase diagram (Figure 12), the electron microprobe analyses fall within the 600-900 ${ }^{\circ} \mathrm{C}$ isotherms as outlined by Ross and Huebner (1975). These pyroxenes fall in the same temperature range and have similar compositions with respect to both major and minor
elements as those reported by Ashwal (1982) in the Marcy Anorthosite Massif of the Adirondacks in New York, also of Grenville age and metamorphosed to granulite facies.

The pyroxenes are rimmed by a slightly more sodic amphibole that often occurs as randomly oriented aggregates. Associated with the amphibole are sporadic occurrences of opaques, including magnetite (showing no exsolution textures) and monoclinic pyrrhotite. Sphene aggregates are commonly associated with magnetite cores. Biotite is also associated with these mafic segregations but occurs as euhedral or kinked crystals indicative of a later origin relative to the bulk of the recrystallized mafic aggregates.

Morris (1956) reports a single occurence in the FMC of a mass of antigorite, chlorite and magnetite which he suggests may represent altered olivine.

Plagioclase occurs in diverse textural forms ranging from relict igneous laths, to grains dominated by mechanical twins to completely recrystallized equant grains (Bedell and Schwerdtner, 1981). The composition of the plagioclase as determined by electron microprobe analyses ranges from labradorite $\left(\mathrm{An}_{62}\right.$ to oligoclase $\left.\mathrm{An}_{20}\right)$.

Scapolite is a common constituent that starts to replace plagioclase along cleavage planes and twin boundaries until replacement is complete. The abundance of scapolite appears to increase in modal abundance with intensity of recrystallization of plagioclase as was also reported by Appleyard and Williams (1981). Apatite occurs sporadically and is found usually as subhedral grains within the plagioclase matrix.

In recent experimental work on gabbroic rocks
(Kronenberg and Shelton, 1980) at experimental strain rates of $3 \times 10^{-6} / \mathrm{s}$ and a confining pressure of 5 kb , plagioclase was seen to become weaker than pyroxene at temperatures of about $700^{\circ} \mathrm{C}$ or greater. This would imply that deformation of plagioclase is chiefly responsible for the ductile behavior of the Faraday Metagabbro. In an effort to quantify the plagioclase microstructure, fifty length-width measurements of randomly selected grains were obtained per thin section. Employing conventional grain size statistics as used by sedimentologists, we assigned the various thin sections to three microstuctural states based on the dominating deformation mechanism operating in the plagioclase grains (Appendix 2). Assuming that the microstructural state in an outcrop can be represented by one or two thin sections, a map was drawn $u p$ depicting variations in the grain size of plagioclase throughout the southwestern FMC. The grain size of plagioclase is a function of the level of strain plus the degree of static recrystallization (Appendix 2).

## EMPLACEMENT OF PEGMATITE BODIES

Detailed structural observations and measurements were made underground to find the dominant mode of emplacement of U-ore bodies (pegmatite), and determine at what stage in the structural history of the FMC this emplacement occurred. A systematic application of the simple criteria of Kretz (1968) was prevented by the irregular and gradational boundaries of the pegmatite bodies. In addition, the discordant structural markers required for application of the criteria are rarely
seen in the Madawaska Mines.
However, ghost structures are common within the ore bodies as well as in narrow pegmatite veins throughout the Madawaska Mines. In most cases, oblique mineral foliation, distinct layers or other minor structures extend from the host rocks into pegmatite, generally fading out toward the middle of individual ore bodies or veins (Figures 13a and b). There is thus convincing evidence for widespread replacement of the metagabbro wall rocks. However, this does not rule out the possibility that dilation was a contributing factor to the emplacement of the uranium ore.

Although some of the narrow pegmatite veins and dikes display concordant internal foliation not obviously inherited from the wall rocks, most pegmatite bodies in the Madawaska Mines and at surface have escaped ductile deformation. Either the bodies were very competent while the host rocks were highly ductile, or pegmatite emplacement postdates most of the ductile deformation of the FMC.

To ascertain that the emplacement did not occur until most of the ductile deformation had been accumulated, we examined thin sections cut from regions of pegmatite bodies that were most susceptible to ductile deformation. For comparison we also made thin sections from regions least susceptible to ductile deformation. Details about this approach follow.

It is a well known fact, that most pegmatite dikes and veins are prone to bifrucation, branching and splaying along their length. This is related to the style of fracture propagation in brittle and semi-brittle rocks (Price, 1966) and is independent of whether dilation is the vein-generating
mechanism. Starting with an undeformed system of branching dikes and veins replete with knees and bifrucation structures that resemble open kink folds, it is intuitively obvious that the "hinge" regions of the competent pegmatite bodies are most susceptible to mechanical failure at the onset of a subsequent regional deformation. If the dikes are statistically subparallel on the scale of individual domains or a large structure like the $F M C$, then the pegmatite system will either be extended or compressed, and possibly also sheared. No matter whether the longitudinal strain is tensile or compressive, the hinge regions of fold-like structures in the pegmatite system will be prone to deformation. Accentuation of "folds" or "kink" structures leads to compression of the concave "hinge" zones, while the "unbending" of the same structures leads to compression of the convex "hinge" zones.

As shown mathematically by Chapple (1969), the tangential stress needed to tighten the curvature of a crooked (or already folded) layer is much smaller than that required to initiate folding of a planar layer. Thus even if the tectonic stress level is low, the "hinge" regions of kink fold-like structures in dike systems can deform severely while the planar "limbs" of the same structures rotate quasi-rigidly within their incompetent host rocks.

Field evidence in other regions of the Canadian shield suggests that, under upper-amphibolite facies conditions, coarse pegmatite dikes are more competent than their amphibolite hosts (e.g. Schwerdtner et al. 1971, boudinage structure 2). If the (virtually undeformed) pegmatites of the Madawaska Mines area were potentially less competent than
their metagabbroic host rocks then they would be even more susceptible to deformation at the "hinges" of pseudo-folds (bifrucation points, knees of dikes, etc.).

We sampled the straight "limbs" as well as the convex and concave hinge regions of several fold-like crooks and bifrucation structures in the Madawaska Mines (Figure 14 and $15 \mathrm{a}, \mathrm{b}, \mathrm{c})$. At none of these structural sites do the pegmatite textures show macroscopic or microscopic signs of significant ductile deformation. Unlike in most rocks of the $F M C$, there is no evidence of significant ductile deformation of feldspar in the pegmatites. Quartz ribbons, however, are occasionally found indicating a low to moderate level of granular strain. The amount of deformation in concave, convex, and intermediate areas of "hinge" zones of pegmatite bodies appears to be the same as that found in the "limbs".

There seems to be no doubt that the uranium-ore bodies at Madawaska Mines were indeed emplaced after, or in the waning stages of, the Grenville tectonism that caused the penetrative deformation in the FMC.

## GEOCHEMICAL AFFINITY OF URANIUM

This study has been concerned with the structural control of uranium-ore bodies rather than the fixation of the uranium. However, emplacement of the pegmatites occurred by replacement of metagabbro host rock and various observations suggest that this may control the bulk of uranium mineralization.

In the Madawaska Mines the high-grade uranium ore is believed to occur within pegmatite rich in mafic minerals and along the contact between pegmatite bodies and highly mafic host rocks. Also, where mafic xenoliths occur in the pegmatite, uranium is apparently concentrated at the rims of the xenoliths (Ralph Alexander, Chief Geologist; Madawaska Mines, personal communication, 1981). We were able to confirm these observations by systematic sampling, chemical analysis, and correlation between the amount of uranium and those of major and minor chemical elements in the granitoid rocks.

Thirty-one whole-rock chemical analyses were obtained from the mine area, and the amount of $U_{3} 0_{8}$ compared with that of 21 other elements plus loss on ignition (Figure 16).

Thorium shows the best correlation with a coeficient of 0.97 because it crystallizes in the dominant uranium-bearing species, uraninite. Madawaska Mines employees who analyzed the rocks for uranium and thorium, found that they occur consistently in a ratio of 2:1. Zirconium, which is highly immobile due to its insolubility and extremely high melting point has the second-highest correlation coefficient of 0.96. This demonstrates that the present distribution of uranium was mainly attained by primary magmatic precipitation. The remaining elements can be divided into two groups depending on whether they were predominantly incorporated into mafic or felsic minerals. All elements in mafic minerals have a positive correlation with uranium, whereas all those in felsic minerals have a negative correlation.

As evident in numerous exposures (Figures $13 a$ and $b$ ), most of the mafic constituents in the pegmatites are
structural and/or compositional relics of the mafic host rocks. Figure 17 shows that the mechanical disaggregation of host rocks can lead to pegmatites with more evenly dispersed mafic constituents. In combination with these geological observations, the chemical correlations support the hypothesis that uranium was precipitated during pegmatite genesis and concomitant replacement of mafic host rock.

## MAJOR CONCLUSIONS

Our field-based structural study of the southwestern Faraday Metagabbro Coomplex (FMC) and the Madawaska Mines area has led to the folowing major conclusions.
(1) Pegmatite bodies were emplaced preferentially into the FMC and similar mafic units in the Bancroft region.
(2) The pegmatite bodies of the Madawaska Mines area are virtually undeformed. They were emplaced in the waning stages of the Grenville orogeny.
(3) The pegmatite bodies were mainly formed by replacement (partial assimilation) of metagabbro.
(4) Most pegmatite bodies are subparallel to the internal structure and outer contact of the FMC.
(5) All chemical elements that were predominantly incorporated into mafic minerals of the pegmatite bodies have a positive correlation with uranium. All elements that were predominantly incorporated into felsic minerals have a negative correlation with uranium. Zirconium, a highly refractory element has correlation coefficient of 0.96 with uranium. This suggests that uranium precipitation occurred assimilated.

Fig. 1 Generalized geological map of the western Bancroft area (after Bedell, 1982), and location of Madawaska Mines (formerly called Faraday Uranium Mines).

Fig. 2 Previously postulated folds in the subsurface within and adjacent to Madawaska Mines (redrawn from Little et al., 1972).

Fig. 3 Simplified structural map of the Madawaska Mines area (after Bedell, 1982).

Fig. 4 Strained metagabbro cut parallel normal to the planer shape fabric of the strained mafic aggregates; (a) section parallel to the stretching lineation, (b) section perpendicular to the stretching lineation.

Fig. 5 Local dispersion and areal variation in trend of the mineral fabric in the western Faraday Metagabbro Complex. Black regions are pegmatite bodies mapped at surface.

Fig. 6 Azimuth frequency plots and fabric diagrams contoured by Kamb's method. Further explanation on the individual plots and diagrams. For geographic location at surface, see Figure 5.

Fig. 7 Synoptic plots and diagrams of foliation data obtained underground (a) and at surface (b).

Fig. 8 Synoptic diagram of all mineral lineation directions measured at surface and underground; and contours according to Kamb's method.

Fig. 9 Obliquity between foliation strike in wall rocks and strike of adjacent pegmatite contacts.

Fig. 10 Point diagram of joint normals obtained at surface (see text).

Fig. ll L-S fabric pattern in southwestern Faraday Metagabbro (larger map)

Fig. 12 Quadrilateral phase diagram for pyroxene (see text).
Fig. 13a Replacement of layered metagabbro (8a) by pegmatite (7b). The pegmatite dyke is about 20 cm wide. Code and date refers to a sketch in Bedell's field notes.

Fig. 13b Pegmatite lobe with ghost foliation parallel to gneissosity in wall rock. Note late dykelet cutting the pegmatite. Sketch made on $1200^{\circ}$ level of mine.

Fig. 14 Bifurcating pegmatite bodies with fold-like regions sampled for textural study.

Fig. 15 No textural differences are apparent in thin sections from (a) intermediate, (b) convex or concave areas of "hinges" or (c) "limbs". Also note the relatively low amount of ductile strain relative to that found within the FMC (see text).

Fig. 16 Correlation of uranium with other chemical elements in U-rich pegmatites.

Fig. 17 Mechanical disaggregation of gabbroic xenoliths within a pegmatite body. Location in mine as indicated.
Figure l. Generalized geological map of the western Bancroft area (after Bedell, 1982 ) and location of Madawaska Mines (formerly called Faraday Uranium Mines)
IGNEOUS ROCKS $\because:=3$ Granile, granife pegmatite Hybrid syenite
gneiss, migmatite, syenile pegmatite Nephaline gnaiss, Diornblendito pyroxe Diorite, gabbro, nite, anorthosile:
metagabbro, amphibolite
SEDIMENTS Crystalline, limestone
or dolomite, silicated limestone, lime-silicate
rock, metapyroxenite, skam Amphibolito, paraargillite, pelitic schist,
conglomerate, arkose. (1) Faraday Uranium
Mines, Limited $\begin{aligned} & \text { (2) Greyhawk Uranium } \\ & \text { Mines, Limited }\end{aligned}$


Figure 2. Previously postulated folds in the subsurface within and adjacent to Madawaska Mines (redrawn from Little et al., l972).


Figure 3. Simplified structural map of the Madawaska Mines area (after Bedell, 1982).


Figure 4. Strained metagabbro cut parallel normal to the planer shape fabric of the strained mafic aggregates;
(a) section parallel to the stretching lineation,

Figure 4. Strained metagabbro cut parallel normal to the
(b) section perpendicular to the stretching lineation.




Figure 6. Azimuth frequency plots and fabric diagrams contoured by Kamb's method. Further explanation on the individual plots and diagrams. For geographic location at surface, see Figure 5.

FMC FOLIATIONS MINE SURFACE


Figure 6a. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.
fmC foliations mine surface


Figure 6b. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.

FMC FOLIATIONS NORTH ERST


Figure 6c. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.


Figure 6c. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.

FMC FOLIATIONS WEST SHEAR


Figure 6c. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.


Figure 6d. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.


Figure 6d. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.


Figure 6e. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.


Figure 6e. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.
fMC FOLIATIONS WEST NEPHELINE PLUG


Figure 6f. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.

FMC FOLIATIONS MIDDLE


Figure 6f. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.


Figure $6 \bar{g}$. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.

FMC FOLIATIONS UNDERGROUND


Figure 6g. Azimuth frequency plots and fabric diagrams contoured by Kamb's method.

FMC FOLIATIONS UNDERGROUND


Figure 7a. Synoptic plots and diagrams of foliation data obtained underground.

## Kamb's Method



Figure 7b. Synoptic plots and diagrams of foliation data obtained at surface.


Figure 8. . Synoptic diagram of all mineral lineation directions measured at surface and underground; and contours according to Kamb's method.


Figure 9. Obliquity between foliation strike in wall rocks and strike of adjacent pegmatite contacts.


Figure 10. Point diagram of joint normals obtained at surface (see text).
Figure ll. L-S fabric pattern in southwestern Faraday Metagabbro Complex
as judged by inspection of sawn hand specimens and structures in outcrops.




Figure 13a. Replacement of layered metagabbro (8a) by pegmatite (7b). The pegmatite dyke is about 20 cm wide. Code and date refers to a sketch in Bedell's field notes.

Figure 14. Bifurcating pegmatite bodies with fold-like regions sampled


Figure 15. No textural differences are apparent in thin section from
(a) intermediate

(b) convex ore concave areas
of "hinges" or

(c) "limbs".

Also note the relatively low amount of ductile strain relative to that found within the FMC (see text).



Figure 17. Mechanical disaggregation of gabbroic xenoliths within a pegmatite body. Location in mine as indicated.

Appendix 1

Magnetic Fabric of Matagabbros

## $\cdots$

## APPENDIX 1

Bulk magnetic susceptibility anisotropy (BMSA) of metagabbros was studied with a torque meter made at the University of Toronto. This instrument determines the magnetic susceptibility ellipsoid in cylindrical samples of (drill core) $1 "$ diameter and . $85^{\prime \prime}$ length. The susceptibility ellipsoid reflects the fabric of ferrimagnetic grains which presumably correspond with the total mineral fabric of a rock.

The ferrimagnetic grains in the FMC consist of magnetite and monoclinic pyrrhotite. These magnetic grains are commonly associated with the mafic clots (Figure 4) that act as markers of the rock fabric throughout the FMC. When visual rock fabric directions are compared with those obtained from the BMSA there is good agreement. Cores were oriented so that the mineral lineation should be at approximately $0^{\circ}$ or $180^{\circ}$.

The problem with the BMSA application in this study is that the observed $L, S$ fabric (predominantly ineated, foliated, or lineation = foliation) often does not agree with the shape of the magnetic susceptibility ellipsoid.

The shape of the magnetic susceptibility ellipsoid is determined by measuring the differences between the principal susceptibilities and determining the ratio:

$$
P=\left(K_{\max }-K_{i n t}\right) /\left(K_{i n t}-K_{\min }\right)
$$

Therefore, if $P$ is greater than unity the ellipsoid is dominantly lineated, if less than unity it is dominantly
foliated, or approximately unity it is equally foliated and lineated.

A plot of observed rock fabric against measured susceptibility ellipsoid is shown in Figure A. There seems to be a weak correlation between the observed and measured fabrics, and significant variation in measured P-values between cylindrical specimens from the same sample.

Inhomogeneity of magnetic material within a given sample may be a problem. This is indicated by Figure $B$ and $C$ where the maximum deflection (amount sample is rotated within an applied magnetic field) out of 15 measurements for each core was plotted against deviation (in degrees) of the maximum susceptibility axis from $0^{\circ}$ or $180^{\circ}$. One can observe for any given sample that the maximum deflection may vary considerably from core to core. The average silicate grain size is approximately . 5 mm but the mafic aggregates are commonly up to 5 mm across and may be up to 10 cm long. The large grain size could explain the great variations in magnetic content which may effect $P$-values.

Figures $D$ and $E$ demonstrate how core reorientation within the sample chamber gives similar P-values as should be expected. Figure $E$, core $B$ contains a fine grained layering and this effect seems to be detected by the BMSA as a more oblate $P$-value. Therefore, the method appears to be working with respect to orientations and local perturbations of the pervasive $L$ and $S$ tectonite fabrics.

Another source for error are variations in the length/diameter ( $1 / d$ ) of the cylindrical specimens. The effect of $1 / d$ variations in the $F M C$ was examined by progressively reducing a single specimen (sample SPDA) from
.90 to . $70 "$ in steps of . $00^{\prime \prime}$. A small but consistent variation was found among BMSA ellipsoid directions and P-values (Figure F). For the interval . 85 to . $75^{\prime \prime}$ the exact same axis orientations and P-values were found. At . 70" a significant change in $P$-value and maximum susceptibility axis suggests inhomogeneity with respect to magnetic mineral content.

Collectively the petrographic observations, plots of maximum susceptibility, and $1 / d$ data suggest inhomogeneity to be the main source of difficulty. The amount of opaques within the mafic aggregates suggests that we may be dealing with magnetic shape anisotropy. Given the coarse grained nature of these magnetic aggregates with respect to the relatively small specimens, compositional inhomogeneities prevent reliable P-values, but may yield accurate BMSA ellipsoid orientations.

Figure A: A plot of fabric "observed" against P-values. $P$ > 1 represents a lineated magnetic fabric, $P<1$ foliated, $P$ approximately 1 equally foliated and lineated. If the magnetic fabric matched the observed mafic mineral fabric, the analyses should ideally cluster in an envelope from the lower left origin extending to the upper right corner of the plot. This is clearly not the case. For instance, only one sample (M-G6) that has an observable strong lineation actually recorded a well lineated magnetic fabric. Individual cores are plotted as dots and cores from the same sample are connected by a horizontal line. The large variation in $p$
between cores from the same sample suggests an inhomogeneous magnetic fabric.

Figures $B$ and $C$ : Plots of maximum deflection against degree variation of maximum susceptibility axis from ideal alignment along 0 or $180^{\circ}$. This plot indicates that most samples show reasonable agreement between observed mineral fabric lineation and maximum magnetic susceptibility trend (e.g. 0 $15^{\circ}$ ). Note how variation between observed and measured fabric orientation tends to increase with decreased maximum deflection. At low susceptibility differences the error of the analysis increases. The maximum deflection found in the 15 measurements taken per core (usually 3 cores taken per sample) is variable. The amount of deflection is related to the amount of oriented magnetic minerals in the core. Hence, variable deflections in cores from the same sample, of the same orientation, represent inhomogeneity of magnetic material.

Figure D: Cores drilled at different orientations. Typically cores were drilled perpendicular, on to the plane of foliation. A core drilled along lineation $(P=1.48)$ shows a $90^{\circ}$ flip of the maximum susceptibility trend from 0 or $180^{\circ}$ to approximately vertical. This demonstrates the ability of the $B M S A$ to give accurate directions of the magnetic fabric coincident with the observed mafic mineral fabric.

Figure E: Variation in principle susceptibility axes with reorientation of drill core. Core $B$ shows a fine (mm scale) relic igneous layering that is discernible by the BMSA method with an oblate $P$-value of 0.47 .

Figure $F$ : Variation in maximum susceptibility trend with Length/Diameter (L/D) of drill core. A single core originally $1 " x 1^{\prime \prime}$ was shaven in $0.05^{\prime \prime}$ intervals and analyzed. At 0.95" the sample was realigned in the sample chamber and replicate analyses were taken to determine accuracey. A consistent trend of principle susceptibility axes with decreasing core length was observed. At $L / D=0.70$ there is a flip in the principal susceptibility direction. This trend and P-value suggests a more prolate ellipsoid parallel to the length of the drill core.

## fp

## BMSA SAMPLE LOCATIONS

Sample numbers for BMSA analyses were designed to accomodate the $F O R T R A N$ computer that reduced the data. The following list should clarify the location of those specimens not readily located by their sample number.

LFB1: LFB12
15WA: N15W-A
WN11B: N11W-B
WN11A: N11W-A
M1-C: Mag 1-C
M1DA: Mag $1-D_{A}$
M1DB: Mag $1-D_{B}$
M1DC: Mag $1-D_{C}$
70E1: N70E-A (near baseline)
72EA: N72W-A (near baseline)
BL-5: Bentley Lake Domain station $E$
BL-8: Bentley Lake Domain station B
SPBL: Sand pit on North Shore of Bow Lake station SP-A
SP13: Sand pit station D
150A: 150' level of mine station $A$
4A34: 450' " " " 34
4A41: " " " " 41
4A42: " " " 42
4A43: " " " " 43
4A44: " " " " 44
7516: 750' level of mine station at entrance to 516 drift


7SPT: 750'
75XC: 750'"
12-D: 1200' "
"
"
${ }^{\prime \prime}$
"
" at shaft
" at entrance to 537 stope
" at 502 cross cut
" $D_{10}$


Appendix 1, Figure A.



```
Appendix 1, Figure D.
```



JIECIIAEN NO. IS :A-GE
UATA FRGM O TO 180 DEGRT.ES. FEADING POSITIUNS $1,2.3$

| -0.3 | -1.9 | 0.3 | 1.8 | -3.3 |
| :--- | :--- | :--- | :--- | :--- |
| -0.7 | 1.3 | 0.7 | -1.3 | $-0 . t$ |
| $-0 . i$ | -1.8 | 0.7 | 1.7 | -0.6 |


SUSE = -4.47 CHECK $=$ P7.31 PLUNSE IS 46.10
SUSC= -3.06 CHECK= $\quad$ PLUNITE IS -4.2 .26
$\begin{array}{lll}\text { SUSC }=15 \text { CHECK }=13 & 0 . . \\ \text { TREND IS } 177.59 \text { PLUNGE IS } & \text {. } 77\end{array}$
$\mathrm{P}=2.27183$
ROCK IS PKEDOMINATITLY LINEATED.
SPECIMEN NO. IS
OATA FRUM O TO 1 SO DEGKEES. READING PUSITIORS 1, 2,3

| 0.1 | -1.3 | -0.1 | 1.3 | 0.1 |
| :---: | :---: | :---: | :---: | :---: |
| -0.5 | 2.3 | 0.6 | -2.3 | -0.5 |
| -0.4 | -2.2 | 0.4 | 2.2 | -0.4 |
| $R O R=$ | -0.21212 | -2.332 | 0.074 |  |


SUSC= $=4.69$ CHECK
TREND 15
59.43 FLUNGE IS 77.40

SUSC= 0.07 CHECK= PLUNGE IS. 7.OE
P= 1.20727
ROCK IS PFEUOMINANTLY LINEATED.
SPECIMEN NO. IS
DATA FROM O TO $15 C$ DEGRËES. RFACING FOSITILES $1,2,3$

$P=1.10005$
ROCK IS PREDOMINANTLY LINEATED.
SPECIMEN ND. IS M-GG
DATA FROM 0 TO 180 DCGRIEES READING PDSITICNS $1,2,3$
C

| -0.4 | 1.8 | 0.4 | -1.3 | -0.4 |
| :---: | :---: | :---: | :---: | :---: |
| -0.4 | -4.5 | 0.4 | 4.4 | -0.4 |
| 0.5 | 2.8 | -0.6 | -2.4 | 0.4 |
| $R O R=$ | 0.01557 |  |  |  |

$\begin{array}{rrrrr}\text { ERROR }= & 0.01557 \\ \text { RODTS }= & -0.057 & 3.5334 & 3.973\end{array}$
$\begin{array}{lll}\text { SUSC= }-0.06 & \text { CIICCK= PLUNGK IS } \\ \text { TREND } 15 & 5.93 & 2.20\end{array}$
$\begin{array}{ll}\text { SUSC } \\ \text { TREND } 15.58 \text { CHECK }= & 0 . \\ \text { PLUNGE } 15 & -6.04\end{array}$

$P=1.47999$
$-$
ROCK 15 PRFDOIINANTLY LINRATED.

## Appendix 1, Figure E.



SPECIMEN NO - IS MIDE
DATA FRUM O TO 180 DEGREES. READING POSITIUNS $1,2,3$

| 0.5 | -0.8 | -0.4 | 0.8 | 0.5 |
| :---: | :---: | :---: | :---: | ---: |
| -0.2 | 1.9 | 0.2 | -1.9 | -0.2 |
| 0.4 | -1.0 | 0.4 | 1.0 | -0.4 |




SUSC $=10.15$ CHECK=
TREND 15 196.13 PLUNGE IS
$P=0.83508$
ROCK IS PREDUNINANTLY FCLIATED.
SPECINEN NO• IS
DATA FROM O TO 180 DEGREES. READING PUSITIONS $1,2.3$

| 0.4 | -0.8 | -0.4 | 0.8 | 0.4 |
| :---: | :---: | :---: | :---: | ---: |
| -0.1 | 1.9 | 0.1 | -1.9 | 0.0 |
| -0.4 | -1.0 | 0.4 | 1.0 | -0.4 |


$P=0.74669$
ROCK IS PREDOMINANTLY FELIATED.
SPECINEN NO. IS
DATA FKOM O TO 180 DEGREES, PEADING PUSITIUNS 1.2 .3

| -0.4 | -0.8 | 0.4 | 0.8 | -0.4 |
| ---: | ---: | ---: | ---: | ---: |
| -0.1 | 1.9 | 0.1 | -1.9 | 0.0 |
| -0.4 | -1.0 | 0.4 | 1.0 | -0.4 |

ERROR $=0.02703$

TREN( IS $78.87 \quad$ PLUNGE IS: 79.55
SUSC $=-1.60$ CHCCK $=$

TREND IS 348.15 PLUNGE IS 0.13
ROCK LS PREDUMINANTLY ECLIATED.
SPECIMEN NO. IS
DATA FKOM O TO 180 DEGREES, READING POSITIONS 1.2 .3
$\begin{array}{rrrrr}0.4 & 0.9 & -0.3 & -0.9 & 0.3 \\ -0.1 & 1.1 & -0.4 & -1.1 & 0.4 \\ 0.1 .9 & 0.0 & 1.9 & 0.1\end{array}$
ERROR= 0.01935 $0.01 \mathrm{~s} \quad 1.850$
TREND IS 175.73 PLUNGE IS 79.98
TREND IS 170.44 PLUNGE 1 S - 9.99
SUSC= i.85 CHECK= PLUNGE IS. 0.91
2
$P=0.81845$
ROCK IS PREDOMINANTLY FCLIATEC.
SPECINEN NL IS
DATA FROM O TO 1 \&O DEGREES, REACING POSITIONS $1,2,3$

| 0.3 | -0.7 | -0.3 | 0.7 | 0.3 |
| ---: | ---: | ---: | ---: | ---: |
| -0.3 | 2.3 | 0.3 | -2.3 | $-\vdots .3$ |
| -0.4 | -1.6 | 0.4 | 1.6 | -0.4 |

Appendix 1, Figure F.




Appendix 2

## Microstructural Study

## APPENDIX 2

In an effort to quantify the three microstructural states as determined from the dominant plagioclase texture in thin section, 50 length and width measurements of randomly selected plagioclase grains were made per section. Using 20 representative thin sections from throughout the southwestern FMC, ANOVA (Table A) determined that the three microstructural states were statistically independent populations with $>95 \%$ confidence.

Average cumulative curves (Folk, 1974) were constructed for each of the three microstructural states (Figure A). The advantage of this construction is that numerous quantitative statistical parameters can be derived (Table B). These statistics are pictorially presented for ease of visual interpretation.

Microstructural state \#1 is characterized by the presence of relic igneous plagioclase laths indicating a low level of deformation. State \#2 is characterized by an absence of igneous laths. The original laths have been dismembered and transformed by progressive rotation into the grains of aggregates dominated by mechanical twins. This process suggests a relatively high level of deformation. State \#3 is characterized by a recrystallized groundmass dominated by strain free equant plagioclase grains that have become optically positive. The lack of optically discernible strain effects in these grains reveals that recovery and recrystallization was static.

We will now examine the results of the grain size statistics in relation to the three microstructural states. The median value (Table $B$, derived from Figure $A$ ) is variable
because of variable initial grain size. However, the mean value decreases progressively as one changes from microstructural state \#l to \#3, owing to greater changes in fabric. This is strong evidence for the dominance of the mechanism of recrystallization by subgain formation coupled with progressive rotation of the subgrains as seen in thin section. Recrystallization by nucleation and growth tends to increase the grain size.

The value of the Inclusive Graphic Standard Deviation can be correlated with the relative degree of sorting as determined by sedimentologists. In the present context, we are not dealing with processes of mechanical sorting but are attaining uniform grain size by deformation and recovery.

The value of Inclusive Graphic Skewness expresses the degree to which the grain size population approaches a normal distribution. As expected, skewness decreases with increasing fabric modification.

Kurtosis is a function of "peakedness" of the normal distribution curve. The present data demonstrate that microstructural state \#l is better sorted at the center than the tails of the statistical curve, while \#2 and \#3 show approximately equal sorting in the center and tails of that curve.

In conclusion, these statistics are useful in demonstrating the operation of different mechanisms of microstructural grain modification and their relative significance in fabric development.

Figure $A$ : Plot of cumulative percent of grains that make it through a sieve of a given mm. grain size (Folk, 1974). In this study, grain size represents the longest dimension measured in plagioclase. Each curve represents an average cumulative curve for one of three microstructural states.

Table A: Analysis of Variance (ANOVA) of all the raw data from measured plagioclase grains demonstrates that each one of the three microstructural states is a statistically independent population with $>95 \%$ confidence. This allows us to construct three average cumulative curves for the three microstructural states (Figure A).

Table B: Statistical data obtained from the three average cumulative curves shown in Figure $A$.

This lithologic map is a modified version of that produced by Morris (1956). The scheme of rock types is that outlined by $\operatorname{Dr}$. S.B. Lumbers who is doing exstensive regional mapping throughout the Grenville province of Ontario.

In this legend the main catagories of rock types are listed and only those subdivisions which are applicable to this study are presented.

11- Alkalic Rock - Carbonatite and Related Dikes
(a) Carbonatite

10- Paleozoic and Sedimentary Rocks

9- Post Metamorphic and Late Metamorphic Intrusive Rocks
(a) Diabase dikes

8- Anorthosite Suite
(a) Gneissic anorthositic gabbro and gabbroic anorthosite with layering and ultramafics
(b) Metagabbro and metadiorite

7- Late Granitic and Syenitic Rocks
(a) Massive quartz monzonite
(a') Gneissic quartz monzonite
(b) Granite pegmatite
(b') Syenitic pegmatite poor in quartz with pyroxene, amphibole, magnetite, apatite, calcite, uranium ?, pyrite, (brick red colour)
(b'') Calcite-rich pegmatite with apatite, fluorite, K-feldspar
(c) Massive syenite
(d) Gneissic syenite
(e) Gneissic nepheline syenite
(f) Gneissic syenite with apatie, pyroxene, amphibole
(g) Gneissic, alkalic, corundum-bearing syenite
(h) Nepheline bearing syenite pegmatite
(j) Albite syenite
(k) Leucosyenite pegmatite

6- Early Granite Rocks

5- Migmatitic Varieties of Clastic Siliceous Metasediments

4- Mafic Intrusive Rocks
(a) Metagabbro and metadiorite
(b) Metadiabase

## 3- Carbonate Metasediments

(a) Calcite marble
(é) siliceous marble
(f) fine grained dark grey marble
(h) skarn

## 2- Clastic Siliceous Metasediments

(a) Metagreywacke
(b) Orthoquartzite

1- Calcareous Metasediments
Appendix 2, Table A.

Appendix 2, Table B.

| Microstructural State | \#1 | \#2 | \#3 |
| :---: | :---: | :---: | :---: |
| - - . | - . - |  |  |
| Median . | . 52 mm | . 56 mm | . 42 mm |
| $\begin{array}{r} \text { Mean } \begin{array}{r} 16-84 \\ 5-95 \end{array}, ~ \end{array}$ | $\begin{aligned} & .69 \mathrm{~mm} \\ & .72 \mathrm{~mm} \end{aligned}$ | $.56 \mathrm{~mm}$ $.60 \mathrm{~mm}$ | . 42 mm <br> .43 mm |
| Inclusive Graphic Standard Deviation | $1.09 \emptyset$ (poorly sorted) | $\begin{aligned} & \text { (moderately } \\ & \text { well sorted) } \end{aligned}$ | $\begin{aligned} & \text { (moderately well } \\ & \text { to. well sorted) } \end{aligned}$ |
| Inclusive Graphic Skewness | $\begin{aligned} & -0.250 \\ & \binom{\text { excess }}{\text { coarse }} \end{aligned}$ | $\begin{aligned} & +0.010 \\ & \text { (nearly } \\ & \text { symmetrical) } \end{aligned}$ | $\begin{gathered} -0.009 \\ \text { (nearly } \\ \text { symmetrical }) \end{gathered}$ |
| Kurtosis | $\begin{gathered} 1.15 \\ \text { (leptokurtic) } \end{gathered}$ | $\begin{gathered} 1.07 \\ \text { (mesokurtic) } \end{gathered}$ | $\begin{gathered} 1.04 \\ \text { (mesokurtic) } \end{gathered}$ |

## Appendix 3

## Data and Statistics used for Summary Display and Correlation in Figure 16










䛇


Nmodncon mun

| S 86 | $\varepsilon ¢ 0$ | 000 | 900 | 800 | $10 \%$ | 845 | 24\％ | 620 | 610 | 6 El | C2L | $1 \varepsilon$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 086 | $1 \varepsilon \%$ | 000 | 200 | 100 | 180 | 26 3 | 19\％ | $1 \varepsilon \%$ | $1 \varepsilon \%$ | LZI | ＋bL | OE |
| 066 | $4{ }^{\circ} \mathrm{O}$ | 000 | 600 | E0 0 | 001 | $2 \varepsilon 0$ | 209 | Or 0 | 50 I | 901 | 682 | 62 |
| －86 | 180 | 000 | $90 \%$ | 200 | 920 | 140 | is 2 | 820 | 880 | $\angle \mathrm{El}$ | StL | 82 |
| 186 | 40 | 000 | 010 | to 0 | 860 | 960 | 612 | $1+0$ | $10 \%$ | lt | －EL | 12 |
| 986 | $4{ }^{\circ} 0$ | 000 | 210 | 200 | 160 | 2s ${ }^{\circ}$ | $66 \%$ | $0 ¢ 0$ | cto | 9 El | てEL | 92 |
| 186 | $1 \varepsilon \%$ | 000 | $20 \%$ | 100 | $8{ }^{5} 0$ | E0\％ | 597 | 610 | 010 | $\square 21$ | 0.92 | sl |
| 186 | $\varepsilon<\%$ | 000 | 80 0 | 100 | 190 | S 68 | 089 | 880 | \＆ 0 | 5 sl | cil | 12 |
| 186 | 180 | 000 | 00 | 100 | St 0 | びy | OS S | に0 | 010 | $\angle 91$ | 169 | $\varepsilon$ |
| $186{ }^{\circ}$ | 680 | 000 | $50 \%$ | 100 | 160 | 125 | E\％ | COO | 040 | $t 71$ | $0 \%$ | Z2 |
| $\varepsilon 86$ | 180 | 000 | $80 \%$ | 100 | 540 | 215 | 68.6 | 920 | 810 | 171 | $18 L$ | 12 |
| 966 | して | 100 | SI 0 | 0 | 921 | $41 \%$ | 958 | E9 ${ }^{\circ}$ | 948 | 169 | $8)$ | 02 |
| 186 | E6 0 | 000 | 100 | 200 | 880 | $16 \%$ | 59. | 080 | $60 \%$ | 1 H | 8 zl | 61 |
| S 96. | 580 | 600 | 840 | 0r 0 | 181 | 40 | Lt | Sce $\varepsilon$ | 216 | 168 | C 68 | 81 |
| WTS | 101 | Sold | 2011 | OW | E0z3s | OCY | O20 | 0014 | OfJ | EOCH | 2015 | 3lands |

$$
\begin{aligned}
& \text { 윤 }
\end{aligned}
$$

## $\stackrel{\llcorner }{\Sigma}$ 






```
-
```

$$
-
$$

Appendix 4

## Station Location Map



## ACKNOWLEDGEMENTS

We would like to thank Patrick Ramsay and Steve Hall for assistance during the 1980 and 1981 field seasons respectively. R. Alexander, chief geologist, and staff geologists 0. Zavesiczky and L. Richardson were particularly helpful in providing a great deal of information about the mine. M. Zurowski of Conwest provided data on the mine after its closure in 1982. Dr. S.B. Lumbers and V. Vertolli of the Royal Ontario Museum provided valuable assistance in discussions and on field trips about the regional geology. S. Masson of Laurentian University and $N$. Culshaw of Carlton University freely shared their knowledge of the area. We are most grateful to the Ontario Geological Survey for their financial as well as logistical support and like to thank particularly Cheryl Collins, Wendy Pa申quette, Hans Meyn, and J.A. Robertson.

## BIBLIOGRAPHY

Appleyard, E.C. and Williams, S.E.
1981: Metasomatic Effects in the Faraday Metagabbro, Bancroft, Ontario, Canada; Tzchermaks Min. Petr. Mitt., Vol. 28. pp.81-87.

Ashwal, L.D.
1982: Mineralogy of Mafic and Fe-Ti Oxide Rich Differentiates of the Marcy Anorthosite Massif, Adirondacks, New York; American Mineralogist, Vol. 67. pp. 14-27.

Bedell, R.L. and Schwerdtner, W.M.
1981: Structural Controls of U-ore Bodies in the Madawaska Mines Area, Bancroft, Ontario; pp. 13-17, in Summary of Research, 1980-1981, edited by E.G. Pye, Ontario Geological Survey, Miscellaneous Paper 98.

Bedell, R.L.
1982: Influence of a Metamorphosed Gabbro in the Control of Uranium-Bearing Pegmatite Dykes, Madawaska Mines, Bancroft, Ontario; pp. 139-143, in Uranium in Granites, edited by Y.T. Maurice, Geological Survey of Canada, Paper 81-23.

Chapple, W.M.
1969: Fold Shape and Rheology: The Folding of an Isolated Viscous-Plastic Layer;Tectonophysics, Vol. 7, pp. 97-116.

Folk, R.L.
1974: Petrology of Sedimentary Rocks; Hemphill Publishing Company, Austin, Texas.

Hewitt, D. and Satterly, J.
1957: Haliburton-Bancroft Area, Ontario Department of Mines, Map No. 1957b.

Kamb, W.B.
1959: Ice Petrofabric Observations From Blue Glacier, Washington, in Relation to Theory and Experiment; J. Geophysical Res. Vol. 64, pp. 1891-1909.

Kretz, R.
1968: Study of Pegmatite Bodies and Enclosing Rocks, Yellowknife, Beaulieu Region, District of Mackenzie; Geological Survey of Canada, Bulletin 159. 108 p.

Kronenberg, A.K. and Shelton, G.L.
1980: Deformation Microstructures in Experimentally Deformed Maryland Diabase; Journal of Structural Geology, Vol. 2, pp. 341-353.

Little, H.W., Smith, E.E.N. and Barnes, F.Q.
1972: Uranium Deposits of Canada; International Geological Congress, Guidebook for 24th Exscursion C67.

Morris, H.R.
1956: Surface Geology of the Faraday Uranium Mine, Bancroft,

Ontario; unpublished M.Sc. Thesis, University of Toronto.

Price, N.
1966: Fault and Joint Development in Brittle and Semi-Brittle Rock. Pergamon Press.

Ross, M.R. and Huebner, J.S.
1975: A Pyroxene Geothermometer Based on Composition-Temperature Relationships of Naturally Occurring Orthopyroxene, Pigeonite and Augite; International Conference of Geothermometry and Geobarometry, Extended Abstracts Pennsylvania State University, University Park, Pa.

Schwerdtner, W.M., Sheehan, P.M., and Rucklidge, J.C.
1971: Variation in Degree of Hornblende Alignment Within Two Boudinage Structures; Can. Jour. Earth Sci., Vol. 8, pp. 144-149.

Schwerdtner, W.M., Bennett, P.J. and Janes, T.W.
1977: Application of L-S Tectonite Scheme to Structural Mapping and Paleostrain Analysis; Canadian Jour. Earth Sci., Vol. 14, pp. 1021-1032.

Schwerdtner, W.M. and Lumbers, S.B.
1980: Major Diapiric Structures in the Superior and Grenville Provinces of the Canadian Shield; in The Continental Crust and its Mineral Deposits, editor D. Strangway, Geological Association of Canada Special Paper 20, pp. 149-180.








[^0]:    E.G. Pye, Director

    Ontario Geological Survey

