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ABSTRACT

Uranium-bearing pegmatite bodies in the Madawaska Mines 

area were emplaced preferrentiall y into the southwestern 

Faraday Metagabbro Complex. The pegmatite bodies are 

virtually undeformed. They were emplaced in the waning stages 

of Grenville Orogeny. Not dilation but replacement (partial 

assimilation) of host rock was the main mechanism of 

emplacement. The majority of the pegmatite bodies are 

subparallel to the internal structure and outer contact of 

the southwestern Faraday Metagabbro Complex.

All chemical elements that were predominantly 

incorporated into the mafic minerals of the pegmatite bodies 

have a positive correlation with uranium. All elements that 

were predominantly incorporated into the felsic minerals of 

pegmatite bodies have a negative correlation with uranium. 

Zirconium, a highly refractory element, has a correlation 

coefficient of 0.96 with uranium. This suggests that uranium 

precipitation occurred under magmatic conditions and while 

the host rocks were being assimilated.

INTRODUCTION

Most of the uranium in the Madawaska Mines is confined 

to a medium to coarse grained granite-syenite, collectively 

called pegmatite, which occurs predominantly as sheets and 

finger-like bodies (dikes, sills, and veins) in the 

southwestern portion of the Faraday Metagabbro Complex 

(Figure 1). We carried out field-based research with the aim
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of determining what structures and structural processes

controlled the emplacement of these pegmatite bodies. 

Although the problem of uranium fixation was outside the 

scope of the original project, we felt compelled to pursue 

this subject sufficiently to develop a comprehensive model.

Two different processes lead to the emplacement of 

granitoid pegmatite bodies into common metamorphic host 

rocks: (1) dilation, and (2) replacement. Upon brittle 

fracture or other modes of discontinuous deformation of host 

rocks, one of the rival processes generally dominates in the 

development of quartzo-feldspathic veins and common 

pegmatitic bodies. Simple geometric criteria have benn 

established (Kretz, 1968) which permit the geologist to 

differentiate between dilation veins and replacement veins. 

These criteria are difficult to use where pegmatite bodies 

are quasi-concordant, non-planar, and/or severely deformed. 

It was, therefore, necessary to investigate whether the 

pegmatite bodies at Madawaska Mines had been severely 

strained, together with their gabbroic host rocks. As part of 

this investigation, we mapped the fabric pattern of the 

southwestern Faraday Metagabbro Complex (FMC) and studied a 

suite of large rock specimens in the laboratory. Apart from 

its tectonic importance, this work led to a structural map 

also reflecting the physical anisotropy pattern in the 

southwestern FMC. This pattern correlates broadly with the 

geometric pattern of the pegmatite bodies in the mine. In 

addition, we found convincing evidence underground that 

replacement of gabbroic host rock was the dominant mechanism 

of emplacement. As we had suspected, most pegmatite bodies in 

the FMC were emplaced into highly strained gabbroic rocks,
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and escaped severe deformation in situ.

PREVIOUS STRUCTURAL WORK AND REGIONAL SETTING

The FMC is located near the southeastern border of the 

crudely elliptical Faraday Granite (Hewitt and Satterly, 

1957). The rocks at the southern margin of the Faraday 

Granite are fenitized, and belong to a long alkalic belt that 

traverses the Bancroft area (Schwerdtner and Lumbers 1980, 

figure 10; Bedell 1982, figure 16.1).

Diverse modal compositions and textures occur in the 

FMC. This prompted mine geologists to neglect the host rocks 

and monitor only the U, Th abundance and geometry of the 

pegmatite bodies. Little et al . (1972) suggested that the 

pegmatite bodies are associated with a plunging synform and 

an adjacent antiform to the north (Figure 2). We found no 

compelling evidence for these large folds in the foliation 

pattern of the host rocks. Owing to a northeasterly-trending 

regional foliation and the lobate character of the 

southeastern border of the southwestern FMC, quasi-concordant 

pegmatite sheets diverge and converge locally, and create 

fold-like forms in the pegmatite pattern of the.mine. The 

origin of the lobate geometry of the southern contact of the 

FMC (Figure 3) is unknown and cannot be found without 

detailed study of the metasedimentary envelope of the FMC. We 

did not undertake such a study.
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MACRQSTRUCTURE OF THE SOUTHWESTERN FARADAY METAGABBRO COMPLEX

Lithologic and structural mapping of

the southwestern FMC was carried out at surface as well as in 

easily accessible parts of the Madawaska Mines. We wanted to 

obtain a detailed picture of the macroscopic strain pattern 

in the FMC, and assess if, and to what degree, the system of 

the pegmatite bodies is concordant to the structure of the 

host rocks. The distribution, form and orientation of larger 

pegmatite bodies was determined at surface. More complete 

information about the pegmatite bodies has been obtained by 

mine geologists underground, and was readily available to us 

for use in this study.

In addition to the structural mapping, we collected 

oriented specimens of metagabbro for study of the mineral 

fabric and measurement of the magnetic anisotropy. We also 

judged the L, S strain fabric (Schwerdtner et al . 1977) of 

deformed mafic clots by visual inspection of orthogonally cut
*4V*

surfaces (Figure 4J, and compared the results with those of 

the magnetic susceptibility anisotropy determinations.

Maps l, 2, and 3 contain most of the data obtained by 

field mapping. Important structural results of this mapping 

will be discussed in the following paragraphs.

The attitude of foliations and lineations were measured 

in the field throughout the southwestern FMC. To represent 

the variation in attitude of foliation, the southwestern FMC 

was conveniently divided into five domains for which we

constructed rose diagrams and contoured stereoplots (Figures
*--3 

5 and 6^). A synoptic rose diagram for all foliation strikes

is shown in Figure 7a.

Figures 7a and 7b reveal that the regional foliation
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trend is approximately NE-SW, but that there are many local

effects as well. Among the three northern domains, the trend 

shifts according to the northward-concave curvature of the 

foliation pattern (Figure 5). The scatter in the southwestern 

rose reflects the presence of a round nepheline syenite plug 

(map 1) and an interference between (1) the regional 

foliation, (2) a northwesterly-striking shear zone, also 

discernible in the central northern lobe, and (3) the lobate 

contact of the FMC. Although small folds in foliation were 

observed in several outcrops, we found no compelling evidence 

for macroscopic folding (see Previous Structural Work).

Stereoplots for the various surface domains as well as 

all accessible underground levels (Figures 6a-6g) reflect 

the prevailing SE dip of the region. Mineral lineations 

cluster strongly (Figure 8) and confirm the field observation 

that stretching is predominantly down-dip on the regional 

foliation plane.

Figure 3 shows that in the SE border region of the FMC, 

where Madawaska Mines is located, most uranium-ore bodies at 

the adit level of mining trend parallel to the NE regional 

grain. Near the lobate contact of the FMC, the ore bodies 

tend to follow the local pattern of the contact-parallel 

foliation. Apparently the foliation in the host rock controls 

the orientation of the pegmatite bodies in this small region. 

Throughout most of the southwestern FMC and the mine, the 

strike of the foliation tends to be subparallel to the 

pegmatite contacts (figure 9).
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Joint attitudes, routinely obtained during field 

mapping, show considerable scatter in a synoptic stereoplot 

(Figure 10). However, a large number of joints are 

subvertical and trend NW-SE. The preferred orientation of 

joints is thus perpendicular to the regional structural 

grain.

Numerous specimens of deformed metagabbro were cut 

orthogonally to foliation and lineation (Figure 4). After 

visual inspection, specimens were grouped according to 

whether they were (1) predominantly lineated, (2) 

predominantly foliated, (3) as well lineated as foliated, or 

(4) virtually undeformed. The results were plotted on a map 

of the southwestern FMC, and reveal that there are several 

areas with consistent L, S fabric (Figure 11).

Our attempt to quantify the L, S fabric scheme by means 

of the magnetic susceptibility anisotropy method was not 

successful (Appendix 1). Results were not always consistent 

for individual large specimens. On the other hand, some of 

the consistent magnetic results clearly disagreed with the 

shape of the L, S fabrics as determined by inspection. We 

attempted to find the source of difficulty by studying 

heterogeneous samples and learnt that the primary 

compositional layering (at a mm to cm scale) has a strong 

influence on the shape of the susceptibility ellipsoid. For 

example, some lineated metagabbros have a fine mafic layering 

which results in an oblate ellipsoid of bulk magnetic 

susceptibility anisotropy. To be a reliable measure of the



-8- 
strain fabric, the susceptibility ellipsoid of this rock

should be prolate. The main reason for analytical results 

inconsistent with the visual estimates appears to be the 

relatively coarse grain size of the magnetic minerals 

relative to the size of the drill cores measured in the 

torque meter. The inadequate size of the measured cores 

results in inhomogeneous magnetic fabrics. Tests of drill 

cores were made by shaving off minor portions of the sample. 

This procedure led to significant changes in the bulk 

magnetic susceptibility ellipsoid. In addition, the maximum 

deflections (which reflect the magnetic content of the rock) 

vary widely between the three cores used for each sample 

location (Appendix 1).

PETROGRAPHY AND MICROSTRUCTURE OF THE FMC

The Faraday Metagabbro Complex (FMC) is texturally and 

modally diverse. It ranges in composition from anorthositic 

gabbro to amphibolite and contains relict massive to layered 

enclaves reflecting its premetamorphic history. The rocks of 

some areas exhibit greater than 10(^ tensile strain.

In the anorthositic rocks the mafic minerals appear as 

aggregates of amphibole, some of which still contain relict 

clinopyroxene cores. Rare orthopyroxene can be found, and 

when plotted on the pyroxene quadrilateral phase diagram 

(Figure 12), the electron microprobe analyses fall within the 

600-9000 C isotherms as outlined by Ross and Huebner (1975). 

These pyroxenes fall in the same temperature range and have 

similar compositions with respect to both major and minor
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elements as those reported by Ashwal (1982) in the Marcy

Anorthosite Massif of the Adirondacks in New York, also of 

Grenville age and metamorphosed to granulite facies.

The pyroxenes are rimmed by a slightly more sodic 

amphibole that often occurs as randomly oriented aggregates. 

Associated with the amphibole are sporadic occurrences of 

opaques, including magnetite (showing no exsolution textures) 

and monoclinic pyrrhotite. Sphene aggregates are commonly 

associated with magnetite cores. Biotite is also associated 

with these mafic segregations but occurs as euhedral or 

kinked crystals indicative of a later origin relative to the 

bulk of the recrystalli zed mafic aggregates.

Morris (1956) reports a single occurence in the FMC of a 

mass of antigorite, chlorite and magnetite which he suggests 

may represent altered olivine.

Plagioclase occurs in diverse textural forms ranging 

from relict igneous laths, to grains dominated by mechanical 

twins to completely recrystalli zed equant grains (Bedell and 

Schwerdtner, 1981). The composition of the plagioclase as 

determined by electron microprobe analyses ranges from 

labradorite (An g2 to oligoclase An 2 g)-

Scapolite is a common constituent that starts to replace 

plagioclase along cleavage planes and twin boundaries until 

replacement is complete. The abundance of scapolite appears 

to increase in modal abundance with intensity of 

recrystallization of plagioclase as was also reported by 

Appleyard and Williams (1981). Apatite occurs sporadically 

and is found usually as subhedral grains within the 

plagioclase matrix.

In recent experimental work on gabbroic rocks
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(Kronenberg and Shelton, 1980) at experimental strain rates

of 3 x 10" 6 7s and a confining pressure of 5kb, plagioclase 

was seen to become weaker than pyroxene at temperatures of 

about 7000 C or greater. This would imply that deformation of 

plagioclase is chiefly responsible for the ductile behavior 

of the Faraday Metagabbro. In an effort to quantify the 

plagioclase microstructure, fifty length-width measurements 

of randomly selected grains were obtained per thin section. 

Employing conventional grain size statistics as used by 

sedimentologists, we assigned the various thin sections to 

three microstuctural states based on the dominating 

deformation mechanism operating in the plagioclase grains 

(Appendix 2). Assuming that the microstructural state in an 

outcrop can be represented by one or two thin sections, a map 

was drawn up depicting variations in the grain size of 

plagioclase throughout the southwestern FMC. The grain size 

of plagioclase is a function of the level of strain plus the 

degree of static recrystallization (Appendix 2).

EMPLACEMENT OF PEGMATITE BODIES

Detailed structural observations and measurements were 

made underground to find the dominant mode of emplacement of 

U-ore bodies (pegmatite), and determine at what stage in the 

structural history of the FMC this emplacement occurred. A 

systematic application of the simple criteria of Kretz (1968) 

was prevented by the irregular and gradational boundaries of 

the pegmatite bodies. In addition, the discordant structural 

markers required for application of the criteria are rarely
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seen in the Ma dawaska Mines.

However, ghost structures are common within the ore 

bodies as well as in narrow pegmatite veins throughout the 

Madawaska Mines. In most cases, oblique mineral foliation, 

distinct layers or other minor structures extend from the 

host rocks into pegmatite, generally fading out toward the 

middle of individual ore bodies or veins (Figures 13a and b). 

There is thus convincing evidence for widespread replacement 

of the metagabbro wall rocks. However, this does not rule out 

the possibility that dilation was a contributing factor to 

the emplacement of the uranium ore.

Although some of the narrow pegmatite veins and dikes 

display concordant internal foliation not obviously inherited 

from the wall rocks, most pegmatite bodies in the Madawaska 

Mines and at surface have escaped ductile deformation. Either 

the bodies were very competent while the host rocks were 

highly ductile, or pegmatite emplacement postdates most of 

the ductile deformation of the FMC.

To ascertain that the emplacement did not occur until 

most of the ductile deformation had been accumulated, we 

examined thin sections cut from regions of pegmatite bodies 

that were most susceptible to ductile deformation. For 

comparison we also made thin sections from regions least 

susceptible to ductile deformation. Details about this 

approach follow.

It is a well known fact, that most pegmatite dikes and 

veins are prone to bifrucation, branching and splaying along 

their length. This is related to the style of fracture 

propagation in brittle and semi-brittle rocks (Price, 1966) 

and is independent of whether dilation is the vein-generating
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mechanism. Starting with an undeformed system of branching

dikes and veins replete with knees and bifrucation structures 

that resemble open kink folds, it is intuitively obvious that 

the "hinge" regions of the competent pegmatite bodies are 

most susceptible to mechanical failure at the onset of a 

subsequent regional deformation. If the dikes are 

statistically subparallel on the scale of individual domains 

or a large structure like the FMC, then the pegmatite system 

will either be extended or compressed, and possibly also 

sheared. No matter whether the longitudinal strain is tensile 

or compressive, the hinge regions of fold-like structures in 

the pegmatite system will be prone to deformation. 

Accentuation of "folds" or "kink" structures leads to 

compression of the concave "hinge" zones, while the 

"unbending" of the same structures leads to compression of 

the convex "hinge" zones.

As shown mathematically by Chappie (1969), the 

tangential stress needed to tighten the curvature of a 

.crooked (or already folded) layer is much smaller than that 

required to initiate folding of a planar layer. Thus even if 

the tectonic stress level is low, the "hinge" regions of kink 

fold-like structures in dike systems can deform severely 

while the planar "limbs" of the same structures rotate 

quasi-rigidly within their incompetent host rocks.

Field evidence in other regions of the Canadian shield 

suggests that, under upper-amphibolite facies conditions, 

coarse pegmatite dikes are more competent than their 

amphibolite hosts (e.g. Schwerdtner et al . 1971, boudinage 

structure 2). If the (virtually undeformed) pegmatites of the 

Madawaska Mines area were potentially less competent than
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their metagabbroic host rocks then they would be even more

susceptible to deformation at the "hinges" of pseudo-folds 

(bifrucation points, knees of dikes, etc.)*

We sampled the straight "limbs" as well as the convex 

and concave hinge regions of several fold-like crooks and 

bifrucation structures in the Madawaska Mines (Figure 14

and 15a,b,c\ . At none of these structural sites 

do the pegmatite textures show macroscopic or microscopic 

signs of significant ductile deformation. Unlike in most 

rocks of the FMC, there is no evidence of significant ductile 

deformation of feldspar in the pegmatites. Quartz ribbons, 

however, are occasionally found indicating a low to moderate 

level of granular strain. The amount of deformation in 

concave, convex, and intermediate areas of "hinge" zones of 

pegmatite bodies appears to be the same as that found in the 

"limbs" .

There seems to be no doubt that the uranium-ore bodies 

at Madawaska Mines were indeed emplaced after, or in the 

waning stages of, the Grenville tectonism that caused the 

penetrative deformation in the FMC.

GEOCHEMICAL AFFINITY OF URANIUM

This study has been concerned with the structural 

control of uranium-ore bodies rather than the fixation of the 

uranium. However, emplacement of the pegmatites occurred by 

replacement of metagabbro host rock and various observations 

suggest that this may control the bulk of uranium 

mineral i zation.
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In the Madawaska Mines the high-grade uranium ore is

believed to occur within pegmatite rich in mafic minerals and 

along the contact between pegmatite bodies and highly mafic 

host rocks. Also, where mafic xenoliths occur in the 

pegmatite, uranium is apparently concentrated at the rims of 

the xenoliths (Ralph Alexander, Chief Geologist, Madawaska 

Mines, personal communication, 1981). We were able to confirm 

these observations by systematic sampling, chemical analysis, 

and correlation between the amount of uranium and those of 

major and minor chemical elements in the granitoid rocks.

Thirty-one whole-rock chemical analyses were obtained 

from the mine area, and the amount of UgQg compared with that 

of 21 other elements plus loss on ignition (Figure 16),

Thorium shows the best correlation with a 

coeficient of 0.97 because it crystallizes in the dominant 

uranium-bearing species, uraninite. Madawaska Mines employees 

who analyzed the rocks for uranium and thorium, found that 

they occur consistently in a ratio of 2:1. Zirconium, which 

is.highly immobile due to its insolubility and extremely high 

melting point has the second-highest correlation coefficient 

of 0.96. This demonstrates that the present distribution of 

uranium was mainly attained by primary magmatic 

precipitation. The remaining elements can be divided into two 

groups depending on whether they were predominantly 

incorporated into mafic or felsic minerals. All elements in 

mafic minerals have a positive correlation with uranium, 

whereas all those in felsic minerals have a negative 

correlation .

As evident in numerous exposures (Figures 13a and b), 

most of the mafic constituents in the pegmatites are
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structural and/or compositional relics of the mafic host

rocks. Figure 17 shows that the mechanical disaggregation of 

host rocks can lead to pegmatites with more evenly dispersed 

mafic constituents. In combination with these geological 

observations, the chemical correlations support the 

hypothesis that uranium was precipitated during pegmatite 

genesis and concomitant replacement of mafic host rock.

MAJOR CONCLUSIONS

Our field-based structural study of the southwestern 

Faraday Metagabbro Coomplex (FMC) and the Madawaska Mines 

area has led to the folowing major conclusions.

(1) Pegmatite bodies were emplaced preferentially into the 

FMC and similar mafic units in the Bancroft region.

(2) The pegmatite bodies of the Madawaska Mines area are 

virtually undeformed. They were emplaced in the waning stages 

of the Grenville orogeny.

(3) The pegmatite bodies were mainly formed by replacement 

(partial assimilation) of metagabbro.

(4) Most pegmatite bodies are subparallel to the internal 

structure and outer contact of the FMC.

(5) All chemical elements that were predominantly 

incorporated into mafic minerals of the pegmatite bodies have 

a positive correlation with uranium. All elements that were 

predominantly incorporated into felsic minerals have a 

negative correlation with uranium. Zirconium, a highly 

refractory element has a correlation coefficient of 0.96 with 

uranium. This suggests that uranium precipitation occurred
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under magmatic conditions and while the host rocks were being

assimilated.
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FIGURE CAPTIONS

Fig. l Generalized geological map of the western Bancroft
area (after Bedell, 1982), and location of Madawaska 
Mines (formerly called Faraday Uranium Mines).

Fig. 2 Previously postulated folds in the subsurface within 
and adjacent to Madawaska Mines (redrawn from Little 
et al., 1972).

Fig. 3 Simplified structural map of the Madawaska Mines 
area (after Bedell, 1982).

Fig. 4 Strained metagabbro cut parallel normal to the
planer shape fabric of the strained mafic aggregates;
(a) section parallel to the stretching lineation,
(b) section perpendicular to the stretching lineation,

Fig. 5 Local dispersion and areal variation in trend of
the mineral fabric in the western Faraday Metagabbro 
Complex. Black regions are pegmatite bodies mapped 
at surface.

Fig. 6 Azimuth frequency plots and fabric diagrams contoured 
by Kamb's method. Further explanation on the indivi 
dual plots and diagrams. For geographic location 
at surface, see Figure 5.

Fig. 7 Synoptic plots and diagrams of foliation data 
obtained underground (a) and at surface (b).

Fig. 8 Synoptic diagram of all mineral lineation directions
measured at surface and underground; and contours
according to Kamb's method.

Fig. 9 Obliquity between foliation strike in wall rocks 
and strike of adjacent pegmatite contacts.

Fig. 10 Point diagram of joint normals obtained at surface 
(see text).

Fig. 11 L-S fabric pattern in southwestern Faraday Metagabbro
(larger Complex as judged by inspection of sawn hand speci-
map} mens and structures in outcrops.

Fig. 12 Quadrilateral phase diagram for pyroxene (see text).

Fig. 13a Replacement of layered metagabbro (8a) by pegmatite 
(7b). The pegmatite dyke is about 20 cm wide. 
Code and date refers to a sketch in Bedell's field 
notes.

Fig. 13b Pegmatite lobe with ghost foliation parallel to
gneissosity in wall rock. Note late dykelet cutting 
the pegmatite. Sketch made on 1200' level of mine.
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Fig. 14 Bifurcating pegmatite bodies with fold-like 
regions sampled for textural study.

Fig. 15 No textural differences are apparent in thin 
sections from (a) intermediate, (b) convex or 
concave areas of "hinges" or (c) "limbs". 
Also note the relatively low amount of ductile 
strain relative to that found within the FMC 
(see text).

Fig. 16 Correlation of uranium with other chemical 
elements in U-rich pegmatites.

Fig. 17 Mechanical disaggregation of gabbroic xenoliths 
within a pegmatite body. Location in mine as 
indicated.
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Figure 2. Previously postulated folds in the subsurface within 
and adjacent to Madawaska Mines (redrawn from Little et al., 1972)

LEGEND 

Pcgmotit*

Marble

Ore

Amphibolite, 
Metagabbro, 
Paragneiss



Figure 3. Simplified structural map of the Madawaska Mines 
area (after Bedell, 1982).
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Figure 4. Strained metagabbro cut parallel normal to the 
planer shape fabric of the strained mafic aggregates; 
(a) section parallel to the stretching lineation,
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Figure 6. Azimuth frequency plots and fabric diagrams contoured 
by Kamb's method. Further explanation on the individual plots 
and diagrams. For geographic location at surface, see Figure 5.
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Figure 6a. Azimuth frequency plots and fabric diagrams contoured 
by Kamb's method.
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Figure 6c. Azimuth frequency plots and fabric diagrams 
contoured by Kamb's method.
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Figure 6d. Azimuth frequency plots and fabric diagrams 
contoured by Kamb's method.
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Figure 6d. Azimuth frequency plots and fabric diagrams contoured 
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Figure 7b. Synoptic plots and diagrams of foliation data 
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Figure 8., Synoptic diagram of all mineral lineation directions 
measured at surface and underground; and contours according to 
Kamb's method.
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Figure 9. Obliquity between foliation strike in wall rocks 
and strike of adjacent pegmatite c entacts.
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Figure 10. Point diagram of joint normals obtained at 
surface (see text).
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Figure 13a. Replacement of layered metagabbro (8a) by 
pegmatite (7b). The pegmatite dyke is about 20 cm wide. 
Code and date refers to a sketch in Bedell's field notes.
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Figure 15. No textural differ 
ences are apparent in thin 
section from 
(a) intermediate

(b) convex ore concave areas 
of "hinges" or

(c) "limbs".

Also note the relatively low 
amount of ductile strain 
relative to that found within 
the FMC (see text).
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Figure 17. Mechanical disaggregation of gabbroic xenoliths 
within a pegmatite body. Location in mine as indicated.
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Appendix l 

Magnetic Fabric of Matagabbros
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APPENDIX l

Bulk magnetic susceptibility anisotropy

(BMSA) of metagabbros was studied with a torque meter made at 

the University of Toronto. This instrument determines the 

magnetic susceptibility ellipsoid in cylindrical samples of 

(drill core) l" diameter and .85" length. The susceptibility 

ellipsoid reflects the fabric of f errimagnetic grains which 

presumably correspond with the total mineral fabric of a 

rock.

The ferrimagnetic grains in the FMC consist of magnetite 

and monoclinic pyrrhotite. These magnetic grains are commonly 

associated with the mafic clots (Figure A) that act as 

markers of the rock fabric throughout the FMC. When visual 

rock fabric directions are compared with those obtained from 

the BMSA there is good agreement. Cores were oriented so that 

the mineral lineation should be at approximately O0 or ISO 0 .

The problem with the BMSA application in this study is 

that the observed L, S fabric (predominantly lineated, 

foliated, or lineation s foliation) often does not agree with 

the shape of the magnetic susceptibility ellipsoid.

The shape of the magnetic susceptibility ellipsoid is 

determined by measuring the differences between the principal 

susceptibilities and determining the ratio:

p * ( K max ' K int)/ ( K int ' Kmin)

Therefore, if P is greater than unity the ellipsoid is 

dominantly lineated, if less than unity it is dominantly
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foliated, or approximately unity it is equally foliated and

l i n e a t e d .

A plot of observed rock fabric against measured 

susceptibility ellipsoid is shown in Figure A. There seems to 

be a weak correlation between the observed and measured 

fabrics, and significant variation in measured P-values 

between cylindrical specimens from the same sample.

Inhomogeneity of magnetic material within a given sample 

may be a problem. This is indicated by Figure B and C where 

the maximum deflection (amount sample is rotated within an 

applied magnetic field) out of 15 measurements for each core 

was plotted against deviation (in degrees) of the maximum 

susceptibility axis from O 0 or 1800 . One can observe for any 

given sample that the maximum deflection may vary 

considerably from core to core. The average silicate grain 

size is approximately .5 mm but the mafic aggregates are 

commonly up to 5 mm across and may be up to 10 cm long. The 

large grain size could explain the great variations in 

magnetic content which may effect P-values.

Figures D and E demonstrate how core reorientation 

within the sample chamber gives similar P-values as should be 

expected. Figure E, core B contains a fine grained layering 

and this effect seems to be detected by the BMSA as a more 

oblate P-value. Therefore, the method appears to be working 

with respect to orientations and local perturbations of the 

pervasive L and S tectonite fabrics.

Another source for error are variations in the 

length/diameter (1/d) of the cylindrical specimens. The 

effect of 1/d variations in the FMC was examined by 

progressively reducing a single specimen (sample SPDA) from
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.90 to .70" in steps of .05". A small but consistent 

variation was found among BMSA ellipsoid directions and 

P-values (Figure F). For the interval .85 to .75" the exact 

same axis orientations and P-values were found. At .70" a 

significant change in P-value and maximum susceptibility axis 

suggests inhomogeneity with respect to magnetic mineral 

content.

Collectively the petrographic observations, plots of 

maximum susceptibility, and 1/d data suggest inhomogeneity to 

be the main source of difficulty. The amount of opaques 

within the mafic aggregates suggests that we may be dealing 

with magnetic shape anisotropy. Given the coarse grained 

nature of these magnetic aggregates with respect to the 

relatively small specimens, compositional inhomogeneities 

prevent reliable P-values, but may yield accurate BMSA 

ellipsoid orientations.

Figure A: A plot of fabric "observed" against P-values. P > l 

represents a lineated magnetic fabric, P < l foliated, P 

approximately l equally foliated and lineated. If the 

magnetic fabric matched the observed mafic mineral fabric, 

the analyses should ideally cluster in an envelope from the 

lower left origin extending to the upper right corner of the 

plot. This is clearly not the case. For instance, only one 

sample (M-G6) that has an observable strong lineation 

actually recorded a well lineated magnetic fabric. Individual 

cores are plotted as dots and cores from the same sample are 

connected by a horizontal line. The large variation in P
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between cores from the same sample suggests an inhomogeneous 

magnetic fabric.

Figures B and C: Plots of maximum deflection against degree 

variation of maximum susceptibility axis from ideal alignment 

along O or 180 0 . This plot indicates that most samples show 

reasonable agreement between observed mineral fabric 

lineation and maximum magnetic susceptibility trend (e.g. O - 

15 0 ). Note how variation between observed and measured fabric 

orientation tends to increase with decreased maximum 

deflection. At low susceptibility differences the error of 

the analysis increases. The maximum deflection found in the 

15 measurements taken per core (usually 3 cores taken per 

sample) is variable. The amount of deflection is related to 

the amount of oriented magnetic minerals in the core. Hence, 

variable deflections in cores from the same sample, of the 

same orientation, represent inhomogeneity of magnetic 

mater i a l .

Figure D: Cores drilled at different orientations. Typically 

cores were drilled perpendicular, on to the plane of 

foliation. A core drilled along lineation (P - 1.48) shows a 

90 0 flip of the maximum susceptibility trend from O or ISO0 

to approximately vertical. This demonstrates the ability of 

the BMSA to give accurate directions of the magnetic fabric 

coincident with the observed mafic mineral fabric.
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Figure E: Variation in principle susceptibility axes with

reorientation of drill core. Core B shows a fine (mm scale)

relic igneous layering that is discernible by the BMSA method

with an oblate P-value of 0.47.

Figure F: Variation in maximum susceptibility trend with 

Length/Diameter (L/O) of drill core. A single core originally 

l" x l" was shaven in 0.05" intervals and analyzed. At 0.95" 

the sample was realigned in the sample chamber and replicate 

analyses were taken to determine accuracey. A consistent 

trend of principle susceptibility axes with decreasing core 

length was observed. At L/D * 0.70 there is a flip in the 

principal susceptibility direction. This trend and P-value 

suggests a more prolate ellipsoid parallel to the length of 

the drill core.

fp 

BMSA SAMPLE LOCATIONS

Sample numbers for BMSA analyses were designed to 

accomodate the FORTRAN computer that reduced the data. The 

following list should clarify the location of those specimens 

not readily located by their sample number. 

LFB1: LFB12 

15WA: N15W-A 

WN11B: N11W-B 

WN11A: N11W-A 

Ml-C: Mag l-C 

M1DA: Mag 1-D A 

M1DB: Mag 1-Dg



	- 58 -

M1DC: Mag 1-D C

70E1: N70E-A (near baseline)

72EA: N72W-A (near baseline)

BL-5: Bentley Lake Domain station E

BL-8: Bentley Lake Domain station B

SPBL: Sand pit on North Shore of Bow Lake station SP-A

SP13: Sand pit station D

150A: 150' level of mine station A

4A34: 450' " " " 34

4A41: " " " " 41

4A42: " " " " 42

4A43: " " " " 43

4A44: " " " " 44

7516: 750' level of mine station at entrance to 516 drift

7SHT: 750' " " " at shaft

7SPT: 750' " " " at entrance to 537 stope

75XC: 750' " " " at 502 cross cut

12-D: 1200' " " " D
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~ i

SPECIMEN NO. IS M-G6
DATA FT7GM O TO 180 DEGREES, SHADING POSITIONS 1,2,3

-0.3 -1.9 O.J 1.8 -0.3
-0.7 1.9 0.7 -1.3 -O.6 ~- -
-O.T. -1.8 0.7 1.7 -0.6 

ERRORS -O.31 f97
KOQTSs -4.460 - J-3j* Ot? ____C . l o O_________________ 
S US C s  4.47" CHECK   O. 
TREND IS 77.31 PLUNGE IS 46.10 
SUSCs -3.06 CHECKs -O. 
TREND IS 96.57 PLUNGE IS -42.26
SUSCs 0.13 CHECKS - O. ' ' ' - -- -.- 
TREND IS 177.59 PLUNGE IS C.77
PS 2.27183 

ROCK IS PREDOMINANTLY LINEATFD.

SPECIMEN NO. IS
OATA PROM O TO ISO DLGKZES, READING POSITICWS 1,2,3 

0.1 -1.3 -0.1 1.3 0.1
-0.5 ' 2.3 " 0.6 - -2.3 -0.5 '  "
-0.4 -2.2 0.4 2.2 -0.4 

ERRORS -0.21212 
RGOTS^ -4.691 -2. 332 . 0.074________________

TREND IS* 59.43" PLUNGE IS 77.46
SUSCs -2.53 CHECKs -O.
TREND IS 94.51 PLUNGE IS -10.33
SUSCs 0.07 CHECKS -Q.
TREND IS 1C3.24 PLUNGE IS 7.Od
PS 1.20727 

ROCK IS PREDOMINANTLY LINEATED.

SPECIMEN NO. IS
DATA FROM O TO 1SC DtGKLES, RF.AD1NG POSITIONS 1,2,3 

0.3 -1.1 -0.2 1.3 0.3
0.9 1.7 --O.O —-1.&-— -0.9 -•••~' -—-— 

-0.8 -1.7 0.8 1.7 -O.a
ERRCRs -0.27174
ROOTSs -3.999 ___-2.00C 0.199
CI l C ^™ ™"" ""^^ Jt" O rt~ "' '^^U'Cr ^* If ^•P^™" ™ m* —— a ^^ rf^-——— •^-^•^ " i' *- ••••^•^••^^••^•^•.^^•^ mi i ^••^^^——^..^.^•^MI^^^j ̂ j ̂ } ̂ , ^~ ^^*T o- w w ^^ n lv v* iX"™"" ^^ v 9
TREND IS 113.70 PLUNGil IS 5cl.75
SUSCs -2.00 CHECKS O.
TREND IS 84.43 PLUNGE IS -27.90

PLUNGC ISTREND IS 1.42
PS 1.10005 

ROCK IS PREDOMINANTLY LINEATL'D.
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r

SPECI 
DATA 

O
-O
-O

ERKOR 
ROOTS 
SUSCs
TREND 
SUSCs
TREND 
SUSCs
TREND 

.ROCK

MEN NO. IS MIDO
FROM O TO 180 DEGPFES, READING POSITIONS 

0.8 0.5 
-l .9 -0.2 

O -0.4

1,2.3

l

.5 -0.8 -0.4

.2 l .9 O .2

.4 -l.0 0.4
s 0.02703
= ..-3.874 --1*6-79 ......0.153
-3.87 CHECKs -o.
IS 79.70 PLUNGE IS 80.24
-l.68 CHECKs, -o.
IS 106.79 PLUNGE IS -8.72
0.15 CHECKs Q. 

IS 196.13 PLUNGE IS 4.39 
0.83508 

IS PREDOMINANTLY ..FOLIATED*

SPECIMEN NO. IS 
DATA FROM 0 TO 180 DEGREES, READING POS 

0.4 -0*8 -0.4 0.8 0.4 
-O.I 1.9 O.I -1.9 0.0 
-0.4 -1*0 0.4 1.0 -0.4 

ERRORS 0.02703 
ROOTSs. . . -3.871. _ -1..60S ... .,. .O.OJE50. . ... 
SUSCs -3.87 CHECKs -Q. 
TRLND IS 88.88 PLUNGE IS 80.05 
SUSCs -1.61 CHECKs o. 
TREND IS 102.70 PLUNGE IS -9.68 
SUSCs 0.08 CHECKs 0. 
TREND IS 192.32 PLUNGE IS 2.34

I T IONS 1.2.3

-—ROCK
0.74669 

I S. -PREDOMINANTLY .FCLJATED,

IS 
TO l 80 DEGREES. 

0. 4.... 0.8 
0.1 -l .9

_ .J) . OZ3 .

-0.4 -0.8
-0.1 1*9
-0.4 -1.0 0.4 l .0

0.02703
ROOTSs __.-3.87.5— - -^ 1.59 fi 
SUSCs -3.88 CHECKs -Q. 
TREND IS 78.87 PLUNGE IS 79.55 
SUSCs -1.60 CHECKS o. 
TREND IS 78.15 PLUNGE--IS -10.47

0.07 CHECKs o 
IS 348.15 PLUNGE 
0.73392

READING POSITIONS 
-0.4 
0.0

1.2,3

-0.4

IS
SUSCs 
TREND 

PS
——fi-OCK-.LS—EHEDOMLMANJLY E.CL.I AT.ED.

0.13

SPECIMEN NO 
DATA FROM O

O 
-0

__ROOTS.?.-.. 
SUSCs -2 
TREND IS

TREND 
SUSCs 
TREND 
PS

ROCK.

IS
TO ISO 
0.9 
1.1 

-1.9 
0.01935 
.--2.. 2L8 
22 CHECKS

175.73 
0.02 CHECKS 

IS 170.44
l.85 CHECKS 

IS 80.62 
0.81845 

IS PREDOMINANTLY. .F.CLJ ATfcC.

DEGREES, READING POSITIONS
-0 .3
-0.4
0.0

-0
-l

1

0-fcOi S

'LUNGE

'LUNGE

^UNGE

-0.
IS
-0.
IS
0.

IS

.9 0.3

.1 0.4

.9 0.1

1.^.850 . ....... . .

79^.98

-5.99

0.91

l .2.3

t

SPECIMEN NO 
DATA FROM O

0.3 -0.7
-O.3 2 .3
-0.4 -l.6 

-0.01075 
..-4.658 
.66 CHECKs 

IS 62.44

ROOTSF
SUSCs -4
TREND
SUSCs
TREND
SUSCs
TREND

PS 
-..ROCK

DEGREES. READING POS
-0.3 0.7 0.3
0.3 -2.3 -0.3
0 .4 - 1 .6 -0.4

-1.433 0.091
: -0.
PLUNGE IS 82.95

0.
PLUNGE IS -5.38

: 0.
PLUNGE IS 4.56

IT IONS l .2,3

-l .43 CHECKS 
IS 102.92
0.09 CHECKS 

IS 192.51 
0.47235 

IS PREDOMINANTLY FCLIATED.-
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SPECI NfN NU. I .S
DATA FfvOM C' TU l dO DtGRFLS. KLAD1NG P'JSITIUNS 
_____O.*0____ ,D .2.———O .0.__~-0 .3—__ .,..0 .0.. -..__- 

-0.3 0.2 0.3 -0.2 -0.3 
0.1 -0.4 -0.1 0.4 O.I 

ERRORS O. l l H l 
JlQQTSs____-Q. ShT______O . 156

,2 ,3

C s -O. 'S 7 CHLCKs O.
TREND is .jbo.^o PLUNGL is
SUSCs 0.16 CHLCKs -Q. 
.TREMQ.--1-S-_ - -6. 6 c...... .PLUNGE- IS.
SUSC^ 0.61 CHECKS Q. 
TREND IS 93.23 PLUNGE IS 

PS 0.63066
T *^ PRFnil'41 NANTi Y I- C,l I AT l~

S PEC I MF N NO. IS
DATA FROM O TO 180 DEGREES, SfcACING PU3IT1UNS 1.2,3 
___. 0.0 . — ~ 0.3-.-- ..0.0____.-0.3 __....0.0.. .......... ...--—

-0.3 0.2 O .J -O .2 -0.3 
0.1 -O.4 -O.I 0.4 0.1 

ERRORs 0.11111
IDT^s_____n.O-*J5 6uL______Q . l S ft______O -61 2^^^^^ 

-0.57 CHECKS O.
6 1.83

^ .80
SUSCs -0.57 CHECKS O. 
TREND IS 350. dO PLUNGE IS 
SUSCs 0.16 CHKCKs -O. 

-I REND- -l S- -----b-* 66-- .PLUNGL.- IS.. -2
SUSCs 0.61 CHECKS O. 
TREND IS 93.23 PLUNGE IS

PS 0.63066 
PflfK JCJ PRFD.iM [NANT! Y FH lATh-P,

e. 59

SPECIMEN NO. IS
DATA FfTQM O TO 180 DE GR EL S, READING POSITIONS 1,2,3 
____Q.. O___ . O . 3____ 0*0 ___r O... 3__ _D * Jp.. ____ ^ 

0.2 O *3 -O .2 -0.3 
-0*1 0.4 0.1

-0.3 
0.1 

ERRURs
-0.4 

0.11111
o . IF:

SUSC= -0.57 CHtCK- O.
TREND IS 350.80 PLUNGF IS 61.83
SUSCs 0.16 CHFCKs -O.

iEMD-JLS_____6,fef. PLUNGE IS -27.27 
SUSCs ' 0.61 CHECK- O. 
TREND IS 93.23 PLUNGE IS 6.59

P- 0.6J066 
ROCK IS PREDOMINANTLY FCLIATCO._____

SPECIMLN NO. IS
OATA FROM O TO 180 DEGREES. READING POSITIONS 1,2,3 
____Q T n_____n.^_____o -o____^o ̂ J_____Q *j}________ ,^.^—

-072 
O .0

ERRORs 
RGHTSs

0.2 
-0.3 

0.25000 
-Qj 4i33

O .2 
O .0

C. CfcJ 3

-0.2 
O .3

-0.2 
O.O

O . uoo
,L/D's.70

SUSCs -0.43 CHECKS -Q. 
TREND IS 0.0 PLUNGL IS 
SUSCs 0.03 CHECKS -O. 

IE.ND-JLS____QJ JU___PLLLNJGE_IS- 
SUSCs 0.60 CHrXKs Q. 
THCND IS 0.0 PLUNGE IS

PS -0.91421 
Rllf.K 15^ PRFnOMl N AM FLY FTjLlATIf

67.51

-71. S3
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SPECIMEN NO. IS SPDA
DATA FF.UM O TU 180 UTTGPtES. READING PUS I IKONS 1,2.3
___ J3 , l_____O .3 ___ .0 . O__ —J-Q .3— 

-0.3 0.1 0.3 -O.I 
0.1 -O .4 -O.I O .4 

CRMOHs O.OOOOO 
Pf:flT^s_____- O . 4 13—————.U . ^ l 4 Q.61

—P.-*J.. -.-.... - ——
-0.3 
0.1

L/D-.95
SUSC- -0.43 CHECKs Q.
TREND IS 34 f.67 PLUNGE IS 53.96
SUSCs 0.21 CHECKs -O.

)—I.S. .__5 .ft b.... PLUN G C—l S.. -JJ.4 .7.3____. 
SUSCs 0.62 U-H-JCKs O. 
TREND IS 89.54 PLUNGF. IS 8.51
PS 0.62716 

ROCK IS PREDOMINANTLY FOLIATED*__________

ARROW UP

SPEC I WIN NO. IS
DATA FhQM O TO 180 DEGWt'ES, REAUING POSITIONS 1,2,3

-0.3 
0.1

0.1 
-0.4 

0.00000 
-O. 417

0 . J 
-0.1

-0.1 
0.4

-0.3 
u.l

0.171 0.646
L/0-.95

SUSCs -O.42 CHtCKs o.
TREND IS 3b7.73 PLUT^Gt IS 54.50
SUSCs 0.17 CHECKs -O.

?FNJH IS___7\ .fi4 Pi^UNfiF IS -33.13
SUSCs 0.65 CHECKs 0. .
TREND IS 104.06 PLUNGE IS 11.37
PS- 0.80819

Rnr* ir, PRFDU.MIN ANTLY FCL IATED.

SPECIMEN NU. IS
DATA FROM O TO l aO DEGREES, READING POSITIUiiS 1,2,3 
___= O ^1_____tt.,3_____0*1 -O ..,3____.-0,. l______ .__ . 

-0.3 O.I 0.4 -0.1 -0.3 
0.1 -0.4 -0.1 0.4 0.1

ERRORS 
onnrqsr

Q. OOOOO 
-0.4^4 o. 21 3 0.651 L/D^.95

SUSCs -O.46 CHECKs
TRfcND IS 35B.19 PLUNGE
SUSCs 0.21 CHECKs . 

. T-REMD-4-S— -.24 .^ l- -PLUKGE-
SUSCs 0.65 CHECKs
TREND IS 105.54 PLUNGE

PS 0.64581

-0 
IS
-o

Q 
IS

53.18

:,X .1.3.5

l 2.60

REPEAT

5PECIMFN NO. IS
DATA FROM O TO lbO DEGRtES, HEADING POSITIONS 1,2,3

-0.1_____O..J_____Q.*.l ____r-0 *. 3___nO ..l ___________.
-0.3 0.2 0.3 -0.2 -0.3 . 

O.I -0.4 -O.I 0.4 0.1
ERRORS 0.11111

O.
SUSCs -0.56 CHECKs -Q. 
TREND lii 355.57 PLUNGE IS 
SUSCs 0.12 CHtCKs -O. 
TREND-JLS ___ !Z..5Sv . ..HLUNGE^IJi. 
SUSCs. 0.64 CHb'CKs Q. 
TREND IS 103.10 PLUNGE IS

PS 0.75574 
HOCK IS PRFDUMINANTLY FCLIAT^D.

62.17

-.2.6.0.9 .__,. 

9.04
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Appendix 2 

Microstructural Study



- 70 - 

APPENDIX 2

In an effort to quantify the three microstructural 

states as determined from the dominant plagioclase texture in 

thin section, 50 length and width measurements of randomly 

selected plagioclase grains were made per section. Using 20 

representative thin sections from throughout the southwestern 

FMC, ANOVA (Table A) determined that the three 

m isostructural states were statistically independent 

populations with >95% confidence.

Average cumulative curves (Folk, 1974) were constructed 

for each of the three microstructural states (Figure A). The 

advantage of this construction is that numerous quantitative 

statistical parameters can be derived (Table B). These 

statistics are pictorially presented for ease of visual 

i nterpretation .

Microstructural state #1 is characterized by the 

presence of relic igneous plagioclase laths indicating a low 

level of deformation. State #2 is characterized by an absence 

of igneous laths. The original laths have been dismembered 

and transformed by progressive rotation into the grains of 

aggregates dominated by mechanical twins. This process 

suggests a relatively high level of deformation. State #3 is 

characterized by a recrystalli zed groundmass dominated by 

strain free equant plagioclase grains that have become 

optically positive. The lack of optically discernible strain 

effects in these grains reveals that recovery and 

recrystallization was static.

We will now examine the results of the grain size 

statistics in relation to the three microstructural states. 

The median value (Table B, derived from Figure A) is variable
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because of variable initial grain size. However, the mean 

value decreases progressively as one changes from 

m isostructural state #1 to #3, owing to greater changes in 

fabric. This is strong evidence for the dominance of the 

mechanism of recrystallization by subgrain formation coupled 

with progressive rotation of the subgrains as seen in thin 

section. Recrystallization by nucleation and growth tends to 

increase the grain size.

The value of the Inclusive Graphic Standard Deviation 

can be correlated with the relative degree of sorting as 

determined by sedimentologists. In the present context, we 

are not dealing with processes of mechanical sorting but are 

attaining uniform grain size by deformation and recovery.

The value of Inclusive Graphic Skewness expresses the 

degree to which the grain size population approaches a normal 

distribution. As expected, skewness decreases with increasing 

fabric modification.

Kurtosis is a function of "peakedness" of the normal 

distribution curve. The present data demonstrate that 

microstructural state #1 is better sorted at the center than 

the tails of the statistical curve, while #2 and #3 show 

approximately equal sorting in the center and tails of that 

curve.

In conclusion, these statistics are useful in 

demonstrating the operation of different mechanisms of 

microstructural grain modification and their relative 

significance in fabric development.
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Figure A: Plot of cumulative percent of grains that make it 

through a sieve of a given mm. grain size (Folk, 1974). In 

this study, grain size represents the longest dimension 

measured in plagioclase. Each curve represents an average 

cumulative curve for one of three microstructural states.

Table A: Analysis of Variance (ANOVA) of all the raw data 

from measured plagioclase grains demonstrates that each one 

of the three microstructural states is a statistically 

independent population with > 95% confidence. This allows us 

to construct three average cumulative curves for the three 

microstructural states (Figure A).

Table B: Statistical data obtained from the three average 

cumulative curves shown in Figure A.
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MAP #1

This lithologic map is a modified version of that 

produced by Morris (1956). The scheme of rock types is that 

outlined by Dr. S.B. Lumbers who is doing exstensive regional 

mapping throughout the Grenville province of Ontario.

In this legend the main catagories of rock types are 

listed and only those subdivisions which are applicable to 

this study are presented.

11- Alkalic Rock - Carbonatite and Related Dikes 

(a) Carbonatite

10- Paleozoic and Sedimentary Rocks

9- Post Metamorphic and Late Metamorphic Intrusive Rocks 

(a) Diabase dikes

8- Anorthosite Suite

(a) Gneissic anorthositic gabbro and gabbroic anorthosite 

with layering and ultramafics

(b) Metagabbro and metadiorite
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7- Late Granitic and Syenitic Rocks

(a) Massive quartz monzonite 

(a 1 ) Gneissic quartz monzonite

(b) Granite pegmatite

(b 1 ) Syenitic pegmatite poor in quartz with pyroxene,

amphibole, magnetite, apatite, calcite, uranium ?, pyrite,

(brick red colour)

(b 11 ) Calcite-rich pegmatite with apatite, fluorite,

K-feldspar

(c) Massive syenite

(d) Gneissic syenite

(e) Gneissic nepheline syenite

(f) Gneissic syenite with apatie, pyroxene, amphibole

(g) Gneissic, alkalic, corundum-bearing syenite

(h) Nepheline bearing syenite pegmatite

(j) Albite syenite

(k) Leucosyenite pegmatite

6- Early Granite Rocks

5- Migmatitic Varieties of Clastic Siliceous Metasediments

4- Mafic Intrusive Rocks

(a) Metagabbro and metadiorite

(b) Metadiabase
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3- Carbonate Metasediments 

(a) Calcite marble

(e) siliceous marble

(f) fine grained dark grey marble 

(h) skarn

2- Clastic Siliceous Metasediments

(a) Metagreywacke

(b) Orthoquartzite

l- Calcareous Metasediments
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Appendix 2, Table B.

Miorostructural 
State

Median

Mean 16-84 
5-95

.52mm

. 69mm 
• 72mm

Inclusive Graphic 
Standard Deviation

Inclusive Graphic 
Skewness

1.090 
(poorly 
sorted)

-0.250 
(excess 
coarse)

.56.mm

. 56mm 

. 60mm

.600
(moderately 
well sorted)

. +0.010 
(nearly 
symmetrical)

• 42mm

• 42mm 
.43mm

.500
(moderately well 
to. well sorted)

•0.009 
(nearly 
symmetrical)

Kurtosis 1.15 
(leptokurtic)

1.07 
(mesokurtic)

1.04 
(mesokurtic)
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Appendix 3

Data and Statistics used for Summary Display 
and Correlation in Figure 16
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Appendix 4 

Station Location Map
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