Your use of this Ontario Geological Survey document (the “Content”) is governed by the terms set out on this page (“Terms of Use”). By downloading this Content, you (the “User”) have accepted, and have agreed to be bound by, the Terms of Use.

Content: This Content is offered by the Province of Ontario’s Ministry of Northern Development and Mines (MNDM) as a public service, on an “as-is” basis. Recommendations and statements of opinion expressed in the Content are those of the author or authors and are not to be construed as statement of government policy. You are solely responsible for your use of the Content. You should not rely on the Content for legal advice nor as authoritative in your particular circumstances. Users should verify the accuracy and applicability of any Content before acting on it. MNDM does not guarantee, or make any warranty express or implied, that the Content is current, accurate, complete or reliable. MNDM is not responsible for any damage however caused, which results, directly or indirectly, from your use of the Content. MNDM assumes no legal liability or responsibility for the Content whatsoever.

Links to Other Web Sites: This Content may contain links, to Web sites that are not operated by MNDM. Linked Web sites may not be available in French. MNDM neither endorses nor assumes any responsibility for the safety, accuracy or availability of linked Web sites or the information contained on them. The linked Web sites, their operation and content are the responsibility of the person or entity for which they were created or maintained (the “Owner”). Both your use of a linked Web site, and your right to use or reproduce information or materials from a linked Web site, are subject to the terms of use governing that particular Web site. Any comments or inquiries regarding a linked Web site must be directed to its Owner.

Copyright: Canadian and international intellectual property laws protect the Content. Unless otherwise indicated, copyright is held by the Queen’s Printer for Ontario.

It is recommended that reference to the Content be made in the following form: <Author’s last name>, <Initials> <year of publication>. <Content title>; Ontario Geological Survey, <Content publication series and number>, <total number of pages>p.

Use and Reproduction of Content: The Content may be used and reproduced only in accordance with applicable intellectual property laws. Non-commercial use of unsubstantial excerpts of the Content is permitted provided that appropriate credit is given and Crown copyright is acknowledged. Any substantial reproduction of the Content or any commercial use of all or part of the Content is prohibited without the prior written permission of MNDM. Substantial reproduction includes the reproduction of any illustration or figure, such as, but not limited to graphs, charts and maps. Commercial use includes commercial distribution of the Content, the reproduction of multiple copies of the Content for any purpose whether or not commercial, use of the Content in commercial publications, and the creation of value-added products using the Content.

Contact:

<table>
<thead>
<tr>
<th>For further information on</th>
<th>Please contact:</th>
<th>By telephone:</th>
<th>By e-mail:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Reproduction of Content</td>
<td>MNDM Publication Services</td>
<td>Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext. 5691 (inside Canada, United States)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>The Purchase of MNDM Publications</td>
<td>MNDM Publication Sales</td>
<td>Local: (705) 670-5691 Toll Free: 1-888-415-9845, ext. 5691 (inside Canada, United States)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>Crown Copyright</td>
<td>Queen’s Printer</td>
<td>Local: (416) 326-2678 Toll Free: 1-800-668-9938 (inside Canada, United States)</td>
<td>Copyright@gov.on.ca</td>
</tr>
</tbody>
</table>
Les conditions ci-dessous régissent l’utilisation du présent document.

Votre utilisation de ce document de la Commission géologique de l’Ontario (le « contenu ») est régie par les conditions décrites sur cette page (« conditions d’utilisation »). En téléchargeant ce contenu, vous (l’« utilisateur ») signifiez que vous avez accepté d’être lié par les présentes conditions d’utilisation.

Contenu : Ce contenu est offert en l’état comme service public par le ministère Du Développement du Nord et des Mines (MDNM) de la province de l’Ontario. Les recommandations et les opinions exprimées dans le contenu sont celles de l’auteur ou des auteurs et ne doivent pas être interprétées comme des énoncés officiels de politique gouvernementale. Vous êtes entièrement responsable de l’utilisation que vous en faites. Le contenu ne constitue pas une source fiable de conseils juridiques et ne peut en aucun cas faire autorité dans votre situation particulière. Les utilisateurs sont tenus de vérifier l'exactitude et l'applicabilité de tout contenu avant de l'utiliser. Le MDNM n'offre aucune garantie expresse ou implicite relativement à la mise à jour, à l’exactitude, à l’intégralité ou à la fiabilité du contenu. Le MDNM ne peut être tenu responsable de tout dommage, quelle qu'en soit la cause, résultant directement ou indirectement de l'utilisation du contenu. Le MDNM n'assure aucune responsabilité légale de quelque nature que ce soit en ce qui a trait au contenu.

Liens vers d’autres sites Web : Ce contenu peut comporter des liens vers des sites Web qui ne sont pas exploités par le MDNM. Certains de ces sites pourraient ne pas être offerts en français. Le MDNM se dégage de toute responsabilité quant à la sûreté, à l’exactitude ou à la disponibilité des sites Web ainsi reliés ou à l'information qu'ils contiennent. La responsabilité des sites Web ainsi reliés, de leur exploitation et de leur contenu incombe à la personne ou à l'entité pour lesquelles ils ont été créés ou sont entretenus (le « propriétaire »). Votre utilisation de ces sites Web ainsi que votre droit d'utiliser ou de reproduire leur contenu sont assujettis aux conditions d’utilisation propres à chacun de ces sites. Tout commentaire ou toute question concernant l'un de ces sites doivent être adressés au propriétaire du site.

Droits d’auteur : Le contenu est protégé par les lois canadiennes et internationales sur la propriété intellectuelle. Sauf indication contraire, les droits d'auteurs appartiennent à l'Imprimeur de la Reine pour l'Ontario.

Nous recommandons de faire paraître ainsi toute référence au contenu : nom de famille de l'auteur, initiales, année de publication, titre du document, Commission géologique de l'Ontario, série et numéro de publication, nombre de pages.

Utilisation et reproduction du contenu : Le contenu ne peut être utilisé et reproduit qu'en conformité avec les lois sur la propriété intellectuelle applicables. L’utilisation de courts extraits du contenu à des fins non commerciales est autorisé, à condition de faire une mention de source appropriée reconnaissant les droits d’auteurs de la Couronne. Toute reproduction importante du contenu ou toute utilisation, en tout ou en partie, du contenu à des fins commerciales est interdite sans l’autorisation écrite préalable du MDNM. Une reproduction jugée importante comprend la reproduction de toute illustration ou figure comme les graphiques, les diagrammes, les cartes, etc. L'utilisation commerciale comprend la distribution du contenu à des fins commerciales, la reproduction de copies multiples du contenu à des fins commerciales ou non, l'utilisation du contenu dans des publications commerciales et la création de produits à valeur ajoutée à l’aide du contenu.

Renseignements :

<table>
<thead>
<tr>
<th>POUR PLUS DE RESENSEIGNEMENTS SUR</th>
<th>VEUillez VOUS ADRESSER À :</th>
<th>PAR TÉLÉPHONE :</th>
<th>PAR COURRIEL :</th>
</tr>
</thead>
<tbody>
<tr>
<td>la reproduction du contenu</td>
<td>Services de publication du MDNM</td>
<td>Local : (705) 670-5691
Numéro sans frais : 1 888 415-9845, poste 5691 (au Canada et aux États-Unis)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>l'achat des publications du MDNM</td>
<td>Vente de publications du MDNM</td>
<td>Local : (705) 670-5691
Numéro sans frais : 1 888 415-9845, poste 5691 (au Canada et aux États-Unis)</td>
<td>Pubsales@ndm.gov.on.ca</td>
</tr>
<tr>
<td>les droits d'auteurs de la Couronne</td>
<td>Imprimeur de la Reine</td>
<td>Local : 416 326-2678
Numéro sans frais : 1 800 668-9938 (au Canada et aux États-Unis)</td>
<td>Copyright@gov.on.ca</td>
</tr>
</tbody>
</table>
Paleozoic Geology of Southern Ontario

By
D. F. Hewitt

Geological Report 105

TORONTO
1972
Publications of the Ontario Division of Mines and price list are obtainable through the Publications Office, Ontario Division of Mines, Parliament Buildings, Queen's Park, Toronto, Ontario and The Ontario Government Bookstore, 880 Bay Street, Toronto, Ontario.

Orders for publications should be accompanied by cheque, or money order, payable to Treasurer of Ontario.

Parts of this publication may be quoted if credit is given to the Ontario Division of Mines. It is recommended that reference to this report be made in the following form:

Hewitt D. F.

CONTENTS

Introduction .. 1
Paleozoic Geology .. 1
 Ottawa-St. Lawrence Basin ... 1
 Cambro-Ordovician .. 2
 Potsdam or Nepean Formation 2
 Ordovician .. 2
 Lower Ordovician .. 2
 Beekmantown Group .. 2
 Middle Ordovician .. 3
 Chazy Group ... 3
 Trenton and Black River Groups 3
 Upper Ordovician .. 4
 Eastview Formation ... 4
 Billings Formation .. 4
 Carlsbad and Russell Formations 4
 Queenston Formation .. 4
 Central and Southwestern Ontario 5
 Cambrian(? .. 5
 Potsdam Formation ... 5
 Ordovician ... 6
 Middle Ordovician .. 6
 Shadow Lake Formation .. 6
 Upper Ordovician .. 7
 Whithby Formation ... 7
 Georgian Bay Formation 7
 Queenston Formation .. 8
 Silurian .. 8
 Middle and Lower Silurian 8
 Clinton and Cataract Groups 8
 Guelph-Lockport-Amabel Formation 9
 Upper Silurian .. 10
 Salina Formation .. 10
 Bass Islands (Bertie) Formation 10
 Devonian ... 10
 Lower Devonian ... 10
 Oriskany Formation .. 10
 Middle Devonian ... 11
 Bois Blanc Formation .. 11
 Detroit River Group ... 11
 Dundee Formation ... 11
 Hamilton Formation ... 11
 Upper Devonian .. 12
 Kettle Point Formation ... 12
 Port Lambton Formation 12
 Selected References .. 14
 Index ... 17

Tables

1–Table of Formations of Paleozoic Rocks for Central and Southwestern Ontario 5
2–Comparison of Lithostratigraphic and Biostratigraphic Units in the Simcoe Group Rocks 6
3–Formations in the Clinton and Cataract Groups in Southwestern Ontario 8

Geological Map

(back pocket)

Map 2254 (coloured)—Paleozoic Geology of Southern Ontario, Showing Bedrock Industrial Mineral Producers. Scale, 1 inch to 16 miles.
Paleozoic Geology
of
Southern Ontario

By
D. F. Hewitt

INTRODUCTION

The accompanying map indicates the Paleozoic geology of southern Ontario by formation or group, and outlines the extent of the exposed Precambrian rocks. Bedrock industrial mineral producers in the Paleozoic rocks of southern Ontario are also shown. In 1969, industrial mineral production in Ontario amounted to $214,966,975 of which over 70 percent, or about $151,000,000 came from the Paleozoic rocks in southern Ontario. This industrial mineral production includes gypsum, salt, limestone, shale, sandstone, lime, and portland cement. In 1969, oil and gas production in southern Ontario from the Paleozoic rocks amounted to $7,392,183.

Several changes in stratigraphic nomenclature have been made since the publication of the last edition of this map (Map 2117) in 1966, and these changes have been incorporated in the legend shown on the map (Map 2254, back pocket).

PALEOZOIC GEOLOGY

The Paleozoic rocks of southern Ontario are divided geographically into two parts by the Precambrian rocks of the Frontenac Axis that extend across the St. Lawrence River between Gananoque and Brockville. The Paleozoic area to the east of the Frontenac Axis is called the Ottawa-St. Lawrence Basin. The Paleozoic area to the west of the Frontenac Axis is here referred to as central and south-western Ontario.

OTTAWA-ST. LAWRENCE BASIN

The Ottawa-St. Lawrence Basin is occupied by Cambrian sandstone and Ordovician dolomite, limestone, sandstone, and shale. The geology of the area has been described by Wilson (1946).

1 Chief, Industrial Minerals Section, Ontario Division of Mines.
Paleozoic Geology of Southern Ontario

Cambro-Ordovician

Potsdam or Nepean Formation

The Potsdam or Nepean Sandstone of Cambro-Ordovician age outcrops along the western margins of the Ottawa-St. Lawrence Basin, and rests unconformably on the underlying Precambrian rocks. This formation is a cream, white, grey, brownish red, or purple medium-grained sandstone to orthoquartzite. Ferruginous, rusty sandstone is common in places. The formation is described in detail by M. L. Keith (1946). Wilson (1946, p.11) stated that the maximum thickness of the formation yet found in wells at Ottawa is 280 feet, but thicknesses up to 500 feet are reported in Quebec.

The sandstones that form the basal unit of Paleozoic rocks in the Ottawa-St. Lawrence Basin were formerly correlated with the Potsdam Sandstone of New York State, which is of Cambrian age. In mapping the basin, Wilson (1946) used the term Nepean Sandstone instead of Potsdam; she named the formation from Nepean Township at Ottawa where the sandstone was extensively quarried. The upper contact of the Nepean Sandstone with the March Formation, of the Beekmantown Group, is gradational and the March Formation consists of interbedded sandstone of Nepean lithology, and dolomite. Recent work on conodonts, by Greggs and Bond (1971), has dated the March Sandstones as Lower Ordovician, but the age and status of the Nepean or Potsdam Sandstone is still in question. It has been suggested that the Potsdam should be a group, with the Nepean being the uppermost formation.

The Potsdam or Nepean Sandstone of the Ottawa-St. Lawrence Basin was formerly quarried for use as a building stone at Brockville, Westport, Perth, and Ottawa. It was used in the construction of the Parliament Buildings at Ottawa. The sandstone has also been investigated as a source of silica sand (Keith 1946; Hewitt 1963), and has been quarried near Almonte and Smiths Falls as silica sand for sand-lime brick manufacture.

Ordovician

LOWER ORDOVICIAN

Beekmantown Group

The dolomite and sandstone of the Beekmantown Group of Lower Ordovician age outcrop in a wide area on the western flank of the Ottawa-St. Lawrence Basin in Leeds, Lanark, Carleton, Grenville, and Dundas Counties. Wilson (1946, p.12-17) has divided the Beekmantown Group of the Ottawa-St. Lawrence Basin into the March Formation, which overlies the Potsdam or Nepean Sandstone, and the Oxford Formation, which overlies the March Formation.

The March Formation overlies the Potsdam Nepean Sandstone conformably and interfingers with the Potsdam Sandstone. The March Formation consists of alternating beds of grey sandstone, sandy dolomite, and dolomite, which weather
rusty-brown; they are transition beds from the Potsdam (Nepean) Sandstone to the Beekmantown Dolomite. Wilson (1946, p.13) gave a thickness of 25 to 30 feet for the March Formation.

The Oxford Formation overlies the March Formation and consists of medium- to thick-bedded, dark grey, rusty-weathering dolomite. Wilson (1946, p.15) gave the maximum thickness of the Oxford and March Formations together as 350 feet. The Oxford Dolomite is quarried for concrete aggregate and road stone at Ottawa, Iroquois, Brockville, Athens, Jasper, Harlem, and Smiths Falls.

MIDDLE ORDOVICIAN

Chazy Group

The limestone, shale, and minor sandstone of the Chazy Group outcrop in narrow bands overlying the Beekmantown Dolomite in Dundas, Glengarry, Prescott, Russell, Stormont, and Carleton Counties. Wilson (1946, p.17-21) divided the Chazy Group of Middle Ordovician age into the Rockcliffe and St. Martin Formations.

The Rockcliffe Formation disconformably overlies the Oxford Formation of the Beekmantown Group and consists of friable olive-green shale with lenses of fine-grained grey sandstone. The average thickness of the Rockcliffe Formation is 150 to 160 feet (Wilson 1946, p.18).

The St. Martin Formation conformably overlies the Rockcliffe Formation and consists of grey limestone with some interbeds of dark shale and sandstone. Wilson (1946, p.20) stated that the St. Martin Formation was thickest in the eastern part of the basin and thinned to the west towards Ottawa. Thicknesses vary from 20 feet near Ottawa to 155 feet near Alexandria.

Trenton and Black River Groups

The limestones of the Trenton and Black River Groups (Simcoe Group) outcrop extensively in the Ottawa-St. Lawrence Basin in Carleton, Russell, Prescott, Dundas, Stormont, Renfrew, and Glengarry Counties. The rocks of these groups are dominantly limestone, shaly limestone, and dolomitic limestone ranging from medium- to thick-bedded. In colour the limestones range from grey to black. Chert is present in some beds. The limestones range from microcrystalline to crystalline in grain size. The maximum thickness of combined Black River and Trenton limestones in the Ottawa area is about 700 feet.

The Trenton and Black River limestones were mapped by Wilson (1946) as the Ottawa Formation. On Map 852A, accompanying Memoir 241, Wilson (1946) showed biostratigraphic subdivisions of the Ottawa Formation into Pamelia beds, Lowville beds, Leray beds, Rockland beds, Hull beds, Sherman Fall beds, and Cobourg beds. In central Ontario, west of the Frontenac Axis, Liberty (1969) subdivided the Trenton and Black River limestones (the Simcoe Group) on a lithostratigraphic basis into four formations. These formations have been mapped in outcrop from Georgian Bay to the Frontenac Axis. So far these lithostratigraphic formations have not been extended formally east of the Frontenac Axis.
Paleozoic Geology of Southern Ontario

UPPER ORDOVICIAN

Eastview Formation

The Eastview Formation, which correlates with the lower member of the Whitby Formation (the Collingwood biostratigraphic beds) outcrops in the Ottawa area as a narrow band that is not differentiated from the Billings Formation on the map (Map 2254, back pocket). The formation consists of dark grey limestone with interbedded black fissile shale. The lower contact is thought to be disconformable (Wilson 1946, p.26). The formation has a thickness of about 20 feet.

Billings Formation

The Billings Formation, which correlates with the Whitby Formation's middle member in central southern Ontario, outcrops east of Ottawa in a narrow band extending across Carleton and Russell Counties. The formation consists of brown shale that passes upwards into black fissile shale. It rests conformably on the Eastview Limestone. The Billings Formation probably has a thickness of 260 to 300 feet (Wilson 1946, p.27).

Carlsbad and Russell Formations

These formations correlate with the Georgian Bay Formation of central southern Ontario. The Carlsbad Shale conformably overlies the Billings Shale and outcrops east of Ottawa in Carleton and Russell Counties. The formation is composed of grey shale with some bands of impure limestone and dolomite. The maximum thickness of the shale is estimated at 500 to 550 feet (Wilson 1946, p.29).

The Russell Formation conformably overlies the Carlsbad Shale and consists of grey shale and interbedded rusty-weathering dolomitic limestone (Wilson 1946, p.30). The formation occupies a small area north and west of Russell Village in Russell Township, marginal to the Queenston Formation. The thickness of the formation is not known; the formation is not known to outcrop and investigators have difficulty in recognizing the unit in subsurface.

Queenston Formation

The Upper Ordovician Queenston Formation outcrops in a small area east of Ottawa straddling the Carleton-Russell county boundary. The formation consists of red shale with some green mottling. The combined thickness of the Russell and Queenston Formations is about 100 feet. The Queenston Shale is quarried for the manufacture of brick in the Ottawa plant of Domtar Construction Materials Limited.
South-central and southwestern Ontario are underlain by Cambrian, Ordovician, Silurian, and Devonian rocks. The Table of Formations is given in Table 1.

<table>
<thead>
<tr>
<th>System</th>
<th>Sub-system</th>
<th>Formation or Group</th>
<th>Lithology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devonian</td>
<td>Upper Devonian</td>
<td>Port Lambton Formation</td>
<td>Grey to black shale, sandstone, siltstone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kettle Point Formation</td>
<td>Black shale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hamilton Formation</td>
<td>Grey shale and argillaceous limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dundee Formation</td>
<td>Limestone, chert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detroit River Group</td>
<td>Brown limestone and dolomite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bois Blanc Formation</td>
<td>Limestone, dolomite, chert, sandstone</td>
</tr>
<tr>
<td></td>
<td>Middle Devonian</td>
<td>Oriskany Formation</td>
<td>Sandstone</td>
</tr>
<tr>
<td></td>
<td>Lower Devonian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silurian</td>
<td>Upper Silurian</td>
<td>Bass Islands (Bertie) Formation</td>
<td>Buff dolomite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Salina Formation</td>
<td>Dolomite, shale, gypsum, salt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dolomite</td>
</tr>
<tr>
<td></td>
<td>Middle and Lower Silurian</td>
<td>Guelph Formation</td>
<td>Dolomite</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shale, sandstone, dolomite, limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lockport-Amabel Formations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinton-Cataract Groups</td>
<td></td>
</tr>
<tr>
<td>Ordovician</td>
<td>Upper Ordovician</td>
<td>Queenston Formation</td>
<td>Red shale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Georgian Bay Formation</td>
<td>Grey and black shale, limestone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whitby Formation</td>
<td>Grey and black shale, limestone</td>
</tr>
<tr>
<td></td>
<td>Middle Ordovician</td>
<td>Simcoe (Trenton-Black River) Group</td>
<td>Limestone</td>
</tr>
<tr>
<td>Cambrian(?)</td>
<td></td>
<td>Potsdam Formation</td>
<td>Sandstone</td>
</tr>
</tbody>
</table>

Cambrian(?)

Potsdam Formation

The principal outcrops of Potsdam Sandstone on the western side of the Frontenac Axis are along the Rideau River and St. Lawrence River in Pittsburgh and Storrington Townships. The Potsdam Sandstone rests unconformably on the Precambrian basement rocks. The lithology is the same as previously described and the uppermost strata may be Early Ordovician in age (Liberty 1971). The maximum thickness of the Potsdam Sandstone in this area is about 150 feet.
Paleozoic Geology of Southern Ontario

Building-stone quarries are operated in Pittsburgh and Storrington Townships. Attractive sandstone ashlar of buff and brownish red hues are produced. Silica sand was formerly produced by Kingston Silica Mines Limited near Joyceville. In 1971, Canada Cement Lafarge Limited opened a silica sandstone quarry in Pittsburgh Township just north of Highway 2 west of Gananoque to provide silica sand for the manufacture of portland cement.

Ordovician

MIDDLE ORDOVICIAN

Shadow Lake Formation

The Shadow Lake Formation (not shown on Map 2254, back pocket) redefined by Liberty (1969, p.15) consists of basal arkose, red and green shale, ranging from zero to 40 feet in thickness, resting on the Precambrian basement or in places on the Potsdam Sandstone. It may pass transitionally into the overlying limestones of the Gull River Formation.

Simcoe Group

The term Simcoe Group was introduced and defined by Liberty (1955; 1969) for the Black River and Trenton limestones that lie above the Shadow Lake Formation in the area between Georgian Bay and the Frontenac Axis. Liberty (1969) divided the Simcoe Group into the following formations in ascending order: Gull River Formation, Bobcaygeon Formation, Verulam Formation, and Lindsay Formation. A comparison of the new lithostratigraphic units of Liberty and the older biostratigraphic units are given in Table 2.

<table>
<thead>
<tr>
<th>Lithostratigraphic Units</th>
<th>Biostratigraphic Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simcoe Group</td>
<td></td>
</tr>
<tr>
<td>Lindsay Formation</td>
<td>Cobourg</td>
</tr>
<tr>
<td>Verulam Formation</td>
<td>Kirkfield-Sherman Fall-Cobourg</td>
</tr>
<tr>
<td>Bobcaygeon Formation, upper member</td>
<td>Rockland-Kirkfield</td>
</tr>
<tr>
<td>Bobcaygeon Formation, middle member</td>
<td>Rockland</td>
</tr>
<tr>
<td>Bobcaygeon Formation, lower member</td>
<td>Chaumont (Leray)-Rockland</td>
</tr>
<tr>
<td>Gull River Formation</td>
<td>Pamelia-Lowville- (Leray)-Chaumont</td>
</tr>
<tr>
<td>Shadow Lake Formation</td>
<td>Pamelia</td>
</tr>
</tbody>
</table>
The Simcoe Group is composed of limestone, with interbeds of shale more common in the Verulam and Lindsay Formations. The total thickness of the group is 500 to 600 feet. Limestones of the Simcoe Group are quarried for crushed stone at Kingston, Napanee, Roblin, Gamebridge, and Uhthoff, and for the production of portland cement at Picton, Belleville, Colborne, and Bowmanville. The Gull River Formation was formerly quarried extensively as building stone at Kingston, Napanee, and Longford, and for the production of lime at Coboconk.

UPPER ORDOVICIAN

Whitby Formation

The Whitby Formation rests on the Lindsay Limestone and is the bedrock formation in parts of Durham, Ontario, York, and Simcoe Counties, in a band extending from Lake Ontario, in the vicinity of Whitby, to Collingwood, on Nottawasaga Bay. The term Whitby Formation replaces the biostratigraphic units Collingwood, Gloucester, and Blue Mountain. The formation consists of three members, a lower black shale member, a middle brown shale member, and an upper grey and blue shale member. The Whitby Formation is about 290 feet thick near Lake Ontario, thinning to about 170 feet thick along Nottawasaga Bay (Liberty 1969, p.67).

The Whitby Shale is quarried at the Bowmanville quarry of St. Marys Cement Company to mix with the Lindsay Limestone for the manufacture of portland cement. Test work by the Mines Branch at Ottawa has indicated that some samples of the lower member of the Whitby Formation will produce a satisfactory lightweight aggregate.

Georgian Bay Formation

The term Georgian Bay Formation has been proposed by Liberty (1969, p.73) for the lithostratigraphic unit of blue and grey shale, with some limestone interbeds, that overlies the Whitby Formation and underlies the Queenston Formation. The Georgian Bay Formation is the lithostratigraphic equivalent of the biostratigraphic Meaford and Dundas units referred to as the Meaford-Dundas Shale. The thickness of the Georgian Bay Formation ranges from 418 feet on Nottawasaga Bay to about 600 feet in the Toronto area.

The Georgian Bay Shale is used extensively for brick manufacture at Toronto and Cooksville. The shale is used to make expanded aggregate at Cooksville.

On Manitoulin Island the upper member of the Georgian Bay Formation can be seen to advantage. It consists of limestone and dolomite and may be subdivided into two submembers of limestone and dolomite, and argillaceous limestone (the biostratigraphic Kagawong and Meaford units). The lower member of the Georgian Bay Formation is greyish blue shale with thin interbeds of finely crystalline limestone (the Wekwemikongsing biostratigraphic unit).
Paleozoic Geology of Southern Ontario

Queenston Formation

The Queenston Formation, which is a red shale, outcrops in a wide band at the base of the Niagara Escarpment from Queenston through Hamilton, Milton, and Brampton to the Bruce Peninsula. It is about 800 feet thick at St. Catharines, but thins northward to about 160 feet in the Bruce Peninsula to an arbitrary cut-off south of Tobermory (Liberty and Bolton 1971). There is a facies change between Cabot Head and Tobermory and the red shale of the Queenston Formation is not present on Manitoulin Island where the equivalent strata are in the upper member of the Georgian Bay Formation (Liberty 1971).

The Queenston Shale is widely used for brick and tile manufacture at St. Catharines, Grimsby, Hamilton, Palermo, Milton, Streetsville, Brampton, and Ottawa.

The Queenston Shale is the uppermost formation of Ordovician age in southern Ontario and is overlain by Silurian strata of the Cataract Group.

Silurian

MIDDLE AND LOWER SILURIAN

Clinton and Cataract Groups

Rocks of the Clinton and Cataract Groups outcrop along the face of the Niagara Escarpment from Niagara Falls to Manitoulin Island. The formations present in these groups are given in Table 3.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>FORMATIONS IN THE CLINTON AND CATARACT GROUPS IN SOUTHWESTERN ONTARIO; AFTER BOLTON (1957, p.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niagara Peninsula to Milton</td>
</tr>
<tr>
<td></td>
<td>Milton to Manitoulin Island</td>
</tr>
<tr>
<td>Clinton Group:</td>
<td></td>
</tr>
<tr>
<td>Upper:</td>
<td>Decew Dolomite</td>
</tr>
<tr>
<td></td>
<td>Rochester Shale</td>
</tr>
<tr>
<td></td>
<td>Irondequoit Limestone</td>
</tr>
<tr>
<td>Lower:</td>
<td>Reynales Dolomite</td>
</tr>
<tr>
<td></td>
<td>Néagha Shale</td>
</tr>
<tr>
<td></td>
<td>Thorold Sandstone and Shale</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cataract Group:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grimsby Shale and Sandstone</td>
</tr>
<tr>
<td></td>
<td>Power Glen Shale</td>
</tr>
<tr>
<td></td>
<td>Whirlpool Sandstone</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The combined thickness of the Clinton and Cataract Groups in the Niagara Peninsula is about 200 feet.

The Whirlpool Sandstone is quarried for building stone under the name "Credit Valley Sandstone" at Limehouse, Glen Williams, and Inglewood. It was formerly quarried at Thorold, Grimsby, Hamilton, Milton, Orangeville, and Duntroon (Hewitt 1964c). Where quarried, the sandstone is about 12 feet thick. The formation pinches out north of Duntroon.

The Manitoulin Formation makes up part of the face of the Niagara Escarpment from Stoney Creek north to Manitoulin Island. At Stoney Creek it consists of 4 feet of even-bedded bluish grey to buff, crystalline dolomitic limestone (Bolton 1957, p.14). At Hamilton it thickens to 11 feet, and at Canning Falls to 26 feet. From this point the thickness is fairly constant. The formation generally consists of thick- to thin-bedded, grey, buff-weathering, dense to fine-grained argillaceous dolomitic limestone with grey shale partings and lenses of white chert. It was formerly quarried for road stone at Duntroon and Owen Sound.

A summary of the formation making up the face of the Niagara Escarpment is given by Hewitt (1971, p.21-44).

Guelph-Lockport-Amabel Formations

The Guelph-Lockport Dolomites form the cap rock of the Niagara Escarpment and outcrop in a wide band from Niagara Falls, through Dundas and Guelph, to the Bruce Peninsula. In the vicinity of Waterdown the Lockport Formation undergoes a facies change and is known from Waterdown north to the Bruce Peninsula as the Amabel Formation (Bolton 1957).

The Lockport Dolomite, which overlies the Clinton Group, is divided into three members in ascending order: Gasport Dolomitic Limestone, Goat Island Dolomite, and Eramosa Dolomite. The Amabel Formation is 131 feet thick at the type section at Wiarton and consists of: an aphanitic to very finely crystalline blocky dolomite at the base called the Lions Head Member; a massive, fine to medium crystalline dolomite, the Colpoy Bay Member; a blue-grey mottled, fine to medium crystalline dolomite, the Wiarton Member; and a thin-bedded, brown, fine crystalline bituminous dolomite, the Eramosa Member (Bolton 1957, p.51).

The Guelph Formation, which overlies the Lockport and Amabel, is a buff-coloured, fine-grained sugary dolomite usually of high purity. The combined thickness of Guelph-Lockport and Guelph-Amabel dolomites ranges from about 200 feet in the Niagara Peninsula to over 400 feet in the Bruce Peninsula.

These formations are extensively quarried for crushed stone at Queenston, Thorold, St. Catharines, Vineland, Vinemount, Stoney Creek, Dundas, Nelson, Milton, Acton, Duntroon, and Owen Sound. They are quarried for building stone at Queenston and Wiarton, and for the manufacture of dolomitic lime at Guelph and Hespeler (Hewitt 1960; 1964a; 1964b).
Paleozoic Geology of Southern Ontario

UPPER SILURIAN

Salina Formation

The Salina Formation forms the bedrock in a belt 6 to 16 miles wide extending from the Niagara River, east of Welland, through Dunnville, Cayuga, Brantford, Paris, Kitchener, Elmira, Mount Forest, and Chesley to Lake Huron, just east of Southampton. The formation consists of eight members, which have not been named, but are designated by the letters A-1, A-2, B, C, D, E, F, and G. Units A-1, A-2, B, and D are mainly evaporite deposits of salt and anhydrite and are developed in the subsurface in southwestern Ontario. The Salina Formation consists of grey and red shale, grey-brown dolomite, minor limestone, and in places salt, anhydrite, and gypsum.

At Sarnia, where extensive beds of salt are present, the Salina has a thickness of 1,500 feet (Hewitt 1962); in Haldimand County the thickness is 310 feet (Sanford 1969a). Gypsum beds in the Salina Formation, from 4 to 11 feet thick, are mined at Hagersville and Caledonia (Guillet 1964). Salt beds in the Salina Formation are mined at Ojibway and Goderich, and salt is produced from brine wells at Amherstburg, Windsor, Sarnia, and Goderich by a number of companies (Hewitt 1962).

Bass Islands (Bertie) Formation

The Bass Islands (Bertie) Formation forms the bedrock in a narrow band extending from Fort Erie through Hagersville, New Hamburg, Harriston, and Walkerton to Southampton on Lake Huron. The formation consists of medium-bedded to massive-bedded aphanitic brown dolomite with minor thin-bedded shaly dolomite (Hewitt 1960, p.127). Along the outcrop area between Fort Erie and Hagersville the thickness varies from 35 to 60 feet. It thickens to 495 feet in the subsurface (Sanford 1968, p.19). Sanford (Map 1263A, 1969b) used the term Bertie Formation from Fort Erie to the vicinity of Hagersville and the term Bass Islands Formation north and west of Hagersville. The Formation is correlated with the Bass Islands Formation of Michigan.

The Bertie Dolomite is quarried for crushed stone at Fort Erie, Port Colborne, Dunnville, Cayuga, and Hagersville. It is the uppermost formation of the Silurian System in Ontario.

Devonian

LOWER DEVONIAN

Oriskany Formation

The only deposit of Oriskany Sandstone in Ontario is in Oneida and North Cayuga Townships, Haldimand County, 4 miles west of the Town of Cayuga.
Oriskany Sandstone underlies an area of less than a square mile. The formation is a medium light grey to white, medium-grained, irregularly thick-bedded sandstone. In places, brown iron staining is present. The formation rarely exceeds 15 feet in thickness.

The sandstone has been quarried for building stone, and as a source of silica and glass sand (Hewitt 1963, p.27).

MIDDLE DEVONIAN

Bois Blanc Formation

The Bois Blanc Formation is of Middle Devonian age and rests unconformably on the Upper Silurian Bass Islands (Bertie) Dolomite. The formation extends in a band, 3 to 10 miles wide, from Fort Erie through Hagersville, Woodstock, Milverton, and Listowel, to Port Elgin on Lake Huron. The Bois Blanc Formation consists of medium brownish grey, medium crystalline, medium- to thin-bedded cherty limestone. In many places the Springvale Sandstone Member occurs at the base of the formation. The thickness varies from 90 to 240 feet (Best 1953).

The Bois Blanc Limestone is quarried for crushed stone at Fort Erie, Port Colborne, Cayuga, and Hagersville.

Detroit River Group

The Detroit River Group, consisting of limestone and dolomite, forms a northwest-trending band extending from Norwich through Beachville, Stratford, and Wingham, to Kincardine on Lake Huron. The dip is southwest. Southeast of Norwich, the Detroit River Group pinches out, and in Norfolk County, between Norwich and Lake Erie, the overlying Dundee Formation rests directly on the underlying Bois Blanc Formation. Southeast of St. Marys, the Detroit River Group is mainly limestone; north of St. Marys, it is mainly dolomite; in the St. Marys area the dolomite and limestone facies interfinger. The thickness of the Detroit River Group increases from zero southeast of Norwich to 110 feet at Beachville, 197 feet at St. Marys, and 350 feet at Clinton (Best 1953).

The Detroit River Limestones are quarried for production of high-purity calcium limestone for lime, crushed stone, and fluxstone at Beachville, and for manufacture of portland cement at Zorra Station.

The Detroit River Group also outcrops on the western side of the Chatham Syncline in Essex County, where it is quarried at Amherstburg for crushed stone and lime manufacture (Hewitt 1960, p.146-168).

Dundee Formation

The Dundee Limestone occupies a wide belt extending from west of Port Stanley to east of Port Dover on Lake Erie, northwest to Lake Huron, where it
Paleozoic Geology of Southern Ontario

outcrops from southwest of Grand Bend to north of Goderich. The term Dundee replaces the term Delaware and includes all Delaware strata and the former Columbus Formation. The Dundee Formation consists of light brown, medium-grained limestone; some chert may be present. The formation has a thickness of 60 to 160 feet. The Dundee Limestone also outcrops in Essex County.

It is quarried near Port Dover and Amherstburg for the production of crushed stone, at St. Marys for the manufacture of portland cement.

Hamilton Formation

The Hamilton Formation, which rests conformably on the underlying Dundee Limestone, outcrops in Middlesex, Elgin, Lambton, Kent, and Essex Counties of southwestern Ontario. In lithology it consists predominantly of grey shale with interbeds of grey crystalline cherty limestone. The thickness of the formation ranges from 80 to 300 feet (Caley 1945, p.45).

The Hamilton Formation is comprised of the following members:

- Ipperwash Member: grey limestone;
- Widder Member: grey shale and limestone;
- Hungry Hollow Member: grey limestone and shale;
- Arkona Member: grey shale;
- Rockport Quarry Member: grey argillaceous limestone;
- Bell Member: grey shale;
- Marcellus Member: black shale.

The Hamilton Shale is quarried at Thedford and Arkona for the production of brick and tile. One of the limestone bands in the formation was quarried for crushed stone at Thedford (Hewitt 1964a, p.70).

UPPER DEVONIAN

Kettle Point Formation

The Kettle Point Formation outcrops principally in Lambton and Kent Counties. It is composed predominantly of thin-bedded, fissile grey to black bituminous shale, which at Kettle Point contains spherical concretions 8 inches to several feet in diameter. The thickness of the formation varies from 40 to 290 feet (Caley 1945, p.49).

Port Lambton Formation

“The Port Lambton beds form a narrow strip along the St. Clair river, from Port Lambton north through Sombra township into Moore township” (Sanford and Brady 1955, p.8). The formation consists of light-grey fissile shale, siltstone,
and light-grey sandstone. The formation has a thickness of up to 200 feet or more.

It is of Upper Devonian age and where divisible it is comprised of the following members:

- **Sunbury Member:** black shale;
- **Berea Member:** grey sandstone and siltstone;
- **Bedford Member:** grey shale.
Paleozoic Geology of Southern Ontario

SELECTED REFERENCES

Best, E. W.

Bolton, T. E.

Caley, J. F.
1940: Palaeozoic geology of the Toronto-Hamilton area, Ontario; Geol. Surv. Canada, Mem. 224, 284p. Accompanied by Map 584A, scale 1 inch to 4 miles and Map 585A, scale 1 inch to 2 miles.

Caley, J. F., and Liberty, B. A.
1952: Fenelon Falls, Victoria, Peterborough, and Haliburton Counties, Ontario (preliminary map and descriptive notes); Geol. Surv. Canada, Paper 52-31. Accompanied by Map 52-31A, scale 1 inch to 1 mile.

Greggs, R. G., and Bond, I. J.

Guillet, G. R.

Hewitt, D. F.
1960: The limestone industries of Ontario; Ontario Dept. Mines, IMC5, 177p. Accompanied by Map 1960c, scale 1 inch to 20 miles and Map 1960d, scale 1 inch to 1 mile.

Kay, G. M.
Keith, M. L.

Liberty, B. A.
1952: Lindsay, Victoria, Durham, Ontario, and Peterborough Counties, Ontario (preliminary map and descriptive notes); Geol. Surv. Canada, Paper 52-33. Accompanied by Map 52-33A, scale 1 inch to 1 mile.
1953d: Orr Lake, Simcoe County, Ontario (preliminary map and descriptive notes); Geol. Surv. Canada, Paper 53-16. Accompanied by Map 53-16, scale 1 inch to 1 mile.

Liberty, B. A., and Bolton, T. E.

Roliff, W. A.
Paleozoic Geology of Southern Ontario

Sanford, B. V.

Sanford, B. V., and Brady, W. B.

Winder, C. G.

1955: Campbellford map-area, Ontario (preliminary map and descriptive notes); Geol. Surv. Canada, Paper 54-17. Accompanied by Map 54-17, scale 1 inch to 1 mile.

1961: Lexicon of Palaeozoic names in southwestern Ontario; University of Toronto Press, 121p.

Wilson, A. E.

INDEX

<table>
<thead>
<tr>
<th>Page</th>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Acton, quarries near</td>
</tr>
<tr>
<td>3</td>
<td>Alexandria, thickness of rocks near</td>
</tr>
<tr>
<td>2</td>
<td>Almonte, quarries near</td>
</tr>
<tr>
<td>9</td>
<td>Amabel Formation</td>
</tr>
<tr>
<td>10</td>
<td>Amherstburg, brine wells near</td>
</tr>
<tr>
<td>11, 12</td>
<td>Quarrries near</td>
</tr>
<tr>
<td>10</td>
<td>Arkona, Hamilton Formation near</td>
</tr>
<tr>
<td>9</td>
<td>Arkose</td>
</tr>
<tr>
<td>6</td>
<td>Athens, quarries near</td>
</tr>
<tr>
<td>10</td>
<td>Bass Islands (Bertie) Formation</td>
</tr>
<tr>
<td>11</td>
<td>Beachville, Detroit River Group rocks near</td>
</tr>
<tr>
<td>13</td>
<td>Bedford Member, Port Lambton Formation</td>
</tr>
<tr>
<td>3-2</td>
<td>Beekmantown Group</td>
</tr>
<tr>
<td>7</td>
<td>Belleville, quarries near</td>
</tr>
<tr>
<td>12</td>
<td>Bell Member, Hamilton Formation</td>
</tr>
<tr>
<td>3, 5</td>
<td>Berea Member, Port Lambton Formation</td>
</tr>
<tr>
<td>3, 10</td>
<td>Bertie (Bass Islands) Formation</td>
</tr>
<tr>
<td>4</td>
<td>Billings Formation</td>
</tr>
<tr>
<td>6, 7</td>
<td>Biostratigraphic, lithostratigraphic units: Comparison of, notes and table</td>
</tr>
<tr>
<td>3, 6</td>
<td>Black River Group</td>
</tr>
<tr>
<td>7</td>
<td>Blue Mountain biostratigraphic unit</td>
</tr>
<tr>
<td>6</td>
<td>Bobayegon Formation</td>
</tr>
<tr>
<td>11</td>
<td>Bois Blanc Formation</td>
</tr>
<tr>
<td>7</td>
<td>Bowmanville, quarries near</td>
</tr>
<tr>
<td>8</td>
<td>Brampton, Queenston Shale near</td>
</tr>
<tr>
<td>10</td>
<td>Brantford, Salina Formation near</td>
</tr>
<tr>
<td>12</td>
<td>Brine wells at</td>
</tr>
<tr>
<td>2, 3</td>
<td>Brockville, quarries near</td>
</tr>
<tr>
<td>8, 9</td>
<td>Bruce Peninsula, rocks of</td>
</tr>
<tr>
<td>8</td>
<td>Cabot Head, Queenston Formation near</td>
</tr>
<tr>
<td>8</td>
<td>Cabot Head Shale, in table</td>
</tr>
<tr>
<td>10</td>
<td>Caledonia, Salina Formation near</td>
</tr>
<tr>
<td>1, 5-6</td>
<td>Cambrian(?) rocks</td>
</tr>
<tr>
<td>2</td>
<td>Cambro-Ordovician age rocks</td>
</tr>
<tr>
<td>6</td>
<td>Canada Cement Lafarge Ltd.</td>
</tr>
<tr>
<td>2, 3, 4</td>
<td>Carleton County, rocks of</td>
</tr>
<tr>
<td>4</td>
<td>Carlsbad Formation</td>
</tr>
<tr>
<td>8-9</td>
<td>Cataract, Clinton Group</td>
</tr>
<tr>
<td>10, 11</td>
<td>Cayuga, rocks near</td>
</tr>
<tr>
<td>11</td>
<td>Chatham Syncline</td>
</tr>
<tr>
<td>3</td>
<td>Chazy Group</td>
</tr>
<tr>
<td>9, 11</td>
<td>Chert</td>
</tr>
<tr>
<td>10</td>
<td>Cheshley, Salina Formation near</td>
</tr>
<tr>
<td>8-9</td>
<td>Clinton-Cataract Group</td>
</tr>
<tr>
<td>7</td>
<td>Coboconk, Gull River Formation near</td>
</tr>
<tr>
<td>7</td>
<td>Colborne, Simcoe Group rocks near</td>
</tr>
<tr>
<td>7</td>
<td>Collingwood, Whitby Formation near</td>
</tr>
<tr>
<td>7</td>
<td>Collingwood biostratigraphic unit</td>
</tr>
<tr>
<td>2, 4, 6, 7, 9, 12</td>
<td>Colour phases in rocks</td>
</tr>
<tr>
<td>9</td>
<td>Colpov Bay Member, Amabel Formation</td>
</tr>
<tr>
<td>9</td>
<td>Columbus Formation</td>
</tr>
<tr>
<td>12</td>
<td>Concretions</td>
</tr>
<tr>
<td>7</td>
<td>Cooksville, brick manufacture at</td>
</tr>
<tr>
<td>9</td>
<td>“Credit Valley Sandstone”</td>
</tr>
<tr>
<td>12</td>
<td>Delaware Formation</td>
</tr>
<tr>
<td>11</td>
<td>Detroit River Group</td>
</tr>
<tr>
<td>10, 13</td>
<td>Devonian rocks</td>
</tr>
</tbody>
</table>
| 1, 4, 7, 9, 10, 11 | Dolomite

<table>
<thead>
<tr>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Domtar Construction Materials Ltd.</td>
</tr>
<tr>
<td>7</td>
<td>Dundas, Meaford Shale</td>
</tr>
<tr>
<td>11-12</td>
<td>Dunville, Salina Formation near</td>
</tr>
<tr>
<td>9</td>
<td>Duntroon, quarries at</td>
</tr>
<tr>
<td>7</td>
<td>Durham County, Whitby Formation in</td>
</tr>
<tr>
<td>4</td>
<td>Eastview Formation</td>
</tr>
<tr>
<td>12</td>
<td>Elgin County, Hamilton Formation in</td>
</tr>
<tr>
<td>10</td>
<td>Elmira, Salina Formation near</td>
</tr>
<tr>
<td>9</td>
<td>Eramosa Dolomite</td>
</tr>
<tr>
<td>11, 12</td>
<td>Essex County, rocks of</td>
</tr>
<tr>
<td>10, 11</td>
<td>Fort Erie, rocks near</td>
</tr>
<tr>
<td>1, 3, 5, 6</td>
<td>Frontenac Axis</td>
</tr>
<tr>
<td>7</td>
<td>Gamebridge, quarries near</td>
</tr>
<tr>
<td>1, 6</td>
<td>Gananoque, rocks near</td>
</tr>
<tr>
<td>9</td>
<td>Gasport Dolomitic Limestone</td>
</tr>
<tr>
<td>3, 6</td>
<td>Georgian Bay area rocks of</td>
</tr>
<tr>
<td>4, 7, 8</td>
<td>Georgian Bay Formation</td>
</tr>
<tr>
<td>3</td>
<td>Glengarry County</td>
</tr>
<tr>
<td>9</td>
<td>Glen Williams, quarries at</td>
</tr>
<tr>
<td>7</td>
<td>Gloucester biostratigraphic unit</td>
</tr>
<tr>
<td>9</td>
<td>Goat Island Dolomite</td>
</tr>
<tr>
<td>10</td>
<td>Goderich, brine wells at</td>
</tr>
<tr>
<td>12</td>
<td>Dundee Limestone at</td>
</tr>
<tr>
<td>12</td>
<td>Grand Bend, Dundee Limestone at</td>
</tr>
<tr>
<td>2</td>
<td>Grenville County, Beekmantown Group near</td>
</tr>
<tr>
<td>8</td>
<td>Grimsby, brick and tile manufacture near</td>
</tr>
<tr>
<td>9</td>
<td>Whirlpool Sandstone near</td>
</tr>
<tr>
<td>9</td>
<td>Guelph, rocks near</td>
</tr>
<tr>
<td>9</td>
<td>Guelph Formation</td>
</tr>
<tr>
<td>6, 7</td>
<td>Gull River Formation</td>
</tr>
<tr>
<td>10</td>
<td>Gypsum</td>
</tr>
<tr>
<td>10</td>
<td>Hagersville, rocks near</td>
</tr>
<tr>
<td>10</td>
<td>Haldimand County, rocks in</td>
</tr>
<tr>
<td>8</td>
<td>Hamilton, brick and tile manufacture at</td>
</tr>
<tr>
<td>12</td>
<td>Whirlpool Sandstone at</td>
</tr>
<tr>
<td>3</td>
<td>Hamilton Formation</td>
</tr>
<tr>
<td>3</td>
<td>Harlem, quarries near</td>
</tr>
<tr>
<td>10</td>
<td>Harriston, Bass Islands Formation at</td>
</tr>
<tr>
<td>9</td>
<td>Hespeler, lime manufacture at</td>
</tr>
<tr>
<td>3</td>
<td>Hull beds, Ottawa Formation</td>
</tr>
<tr>
<td>12</td>
<td>Hungry Hollow Member, Hamilton Formation</td>
</tr>
<tr>
<td>9</td>
<td>Inglewood, quarries at</td>
</tr>
<tr>
<td>12</td>
<td>Ipperwash Member, Hamilton Formation</td>
</tr>
<tr>
<td>3</td>
<td>Iroquois, quarries at</td>
</tr>
<tr>
<td>3</td>
<td>Jasper, quarries at</td>
</tr>
<tr>
<td>6</td>
<td>Joyceville, silica mine near</td>
</tr>
<tr>
<td>7</td>
<td>Kagawong biostratigraphic unit</td>
</tr>
<tr>
<td>7</td>
<td>Kent County, rocks in</td>
</tr>
<tr>
<td>12</td>
<td>Kettle Point Formation</td>
</tr>
<tr>
<td>12</td>
<td>Concretions in</td>
</tr>
<tr>
<td>11</td>
<td>Kincardine, Detroit River Group at</td>
</tr>
<tr>
<td>7</td>
<td>Kingston, quarries near</td>
</tr>
<tr>
<td>6</td>
<td>Kingston Silica Mines Ltd.</td>
</tr>
<tr>
<td>10</td>
<td>Kitchener, Salina Formation at</td>
</tr>
<tr>
<td>12</td>
<td>Lambton County, rocks in</td>
</tr>
<tr>
<td>2</td>
<td>Lanark County, rocks in</td>
</tr>
</tbody>
</table>

17
Paleozoic Geology of Southern Ontario

PAGE

Leeds County, rocks in .. 2
Leray beds, Ottawa Formation 3
Limestone .. 3, 4, 6, 7, 9, 11, 12
Lindsay Formation .. 6, 7
Lions Head Member, Amabel Formation 9
Lithostratigraphic, biostratigraphic units:
 Comparison of, notes and table 6, 7
Lockport Formation .. 9
Longford, quarries at .. 7
Lowville beds, Ottawa Formation 3

Manitoulin Formation ... 9
Manitoulin Island, Queenston Formation on 7, 8
Marcellus Member, Hamilton Formation 12
March Formation ... 2, 3
Meaford biostratigraphic unit 7
Meaford-Dundas Shale ... 7
Middlesex County, rocks in 12
Milton, Queenston Formation at 8
Milverton, Bois Blanc Formation at 11
Mount Forest, Salina Formation at 10

Napanee, quarries at .. 7
Nelson, quarries at ... 9
Nepean Formation .. 2
 See also: Potsdam Formation.
New Hamburg, Bass Islands Formation at 10
Niagara Escarpment, rocks of 8, 9
Niagara Falls, rocks at ... 8, 9
Niagara Peninsula, rocks of 9
Niagara River, Salina Formation along 10
Norfolk County, rocks in 11
North Cayuga Township, Oriskany Sandstone in 10
Norwich, Detroit River Group at 11
Nottawasaga Bay, rocks near 7

Onieda Township, Oriskany Sandstone in 10
Ontario County, rocks in 7
Orangeville, Whirlpool Sandstone at 9
Ordovician rocks .. 1, 2, 5, 6-8
Oriskany Formation ... 10-11
Ottawa, quarries at .. 2, 3
 Brick and tile manufacture at 2
Ottawa Formation .. 3
Ottawa-St. Lawrence Basin rocks 1-4
Owen Sound, quarries at 9
Oxford Formation ... 2, 3

Paleozoic rocks, table .. 5
Palermo, brick and tile manufacture at 8
Pamela beds, Ottawa Formation 3
Paris, Salina Formation at 10
Perth, quarries at .. 2
Picton, quarries at .. 7
Pittsburg Township, Potsdam Sandstone in 5, 6
Port Colborne, quarries at 10, 11
Port Dover, Dundee Formation at 11, 12
Port Lambton Formation ... 12-13
Portland cement ... 6, 7, 11, 12
Port Stanley, Dundee Limestone at 11
Potsdam Formation .. 2, 5-6
 See also: Nepean Formation.
Prescott County, rocks in 3
Quarries ... 6, 7, 9, 11
Queenston, rocks near ... 8, 9
Queenston Formation .. 4, 7, 8
Renfrew County, rocks in 3

Rideau River, Potsdam Sandstone along 5
Roblin, quarries at ... 7
Rockcliff Formation .. 8
Rockland beds, Ottawa Formation 3
Rockport Quarry Member, Hamilton Formation 12
Russell County, rocks in 3, 4
Russell Formation .. 4
Russell Township, rocks in 4
Russell Village, Russell Formation near 4

St. Catharines, Queenston Formation at 8
St. Clair River, Port Lambton Formation along 12
St. Lawrence River, rocks along 1
St. Martin Formation ... 3
St. Marys, Detroit River Group at 11
 Quarries at ... 12
St. Marys Cement Co. .. 10
Salina Formation .. 10
Salt ... 10
Sand ... 2, 6
Sandstone .. 2, 3, 13
Sarnia, brine wells at .. 10
Shadow Lake Formation ... 6
Shale ... 1, 3, 4, 6, 7, 9, 12
Sherman Falls beds, Ottawa Formation 3
Silica sand .. 2, 6
Silstone ... 12
Silurian age rocks .. 8-10
Simcoe County, rocks in 7
Simcoe Group ... 3, 6-7
Smiths Falls, quarries near 2, 3
Sombra Township, Port Lambton Formation in 12
Southampton, Salina Formation near 10
Springvale Sandstone Member, Bois Blanc Formation .. 11
Stoney Creek, Manitoulin Formation at 9
Stormont County, Chazy Group in 3
Storrington Township ... 5, 6
Stratford, Detroit River Group near 11
Streetsville, brick and tile manufacture at 8
Sulbury Member, Port Lambton Formation 13

Theldford, quarries near ... 12
Thornold, quarries near ... 9
Tobermory, Queenston Formation 8
Trenton Group, Ottawa Formation 3
Uthoff, quarries near .. 7

Verulam Formation .. 6, 7
Vineland, quarries at .. 9

Walkerton, Bass Islands Formation near 10
Waterdown, Lockport Formation near 9
Wekwemikongbiing biostratigraphic unit 7
Welland, Salina Formation near 10
Westport, quarries near .. 2
Whirlpool Sandstone .. 9
Whithy, Whithy Formation near 7
Whithy Formation .. 4, 9
Wiartron, quarries at .. 9
Wiartron Member, Amabel Formation 9
Widler Member, Hamilton Formation 12
Windsor, brine wells at .. 10
Wingham, Detroit River Group near 11
Woodstock, Bois Blanc Formation near 11
York County, rocks in .. 7

Zora Station, quarries near 11
PALEOZOIC GEOLOGY OF SOUTHERN ONTARIO

Showing

Bedrock Industrial Mineral Producers

Scale 1:1,013,760 or 1 Inch to 16 Miles

LEGEND

PALEOZOIC

DEVONIAN

UPPER DEVONIAN

PORT LAMBTON FORMATION

20 Grey shale and sandstone.

KETTLE POINT FORMATION

19 Black shale.

MIDDLE DEVONIAN

HAMILTON-FORMATION

18 Grey shale and limestone.

DUNDEE FORMATION

17 Limestone.

DETROIT RIVER GROUP

16 Limestone and dolomite.

BOIS BLANC FORMATION

15 Cherty limestone.

LOWER DEVONIAN

ORISKANY FORMATION

14 Sandstone.

SILURIAN

UPPER SILURIAN

BASS ISLANDS (BERTIE) FORMATION

13 Dolomite.

SALINA FORMATION

12 Dolomite, shale, gypsum, salt.

MIDDLE AND LOWER SILURIAN

GUELPH FORMATION

11 Dolomite.

LOCKPORT-AMABEL FORMATIONS

10 Dolomite.

CLINTON AND CATARACT GROUPS

9 Sandstone, shale, dolomite.

ORDOVICIAN

UPPER ORDOVICIAN

QUEENSTON FORMATION

GEORGIAN BAY (CARLSBAD AND
RUSSELL) FORMATION

7 Grey shale with limestone interbeds; limestone upper member on Manitoulin Island, Whithby (Eastwic and Billings) FORMATION

MIDDLE ORDOVICIAN

SIMCOE GROUP (TRENTON-BLACK RIVER)

5 Limestone (5d, Lindsay Formation; 5c, Verulam Formation; 5b, Bobcaygeon Formation; 5a, Gull River Formation).

6 Grey and black shale.

CHAZY GROUP

4 Limestone and shale.

LOWER ORDOVICIAN

BEEKMANTOWN GROUP

3 Dolomite, sandstone.

CAMBR-ORDOVICIAN

POTSDAM OR NEPEAN FORMATION

PRECAMBRIAN

1 Precambrian rocks.

Dolomite predominates on Manitoulin Island.

Formations in Ottawa area.

SOURCES OF INFORMATION

Geology from maps of the Geological Survey of Canada.

Cartography by P. A. Wisbey and assistants, Ontario Department of Mines and Northern Affairs, 1972.